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Outcomes of controlled human malaria infection
after BCG vaccination
Jona Walk 1,2, L. Charlotte J. de Bree2,3,4,5, Wouter Graumans1,2, Rianne Stoter1,2, Geert-Jan van Gemert1,2,

Marga van de Vegte-Bolmer1,2, Karina Teelen1,2, Cornelus C. Hermsen1,2, Rob J.W. Arts2,3, Marije C. Behet1,2,

Farid Keramati6, Simone J.C.F.M. Moorlag2,3, Annie S.P. Yang1,2, Reinout van Crevel2,3, Peter Aaby4,

Quirijn de Mast2,3, André J.A.M. van der Ven2,3, Christine Stabell Benn4,5, Mihai G. Netea 2,3,7 &

Robert W. Sauerwein1,2

Recent evidence suggests that certain vaccines, including Bacillus-Calmette Guérin (BCG),

can induce changes in the innate immune system with non-specific memory characteristics,

termed ‘trained immunity’. Here we present the results of a randomised, controlled phase 1

clinical trial in 20 healthy male and female volunteers to evaluate the induction of immunity

and protective efficacy of the anti-tuberculosis BCG vaccine against a controlled human

malaria infection. After malaria challenge infection, BCG vaccinated volunteers present with

earlier and more severe clinical adverse events, and have significantly earlier expression of

NK cell activation markers and a trend towards earlier phenotypic monocyte activation.

Furthermore, parasitemia in BCG vaccinated volunteers is inversely correlated with increased

phenotypic NK cell and monocyte activation. The combined data demonstrate that BCG

vaccination alters the clinical and immunological response to malaria, and form an impetus to

further explore its potential in strategies for clinical malaria vaccine development.
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W
ith nearly 200 million clinical cases and nearly half a
million deaths in 20151, malaria remains a major
global health problem and there is pressing need for a

highly efficacious vaccine. RTS,S (Mosquirix®, GlaxoSmithKline),
the only registered malaria vaccine, confers only modest, short-
term protection2. It is clear that novel and improved malaria
vaccine strategies are required for eradication.

To date malaria vaccine research has focused primarily on the
induction of strong antibody or T-cell responses. However, recent
evidence suggests that certain vaccines, including the Bacillus-
Calmette Guérin (BCG) developed against tuberculosis, can
induce long-term changes in the innate immune system with
non-specific memory characteristics. This BCG-induced ‘trained
immunity’3 increases pro-inflammatory cytokine responses to
other pathogens4,5 and is mediated by epigenetic changes in
innate immune cells6,7. The clinical relevance of trained innate
immunity has been demonstrated in mice, where it reduced
mortality of Staphylococcus aureus sepsis6 and Candida albicans
infection8.

There is also evidence that BCG administration reduces para-
sitemia in rodent malaria models9–12, and in endemic areas BCG
vaccination has been associated with reduced malaria-specific
mortality13. However, any direct evidence for protective efficacy
of BCG-induced trained immunity against malaria, or any clini-
cally relevant pathogen, in humans is lacking.

Here, we show that a subset of BCG vaccinated healthy
volunteers have accelerated NK cell and monocyte activation that
correlates with reduced parasitemia after controlled human
malaria infection (CHMI). These findings are consistent with the
possibility that BCG vaccination may induce trained immunity
with functional activity against another human pathogen in vivo.

Results
BCG vaccination alters the clinical course of P. falciparum
infection. In a single-blind, randomised controlled clinical trial,
ten healthy BCG- and malaria-naive volunteers received an
intradermal BCG vaccination, while ten control volunteers
received no intervention. A single volunteer was excluded post
vaccination due to a concomitant Epstein–Barr virus infection.
Five weeks after vaccination, 9 BCG vaccinated and 10 control
volunteers underwent a Controlled Human Malaria Infection
(CHMI) by exposure to bites of five P. falciparum (Pf) infected
female Anopheles mosquitoes (Supplementary Fig. 1). Randomi-
sation was stratified by gender in order to ensure an equal dis-
tribution of male and female volunteers. Other baseline
characteristics were similar between groups (Supplementary
Table 1). Study primary endpoints were (1) Frequency and
magnitude of adverse events and (2) Time to blood stage para-
sitemia detectable by quantitative PCR (qPCR). Study secondary
endpoints were (1) Changes in cellular (innate and adaptive)
immune responses and (2) Changes in plasma cytokine levels.

All volunteers developed parasitemia as detected by qPCR after
challenge infection. Blood samples from 8 out of 9 BCG
vaccinated and all controls exceeded the predetermined threshold
of 100 parasites per millilitre blood on day 7, which was followed
by a curative treatment with atovaqone/proguanil. One BCG
vaccinated volunteer became positive on day 9. Interestingly,
the variation in day 7 parasitemia was much higher in the
BCG vaccinated group (geometric mean: 752 Pf/mL, 95%
CI: 217–2602 Pf/mL) than in the controls (geometric mean:
813 Pf/mL, 95% CI 481–1373 Pf/mL) (Levene’s test for equality of
variances: p= 0.005, Fig. 1a, b).

BCG vaccinated volunteers developed clinical symptoms of
malaria infection at an earlier time point and reported a higher
frequency of moderate or severe clinical symptoms than control

volunteers (Gehan-Breslow-Wilcoxon Test, p= 0.01, Fig. 1c;
Supplementary table 2). The moderate and severe adverse event
frequency in the BCG vaccinated group was also significantly
higher than in historical controls (Supplementary Fig. 2). In line
with this finding, BCG vaccinated volunteers presented with a
more significant decrease in platelet count (mean relative change
BCG group: 0.689, 95% CI: 0.637–0.741; control group: 0.778,
95% CI: 0.703–0.853; student’s t-test: p= 0.05; Supplementary
Fig. 3). Moreover, in a subset of BCG vaccinated volunteers,
circulating platelets, lymphocytes and neutrophils dropped earlier
(Fig. 1d–f). There was no significant difference in temperature
during follow-up (Supplementary Fig. 4).

BCG vaccinated volunteers show memory-like immune
responses. To study the kinetics of the immune response to
CHMI, whole blood flow cytometry was performed to determine
lymphocyte, monocyte and neutrophil activation. Post-BCG
vaccination but prior to CHMI and during parasite liver stage
(day 5 post-challenge), there was no activation of peripheral
blood leucocytes in either group as measured by the expression of
the early activation marker CD69 in lymphocytes, or the
expression of CD16, the antigen presenting molecule HLA-DR,
and the co-stimulatory molecule CD86, in monocytes (Fig. 2a–g).
On day 7, coinciding with the first appearance of blood stage
parasites, there was a marked increase in the proportion of
CD56dim NK cells expressing CD69 in half of the BCG vaccinated
volunteers, absent in the control group (Mann–Whitney U-test of
vaccinated vs. controls: p= 0.03, Fig. 2a). Instead, control
volunteers primarily showed immune activation only after
treatment. CD69 expression on gamma-delta (γδ) T cells,
NKT cells and alpha-beta (αβ) T cells followed a similar pattern,
with the same subgroup of BCG vaccinees showing activation on
day 7 post-challenge (Fig. 2b–d). There was no significant
increase in CD69 expression on CD56bright NK cells after chal-
lenge (Supplementary Fig. 5).

Next, the expression of CD16, HLA-DR and CD86, were
determined on CD14+ monocytes (Fig. 2e–g), markers previously
shown to increase with monocyte activation during CHMI14. The
percentage of activated neutrophils, those lacking CD62L with
high CD11b expression, was also analysed (Fig. 2h). On day 7
after challenge, the same subgroup of BCG vaccinated volunteers
showed increased expression of HLA-DR and CD86 on CD14
+CD16− monocytes, which was absent in controls.

The three BCG vaccinees with the strongest lymphocyte and
monocyte activation also responded with early increases in
plasma interferon-gamma (IFN-γ) or granzyme B, and inflam-
matory C-reactive protein (CRP) concentrations (Fig. 2i–k).

BCG-induced trained immunity correlates with lower para-
sitemia. We next evaluated whether this altered innate immune
phenotype had consequences for control of parasitemia. While at
group level this primary endpoint was not statistically met, we
identify a subgroup of approximately half of BCG vaccinated
volunteers with lower levels of parasitemia after challenge. These
effects were correlated with changes in the immune parameters
defined as secondary endpoints. Indeed, the subset of BCG vac-
cinated volunteers with early lymphocyte and monocyte activa-
tion were also those with lower parasitemia within the BCG group
(Fig. 3a, b and Supplementary Fig. 6), and early NK cell CD69
expression and monocyte HLA-DR expression were correlated
with decreased parasitemia. In contrast, increased neutrophil
activation in BCG vaccinated volunteers was not associated with
decreased parasitemia (Supplementary Fig. 7).
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BCG augments P. falciparum-induced cytotoxic lymphocyte
responses. NK cells stimulated with P. falciparum-infected red
blood cells (PfRBC) in vitro showed no difference in degranula-
tion (defined by CD107a staining), IFN-γ or granzyme B pro-
duction in BCG vaccinated versus controls prior to challenge
infection (Fig. 4). However, 37 days after challenge infection, NK
cells from BCG vaccinated volunteers produced significantly
more granzyme B (Mann–Whitney U-test: p= 0.03) with a ten-
dency towards increased degranulation, compared to controls.

The induction of T-cell responses after CHMI was also
analysed in both groups (Supplementary Fig. 8). Again, there
were no measurable differences between the groups after BCG
vaccination and prior to malaria infection. However, post CHMI
there were more P. falciparum-specific CD4+ T cells producing
granzyme B in BCG vaccinated volunteers (Mann–Whitney
U-test: p= 0.02). Furthermore, there were trends towards
increased degranulation and granyzme B production in γδT cells.

Finally, the induction of P. falciparum-specific antibody
responses was analysed in both groups. There were no differences
in antibody responses to the immunodominant Circumsporozoite
protein (CSP) expressed on sporozoite stages, the liver stage
antigen (LSA) expressed on liver stages or total lysate of asexual
blood stages (Supplementary Fig. 9a–c). Furthermore, BCG
vaccination did not influence the ability of antibodies to block
sporozoite invasion into the HC-04 hepatoma cell line (Supple-
mentary Fig. 9d).

Discussion
Here, we provide in vivo evidence suggestive of the induction of
functional trained immunity by BCG vaccination against a

heterologous, clinically relevant human pathogen. The existence
of trained immunity after BCG vaccination has been previously
demonstrated in vitro4,5,15 and in murine models6,8. However,
translation of such findings into equivalent human responses
in vivo has so far been limited to a single study where BCG
reduced viremia after vaccination with the non-pathogenic, live-
attenuated yellow fever vaccine16.

The vaccinated volunteers develop early clinical symptoms and
laboratory abnormalities, and earlier and stronger inflammatory
responses in a subset of volunteers are associated with lower
parasitemia. This altered course of immune activation in BCG
vaccinated individuals sharply contrasts with CHMIs in control
volunteers of this and previous studies, where innate immune
activation is only detectable just prior to microscopic para-
sitemia17–19, i.e., at 3−4 days after parasites emerge from the
liver. In addition, the course of clinical symptoms is strikingly
different from that seen in other, similar CHMI studies at our
centre, where symptoms are typically absent on day 7 post-
challenge20–22. The prompt activation of NK cells in BCG vac-
cinated volunteers apparently represents a true memory pheno-
type rather than persistent inflammation, as immediately prior to
CHMI there was no difference in activation of peripheral blood
lymphocytes between the control and test groups.

Interestingly, the earlier and stronger immune activation
markers in half the BCG vaccinated volunteers correlated with a
reduced parasitemia in early infection, whereas those with higher
parasitemia had no immune activation on day 7 after challenge.
This may be due to either reduced release of parasites emerging
from the liver or by rapid clearance of blood stage parasites.
Indeed, IFN-γ produced by liver lymphocytes in mice suppresses
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Fig. 1 Parasitemia, clinical symptoms and laboratory abnormalities after CHMI. Parasitemia was measured by daily qPCR from day 6 after CHMI until the

third day after antimalarial treatment. a The Kaplan–Meier survival curve shows percent of volunteers remaining untreated. 8/9 BCG vaccinated (green)

and 10/10 control volunteers (grey) surpassed the treatment threshold of 100 parasites per millilitre, and were treated on day 7 after challenge. 1/9 BCG

vaccinated volunteers remained below 100 Pf/mL until day 9. b All volunteers did have parasitemia detectable by qPCR on day 7 after CHMI. The graph

shows log parasites per millilitre on day 7 post CHMI for BCG vaccinated (green) and control (grey) volunteers. c Adverse events were collected daily. The

Kaplan–Meier curve shows the percentage of volunteers experiencing one or more moderate or severe, solicited, symptoms during follow-up, BCG

vaccinated volunteers (green) compared to controls (grey). d–f Absolute platelet, lymphocyte and neutrophil differentiation counts were determined by

daily hemocytometry starting on day 6 post-challenge. Graphs show relative change in cell counts compared to pre-challenge values in both BCG

vaccinated (n= 9, each coloured dot shows and individual volunteer, colours consistently represent the same volunteers across each graph) and non-BCG

vaccinated controls (n= 10, grey dots)
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Fig. 2 In vivo activation of lymphocytes, monocytes and neutrophils after CHMI. In vivo leucocyte activation was determined by direct staining of fresh

whole blood with fluorescent antibodies every 2 days post-challenge. Lymphocytes were defined based on forward scatter and sideward scatter

characteristics, and duplet events were excluded. a NK cell activation was defined as the percentage of CD3-CD56dimCD16+ live cells expressing CD69.

b γδT cell activation was defined as the percentage of CD3+γδTCR+ live cells expressing CD69. c NKT cell activation was defined as the percentage of

CD3+γδTCR-CD56+ live cells expressing CD69. d αβT cell activation was defined the as percentage of CD3+γδTCR-CD56− live cells expressing CD69.

eMonocytes were defined based on forward and side scatter characteristics, and the as HLA-DR+CD14+. Within the monocyte population, cells were then

divided into CD16- and CD16+ monocytes. f–g Within the CD16- monocyte population, the relative change in mean fluorescent intensity of HLA-DR and

CD86 compared to pre-malaria challenge values was determined. h Neutrophils were defined based on forward and side scatter characteristics, and then

defined as HLA-DR-CD14-CD16+CD11b+. Activated neutrophils were defined as CD62LdimCD11bhigh. i–j IFN-γ and granzyme B were measured by Luminex

assay in citrate plasma taken ever 2 days. Circulating cytokine levels are corrected for baseline levels (pre-BCG vaccination time point) at each time point.

In all graphs the grey dots represent non-BCG vaccinated control group volunteers (n= 10), and each coloured dot shows an individual BCG vaccinated

volunteer (n= 9). Statistical analysis are between BCG vaccinated and control volunteers at a single time point, and p-values are the results of

Mann–Whitney U-test. *p < 0.05. k Circulating CRP levels were measured in citrate plasma are shown for each BCG vaccinated volunteer (colours

consistently represent the same volunteers across each graph)
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schizont development and subsequent parasitemia23,24. In this
study we neither detect peripheral blood leucocyte activation, nor
increases in circulating IFN-γ or CRP during the liver stage.
However, the contribution of undetected local inflammatory
processes in the liver cannot be excluded. More sensitive tech-
niques such as (single-cell) transcriptomic analysis may be needed
to study peripheral blood responses during the liver stage.
Alternatively, the observed reduction of parasite load after BCG
vaccination may be the result of efficient asexual clearance as
previously shown in C57BL/6 mice infected with P. yoelii12. In the
current CHMI, estimation of asexual parasite multiplication has
not been possible since curative treatment was administered at
very low parasite densities. In future studies, this might be
addressed by allowing longer duration of parasitemia, or alter-
natively, by using a blood stage challenge infection with a low
inoculum, which would allow for even longer exposure to blood
stage parasites.

The changes in the clinical and parasitological outcomes in
BCG vaccinated volunteers are also associated with P. falciparum-
specific elicited cellular immune responses after CHMI, including
an improved P. falciparum-induced NK cell granzyme B pro-
duction and a trend towards increased degranulation. Such
memory-like NK cell responses after CHMI have been described
previously25, and found to be T-cell dependent. In addition, the
number of granzyme B producing CD4+ T cells in response to
P. falciparum is also increased with a trend towards increased
CD4+ T cell IFN-γ production and γδT cell granzyme B pro-
duction and degranulation. The combined data do suggest that
the altered kinetics of immune cell activation in BCG vaccinated
volunteers may improve their ability to generate P. falciparum-

specific responses as has been shown in relation to other vac-
cines26. However, a CHMI with five mosquito bites is not likely to
induce significant cellular or humoral immunity, and this
hypothesis should be tested in a study combining BCG with a
malaria vaccine.

A recent study examined the epigenetic and transcriptomic
changes in monocytes of healthy volunteers vaccinated with
BCG16, showing genome-wide changes in histone H3 acetylation
at lysine 27 (H3K27ac) in ‘responding’ volunteers. Our study
finds functional changes in NK cells as well, confirming previous
in vitro observations15. This may be the result of increased
monocyte activation, as NK cell activity against malaria is par-
tially dependent on monocytes27. Whether BCG induces epige-
netic changes in NK cells as well should be subject of a future
study.

This study is limited by its small sample size and the sub-
sequent lack of sufficient power for comprehensive statistical
analysis of all immune responses. However, the fact that strong
correlations can be found in such a small sample size is
encouraging. It is striking that there is such clear dichotomy
between volunteers, with 4 out of 9 ‘responders’, showing accel-
erated immune responses and a relative decrease in parasitemia.
Interestingly, the ‘non-responders’ in this cohort seem to have
increased parasitemia compared to the controls. Other studies
with BCG-induced trained innate immunity have also identified
significant variability in responses between individuals28. The
small size of this study, however, does prohibit a clear identifi-
cation of the factors that predict the effect of BCG vaccination,
and future larger cohort studies are needed to explore the factors
underlying this variation.
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For this study, the observation period of 5 weeks was chosen
based on evidence of BCG-induced protection against malaria in
mice at 1–2 months post vaccination9–12 and BCG-induced
trained innate immunity in humans at 2 weeks and 3 months post
vaccination5. Since the observation period is limited to 5 weeks, it
will be important in future studies to determine the duration of
this effect, even more so as the in vitro effects seem to persist up
to a year after vaccination4.

Yet even in the possible absence of longer term effects, these
findings may still have clinical implications for malaria as BCG
vaccination may improve immunity to malaria, before sufficient
adaptive immune responses have been generated to prevent
(severe) disease. Although its immune modulatory properties
have been known for decades29, BCG is currently facing renewed
interest after randomised controlled trials have shown it decreases
neonatal mortality due to sepsis and respiratory infections30,31.
There is limited data on BCG and the incidence of malaria from
observational studies, with one study showing a reduction in
malaria mortality in BCG vaccinated infants13. Non-specific
beneficial clinical effects of BCG vaccination might be explained
by trained innate immunity32,33, supporting the further
exploration of these effects to better inform the place of BCG in
vaccination regimens. Although BCG vaccination is common
practice in malaria-endemic countries as part of the WHO
Expanded Programme on Immunisation, potential efficacy
against malaria and other pathogens underscores the need for
investment in timely and correct BCG administration. Epide-
miological data and randomised trials suggest revaccination with
live-attenuated vaccines such as BCG confers additional protec-
tion against all cause mortality34. It will be important to deter-
mine whether BCG revaccination induces non-specific beneficial
effects against malaria. Although BCG revaccination did not
reduce malaria morbidity in one study in Guinea-Bissau35

potential confounding effects of other vaccines, including DTP
with known interference with the overall non-specific effects of
BCG36 was not taken into account.

In conclusion, BCG vaccination alters some of the the clinical,
immunological and parasitological outcomes of malaria infection
in a subset of volunteers. Earlier NK cell and monocyte activation
in this subset of vaccinated volunteers is consistent with the
possibility that induction of trained innate immunity in vivo may
have functional activity against a heterologous pathogen in
humans. These findings may open perspectives and pathways for
clinical vaccine development.

Methods
Clinical trial. This single-centre, single-blinded randomised controlled trial was
conducted at the Radboud university medical centre (Nijmegen, The Netherlands)
from August 2016 until February 2017. Prior to inclusion, study volunteers were
medically screened as described previously37 and provided written informed
consent. The trial was approved by the Central Committee on Research Involving
Human Subjects (CCMO NL56222.091.15) of the Netherlands, performed
according to the Declaration of Helsinki and Good Clinical Practice and pro-
spectively registered at ClinicalTrials.gov (NCT02692963).

Twenty healthy, BCG-naive volunteers (age 18–35 years) without a history of
malaria or residence in a malaria-endemic area in the 6 months before study entry
were included and randomly assigned to two groups. Male and female volunteers
were allocated separately, to ensure an equal distribution between groups.
Volunteers had not received any other vaccinations within 3 months of enrolment.
Ten subjects received standard dose (0.1 mL of the reconstituted vaccine) of
intradermal BCG vaccination (BCG Bulgaria, Intervax) 5 weeks prior to challenge
infection. Ten controls (group 2) received no vaccination.

Five weeks after BCG vaccination, both groups (BCG vaccinated, n= 9;
1 excluded after BCG vaccination and controls, n= 10) were exposed to bites of
five Plasmodium falciparum NF54 strain infected Anopheles stephensi mosquitoes
(sporozoite challenge). Details on the challenge infection are provided in
Supplementary Table 3. Subjects and investigators were not blinded, whereas those
performing the qPCR analysis were blinded until after the last qPCR data had been
collected. qPCR was performed prospectively, once daily from day 6 after CHMI
until day 3 after antimalarial treatment, according to previously published

protocols22,38,39. All volunteers were treated with a curative regimen of antimalarial
drugs (atovaquone/proguanil) once the treatment threshold of 100 parasites/mL
blood was exceeded detected by qPCR or presumptively on day 21 after challenge if
qPCR remained below treatment threshold.

Recording of adverse events. Subjects recorded clinical symptoms in a diary,
from the time of BCG vaccination until 37 days after the CHMI. Both solicited and
unsolicited adverse events were recorded after questioning by the investigators at
set time points: prior to BCG vaccination, prior to the CHMI, daily from day 6 after
infection until 3 days after antimalarial treatment, and on day 37 post CHMI21,40.
Adverse events were graded according to criteria defined in the Clinical Trial
Protocol: mild (grade 1): awareness of symptoms that are easily tolerated and do
not interfere with usual daily activity; moderate (grade 2): discomfort that inter-
feres with or limits usual daily activity; severe (grade 3): disabling, with subsequent
inability to perform usual daily activity, resulting in absence or required bed rest.
Relatedness was assessed by the investigator, also on the bases of pre-defined
criteria: probable: an adverse event that follows a reasonable temporal sequence
from the challenge procedure and cannot be reasonably explained by the known
characteristics of the subject’s clinical state; possible: an adverse event for which
insufficient information exists to exclude that the event is related to the study
procedure; not related: an event for which sufficient information exists to indicate
that the aetiology is unrelated either because of the temporal sequence of events or
because of the subject’s clinical state or other therapies.

Oral temperature was measured by volunteers and recorded in the symptom
diary every morning and more frequently during symptoms. Tympanic temperature
was measured by the study physician at every follow-up visit. Fever was scored as
follows: mild (grade 1): 37.6–38.0 °C; moderate (grade 2): 38.1–39.0 °C; severe
(grade 3): ≥39.1 °C.

Whole blood flow cytometry. One-hundred microlitres(lymphocytes) or 50 µL
(monocytes and neutrophils) of fresh EDTA blood was stained directly with
antibodies. For lymphocyte analysis, samples were stained with CD3-
AlexaFluor700 (Biolegend; clone OKT3; catalogue number 317340; final dilution
1:640), pan-γδTCR−PE (Beckman Coulter; clone IMMU510; catalogue number
COIM1349; final dilution 1:160), CD56-Brilliant Violet(BV)421 (Biolegend; clone
HCD56; catalogue number 318328; final dilution 1:320), CD16-APC-eFluor780
(eBiosciences; clone CB16; catalogue number 47–0168–42; final dilution 1:640),
CD69-PerCP-Cy5.5 (Biolegend; clone FN50; catalogue number 310926; final
dilution 1:640). For monocyte analysis, samples were stained with a lineage mix
containing CD3-PerCP-Cy5.5 (Biolegend; clone HIT3a; catalogue number 300328;
final dilution 1:400), CD19-PerCP-Cy5.5 (Biolegend; clone HIB19; catalogue
number 302230; final dilution 1:200) and CD56-PerCP-Cy5.5 (Biolegend; clone
HCD56; catalogue number 318322; final dilution 1:100), CD14-FITC (Biolegend;
clone HCD14; catalogue number 325604; final dilution 1:80), CD16-PE-Cy7
(Biolegend; clone 3G8; catalogue number 302016; final dilution 1:1280), HLA-DR
−APC-Cy7 (Biolegend; clone L243; catalogue number 307618; final dilution 1:160)
and CD86−Pacific Blue (Biolegend; clone IT2.2; catalogue number 305423; final
dilution 1:100). For neutrophil analysis samples were stained with CD14-PerCP
(Biolegend; clone HCD14; catalogue number 325632; final dilution 1:30), HLA-
DR-APC (Biolegend; clone L243; catalogue number 307610; final dilution 1:80),
CD16−APC-eFluor780 (eBiosciences; clone CB16; catalogue number 47–0168–42;
final dilution 1:1280), CD62L-PE-Cy7 (eBioscience; clone DREG-56; catalogue
number 25–0629–42; final dilution 1:1280) and CD11b-BV510 (Biolegend; clone
ICRF44; catalogue number 301334; final dilution 1:180). Samples were stained for
30 min at 4° C (C) in the dark. After staining, erythrocytes were lysed for 5 min at
4 °C with 1 mL BD FACS Lysis buffer, followed by centrifugation. Cell pellets were
washed once with 1 mL FACS buffer (0.5% bovine serum albumin (BSA) in PBS)
and resuspended in PBS with 1% paraformaldehyde (PFA) and analysed on a
Gallios flow cytometer (Beckman Coulter) the same day. Flow cytometry data was
analysed using Flow Jo software (version 10.0.8 for Apple OS). The gating strategy
and representative plots are shown in Supplementary Fig. 10.

PBMC isolation, cryopreservation and thawing. Blood samples for peripheral
blood mononuclear cell (PBMC) isolation were collected at inclusion (incl), prior
to challenge (C−1) and 37 and 121 days after challenge infection (C+ 37, C+
121). PBMC were isolated by density gradient centrifugation from citrate anti-
coagulated blood using vacutainer cell preparation tubes (CPT; BD Diagnostics).
Following four washes in ice-cold phosphate buffered saline (PBS), cells were
counted and cryopreserved at a concentration of 10 × 106 cells/mL in ice-cold foetal
calf serum (Gibco)/10% DMSO (Merck) using Mr. Frosty freezing containers
(Nalgene). Samples were stored in vapour-phase nitrogen. Immediately prior to
use, cells were thawed, washed twice in Dutch-modified RPMI 1640 (Gibco/
Invitrogen) and counted in 0·1% Trypan blue with 5% Zap-o-Globin II Lytic
Reagent (Beckman Coulter) to assess cell viability.

PBMC restimulation. For lymphocyte responses, PBMCs taken at inclusion, C-1,
C+ 37, and C+ 121 were stimulated with purified NF54 strain schizonts or
uninfected erythrocytes. Cells were cultured in RPMI 1640 (Dutch Modification;
Gibco) with 5 mg/mL gentamycin (Centraform), 100 mM pyruvate (Gibco),
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200 mM glutamax (Gibco), supplemented with 10% heat-inactivated pooled
human A+ serum (obtained from Sanquin Bloodbank, Nijmegen, The Nether-
lands). Anti-CD107a-Pacific Blue antibody (Biolegend; clone H4A3; catalogue
number 328624; final dilution 1:400) was added throughout co-culture. Brefeldin A
(10 µg/mL; Sigma-Aldrich) and monansin (2 µM; eBioscience) were added after
20 h. After an additional 4 h of stimulation, cells were washed and stained with a
fixable viability dye labelled with eFlour780 (eBioscience) for 30 min at 4° C. After
washing cells were stained with antibodies against surface markers: CD3-ECD
(Beckman Coulter; clone UCHT1; catalogue number A07748; final dilution 1:100),
CD4-FITC (BD Biosciences; clone SK3; catalogue number 340133; final dilution
1:20), CD8-AlexaFluor700 (Biolegend; clone HIT8A; catalogue number 300920;
final dilution 1:2000), pan-γδTCR-PE (Beckman Coulter; clone IMMU510; cata-
logue number COIM1349; final dilution 1:160), and CD56-PerCP-Cy5.5 (Biole-
gend; clone HCD56; catalogue number 318322; final dilution 1:100), for 30 min at
4 degrees. Cells were washed and fixed with Foxp3 fixation/permeabilization buffer
(eBioscience) for 30 min at 4 degrees. After washing with permeabilization buffer
(eBioscience) cells were stained for intracellular cytokines with IFN-γ-PE-Cy7
(Biolegend; clone 4 S.B3; catalogue number 502528; final dilution 1:200) and
granzyme B-AlexaFluor647 (Biolegend; clone GB11; catalogue number 515406;
final dilution 1:200) for 30 min at 4 degrees. After washing with permeabilization
buffer, cells were taken up in PBS with 1% PFA. Cells stimulated PMA (10 ng/mL;
Sigma) and ionomycin (1 µg/mL; Sigma) for 4 h were used as a positive control.

Samples were analysed on a Gallios flow cytometer (Beckman Coulter) the same
day. Flow cytometry data was analysed using Flow Jo software (version 10.0.8 for
Apple OS). CD107a and cytokine responses to PfRBC were corrected for uRBC at
every time point (thus, defined as percent increase over background), and then
corrected for baseline (pre-vaccination) responses. Gating strategy and
representative plots are shown in Supplementary Fig. 11.

Circulating cytokines and granzyme B. Plasma concentrations of TNF-α, IL-1β,
(detection range 0.98–4000 pg/mL) IL-6 (0.36−1500 pg/mL), IL-8 (0.62–2500
pg/mL), IL-10, (2.92–12,000 pg/mL) IFN-γ (1.22–5000 pg/mL) and granzyme B
(2–10.000 pg/mL) were measured in citrate plasma using a Luminex assay
according to the manufacturer’s instructions (Milliplex, Merck Millipore, Billerica,
MA, USA).

High sensitivity C-reactive protein. Automated hsCRP measurements were
performed on citrated plasma samples with immunonephelometry with a Behring
Nephelometer Analyser following the manufacturers’ instructions, using reagents
and calibrators specifically designed for high sensitivity measurements. The
detection limit was 0.16 mg/L.

Malaria-specific antibody ELISA. Malaria-specific antibody levels were deter-
mined by standardised ELISA as described previously41. In short, plates were
coated with circumsporozoite protein (CSP), liver stage antigen-1 (LSA1) protein
or lysed ring stage parasites. Citrated plasma from volunteers was diluted 50x and
150x and analysed in duplicate. A standard curve was generated by serial twofold
dilutions of serum from a pool of 100 Tanzanian adults living in an endemic area
(HIT serum). ELISA data analysis was performed with Auditable Data Analysis
and Management System for ELISA (ADAMSEL, version 1.1). Post-challenge
plasma samples were corrected for pre-challenge responses.

Sporozoite invasion assay. HC-04 human hepatoma cells (obtained from MR4)
were seeded in collagen coated 96-well plates (coated with 0.056 mg/mL for 1 h;
Collagen from Rat Tail, Sigma-Aldrich) at 50,000 cells per well. Sixteen hours after
seeding, NF54 P. falciparum sporozoites were pre-incubated on ice for 30 min with
10% heat-inactivated pre- or post-challenge citrate plasma from volunteers and
10% heat-inactivated serum from non-immune adult. Sporozoites incubated with
10% heat-inactivated serum from highly immune Tanzanian adults and 10% non-
immune serum, or 20% non-immune serum served as positive and negative con-
trol, respectively. Following pre-incubation, 50,000 sporozoites were added per well
in triplicate. Plates were centrifuged at 3000 rpm for 10 min (Eppendorf Centrifuge
5810R) and incubated for 3 h on 37 °C, 5% CO2.

After three hours, wells were washed three times with PBS to remove medium,
antibodies and non-invaded sporozoites. Subsequently, cells and any extracellular
adherent sporozoites were dissociated by incubating with 0.05% trypsin with EDTA
(ThermoFisher) for 5 min at 37 °C, followed by neutralisation with an equal
volume 10% heat-inactivated human serum in PBS. Cells were transferred into
96-well V-bottom plates, spun down at 1700 rpm for 4 min at 4 °C.

Cells were washed with PBS and fixed with Foxp3 fixation/permeabilization
buffer (eBioscience). After washing with permeabilization buffer (eBioscience),
intracellular sporozoites were stained with FITC-labelled 3SP2 antibody
(monoclonal antibody against CSP, published previously42) for 30min at 4 °C. After
washing in permeabilization buffer cells were taken up in 1% paraformaldehyde and
analysed on a Gallios flow cytometer (Beckman Coulter) the same day.

Flow cytometry data was analysed using Flow Jo software (version 10.0.8 for
Apple OS). Live cells were gated based on forward scatter/sideways scatter
characteristics and percent invasion was defined as percentage of live cells positive
for FITC. Post-challenge samples were compared to pre-challenge samples.

Data availability
The datasets used and/or analysed during the current study are available from the

corresponding author upon request. A reporting summary for this Article is available as a

Supplementary Information file.
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