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Abstract: The outcomes of industry–university collaboration, in an open innovation context, may be
of great support to firms, in their response to the challenges of today’s highly competitive environment.
However, there is no empirical evidence on how these outcomes are influenced by their antecedents.
Aiming to fill this gap, a research model to investigate the impact of the major antecedents, identified
in the literature as motives, barriers and knowledge transfer channels on the beneficial outcomes
and drawbacks of open innovation between the two organizations was developed in this study.
The research model was empirically assessed, using a dual-stage predictive approach, based on
PLS-SEM and soft computing constituents (artificial neural networks and adaptive neuro-fuzzy
inference systems). PLS-SEM was successfully used to test the hypotheses of the research model,
while the soft computing approach was employed to predict the complex dependencies between the
outcomes and their antecedents. Insights into the relative importance of the antecedents, in shaping
the open innovation outcomes, were provided through the importance–performance map analysis.
The findings revealed the antecedents that had a significant positive impact on both the beneficial
outcomes and drawbacks of industry–university collaboration, in open innovation. The results also
highlighted the predictor importance in the research model, as well as the relative importance of the
antecedent constructs, based on their effects on the two analyzed outcomes.

Keywords: open innovation; outcomes; antecedents; PLS-SEM; soft computing

MSC: 91

1. Introduction

Today, organizations must perform within a rapidly changing and highly competitive
environment, where innovation is seen as one of the key drivers of success and thriving [1,2].
In such a complex environment, knowledge and technology for innovation are widely
distributed in the global economy [3,4], so that even the most innovative organizations
cannot rely only on their internal research and development sources [5].As a result, industry
has to link its internal research and development activities with external resources in
searching to become more innovative. In this context, the concept of open innovation,
which emphasized the employment of both internal and external ideas and knowledge,
to accelerate internal innovation and generate greater business value, from the internal
and/or external exploitation of knowledge, has emerged [3].

Although organizations have, for decades, used external knowledge and technologies
to improve their innovation processes, what makes open innovation so attractive is the
integration, into a single concept, of a collection of already existing developments [6]. In
this regard, open innovation is also considered as a sustainable trend, based on a longer
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evolution of organizations’ innovation activities, which is becoming a requirement rather
than an option for many organizations, because they cannot perform internally the entire
innovation process [7]. According to Huizingh [6], this offers new opportunities for rethink-
ing the development of innovation strategies, in a global market, where networks expand
and interdependencies grow. Therefore, since its initial introduction in the literature, open
innovation has been of much interest [8–11], reflecting the technological, organizational,
and societal trends in the last decade [12].

Within this framework, the research on open innovation has simultaneously extended
to different areas, including the outcomes of the openness of innovation activities. The
existing studies underline the assumption that open innovation is beneficial for industry to
innovate successfully and highlight the benefits of industry from opening its innovation
process [13–16]. At the same time, these studies underline potential drawbacks that may
arise in implementing open innovation initiatives. Moreover, possible opposing forces can
emerge within industry that open its innovation process [15,17], which emphasizes the
necessity to create the enabling conditions to capture the benefits and mitigate against the
disadvantages of open innovation. However, despite the literature contribution, a detailed
approach providing the factors that articulate such conditions is not available.

While in the open innovation context, universities are recognized among the most
important external knowledge sources for industry [11,18,19], the research concerning
the outcomes of their collaboration from an open innovation perspective is limited. On
the other hand, the collaboration between industry and universities is based on different
determinants [20–23], and the successful implementation of such collaboration is the result
of considering these determinants. Regarding the main determinants of open innova-
tion between industry and universities, few studies address this issue in detail(e.g., [24]).
Moreover, a comprehensive assessment of how the antecedent determinants influence
the outcomes of open innovation is missing. Following the idea of Lazzarotti et al. [25],
the assumption that outcomes of open innovation between industry and universities are
contingent on a combination of different factors is adopted in this study. Thus, this paper
focuses on developing a comprehensive model that links the beneficial outcomes and disad-
vantages to other main antecedent determinants of such collaboration and in investigating
their specific relationships.

The remaining parts of this paper are structured as follows. The theoretical background
of our approach is referred to in the next section, which also presents the hypotheses
development of this study. Then, the research model and methodology are described in
detail in the Section 3. After that, the results of the PLS-SEM and soft computing analysis
are shown, which are succeeded by research discussions and implications. Summary of
findings, limitations and directions for future research are presented in the final section.

2. Outcomes of Open Innovation between Industry–University: Research Setting
2.1. Background

Successful organizations in a global world have to open their boundaries to new ideas
and knowledge from external sources, since they do not necessarily possess all the internal
resources to innovate successfully. In the context of openness to external knowledge
exploration, the innovation advance may be regarded as a continuum that progresses, from
closed to open, through different stages of openness [17]. According to extant literature,
opening the innovation process may have many benefits, but it may also stand for several
disadvantages. In this regard, both the beneficial outcomes and drawbacks of openness
should be considered in analyzing why some organizations can profit and others lose
from openness.

Using a systematic literature review, Dahlander and Gann [17] indicated a couple of
benefits, as well as disadvantages, of sourcing and acquiring external resources, mainly in
industrial firms. They considered that both outcomes of knowledge inflow can be analyzed
based on pecuniary versus non-pecuniary interactions; in the logic of exchange, pecuniary
stands for monetary benefits or disadvantages, while non-pecuniary refers to indirect
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advantages or drawbacks. Although the outcomes take into account the associated benefits
and disadvantages of the two forms of inbound innovation, future research is recommended
to explore the contingent factors, under which openness may become a more successful
approach. In line with the pecuniary versus non-pecuniary approach of Dahlander and
Gann [17], Martovoy et al. [26] provided a conceptual overview based on a more extensive
overview of the studies that addressed the benefits and disadvantages of open innovation.
Regarding the employment of external knowledge, pecuniary benefits relate to profitability
and growth, while the transaction costs stand for the main pecuniary disadvantages.
The non-pecuniary advantages appear to affect some areas of the organization that can
indirectly benefit from the inflow of relevant knowledge. At the same time, non-pecuniary
disadvantages of knowledge inflow seem to have a negative impact on other organizations’
spheres. The opportunities and disadvantages of open innovation were also discussed in
the context of firms that open up their innovation projects to external knowledge sources,
where involving different types of external partners may have an important influence on
the firms’ decision to abandon such projects [16]. Therefore, an alignment between the
goals and objectives of the partners has been found as necessary to avoid the abandonment
of their innovation projects.

Summarizing, like any other strategic approach, opening up the innovation, has its
opportunities and challenges that may be addressed from different points of view. If the
open innovation process is managed effectively, it may provide both monetary and non-
monetary benefits that positively affect the performance and profitability of an organization
at multiple levels [7]. However, collaboration activities with different partners in an open
innovation setting are often recognized as slow, risky and costly [27,28]. This may lead to
disappointing outcomes, especially when the agendas of partners are not aligned. However,
the evidence of the benefits and downsides of collaboration in an open innovation context
is still fragmented. The existing papers provide a theoretical conceptual frame [17], involve
a pilot study based on a very small number of semi-structured interviews [26], employ
an exploratory approach [29], or draw data from a Community Innovation Survey [16].
These studies are mainly related to industrial firms [16,17] or financial institutions [26]. The
existing work also explores the influence of different external sources on the innovative
performance of the firms, including universities [16,30,31].

The cooperation between industry–university is considered as a highly complex
and sophisticated ecosystem [32], and their collaboration has been intensified in recent
years [20]. The increasing contribution to the innovation of the knowledge and technology
transfer, between industry–university, is one of the main reasons for intensifying this
cooperation [33,34]. Regarding the outcomes of such collaboration, they have been analyzed
together with other measures that characterize the process. Using a systematic literature
review, Ankrah and Al-Tabbaa ([20], p.389) identified five main themes of university–
industry collaboration to enhance innovation: organizational forms, motivations, formation
process and operationalization, enabling and impeding factors, and outcomes. These
themes were divided into different sub-themes and the composition of each sub-theme was
further investigated, considering both the industry and universities’ perspectives. Four
central measures that describe the knowledge transfer between industry and universities
were also identified, based on a systematic literature review: channels, motives, barriers,
and outcomes [23].

In an open innovation context, there is still scarce research focusing on the main
industry–university determinants. Only several studies analyzed such determinants, con-
sidering motives, barriers, channels of knowledge transfer, benefits and drawbacks, as
outcomes (e.g., [24]). While the approach of Ankrah and Al-Tabbaa [20], or Vick and
Robertson [23], is theoretical in nature, the study of Baban et al. [24] is one of the first
studies to provide comparative empirical evidence of the determinantsbetween industry–
university collaboration, in an open innovation context. However, the understanding of
the relationship between the outcomes and other major determinants of open innovations
remains inadequate. The reason is because the existing research is mainly undertaken
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around each measure, rather than an approach that integrates such determinants. More-
over, there is a lack of empirical evidence on how these outcomes are related to their
antecedent determinants.

2.2. Hypotheses Development

Among the existing studies, only Ankrah and Al-Tabbaa [20] developed a theoreti-
cal process framework for collaboration between industry and universities, which relate
the outcomes to some other dominant themes of such collaboration. We draw on this
framework in investigating the relationship between the outcomes and other antecedents
that were previously identified as key determinants of industry–university collaboration,
in the context of open innovation [24]. Different motives facilitate the adoption of open
innovation between the two organizations, which also need to be aware of various barriers
that inhibit the process. The industry and university actors use different channels of knowl-
edge transfer, while seeking to address their collaboration in the open innovation context.
As a result, the collaboration between the two parties may result in both benefits and
drawbacks as the outcomes. Altogether, the motives, barriers and channels of knowledge
transfer are supposed to influence the anticipated benefits and possible drawbacks of such
collaboration. However, the investigation of this influence is still at an initial stage, and a
model that links the antecedents with the outcomes of open innovation collaboration is not
established [9]. Therefore, this study analyzes the relationships between motives, barriers,
channels of knowledge transfer, considered as antecedents, and the beneficial outcomes
and drawbacks resulting from these relationships.

In their approach, Ankrah et al. ([35], p.51) divided the possible benefits into three
categories: economic, organizational and societal benefits. At the same time, they clas-
sified the possible drawbacks into four groups: deviation from mission/objective of the
organization, quality issues, conflicts and risks. Regarding the relation between motives
and these outcomes, clearly, connections between them are to be expected [20,35]. The
previous studies of Barnes et al. [36], Geisler [37] and Montoro-Sanchez et al. [38], have
also linked motivations to potential benefits from such collaboration. Moreover, Lee [39]
reported a positive relationship between the motivational considerations and outcomes of
university–industry research collaboration. Therefore, we hypothesize that:

Hypothesis 1 (H1). The motives of open innovation between industry–university significantly
impact the beneficial outcomes of their collaboration.

Hypothesis 2 (H2). The motives of open innovation between industry–university significantly
impact the drawbacks of their collaboration.

Since the organizational goals, missions, standards and values vary significantly
between industry and universities, the incompatibility between such aspects can create
barriers to their collaboration [40]. The literature on open innovation highlights the impor-
tance of the factors that impede industry–university collaboration [41–43]. If these factors
are neglected or not properly managed, they may have a negative impact on successful
knowledge transfer between industry and universities [20]. Although it is assumed that
the perceived barriers may inhibit the outcomes of knowledge transfer, there is no evidence
on how they influence the subsequent collaboration between the two organizations [43].
Therefore, we propose the following hypotheses:

Hypothesis 3 (H3). The perceived barriers of open innovation between industry–university
significantly impact the beneficial outcomes of their collaboration.

Hypothesis 4 (H4). The perceived barriers of open innovation between industry–university
significantly impact the drawbacks of their collaboration.
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The collaborative innovation between industry–university is facilitated through multi-
ple and varied knowledge transfer channels, which can be either formal or informal [44].
A substantial body of research has investigated these channels [20,45–47], revealing the
multidimensionality of the knowledge transfer processes. Despite the recognized influence
of the knowledge transfer channels on the outcomes [48], the research in this field is still
at a preliminary stage. The study of Santoro [49] underlined the linkage among several
components of industry–university activities and the level of generated tangible outcomes.
In addition, the knowledge transfer channels may provide, if they are effectively managed,
valuable, tangible innovation outcomes between the two organizations [50]. However, the
expected effects of such channels on the outcomes have not been sufficiently examined,
since quantitative studies are still missing. Therefore, we hypothesize that:

Hypothesis 5 (H5). The knowledge transfer channels of open innovation between industry–
university significantly impact the beneficial outcomes of their collaboration.

Hypothesis 6 (H6). The knowledge transfer channels of open innovation between industry–
university significantly impact the drawbacks of their collaboration.

3. Research Model and Methodology
3.1. Research Model

Although the collaboration between industry–university to improve innovation is the
subject of considerable debate regarding the main aspects of this process, the literature on
the relationship between the antecedents and outcomes of such collaboration is relatively
scarce. A conceptual framework that integrates the five main aspects of industry–university
collaboration to enhance innovation was developed by Ankrah and Al-Tabbaa [20], which
provides an integrated analysis of their collaboration. The four central measures that
describe the knowledge transfer between industry and universities identified by Vick and
Robertson [23] were analyzed based on both sociopolitical and contextual perspectives.
The degree of correspondence between the motives, beneficial outcomes and drawbacks of
the university and industry actors are analyzed in [35] based on limited semi-structured in-
terviews with both academics and industry participants. Therefore, future studies based on
quantitative data are recommended in this research to generalize its results. To sum up, the
existing studies are primarily based on conceptual frameworks or qualitative approaches
developed in the broad context of industry–university collaboration. Moreover, the various
aspects of industry–university collaboration presented in [20] are only theoretically linked
together, while some of these aspects are individually analyzed in [23,35].

On the other hand, developing open innovation between industry–university is not a
standardized process and so far there has been very little evidence on how the antecedents
impact the outcomes of such collaboration. Among the existing studies, the work of
Baban et al. [24] clearly provides empirical evidence regarding the five main constructs of
the industry–university collaboration in the context of open innovation (motives, barriers,
channels, beneficial outcomes and drawbacks) based on a quantitative method of data
collection and analysis (i.e., survey). This evidence was drawn considering an ontology
that has been documented through an extensive review of the extant literature on industry–
university relations and included multiple items for each construct. Taking into account the
ontology presented by Baban et al. [24] and the hypotheses stated above, a research model
was developed in our study based on multi-item measures that include both pecuniary
and non-pecuniary rationale indicators. Figure 1 depicts our research model that links
together the constructs under investigation into a hierarchical component structure. The
higher-order constructs of the proposed model are grouped into different categories based
on literature recommendations as stated below.
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Figure 1. The research model and hypotheses.

Following Ankrah et al. [35], the beneficial outcomes are grouped into three categories
related to (OiA1) organizational, (OiA2) economic and (OiA3) societal advantages. At
the same time, the drawbacks are coded under four headings: (OiD1) deviation from
mission/objective of the organization, (OiD2) quality issues, (OiD3) conflicts and (OiD4)
risks [35]. Regarding the antecedents of the open innovation between industry–university,
they are grouped into different categories based on the recommendation of the literature.
Accordingly, the motives are split into four categories: (OiM1) access to know how and
ideas, (OiM2) access to the research results, (OiM3) efficiency and (OiM4) organizational
motives [20,38]. The barriers are sub-divided into: (OiB1) awareness and connections,
(OiB2) relevance to industry, (OiB3) uncertainty and (OiB4) organizational and manage-
rial barriers [20,43]. Finally, the knowledge transfer channels are structured into five
categories: (OiC1) publications, (OiC2) informal links and networks, (OiC3) research collab-
orations, (OiC4) consulting and (OiC5) training and employment [20,45]. Table 1 provides
an overview of the constructs of the developed model, including the indicators of each
category of the five constructs. All observable items in Table 1 are adapted from Baban and
Baban [51].

3.2. Research Methodology

Since there is no empirical evidence on the developed model, we adopted an ex-
ploratory approach to investigate the relationships among the antecedents and outcomes of
open innovation under examination in this study. Our exploratory approach was based on
a survey conducted within two industrial areas, the Valenza Industrial District and Oradea
Industrial Parks. The characteristics of these industrial areas as well as of the survey format
are briefly presented next.
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Table 1. Hierarchical constructs of the model.

Second-Order Constructs First-Order Constructs Observable Items (Adapted from [51])

OiM.Motives
(based on [20,38])

OiM1. Access to
know-how and ideas

OiM1-1. Access to specific knowledge, skills and competences

OiM1-2.Finding of new ideas

OiM2. Access to the
research results

OiM2-1. Access to the results of basic research

OiM2-2. Access to the results of research for the development of
new products/processes/technologies/services

OiM2-3. Access to the intellectual property of the university
(patents, licenses, etc.)

OiM2-4. Access to public funding through collaboration
research projects

OiM3. Efficiency

OiM3-1. Shortening of product development time

OiM3-2. Sharing risks and saving of costs

OiM3-3. Access to the research facilities

OiM4. Organizational
motives

OiM4-1. Enhancement of corporate image/reputation through
links with universities

OiB.Barriers
(based on [20,43])

OiB1. Awareness and
connections

OiB1-1. Difficulties in the identification of the appropriate partner

OiB1-2. Lack of awareness of the research capabilities/offerings
of university

OiB2. Relevance
to industry

OiB2-1. The nature of university research is too general for the
industry interests/need

OiB2-2. The nature of university research is too theoretical to be
employed by industry

OiB2-3. Universities have unrealistic expectations about the value
and commercial potential of open innovation results

OiB3. Uncertainty

OiB3-1. Uncertainty regarding the results of the open innovation
with university

OiB3-2. Lack of adequate resources for open innovation (human,
financial, infrastructure, etc.)

OiB3-3. The costs of open innovation and/or time needed are
too high

OiB3-4. Limited capacity of industry to absorb and employ the
research results

OiB3-5. Administration bureaucracy

OiB4. Organizational and
managerial barriers

OiB4-1. Differences over the orientation of research of university
(long-term basic research) and industry (short-term

applied research)

OIB4-2. Difficulties within the project management

OiB4-3. Communication difficulties

OiB4-4. Intellectual property management (patents, licenses and
access mechanisms)
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Table 1. Cont.

Second-Order Constructs First-Order Constructs Observable Items (Adapted from [51])

OiC.Knowledge
transfer channels
(based on ([20,45])

OiC1. Publications
OiC1-1. Scientific articles, books

OiC1-2. Reports and other professional publications

OiC2. Informal links
and networks

OiC2-1. Personal contacts

OiC2-2. Participation in conferences

OiC2-3. Social networking activities

OiC3. Research
collaborations

OiC3-1. Research funded by industry

OiC3-2. Research financed through public funds

OiC4. Consulting OiC4-1. Consulting activities

OiC5. Training
and employment

OiC5-1. Joint supervision of master/PhD thesis

OiC5-2. Employment of graduates

OiC5-3. Training of industry provided by university

OiC5-4. Temporary exchange of staff

OiA.Beneficial outcomes
(based on [35])

OiA1. Organizational

OiA1-1. Improvement of the knowledge base of industry through
the access to new knowledge, ideas, expertise, scientific results,

consulting, etc.

OiA1-2. Accelerates transfer of technologies to market

OiA1-3. Recruitment of qualified graduates

OiA2. Economic

OiA2-1. Financial return through the commercialization of
the results

OiA2-2. Lower cost of the research than in the case of
in-house research

OiA2-3. Increasing market share through the development of new
products/processes/technologies/services or the improvement

of existing ones

OiA3. Societal advantages OIA3-1. Improvement of image/credibility

OiD.Drawbacks
(based on [35])

OiD1. Deviation from
mission/objective of the

organization

OiD1-1. Deviation from the initial objective of the collaboration
(project, contract)

OiD1-2. Delay in accomplishment of objectives due to
administrative bureaucracy

OiD2. Quality issues
OiD2-1. Low level of scientific results

OiD2-2. Lack of practical relevance/applicability of results

OiD3. Conflicts
OiD3-1. Conflicts during collaboration

OiD3-2. Conflicts regarding fair returns

OiD4. Risks
OiD4-1. Failure or financial risks

OiD4-2. Losing the innovative edge of firm

Located in a small city in the north-west part of Italy and formally recognized in
2002 from the Piedmont Region, Valenza Industrial District is considered one of the most
important hubs for jewelry production. Although the reputation of the firms based in
this district comes from the highest standards of design and quality of their products,
they have to compete in a global market and face the challenges of new competitors from
emerging economies. In responding to these challenges, the firms of Valenza Industrial
District have to find new innovation approaches and open innovation with universities
may help them to succeed in the global arena. The Oradea Industrial Parks are based
in the north-west part of Romania and their development started in 2008. Today, four
sites are included in the structure, managed by the Oradea Local Development Agency, a
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public company owned by Oradea Municipality. Most of the representative firms located
in Oradea Industrial Parks are related to various leading manufacturing industries, which
support knowledge and technology transfer with universities. They also have to perform in
an world-class manufacturing environment that leads them to an ongoing transformation
of their innovation strategies, including open innovation. All these provide the premise
for collaboration of the firms based in the two industrial areas with universities in an
open innovation context to integrate new external knowledge and develop new products,
processes or technologies.

The self-administered survey questionnaires addressed the importance of each ob-
servable item of the five constructs depicted in Figure 1 and targeted firms from both
industrial zones that interacted with universities. The response format was from 1 (not
important) to 5 (very important) for all observable items. The respondents were people at
the management level directly responsible for the firm’s innovation processes or its owner,
which were selected using purposive sampling. In the end, a total of 98 usable responses
were accepted in this study.

PLS-SEM was proposed to investigate the relationships among the constructs of the
research model depicted in Figure 1. This choice was motivated by the following consid-
erations presented in the literature [52–55]. First, our research is considered exploratory
in nature, since the theoretical fundamentals for the hypotheses are relatively new and
still developing. Second, the structure of our model includes many latent variables and
observed items. Third, the data are not normally distributed as the Kolmogorov–Smirnov
test indicated that the two-tailed p-values are less than 0.05. Fourth, the sample size of
responses is relatively small. Nevertheless, assuming the commonly used research re-
quirements (R2

min = 0.25, significance level = 5%, level of statistical power = 80%) and the
complexity of the paths in the proposed model (maximum number of arrows pointing
at a latent variable is equal to five), the minimum sample size should be 70 ([56], p. 21).
Therefore, the sample size of 98 may be considered sufficient for the purpose of our study.

Although PLS-SEM is able to test the hypotheses and research models, it is based
on two sets of linear equations [54] and therefore cannot capture nonlinear relationships.
However, a linear approach may not be sufficient in dealing with the complexity of the
relationships among the determinants of open innovation. By contrast, artificial intelligence
is capable of handling complex problems in the business context that are usually linked
with human intelligence [57]. Among the existing artificial intelligence approaches, the
soft computing methodologies have the capability to adapt their knowledge base through
different optimization techniques [58]. Within the soft computing constituents, the artificial
neural networks (ANN) have been recognized as useful in a research setting with a weak
theory to support the hypotheses of the study [54], since they are capable ofworking with
incomplete information [58]. This is the context of our work, in which no theory links
the antecedents and outcomes in the developed model. Moreover, ANN can address
complex interactions that involved both linear and nonlinear relationships, but it is not
appropriate for theory testing because of its “blackbox” algorithm [59]. On the other hand,
the adaptive neuro-fuzzy inference system (ANFIS) is another constituent ofsoft computing
that has been successfully applied in modeling nonlinear relationships in the context of
innovation [60,61].

Within this framework, a hybrid approach based on a dual-stage analysis was adopted.
In the first stage, the PLS-SEM was employed to explore the causal relationships in our
research model. The PLS-SEM analysis was performed through SmartPLS 3 software [62].
Then in the second stage, the efficacy of ANN and ANFIS in identifying the presence of the
non-linear relationships in the developed research model was compared and the relative
importance of the construct variables was evaluated. In this stage, the IBM SPSS Modeler
and the Fuzzy Logic Toolbox™ of the Matlab® software were employed to carry out the
ANN and ANFIS analysis, respectively.
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4. Results
4.1. The PLS-SEM Analysis

The model depicted in Figure 1 is a hierarchical component model, in which the
OiA and OiD are conceptualized as second-order constructs that OiM, OiB and OiC can
explain. Since the main interest of our research is in estimating the higher-order constructs,
a disjoint two-stage approach was used, as it provides the advantage of assessing a more
parsimonious model [63]. Because we developed a second-order path model, the disjoint
two-stage approach was performed in two phases, following the recommendations of
Sarstedt et al. [64]. Moreover, the importance–performance map analysis was further
conducted to evaluate the performance of the analyzed antecedents.

4.1.1. Assessment of the First-Order Model

In the first stage, the model was estimated without the second-order constructs. For
this purpose, the model was created only by linking the first-order components of each
OiM, OiB and OiC construct to all first-order components of OiB and OiC constructs. Then,
the assessment of the measurement of this model was conducted using the evaluation
criteria for the construct reliability and validity available in the literature [56]. Specifically,
the assessment started with the evaluation of the factor loadings. The results showed that
the outer loading of the indicator OiB3-2 was 0.092 and, therefore, below the 0.40 criterion.
Consequently, it was eliminated from the construct OiB3. After the removal of OiB3-2 item,
the outer loadings of the indicators OiM2-4, OiB3-4, OiB3-5, OiB4-3 and OiB4-4 remained
between 0.40 and 0.70. Therefore, these indicators should also be considered for deletion.
Nevertheless, their removal did not increase the composite reliability or average variance
extracted measures above the recommended value. Thus, these items were not dropped
from the model. Regarding the remaining indicators, their outer loadings were above 0.7
and they were all retained in the model. Table 2 presents the measurement properties of
the model, developed in the first stage.

Table 2. Reliability and validity assessment of the first-order model.

First-Order
Construct Items Outer

Loading Cronbach’s α
Composite

Reliability ρC
AVE

OiM1
OiM1-1 0.937

0.865 0.937 0.881
OiM1-2 0.940

OiM2

OiM2-1 0.903

0.793 0.855 0.604
OiM2-2 0.888

OiM2-3 0.706

OiM2-4 0.562

OiM3

OiM3-1 0.940

0.901 0.938 0.834OiM3-2 0.914

OiM3-3 0.886

OiM4 OiM4-1 1 1 1 1

OiB1
OiB1-1 0.915

0.812 0.914 0.842
OiB1-2 0.919

OiB2

OiB2-1 0.846

0.715 0.84 0.637OiB2-2 0.799

OiB2-3 0.747
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Table 2. Cont.

First-Order
Construct Items Outer

Loading Cronbach’s α
Composite

Reliability ρC
AVE

OiB3

OiB3-1 0.838

0.685 0.798 0.504
OiB3-3 0.799

OiB3-4 0.621

OiB3-5 0.540

OiB4

OiB4-1 0.810

0.704 0.816 0.528
OIB4-2 0.756

OiB4-3 0.679

OiB4-4 0.651

OiC1
OiC1-1 0.977

0.953 0.977 0.955
OiC1-2 0.977

OiC2

OiC2-1 0.878

0.827 0.896 0.743OiC2-2 0.898

OiC2-3 0.807

OiC3
OiC3-1 0.935

0.688 0.857 0.751
OiC3-2 0.792

OiC4 OiC4-1 1 1 1 1

OiC5

OiC5-1 0.900

0.873 0.913 0.724
OiC5-2 0.861

OiC5-3 0.793

OiC5-4 0.845

OiA1

OiA1-1 0.890

0.852 0.91 0.772OiA1-2 0.892

OiA1-3 0.852

OiA2

OiA2-1 0.859

0.891 0.933 0.822OiA2-2 0.923

OiA2-3 0.936

OiA3 OIA3-1 1 1 1 1

OiD1
OiD1-1 0.924

0.725 0.876 0.780
OiD1-2 0.840

OiD2
OiD2-1 0.943

0.864 0.936 0.880
OiD2-2 0.933

OiD3
OiD3-1 0.958

0.897 0.951 0.906
OiD3-2 0.946

OiD4 OiD4-1 0.971 0.931 0.966 0.935

The conservative Cronbach’s alphas, of all first-order constructs, exceeded the thresh-
old of 0.70, except for the OiB3 and OiC3 components that resulted in marginally lower
values than 0.7 (0.685 and 0.688, respectively). However, the Cronbach’s alpha may de-
crease to an acceptable value of 0.60 in exploratory research [65]. Moreover, the composite
reliability ρC measures of all first-order constructs were above the value of 0.7. Therefore,
the internal consistency reliability was established. The results in Table 2 also indicated that
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the measures of all first-order constructs provide satisfactory levels of convergent validity,
since their average variance extracted values (AVEs) were greater than 0.5.

Finally, the heterotrait-monotrait ratio (HTMT) was employed to assess the discrimi-
nant validity, following the guidelines of Hair et al. [53]. Table 3 shows the computed HTMT
ratios of the first-order constructs. The HTMT values of all these components were below
the threshold of 0.9, apart from that between the OiA1 and OiA2 components. Nevertheless,
the correlation between these two constructs was computed as 0.903, which is very slightly
above the 0.9 value. Another two ratios were found between the more conservative value
of 0.85 and 0.9, while all the other HTMT ratios were less than the lower threshold value of
0.85. As such, these findings provided satisfactory support for the discriminant validity of
the first-order constructs of the model. Once the estimated measurement properties of the
first-order model exhibited acceptable values, the construct scores were extracted for the
first-order components and then used to assess the second-order constructs.

Table 3. Assessment of discriminant validity of the first-order constructs using the HTMT ratio.

OiA1 OiA2 OiA3 OiB1 OiB2 OiB3 OiB4 OiC1 OiC2 OiC3 OiC4 OiC5 OiD1 OiD2 OiD3 OiD4 OiM1 OiM2 OiM3 OiM4

OiA1
OiA2 0.903 (2)

OiA3 0.653 0.684
OiB1 0.631 0.569 0.346
OiB2 0.298 0.404 0.304 0.289
OiB3 0.365 0.287 0.124 0.33 0.646
OiB4 0.437 0.554 0.135 0.625 0.506 0.687
OiC1 0.749 0.66 0.419 0.664 0.155 0.293 0.496
OiC2 0.726 0.674 0.544 0.773 0.172 0.349 0.451 0.832
OiC3 0.683 0.573 0.476 0.528 0.306 0.603 0.319 0.538 0.815
OiC4 0.71 0.708 0.386 0.735 0.238 0.324 0.565 0.668 0.665 0.443
OiC5 0.897 (1) 0.795 0.577 0.619 0.263 0.363 0.475 0.739 0.844 0.729 0.696
OiD1 0.339 0.374 0.407 0.436 0.157 0.192 0.316 0.476 0.442 0.246 0.49 0.307
OiD2 0.472 0.463 0.22 0.357 0.388 0.527 0.609 0.415 0.375 0.173 0.505 0.394 0.62
OiD3 0.296 0.326 0.261 0.329 0.266 0.398 0.494 0.307 0.352 0.207 0.465 0.398 0.607 0.656
OiD4 0.252 0.36 0.284 0.221 0.249 0.253 0.389 0.236 0.222 0.23 0.419 0.272 0.468 0.63 0.733
OiM1 0.786 0.663 0.519 0.673 0.201 0.388 0.434 0.563 0.738 0.756 0.492 0.733 0.228 0.192 0.191 0.126
OiM2 0.753 0.625 0.441 0.751 0.208 0.442 0.548 0.567 0.704 0.847 0.493 0.826 0.293 0.282 0.232 0.207 0.898 (1)

OiM3 0.821 0.8 0.618 0.766 0.209 0.35 0.483 0.712 0.781 0.607 0.658 0.805 0.389 0.4 0.203 0.227 0.81 0.825
OiM4 0.418 0.398 0.372 0.225 0.277 0.338 0.203 0.342 0.249 0.277 0.264 0.53 0.214 0.344 0.292 0.311 0.315 0.525 0.495

(1) 0.85 < HTMT < 0.9; (2) HTMT > 0.9.

4.1.2. Assessment of the Second-Order Model

In stage two, the construct scores of the first-order components, obtained from stage
one, were used to create and estimate the second-order model that is depicted in Figure 2.
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The assessment of the measurement of the second-order model was carried out using
a similar approach to that adopted in step 1. Table 4 illustrates the results for the reliabil-
ity and validity of the second-order constructs. The internal consistency reliability was
established, as both the Cronbach’s alphas and composite reliability of all second-order
constructs surpassed the threshold of 0.70. The AVEs values of all second-order constructs
exceeded the limit of 0.5 and, thus, provide evidence of their convergent validity.

Table 4. Reliability and validity assessment of the second-order model.

Second-Order Construct Cronbach’s α Composite Reliability ρC AVE

OiA 0.865 0.917 0.786
OiB 0.707 0.815 0.527
OiC 0.893 0.921 0.702
OiD 0.820 0.880 0.649
OiM 0.844 0.898 0.691

Table 5 shows the HTMT values of the second-order constructs, which were all less
than the threshold of 0.9. Apart from three HTMT ratios that were found between 0.85 and
0.9, all the other HTMT ratios were less than 0.85. These findings indicated satisfactory
support for the discriminant validity of the second-order constructs of the model.

Table 5. Discriminant validity assessment of the second-order constructs using the HTMT ratio.

OiA OiB OiC OiD OiM

OiA
OiB 0.586
OiC 0.876 (1) 0.705
OiD 0.496 0.600 0.517
OiM 0.881 (1) 0.656 0.889 (1) 0.423

(1) 0.85 < HTMT < 0.9.

Finally, the structural model was assessed considering the metrics indicated by
Hair et al. [53]. Before assessing the structural model, the collinearity was examined us-
ing the variance inflation factor (VIF). The results pointed out that the VIFs values of
the antecedent constructs ranged from 1.643 to 2.941, which are below the threshold of
3 [53]. Therefore, the collinearity among these constructs was not considered an issue for
this study.

Next, we evaluated the significance of the path coefficient and confirmed the devel-
oped hypotheses. For this purpose, a bootstrapping analysis, with 5000 subsamples, was
performed. Table 6 displays the results of the examination. In terms of the influences
of the antecedents on the advantages of open innovation, between industry–university,
the impact of the motives of industry for engagement on the beneficial outcomes was
significant (β = 0.396, t = 2.898, p < 0.01), as well as the impact of its preferred channels of
knowledge transfer (β = 0.490, t = 4.282, p < 0.001). Therefore, hypotheses H1 and H5 were
supported. In contrast, the impact of the perceived barriers on the beneficial outcomes was
not significant (β = −0.021, t = 0.233, p > 0.1). Hence, hypothesis H3 was not supported.

Table 6. Analysis of the significance of relationships.

Hypothesis Path Path Coefficient T Statistic p Value Remark

H1 OiM→ OiA ** 0.396 2.898 0.003 Supported
H2 OiM→ OiD NS −0.091 0.603 0.546 Not supported
H3 OiB→ OiA NS −0.021 0.233 0.815 Not supported
H4 OiB→ OiD ** 0.329 2.666 0.007 Supported
H5 OiC→ OiA *** 0.490 4.282 0.000 Supported
H6 OiC→ OiD * 0.328 2.175 0.029 Supported

Notes: * p < 0.05, ** p < 0.01, *** p < 0.001, NS: insignificant.
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Regarding the influences of the antecedents on the disadvantages of industry–university
collaboration, in the context of open innovation, the impact of both perceived barriers of
industry (β = 0.329, t = 2.666, p < 0.01), and its preferred channels of knowledge transfer
(β = 0.328, t = 2.175, p < 0.01) on the drawbacks, was significant. Thus, the hypotheses H4
and H6 were supported. On the other hand, the motives of industry for engagement did
not significantly influence the drawbacks (β = −0.091, t = 0.603, p > 0.1) and, therefore, the
hypothesis H2 was not supported.

Lastly, the coefficient of determination R2 and cross-validated redundancy Q2 were
employed to evaluate the quality of the structural model. Table 7 shows the results of this as-
sessment, which were analyzed considering the guidelines presented by Hair et al. [53].The
antecedent constructs OiM, OiC and OiB, together, explained 68.16% of the variance in
beneficial outcomes (R2

OiA = 0.6816) and 27.69% in drawbacks (R2
OiD = 0.2769). Since both

OiA and OiD are explained by only three predictor constructs, their R2 can be considered
as acceptable in the PLS path model [54]. In addition, the Q2 values were greater than 0 for
both outcomes. These results suggested that our model has in-sample predictive relevance
for these constructs [53].

Table 7. The quality of the structural model.

Outcome Constructs R2 Q2

OiA 0.6816 0.515
OiD 0.2769 0.147

4.1.3. The Importance–Performance Map Analysis

A perspective into the varying influences of the OiM, OiC and OiB predecessor con-
structs on the target OiA or OiD outcomes was given through the importance–performance
map analysis (IPMA). More precisely, IPMA combines the total effects of the relationships
between the predecessor constructs and target outcomes in the structural model (represent-
ing importance), with the average of the rescaled latent variable scores of the predecessor
constructs (their performance) in a two-dimensional map [66]. In such a map, these two
measures are graphically combined by contrasting the importance on the x-axis with the
performance on the y-axis.

Because PLS-SEM assumes linear relationships, the importance is computed as the
sum of the direct and all the indirect effects in the structural model [66]. Since there are
no indirect effects in the model depicted in Figure 2, we have to consider only the direct
effect between each Oixk antecedent (k =1, 3) and each Oiyl outcome (l =1, 2). Therefore,
the total effects of Oixk on Oiyl can be expressed as δkl = βkl , where βkl are the structural
model coefficients of the path that connect the antecedent Oixk to outcome Oiyl. Ringle
and Sarstedt [66] recommended the employment of the unstandardized total effects as the
importance measure that can be computed as δunstd

kl = βkl ·
sOiyl
sOixk

, where sOixk and sOiyl

represent the standard deviation of the Oixk antecedent and Oiyl outcome, respectively.
In this way, an increase in one antecedent’s performance would increase an outcome’s
performance by the size of its unstandardized total effect [66].

Both the unstandardized total effects and the average of the antecedent scores of the
IPMA are automatically computed by SmartPLS 3 [66]. To facilitate the comparison of
results, the performance scores are first rescaled, on a range from 0 to 100, which is also
automatically done by SmartPLS 3 [66].

Figures 3 and 4 depict the IPMA maps at the constructs’ level. In the case of the target
OiA outcome, the OiB predecessor was located on the left side of the IPMA map (lower
importance), while the OiC and OiB predecessors were placed on the right side (higher
importance). The highest performance was found for the OiM component, while the OiB
and OiC components showed similar performance (see Figure 3).
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On the other hand, the OiM predecessor resulted in the upper-left of the IPMA
map of the target OiD outcome (lowest importance, highest performance). The OiB and
OiC predecessors were located in the lower-right part of the IPMA map, with similar
importance–performance values (see Figure 4).

In addition, the two-dimensional IPMA map can be further divided into four quad-
rants to prioritize needs and make recommendations for future actions, when considering
different statistics, such as the mean or median of both the importance and performance of
the constructs as demarcation lines (see [67,68]).

4.2. The Soft Computing Approach

As the PLS-SEM assumes only linear relationships, it was combined first with a
computational ANN model that is capable of capturing complex linear and non-linear
interactions between its variables, to make the analysis even more useful.For this purpose,
the latent variable scores of the significant hypothesized constructs from the PLS-SEM were
used as the dataset for the ANN analysis. A typical ANN architecture incorporates several
layers in a hierarchical structure, including one input layer, one or more hidden layers and
one output layer [58]. Different sets of weights connect the hidden layer(s) to the input
and output layer, respectively. The main advantage of ANN is its capability to capture
unknown information from the data through the weight coefficients adjustment during
the training process of the neural network, which is also called a learning process [69].
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Although there are many ANNs available in literature, the multi-layer perceptron (MLP)
was used in this study, considering its ability to learn nonlinear models [69].

Since there is no heuristic way to determine the network topology, we followed the
indication of Svozil et al. [69], which recommended starting with one hidden layer, with a
sufficiently large number of neurons. Therefore, in our study, we considered one single
hidden layer and the architecture of the MLP network implemented in IBM SPSS Modeler,
presented next. For an outcome Y = Oiy let X = (Oix1, Oix2) are the significant hypothesized
constructs from the PLS-SEM analysis. The topology of the MLP network is as follows ([70],
p. 291–292):

Input layer: J0 = 2 neurons, a0:1, a0:2; with a0:j = Oixj (j =1, 2).

The hidden layer: J1 neurons, a1:1, . . . , a1:J1; with a1:k = γ1(c1:k) and c1:k =
J0
∑

j=0
w1:j;ka0:j,

where γ1 is the activation function for the hidden layer; w1:j,k is the weight leading from
input layer-neuron j to hidden layer-neuron k (k =1, J1); and a0:0 = 1. The model employs
hyperbolic tangent as an activation function for the hidden layer, which can be expressed
as: γ(z) = ez − e−z

ez + e−z .

Output layer: JI = 1 neuron, aI:1; with aI:1 = γI(cI:1) and cI:1 =
J1
∑

j=0
wI:j;1a1:j, where a1:0 = 1.

The softmax function is used as an activation function for output layer (γ(zk) =
ezk

∑
j

ezj ).

The training of this MLP network is based on a backpropagation learning algorithm,
which is described in detail in the literature [70].

A trial-and-error approach was adopted to determine the number of neurons in the
hidden layer of the MLP network. First, the dataset was split into training, validation and
testing sets, with a typical proportion 60-20-20, respectively [71]. Then, various models of
ANN were built, with different neurons in the one hidden layer. After fitting each model,
using the training data, the validation dataset was employed to compare these models and
find the one with the best fit. Next, the best model was applied to the testing set to evaluate
its predicting performance on data that are independent of the model. We drew on the
RMSE statistic to assess the degree of the prediction error of the ANN models. Figure 5
displays the data stream developed with IBM SPSS Modeler to determine the network
topology of each ANN model.

Table 8 shows the RMSE statistics of the ANN models, varying from two to seven
neurons in the hidden layer, for both OiA and OiD outcomes (J1 = 2 . . . 7). It was observed
that the topology with five neurons in the hidden layer produced the lowest value of RMSE
for the validation set, in both cases (0.6490 and 0.8143, respectively). Thus, an ANN with
five neurons in the hidden layer was considered appropriate for these outcomes, and its
architecture for the OiA is shown in Figure 6. The RMSE values of the testing data were also
computed as 0.5920 and 1.0752 for OiA and OiD outcomes, which are similar to those in
the training data. Since these relatively low RMSE values were nearly the same for training,
testing and validation data, the ANN models developed for the OiA and OiD outcomes
can be considered as adequate predictors of new datasets.

Table 8. RMSE variation of the ANN models with the number of neurons in the hidden layer.

Outcomes Criterion
Number of Neurons in the Hidden Layer

2 3 4 5 6 7

OiA
RMSE-Training 0.5490 0.5278 0.5218 0.5368 0.5401 0.5147

RMSE-Validation 0.6496 0.6832 0.6957 0.6490 0.6845 0.7148

OiD
RMSE-Training 0.7716 0.7733 0.7772 0.7801 0.7814 0.7781

RMSE-Validation 0.8509 0.8485 0.8374 0.8143 0.8285 0.8342
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Figure 6. The ANN topology for the OiA outcome.

On the other hand, ANFIS has been recognized as an effective method for modeling
nonlinear and complex problems [72]. ANFIS integrates a fuzzy inference system that
provides the framework for knowledge representation of the system expertise with the
learning capabilities of neural networks [58]. Considering an input/output dataset, ANFIS
constructs a fuzzy inference system and employs a multilayer feedforward neural network
to adjust its membership function parameters. In this way, the fuzzy inference systems can
learn from the data they are modeling. Although several fuzzy inference systems have
been developed, the Sugeno fuzzy model is used in the ANFIS architecture. This model
is based on Takagi and Sugeno’s “if-then” rule, which has linguistic terms, characterized
by membership functions in the “if” premise part and a polynomial function of the input
variables in the consequent “then” part [58]. The coefficients of the polynomial function
in the rule consequents and the membership function parameters in the rule premise are
automatically tuned through the learning process of the ANFIS.
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The latent variable scores of the significant hypothesized constructs from the PLS-SEM
were also employed as the input/output dataset for the ANFIS analysis. For each outcome,
we considered an ANFIS model as a two-inputs and one single-output system. In each
case, the fuzzy inference system was based on the zero-order Sugeno model, when the
polynomial function of the consequent part is a constant. The same training, validation
and testing sets from the ANN analysis were employed for the two ANFIS models. To
achieve satisfactory generalization toward unknown data, the size of the training set is
recommended to be at least equal to the total number of the modifiable parameters in
the ANFIS model [73]. Consequently, three linguistic terms were associated with each
membership function, considering the size of our training data, and 32 = 9 fuzzy rules were
taken into account.

The architecture of these ANFIS models is illustrated, next, in the context of our study.
In the case of the ANFIS under consideration, two input linguistic variables were used. Let
the significant hypothesized constructs from the PLS-SEM analysis Oixi, i = 1, 2 be the
input linguistic variables and LTOixi the linguistic terms associated with each variable Oixi.
These linguistic terms have been defined as:

Oixi → LTOixi =
{

LTOixi
1 , LTOixi

2 , LTOixi
3

}
i = 1, 2 (1)

where


LT1

Oixi = Oixi_low importance
LT2

Oixi = Oixi_moderate importance.
LT3

Oixi = Oixi_high importance
The membership functions associated with each linguistic term LTOixi have been

defined as:

Oixi → LTOixi → MFOixi =
{

mfOixi
1 , mfOixi

2 , mfOixi
3

}
i = 1, 2 (2)

For the zero-order Sugeno fuzzy model, a typicall IF-THEN rule can be expressed in
the following form [58]:

Rk: IF Oix1 = LTOix1
j AND x2 = LTOix2

j THEN yk = r0
k j = 1, 3; k = 1, 9 (3)

where r0
k represents the singleton of k-th rule.

The architecture of the ANFIS consists of five layers, as follows ([58], pp. 336–337):
Layer 1is composed of adaptive nodes and its outputs are represented by the values

of the membership functions of the input linguistic variables:

f(1)i,j = mfOixi
j i = 1, 2; j = 1, 3 (4)

The parameters of the the membership function in relation (4) are called premise parameters.
Layer 2 is composed of fixed nodes and the output of each node can be represented as:

f(2)k =
2

∏
i=1

mfOixi
j ∀j = 1, 3; k = 1, 9 (5)

Layer 3 is also composed of fixed nodes and the output of each node can be represented as:

f(3)k = f(2)k =
f(2)k

9
∑

k=1
f(2)k

k = 1, 9 (6)

Layer 4 is composed of adaptive nodes and its outputs are:

f(4)k = f(3)k · r
0
k k = 1, 9 (7)
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The parameters r0
k in this layer are referred to as the consequent parameters.

Layer 5 is composed of a single fixed node, which calculates the overall output:

Oiy = f(5)k =
9

∑
k=1

f(4)k =

9
∑

k=1
f(2)k · r

0
k

9
∑

k=1
f(2)k

(8)

A hybrid learning algorithm is used to identify both the premise and consequent
parameters in relations (4) and (7), respectively, to minimize the difference between the
ANFIS’s computed outputs with relation (8) and the corresponding observed values [58].

For each outcome, the grid partition was used to create the fuzzy inference system
for all the eight membership functions, implemented in the Fuzzy Logic Toolbox™ of
the Matlab® software, and the fuzzy rules were automatically built by the ANFIS system.
Figure 7 illustrates the structure of the ANFIS model in Matlab® software for the OiA
outcome. In this case, the psigmf membership function produced the lowest RMSE value
of the validation set (0.7989), which is relatively similar to that in the training data (0.4541).
For the OiD outcome, the lowest RMSE value of the validation set resulted for the trimf
membership function (0.7442), which is nearly the same as the RMSE value of the training
set (0.8543). The RMSE values of the testing data were also computed for both outcomes, as
1.0403 and 1.1239 for OiA and OiD, respectively.

1 
 

 

 
Figure 7. The ANFIS structure for the OiA outcome.

The results of both the ANN and ANFIS analysis are summarized in Table 9. Since
their relatively low RMSE values were similar for the training, validation and testing data,
the ANN and ANFIS models can be considered as adequate predictors of new datasets.

Table 9. Performance results of the ANN and ANFIS analysis.

Criterion

Outcome

OiA OiD

ANN ANFIS ANN ANFIS

RMSE-Training 0.5368 0.4541 0.7801 0.7442

RMSE-Validation 0.6490 0.7989 0.8143 0.8543

RMSE-Testing 0.5920 1.0403 1.0752 1.1239
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As can be seen in Table 9, the ANFIS models produced lower RMSE values of training
data for both outcomes. Nevertheless, the RMSE values of the validation and testing
data are lower for the ANN models. Consequently, these results suggested that the ANN
produced a slightly better solution than that resultingfrom the use of the ANFIS scheme.
Therefore, the ANN approach was, furthermore, employed to investigate the relative
importance of the construct variables of our model.

As the sample size is relatively small, a k-fold cross-validation approach was per-
formed, to further avoid overfitting of the adopted ANN models. Considering the initial
proportion of dataset splitting, five-fold cross-validation, with data partition of 80-20 for
training and testing, was deployed using IBM SPSS Modeler. Table 10 summarizes the
results of the cross-validation process, in which the RMSE and predictor importance of a
model were computed as the average of the values in the five subsets. The RMSE values
of the models were lower and their variations small, for both the training and test sets.
Moreover, these values were similar to those in determining the topology of the ANN,
which also indicated robust models.

Table 10. The five-fold cross-validation and predictor importance analysis.

RMSE Values of the 5-FoldCross Validation Predictor Importance

Fold
ANNOiA ANNOiD

Fold
ANNOiA ANNOiD

Training Testing Training Testing OiM OiC OiB OiC

1 0.5946 0.6028 0.8691 0.8636 1 0.69 0.31 0.62 0.38

2 0.6326 0.4358 0.8127 1.0053 2 0.67 0.33 0.49 0.51

3 0.5352 0.6927 0.8845 0.7149 3 0.76 0.24 0.4 0.6

4 0.5721 0.4991 0.8476 0.9211 4 0.71 0.29 0.66 0.34

5 0.5177 0.8112 0.8324 1.1723 5 0.66 0.34 0.28 0.72

Mean 0.5704 0.6083 0.8493 0.9355 Mean 0.698 0.302 0.49 0.51

Standard
deviation 0.0411 0.1341 0.0255 0.1516 Normalized

importance 1 0.4327 0.9608 1

The predictor importance in each ANN model was computed using the algorithm
implemented in IBM SPSS Modeler, which adopts the variance-based method to sensitivity
analysis [70]. Table 10 reveals that OiM was the most significant predictor of the OiA
outcome, followed by the OiC construct. This is a very interesting result, as OiC was found
more important than OiM, based on their strength of influence in the PLS-SEM (see Table 6).
Therefore, after capturing the non-linear relationships among the variables through the
ANN, OiM was more important than the OiC construct. Regarding the OiD outcome, the
importance of the two predictors OiB and OiC was almost the same, a result similar to that
in the PLS-SEM analysis. However, the importance of the OiB was significantly higher than
that of OiC, for the folds 1 and 4 of the cross-validation approach. At the same time, the
result was in the opposite direction for folds 3 and 5. This also may suggest the presence of
non-linear relationships among the constructs, in the case of the OiD outcome.

5. Discussion

In this study, we empirically assessed a model that investigated how the major an-
tecedents impact the outcomes of open innovation between industry and universities.
Since various motives have been attributed to both organizations for collaborating in open
innovation, clearly, associations between motivations and outcomes are expected. In terms
of the influences of motivational drivers on the outcomes of open innovation, between
industry–university, we found that the industry’s motives for engagement have a significant
positive impact on the beneficial outcomes. This result is in agreement with the findings of
Ankrah et al. [35], which pointed out that motives can be seen as indications of anticipated
benefits. At the same time, the industry’s preferred channels of knowledge transfer have
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a significant positive influence on the beneficial outcomes. In this case, the industry that
collaborates with universities, through multiple channels, tends to have more economic
and organizational benefits from this collaboration [35]. Finally, the perceived barriers by
industry were determined as having a negative, but insignificant, effect on the beneficial
outcomes. A possible explanation of this finding is that barriers are more likely to be
associated with drawbacks. Moreover, the IPMA analysis revealed the lowest importance
and performance of the perceived barriers on the beneficial outcomes (see Figure 3). Consid-
ering these findings, the focus should be given to the motives and channels of knowledge
transfer. Since the motives were evaluated as having the highest performance and relatively
high importance, they are influential in sustaining open innovation at a high level, and
industry should concentrate on keeping them at these levels. The knowledge transfer
channels received higher importance but lower performance. Thus, industry should pay
close attention to this antecedent, since its ignorance might cause a significant negative
impact on the collaboration with universities in open innovation.

Regarding the influences of the antecedents on the disadvantages of industry–university
collaboration, in the context of open innovation, the perceived barriers of industry and
preferred channels of knowledge transfer have a significant positive impact on the draw-
backs. In the case of barriers, it is assumed that they may impede an effective and efficient
knowledge and technology exchange [43]. However, evidence on the impact of perceived
barriers on the drawbacks of collaborations has been missing until now. An interesting
result is that the preferred knowledge transfer channels also have a significant positive
influence on the drawbacks. This is in line with Barnes et al. [36], as the variety of analyzed
channels indicates that collaboration between industry–university, in open innovation, is
governed by the cumulative result of both negative and positive outcomes from those
channels. Nevertheless, the channels of knowledge transfer were more positively related to
the beneficial outcomes than to the drawbacks, according to their path coefficients in Table 6.
Therefore, if the preferred channels of knowledge transfer are correctly managed, there
tended to be many more benefits than challenges on the open innovation collaboration. On
the other hand, the motives of the industry for engagement do not significantly influence
the drawbacks. This is not surprising, since the motives are likely to be connected to the
beneficial outcomes [35]. However, these motives were found as having the lowest impor-
tance and highest performance (see Figure 4). Although this construct was found not to be
important, through active education about the impact of the identified motives, industry
can diminish the challenges of its collaboration with universities in open innovation. At the
same time, both the barriers and channels of knowledge transfer showed higher importance
but lower performance. Therefore, industry should concentrate on these antecedents, as
their ignorance might significantly lead to a lack of collaboration, in an open innovation
context with universities. Considering these results, our study provides several research
implications, which are discussed below.

The research field of open innovation outcomes continues to be scarce and dispersed,
resulting in a limited understanding of how they are linked to other determinants of open
innovation. On the whole, our findings fill this knowledge gap and expand the existing
literature in several ways. First, the present study advances a research model that re-
lates the major antecedent determinants of open innovation, between industry–university,
previously identified in the literature [20,23,24]. Drawing on the conceptual framework
developed by Ankrah and Al-Tabbaa [20], the developed research model connects the
key antecedents with the collaboration outcomes of open innovation between the two
actors. Our study offers new insights for research, in that we hypothesized the influ-
ence of such antecedents on the outcomes of open innovation. Addressing evidence that
industry–university collaboration in an open innovation context may be either beneficial
or detrimental [24], we also provide an understanding of which antecedents significantly
impact the outcome of such collaboration. Therefore, the research model presents a more
articulated picture of the outcomes of industry, in adopting inbound, open innovation
with universities. On the other hand, the theoretical fundamentals of this study are still
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developing and the proposed model has been considered exploratory in nature. Thus,
it can be used as a foundation, in extending future research, and new components are
expected to be added to the model through the research advance in the complexity of the
open innovation phenomenon.

Second, the investigation of the relationships among the constructs of our research
model was conducted through the integration of both the PLS-SEM and soft computing
tools. In a dual-stage predictive analysis, the PLS-SEM was first employed to test the
hypotheses of the research model. However, PLS-SEM is able to individually capture only
the linear relationships among the components of the model. Considering the complexity
of the open innovation, these relationships may not necessarily follow a linear form. As a
result, two soft computing constituents were proposed in the second stage of our analysis,
to detect the presence of non-linear relationships in our model. One of them is ANN, which
can capture both linear and nonlinear relationships, but it is not able to extract them from
data [69]. Therefore, ANN is not appropriate for theory testing and it is mainly employed
for prediction. Although PLS-SEM and ANN have been used together in diverse studies
to complement each other [74], we found very few studies addressing their employment
in the context of innovation (e.g., [75]). On the other hand, through the integration of the
learning capabilities of neural networks, with the knowledge representation of the fuzzy
inference system, ANFIS may also provide an effective way of predicting complex and
nonlinear relationships, within the context of open innovation. As in the case of ANN, very
few studies use the combination of PLS-SEM and ANFIS in the innovation field (e.g., [61]).
The results in predicting the dependencies between the variables of the model were similar
for the two soft computing constituents. ANN was, however, only marginally better in the
context of our research.

Third, the predictor importance in the research model was established through the
variance-based method of sensitivity analysis. The findings of the predictor importance
analysis sustained the presence of non-linear relationships among the constructs of the
model. Therefore, the two-stage predictive PLS-SEM and soft computing approach may rep-
resent a significant contribution, from amethodological point of view, since soft computing
is able to compensate the shortcomings of PLS-SEM analysis.

6. Conclusions
6.1. Summary of Findings

Operating in a knowledge-based economy, industry is increasingly dependent on
knowledge production, and universities play a pivotal role in this process [20,76]. Therefore,
industry often collaborates with universities and the context of open innovation, and
particularly its outcomes, may be of great support in responding to the challenges of today’s
disruptive environment. However, there is a lack of evidence on how these outcomes are
related to other key elements of open innovations, including their antecedents.

Aiming to fill this gap, our study develops a research model to investigate the impact
of the major antecedents on the outcomes of open innovation, between industry and
universities. The research model was empirically assessed, using a dual-stage predictive
approach. First, the PLS-SEM was successfully used to test the hypotheses of the research
model. Then, both ANN and ANFIS constituents of soft computing were employed to
predict the dependencies between the outcomes and their antecedents. Since the ANN
has been conducted to a slightly better solution, in the context of our research, it was
next used to establish the predictor importance in the research model and to identify the
presence of non-linear relationships among the constructs of the model. Our study also
provided helpful insights into the relative importance of the antecedents, in shaping the
open innovation outcomes through the IPMA at the construct level.

6.2. Limitations and Future Research

Considering the nature of our study, several limitations have to be acknowledged that
also lead to the future research agenda. First, this study provides one of the first models that
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links the antecedents and outcomes of open innovation between industry–university, and
there is no evidence on a similar model. Since its theoretical foundation is still developing,
the indicators of some components of the model might not be fully captured. Nevertheless,
the model offers the flexibility to incorporate any new indicator, identified through the
research, in the complex field of open innovation. Additional studies are expected to
confirm or modify our findings, once such indicators are identified.

Second, our exploratory investigation was based on a survey, conducted within two
industrial areas, and the sample size of responses is relatively small. Thus, replications
conducted in different nationwide contexts, involving larger sample sizes, are required
before the results can be fully generalized.

Third, future research will also have to address the nonlinearity among the antecedent
variables and outcomes, suggested by the sensitivity analysis engaged in the evaluation
of the predictor importance of the ANN models. If such nonlinearity will continue to be
supported in studies based on larger sample sizes, a nonlinear IPMA approach is expected
to allow more elaborate conclusions and recommendations [66].
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