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Abstract

The occurrence of Trypanosoma spp. in wild carnivore populations has been intensively

investigated during the last decades. However, the impact of these parasites on the health

of free-living infected animals has been largely neglected. The Pantanal biome is the world’s

largest seasonal wetland, harboring a great diversity of species and habitats. This includes

174 species of mammals, of which 20 belong to the order Carnivora. The present study

aimed to investigate the effect of Trypanosoma evansi and Trypanosoma cruzi infections

and coinfections on the health of the most abundant carnivores in the Pantanal: coati

(Nasua nasua), crab-eating fox (Cerdocyon thous), and ocelot (Leopardus pardalis). We

captured 39 coatis, 48 crab-eating foxes, and 19 ocelots. Diagnostic tests showed T. cruzi

infection in 7 crab-eating foxes and 5 coatis. Additionally, 7 crab-eating foxes, 10 coatis, and

12 ocelots were positive for T. evansi. We observed coinfections in 9 crab-eating foxes, 8

coatis, and 2 ocelots. This is the first report of T. evansi and T. cruzi infection on the health

of free-living ocelots and crab-eating foxes. We showed that single T. evansi or T. cruzi

infection, as well as coinfection, caused some degree of anemia in all animals, as well as an

indirect negative effect on body condition in coatis and crab-eating foxes via anemia indica-

tors and immune investment, respectively. Furthermore, the vigorous immune investment

observed in sampled coatis, crab-eating foxes and ocelots infected by T. evansi, T. cruzi

and coinfected can be highly harmful to their health. Overall, our results indicate that single
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and combined infection with T. evansi and T. cruzi represent a severe risk to the health of

wild carnivores in the Pantanal region.

Introduction

Although parasites are known to use resources from their hosts, thus affecting their energy bal-

ance [1, 2], little is known about the effect of parasitism on the health of mammals that inhabit

natural environments [3]. Loss of physical condition due to parasitism can negatively influence

reproductive rates, movement, and survival of infected hosts [4–6].

The occurrence of Trypanosoma spp. in wild carnivores has sparked intensive investigation

worldwide in the last decades [7–11]. Nevertheless, the impact of these parasites on the health

of free-living infected animals has been largely neglected. Studies documenting the outcomes

of Trypanosoma cruzi and T. evansi on the health of wild carnivores have shown that these par-

asites can cause damage to the health of their hosts [12, 13].

In enzootic areas Trypanosoma species are maintained in a complex network transmission

cycles including mammals and blood sucking vectors. While T. evansi transmission occur

mechanically by hematophagus flies, such as tabanids and Stomoxys calcitrans, T. cruzi is cycli-

cally transmitted through Triatominae faces [14,15].

Natural infection by T. evansi causes different degrees of anemia in several domestic and

wild mammals. Infected animals display widespread subcutaneous edema, fever, lethargy,

weight loss, abortion, nasal and ocular bleeding, and stiffness of the pelvic members [13,16,17].

Additionally, coatis and golden lion tamarins (Leontopithecus rosalia) infected with T. cruzi

have been reported to present hematological disorders and cardiac diseases, respectively [18,

19, 20].

It has been suggested that coinfections play a central role in driving parasite dynamics [21,

22]. One such case is natural infection of the golden lion tamarin with T. cruzi: higher parasite-

mia was observed in animals coinfected with nematode worms [23]. In fact, coinfections with

multi-host parasites in free-living mammals may be highly dynamic and unpredictable because

the ecological processes are stochastic. Cooccurrence of T. cruzi and T. evansi in wild carni-

vores (e.g. Cerdocyon thous, Leopardus pardalis and Nasua nasua) has already been recorded

[8, 13], but there is no knowledge about the impact of these parasites on the hosts’ health.

Given the scarce knowledge about the health of free-living neotropical mammals infected

by trypanosomatids, the present study aimed to investigate the effect of single and combined

infection with T. evansi and T. cruzi on the hematological parameters of coatis (N. nasua),

crab-eating foxes (C. thous), and ocelots (L. pardalis) in the Pantanal biome, the largest flood-

plain of the world.

Methodology

Study area

The study was carried out in a private ranch in the sub-region of Nhecolândia (19˚ 8’31.71"S

56˚47’40.97"O). The soil is sandy and vegetation is composed of deciduous and semi-decid-

uous forests in “cordilheiras” (long strings of forest) and "capões" (forest patches surrounded

by open native grasslands). The climate is marked by two distinct seasons: a warm rainy period

(October to March) and a cold dry period (April to September). About 174 species of mam-

mals was recorded in the Pantanal, of which 20 belongs to the order Carnivora [24]. Among
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them, three species are considered abundant in the Pantanal: the southern coati, the crab-eat-

ing fox, and the ocelot [25].

Sample collection

Carnivores were sampled from November 2015 to October 2016. We used 50 Box-traps

(90 × 45 × 50; EquiposFauna1) baited with bacon and tinned sardines to capture the target

species. Once trapped, animals were sedated with an intramuscular injection of Zoletil 50

(containing tiletamine hydrochloride and zolazepan hydrochloride; Virbac) respecting the

dosages currently recommended for each species, and marked with subcutaneous transpon-

ders (AnimalTag1). Body condition (body size and mass) were recorded. Blood (~4 mL) was

collected from the jugular vein, placed in tubes with and without ethylenediamine tetraacetic

acid (EDTA), and stored in cool boxes until laboratory procedures. The animals were released

at the capture site after recovery from anesthesia.

Ethical approval

All field procedures were conducted in accordance with a license granted by the Biodiversity

Information and Authorization System of the Chico Mendes Institute for Biodiversity Conser-

vation (license number 49662–5). The present study was approved by the Ethics Committee

for Animal Use of Dom Bosco Catholic University, Campo Grande, MS (license number 19/

2015).

Health parameters

The health of carnivores was inferred, mainly, by means of blood parameters. Packed cell vol-

ume (PCV), red blood cell counts (RBC), and white blood cell counts (WBC) were measured

up to 8 h after blood collection in Neubauer chambers, as described by Voigt [26]. Mean cor-

puscular volume (MCV) was calculated based on the RBC and PCV values. The immunoglob-

ulin concentration (IgG) was determined by titration with the indirect fluorescent antibody

test (IFAT) [27,28] and by optical density using enzyme-linked immunosorbent assay (ELISA)

[29]. Leukocyte (eosinophils, lymphocytes, monocytes, and neutrophils) counts were per-

formed using blood smears fixed with methanol and stained with Giemsa [30].

We evaluated the health condition of sampled carnivores in terms of: (a) PCV, RBC, and

MCV as anemia indicators; (b) monocyte and neutrophil counts as indicators of infection

responses; and (c) lymphocyte counts and IgG concentration as indicators of immune invest-

ment [30].

Diagnosis of T. evansi and T. cruzi infection

Infections with T. evansi and T. cruziwere assessed by parasitological, molecular and serologi-

cal tests. The parasitological test for T. evansi used the microhematocrit centrifuge technique

(MHCT) according to Woo [31]. The absence of kinetoplast in buffy coat smears confirms T.

evansi. For T. cruzi, the test was based on hemoculture by inoculating 300 μL of blood in Novy

McNeal Nicole (NNN) medium with liver infusion tryptose (LIT), in duplicate. Hemoculture

tubes were incubated at 27 ˚C for 30 days and monitored once a week.

Molecular detection of Trypanosoma spp. infection was performed by nested polymerase

chain reaction (nPCR). Genomic DNA was extracted from 200 μL of blood with EDTA using

the QIAamp Blood DNAMini Kit (Qiagen) according to the manufacturer’s instructions.

Total DNA was diluted with 50 μL elution buffer and stored at -20 ˚C until molecular diagno-

sis. We used as a target a variable region of the trypanosome 18S rRNA gene (600 bp), with
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external primers TRY927F and TRY927R, and internal primers SSU561F and SSU561R,

according to Smith et al. [32]. TBR1 and TBR2 primers were applied to positive 18S rRNA

samples to amplify a sequence of mini-chromosome satellite DNA for T. evansi, according to

Masiga et al. [33]. Furthermore, D71 and D72 primers were used to amplify a conserved

sequence of the large subunit of the ribosomal DNA gene (24Sα rDNA) in T. cruzi, according

to Souto and Zingales [34]. Each reaction included sterile distilled water instead of DNA as

negative control, and positive control samples from T. cruzi and T. evansi strains. PCR prod-

ucts were visualized in 2% agarose gel after ethidium bromide staining under ultraviolet light.

Serological tests were used to detect anti-T. evansi IgG antibodies in crab-eating foxes and

ocelots by IFAT using a commercial fluorescein-conjugated antibody against dogs and cats

IgGs, respectively. The cut-off value for IFAT was 1:40 [27]. There is presently no fluorescein-

conjugated antibody against coatis’ IgGs. To detect anti-T. cruzi IgG antibodies, we used IFAT

(fluorescein-conjugated antibody against dogs and cats IgGs) and ELISA (fluorescein-conju-

gated antibody against raccoon’s IgGs), as described by Rocha et al. [28] and Alves et al. [29],

respectively. The cut-off value for ELISA was defined as the mean optical absorbance of the

negative controls +20%. We added two positive and two negative control sera to each reaction

plate, as described by Alves et al. [29].

We considered an animal to be positive to Trypanosoma infection, when any of the four

diagnostic tests used (hemoculture, MHCT, PCR or/and serological tests) was positive.

Data analysis

Descriptive statistic (mean ± standard deviation) was applied to obtain the mean health

parameters of the specimens. The Shapiro-Wilk test served to establish whether the distribu-

tion was normal. Finally, a Kruskal-Wallis test was applied to determine the differences

between: no infection, T. evansi infection, T. cruzi infection, and coinfection. Post hocMann-

Whitney tests were used to assess pair-wise results of the Kruskal-Wallis test.

To determine the direct and indirect influences of infections and coinfections in relation to

anemia, infection responses, immune investment and body condition, we carried out a path

analysis. We assessed variation in body condition based on the standardized residuals from an

ordinary linear regression between body mass (g) and head-body length (mm) of individuals,

while accounting for age and sex effects (13). This should circumvent the effects of animal

growth on the condition index. Therefore, the residuals were calculated for males and females

separately. To perform dimensionality reduction of anemia, infection responses, and immune

investment values, we used the principal coordinate analysis, a geometric technique that con-

verts a matrix of distances between points in multivariate space into a projection that maxi-

mizes the amount of variation along a series of orthogonal axes. We used an r value� 0.60 to

interpret the results (positive or negative effect) of the path analysis.

Path analysis describes two types of effects: direct and indirect. When the exogenous vari-

able has an arrow directed towards the dependent variable, the effect is direct. When the effect

is indirect, the arrow crosses one or more than one dependent variable until the final effect.

The variables were considered to be statistically significant for p values� 0.05. All data were

analyzed using R (version 3.4.2) [35].

Results

We sampled 106 adult carnivores: 39 coatis (17 females and 22 males), 48 crab-eating foxes (22

females and 26 males), and 19 ocelots (eight females and 11 males). The different diagnostic

tests showed T. evansi positivity in 12 ocelots (4 females and 8 males), 10 coatis (6 females

and 4 males) and 7 crab-eating foxes (1 female and 6 males). Additionally, we found T. cruzi
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infection in 7 crab-eating foxes (4 female and 3 males), and 5 coatis (5 males). We observed

coinfection in 9 crab-eating foxes (4 females and 5 males), 8 coatis (3 females and 5 males),

and 5 ocelots (3 females and 2 males) (Table 1).

Coatis

Mean PCV values was significantly lower (χ2 = 11.94, df = 03, p< 0.05) in coatis infected with

T. evansi (28.5±4.9) (U = 34.5, p< 0.05) and in coinfected animals (26.4±7.8) (U = 23,

p< 0.05), when compared with non-infected coatis (35.8±5.2). Moreover, T. evansi infected

and coinfected animals also presented lower means of RBC (T. evansi infection: 3.3×106 ±1.7

and coinfection: 3.3×106±1.2) and MCV (T. evansi infection: 94.2±19.7 and coinfection: 86.4

±31.8) values, however without statistical significance (RBC: χ2 = 3.015, df = 03, p> 0.05;

MCV: χ2 = 0.9674, df = 03, p> 0.05). Mean leukocyte values (χ2 = 11.07, df = 03, p< 0.05)

were significantly higher in T. cruzi-infected (27,150±8,427) (U = 6.5, p< 0.05) and coinfected

coatis (27,719±7,750) (U = 26, p< 0.05) (Table 2).

Path analysis showed a negative direct effect of T. evansi infection (path coefficient = -0.30,

p< 0.05) on anemia indicators, resulting in lower PCV (r = 0.84) and MCV (r = 0.65).

Table 1. Number of positive coatis (Nasua nasua), crab-eating-foxes (Cerdocyon thous) and ocelots (Leopardus pardalis) for Trypanosoma cruzi and Trypanosoma
evansi in the Pantanal. Samples were collected from November 2015 up to October 2016.

Infection Diagnostic Test N. nasua
(n = 39)

C. thous
(n = 48)

L. pardalis
(n = 19)

T. cruzi HC 03 (8) - -

PCR 06 (15) - -

Serological tests 11 (28) 16 (33) 05 (26)

T. evansi MHCT 10 (26) - -

PCR 18 (46) 10 (21) 12 (63)

Serological tests ND 7 (15) 15 (79)

Coinfection HC/MHCT - - -

PCR 03 (08) - -

Serological tests - 03 (06) 04 (21)

The data are expressed by number of captured animals/relative abundance (%). (−) negative results. ND: Not Done, HC: Hemoculture, PCR: Polymerase Chain

Reaction, MHCT: Microhematocrit Centrifuge Technique

https://doi.org/10.1371/journal.pone.0201357.t001

Table 2. Hematological mean values of coatis (Nasua nasua) infected with Trypanosoma evansi (TE), Trypanosoma cruzi (TC), and in coinfected (TE/TC) animals
in the sub-region of Nhecolândia, Pantanal, between November 2015 and October 2016.

Nasua nasua Non infected
(n = 16)

TE positive
(n = 10)

TC positive
(n = 05)

TE/TC positive
(n = 08)

RBC 4.2±1.6a 3.3±1.7a 3.9±1.1a 3.3±1.2a

PCV 35.8±5.2a 28.5±4.9b 36.4±6.9a 26.4±7.8b

MCV 97.7±44.7a 94.2±19.7a 98±34.3a 86.4±31.8a

WBC 18,212±9,359a 15,595±6,297a 27,150±8,427b 27,719±7,750b

Eosinophils 663±497a 444±310a 1,333±1,248b 1,681±1,013b

Lymphocytes 3,785±4,739a 1,477±360a 2,474±2,122b 3,708±1,173c

Monocytes 868±843a 997±486a 2,083±1,269b 2,260±1,068b

Neutrophils 12,362±6,031a 12,414±6,035a 19,624±5,768b 19,816±6,086b

Different letters denote statistical significance (p< 0.05). PCV: packed cell volume; RBC: red blood cell counts (×106); WBC: white blood cell counts; MCV: mean

corpuscular volume.

https://doi.org/10.1371/journal.pone.0201357.t002
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Although we did not observe a direct effect on anemia indicators of coatis infected with T.

cruzi, we found an increased negative direct effect on these values in coinfected animals (path

coefficient = -0.47, p< 0.05). Additionally, our results showed that T. evansi infection had a

negative influence on body condition via anemia indicators (path coefficient = 0.37, p< 0.05).

Moreover, this effect was potentiated in coinfected animals (S1 Fig).

We observed that T. cruzi positively affected infection responses (path coefficient = 0.44,

p< 0.05). In contrast, T. evansi alone was unable to alter the infection response, but exhibited

an increased effect (path coefficient = 0.52, p< 0.05) in coinfected animals, resulting in more

monocytes (r = 0.60) and neutrophils (r = 0.89) (S2 Fig).

We observed that T. cruzi (path coefficient = -0.43, p< 0.05) infection had a positive effect

on immune investment, increasing further in coinfected animals (path coefficient of = -0.61,

p< 0.05; path coefficient = -0.46, p< 0.05). This resulted in increased numbers of lympho-

cytes (r = -0.60; r = -0.70) and anti-T. cruzi IgGs (r = -0.79; r = -0.60) (S3 Fig). Additionally, T.

cruzi, T. evansi, and coinfection with both parasites had also indirect negative effects on body

condition via immune investment (path coefficient = -0.34, p< 0.05) (S3 Fig).

Crab-eating foxes

No significant differences were observed for mean RBC (χ2 = 0.3187, df = 03, p> 0.05), PVC

(χ2 = 2.552, df = 03, p> 0.05), and MCV (χ2 = 0.5056, df = 03, p> 0.05) values between

infected and non-infected crab-eating foxes. Nevertheless, our data indicated a minor decrease

of these values for T. evansi-infected animals. Furthermore, we observed a significant increase

in WBC mean values (χ2 = 6.036, df = 03, p< 0.05) in T. cruzi-infected animals due to neutro-

philia (10,823±4,745) (U = 40, p< 0.05) (Table 3).

Path analysis revealed that infections with T. cruzi and T. evansi had no effect on anemia

indicators of crab-eating foxes. However, we found a negative effect on the infection responses

following T. cruzi infection (path coefficient = 0.27, p< 0.05) and coinfection (path coeffi-

cient = 0.26, p< 0.05), resulting in fewer monocytes (r = -0.62) and neutrophils (r = -0.64) (S4

Fig).

Moreover, we observed that T. cruzi (path coefficient = -0.72, p< 0.05) infection and coin-

fection (path coefficient = -0.79, p< 0.05) had a positive influence on immune investment, as

manifested by an increase in anti-T. cruzi IgGs (r = -0.97) (S5 Fig).

Table 3. Hematological mean values for crab-eating foxes (Cerdocyon thous) infected with Trypanosoma evansi (TE), Trypanosoma cruzi (TC), and in coinfected
(TE/TC) animals in the sub-region of Nhecolândia, Pantanal, between November 2015 and October 2016.

Cerdocyon thous Non infected
(n = 25)

TE positive
(n = 07)

TC positive
(n = 07)

TE/TC positive
(n = 09)

RBC 3.1±1.3a 3±0.4a 3.2±1a 3±1a

PCV 38.1±7.9a 37.7±3.7a 45.6±19.3a 40±3.6a

MCV 143.4±66.1a 127.1±26.9a 154.4±73.2a 144.9±45.1a

WBC 10,424±4,491a 12,428±6,897a 14,764±5,528b 12,905±3,563a

Eosinophils 852±479a 1,299±1,303a 881±541a 1,048±1,046a

Lymphocytes 2,006±1,318a 1,747±1,351a 2,138±1,118a 2,286±1,256a

Monocytes 778±336a 686±450a 874±577a 780±517a

Neutrophils 6,785±4,068a 8,638±5,429a 10,823±4,745b 8,677±3,547a

Different letters denote statistical significance (p< 0.05). PCV: packed cell volume; RBC: red blood cell counts (×106); WBC: white blood cell counts; MCV: mean

corpuscular volume.

https://doi.org/10.1371/journal.pone.0201357.t003
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Finally, we observed that T. evansi infection (path coefficient = 0.31, p< 0.05) and coinfec-

tion (path coefficient = 0.31, p< 0.05; path coefficient = 0.52, p< 0.05) influenced positively

immune investment resulting in more lymphocytes (r = 0.70) and anti-T. evansi IgGs (r = 0.72

r = 0.60) (S6 Fig). Both, T. evansi infection and coinfection, had an indirect negative effect on

body condition via immune investment on lymphocytes and anti-T. evansi IgGs (path coeffi-

cient = -0.41, p< 0.05; path coefficient = -0.56, p< 0.05) (S6 Fig).

Ocelots

Although we found lower RBC and PCVmean values for ocelots parasitized by T. evansi and

in those coinfected with both parasites than in non-infected animals, differences were not

statistically significant (RBC: χ2 = 3.672, df = 03, p> 0.05; PVC: χ2 = 5.12, df = 03, p> 0.05;

and MCV: χ2 = 0.2237, df = 03, p> 0.05) between non infected and T. evansi-infected ocelots

(Table 4).

Path analysis showed that T. evansi (path coefficient = 0.90, p< 0.05) and coinfection (path

coefficient = 0.73, p< 0.05) resulted in lower PCV (r = -0.93) values (S7 Fig). Moreover, the

decrease in body condition was influenced by fewer RBC (r = -0.91) and higher MCV (r = 0.88)

values, irrespective of infection with T. evansi or coinfection (path coefficient = -0.41, p< 0.05)

(S7 Fig). Infection with T. cruzi and T. evansi did not have any effect on the infection response

in ocelots.

Furthermore, we observed that coinfection (path coefficient = -1.03, p< 0.05) had a posi-

tive effect on immune investment, marked by an increase in anti-T. cruzi IgGs (r = -0.97) (S8

Fig). A similar positive effect on immune investment was observed also with T. evansi infection

(path coefficient = -0.99, p< 0.05; path coefficient = 0.94, p< 0.05) and coinfection (path coef-

ficient = -0.77, p< 0.05; path coefficient = 0.96, p< 0.05) (S8 Fig). This resulted in more lym-

phocytes (r = 0.75) and higher anti-T. evansi IgG (r = -0.87) values (S9 Fig). Additionally, T.

evansi infection and coinfection had indirect positive effects on body condition via immune

investment (path coefficient = 0.59, p< 0.05) (S9 Fig).

Discussion

Our results reveal that T. evansi infection in coatis, crab-eating foxes and ocelots causes some

degree of anemia. Anemia has been recorded previously in coatis infected with T. evansi

Table 4. Hematological mean values among ocelots (Leopardus pardalis) infected with Trypanosoma evansi (TE)
and coinfected with T. evansi/Trypanosoma cruzi (TE/TC) in the sub-region of Nhecolândia, Pantanal, between
November 2015 and October 2016.

Leopardus pardalis Non infected
(n = 02)

TE positive
(n = 12)

TE/TC positive
(n = 05)

RBC 6.9±1.9a 4.5±1.8a 4.1±1.1a

PCV 41.9±4.2a 32.1±4.7a 32.9±3.6a

MCV 83±4.16a 81.5±34.3a 85.8±18.7a

WBC 17,275±16,723a 14,650±4,479a 16,830±5,357a

Eosinophils 54±77a 178±312a 331±161a

Lymphocytes 1,545±1,107a 2,372±1,470a 2,493±907a

Monocytes 600±386a 874±704a 1,229±796a

Neutrophils 15,048±15,346a 11,027±3,513a 12,900±4,318a

Different letters denote statistical significance (p< 0.05). PCV: packed cell volume; RBC: red blood cell counts;

WBC: white blood cell counts; MCV: mean corpuscular volume.

https://doi.org/10.1371/journal.pone.0201357.t004
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[13, 17–19], but the present study is the first report of T. evansi infection resulting in anemia

also in free-living ocelots and crab-eating foxes. Anemia is characteristic of T. evansi infections

[17, 36–38] and can represent a threat to the health of carnivores in the Pantanal wetland, as

suggested by infection rates of 89% (17/19) in ocelots, 46% (18/39) in coatis, and 33% (16/48)

in crab-eating foxes.

Even though T. cruzi infection could not induce anemia in coatis, coinfection with T.

evansi caused the degree of anemia to become more severe, a finding previously observed by

Olifiers et al. 2015 [13]. The microcytic hypochromic anemia, characterized by the low MCV

values in T. evansi-infected coatis and the even lower values in coinfected animals, may cor-

relate to deficient hemoglobin synthesis due to iron deficiency [39–41], as observed in T.

evansi infections [42, 43]. The low MCV values could also result from the influx of iron into

the cell, which is necessary for the multiplication of intracellular amastigote forms of T. cruzi

[44, 45].

Anemia was observed also in ocelots, as suggested by small differences in anemia indices in

animals infected with T. evansi and coinfected with T. cruzi, as well as through direct effect of

T. evansi infection and coinfection on PCV values tested by path analysis. Anemia has been

recorded previously in domestic cats experimentally infected with T. evansi [46–48].

Moreover, lower RBC and higher MCV values indicated a megaloblastic anemia, which

negatively influenced ocelots’ body condition, irrespective of Trypanosoma spp. infection.

Although we have not investigated other pathogens or other causes, in natural environments

animals are constantly and concomitantly exposed to a variety of parasites, particularly Ana-

plasma spp.,Mycoplasma spp., and piroplasmids, which cause lysis in parasited red blood cells

and the consequent drop in RBC values. The same parasites have been described to infect oce-

lots in the studied area [49–51]. Additionally, the observed increase in MCV values may have

metabolic origin and be associated with deficiency of vitamin B12, which is found mainly in

protein diets, or/and in hepatic dysfunction.

Regarding crab-eating foxes, we observed a slight decrease in indicators of anemia only in

T. evansi-infected animals. Importantly, domestic dogs that have been experimentally or natu-

rally infected with T. evansi display evident signs of anemia and the course of infection is fatal

if not treated [52, 53]. Therefore, free-living crab-eating foxes parasitized with T. evansimay

become sick and prostrate, consequently they may die or are not collected.

We observed discrete leucopenia due to fewer lymphocytes and eosinophils in coatis paras-

ited with T. evansi. Immunosuppression in coatis infected with T. evansi has been described

previously in natural and experimental studies [13, 18, 19, 54]. This phenomenon varies in

nature due to different communities of parasites in their hosts, as well as the influence of

marked seasonality of resources, which is characteristic of the Pantanal region [12, 27].

The leukocytosis observed here in T. cruzi-infected and coinfected coatis is typical of the

acute phase of T. cruzi infection [55]. The increase in leucocytes during T. cruzi infection in

wild mammals has been reported in Thrychomis pachyurus and coatis under experimental and

natural conditions, respectively [12, 56].

We observed a notable infection response in coatis infected with T. cruzi and in coinfected

animals. Monocytosis is a sign of immune response during the acute phase of T. cruzi infec-

tion [57, 58]. Throughout the chronic phase of T. cruzi infection, neutrophils act together

with monocytes and lymphocytes to repair the tissue damage caused by T. cruzi amostigote

[59]. An increase in monocyte and neutrophil values is an important hallmark of infection

by T. cruzi in naturally infected coatis, as already reported by Martı́nez-Hernández et al.

2016 [12].

We observed a decrease in lymphocytes in crab-eating foxes infected with T. evansi, con-

firming the findings of Da Silva et al. 2011 [60] in the chronic phase of T. evansi infection in
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laboratory rodents. Indeed, domestic dogs naturally and experimentally infected with T.

evansi displayed fewer WBCs and neutrophils [52, 53]. Additionally, the decrease in mono-

cytes and neutrophils observed in crab-eating foxes infected with T. cruzi or in coinfected

animals, was similar to that reported in dogs during the early stages of T. cruzi experimental

infection [61]. Such immunosuppression, even if transient, can impair the health of the

animal.

An increase in immune investment in coatis, ocelots, and crab-eating foxes infected with T.

cruzi, T. evansi, or in coinfected animals recorded in the present study may be associated with

a potent stimulation of cellular and humoral immune response, characteristic of trypanosome

infection [62–64]. The strong production of immunoglobulins results in an autoimmune

hypersensitivity with consequent production of antigen-antibody molecules [65]. These

immune complexes accumulate on the vascular wall, especially in the microcirculation, caus-

ing damage to their thin layer of vascular endothelial cells, and resulting in widespread micro

bleeding, a phenomenon known as disseminated intravascular coagulation (DIC). DIC has

been associated with trypanosome infections in various host species [66–69] and has been

observed in coatis infected with trypanosomes in the Pantanal region. Indeed, as observed

here by path analysis, an increase in immune investment resulted in a worse body condition in

ocelots and crab-eating foxes. DIC, together with the hypoferremic response discussed above,

are the main causes of anemia observed in trypanosome-infected animals. Furthermore, oxida-

tive stress due to oxidative damage in erythrocyte membranes are related to experimental and

natural infection by T. evansi [70, 71].

Conclusions

As T. cruzi is restricted to the NewWorld, it had been interacting with its hosts over millions

of years. On the contrary, T. evansi originates from the African continent, and has become a

parasite of South American wild mammals only recently. In the Pantanal region, T. evansi was

probably introduced together with horses and dogs in the late Eighteenth century when the

first cattle farms were established. According to this scenario, while the course of T. cruzi infec-

tion is known to be predominantly chronic probably due to ancient association with its hosts,

T. evansi infection of endemic Neotropical fauna may cause great damage to the health of its

hosts, particularly due to increased virulence and pathogenicity of present interactions.

The anemia and immunosuppression evidenced by the present study, are associated with

increasing habitat fragmentation and poaching [72], which poses a threat to wild coatis, ocelots

and crab-eating foxes in the Pantanal wetland. Furthermore, due to epidemiological implica-

tions and conservation importance, studies of T. cruzi and T. evansi infections in free-living

mammals should be a priority for health surveillance organizations, research promotion agen-

cies, and postgraduate programs.
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sis on immune investment of coatis (Nasua nasua) infected with Trypanosoma cruzi and coin-

fected with Trypanosoma evansi/T. cruzi in the sub-region of Nhecolândia, Pantanal, between

November 2015 and October 2016.

(TIF)

S4 Fig. Path analysis on infection responses of crab-eating foxes (Cerdocyon thous). Results

of path analysis on infection responses of crab-eating foxes (Cerdocyon thous) infected with

Trypanosoma cruzi and coinfected with Trypanosoma evansi/T. cruzi in the sub-region of Nhe-

colândia, Pantanal, between November 2015 and October 2016.

(TIF)

S5 Fig. Path analysis on immune investment against Trypanosoma cruzi of crab-eating

foxes (Cerdocyon thous). Results of path analysis on immune investment against T. cruzi in

crab-eating foxes (Cerdocyon thous) infected with Trypanosoma cruzi and coinfected with Try-

panosoma evansi/T. cruzi in the sub-region of Nhecolândia, Pantanal, between November

2015 and October 2016.

(TIF)

S6 Fig. Path analysis on immune investment against Trypanosoma evansi of crab-eating

foxes (Cerdocyon thous). Results of path analysis of immune investment against T. evansi in

crab-eating foxes (Cerdocyon thous) infected with Trypanosoma cruzi and coinfected with Try-

panosoma evansi/T. cruzi in the sub-region of Nhecolândia, Pantanal, between November

2015 and October 2016.

(TIF)

S7 Fig. Path analysis on anemia indicators in ocelots (Leopardus pardalis). Results of path

analysis on anemia indicators in ocelots (Leopardus pardalis) infected with Trypanosoma

evansi and coinfected with T. evansi/T. cruzi in the sub-region of Nhecolândia, Pantanal,

between November 2015 and October 2016.

(TIF)

S8 Fig. Path analysis on immune investment against Trypanosoma cruzi of ocelots (Leopar-

dus pardalis). Results of path analysis on immune investment against Trypanosoma cruzi in

ocelots (Leopardus pardalis) infected with T. evansi and coinfected with Trypanosoma evansi/T.

cruzi in the sub-region of Nhecolândia, Pantanal, between November 2015 and October 2016.

(TIF)

S9 Fig. Path analysis on immune investment against Trypanosoma evansi of ocelots (Leo-

pardus pardalis). Results of path analysis on immune investment against Trypanosoma evansi

in ocelots (Leopardus pardalis) infected with T. evansi and coinfected with T. evansi/Trypano-

soma cruzi in the sub-region of Nhecolândia, Pantanal, between November 2015 and October

2016.

(TIF)
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