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Abstract Positioning is a key task in most field robotics applications but can be

very challenging in GPS-denied or high-slip environments. A common tactic in

such cases is to position visually, and we present a visual odometry implementa-

tion with the unusual reliance on optical mouse sensors to report vehicle velocity.

Using multiple kilometers of data from a lunar rover prototype, we demonstrate that,

in conjunction with a moderate-grade inertial measurement unit, such a sensor can

provide an integrated pose stream that is at times more accurate than that achievable

by wheel odometry and visibly more desirable for perception purposes than that

provided by a high-end GPS-INS system. A discussion of the sensor’s limitations

and several drift mitigating strategies attempted are presented.

1 Introduction

Accurate knowledge of position is critical to successful completion of field robotics

tasks. In known or highly structured environments, localization relative to a pre-

determined or progressively-refined map is typically performed using sensors ap-

propriate for registering map features to observations. In general outdoor scenar-

ios, absolute positioning using Global Positioning and Inertial Navigation systems

(GPS-INS) is frequently performed, often in conjunction with input from odometry

integration, and may augmented further by continuous registration of local terrain

or obstacle maps. Indeed, recent GPS-INS devices advertise errors as low as a few

centimeters in position and hundredths of a degree in attitude after alignment [13].

Many applications present significant challenges for these positioning strategies.

GPS may be unavailable or ineffective if too few satellites are visible during urban or

subterranean operations. Wheel-based odometry depends on an accurate kinematic

model and can degrade greatly in the presence of wheel slip typical of low-friction
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surfaces and skid-steered vehicles. In poorly lit or very low-texture environments,

systems based on vision will see reduced performance.

Planetary rover missions pose particularly challenging cases. GPS is unavail-

able and alternatives such as star tracking do not offer comparable accuracy. Loose

surface dust easily impedes wheel odometry. Further, visual odometry and terrain

mapping methods are frustrated by poor lighting, few visual surface features, and

tight computational constraints limiting their implementation complexity.

The specific need we seek to fulfill is that of a pose estimation system for Scarab,

the lunar rover prototype developed at Carnegie Mellon University pictured in Fig-

ure 1 [4] [20]. This 280kg skid-steered vehicle is designed to explore permanently

shadowed lunar polar craters, which combines the greatest weaknesses of most posi-

tioning methods: the unavailability of GPS, constant near-total darkness, occlusion

of most stars by the high crater walls, soft lunar regolith, and strictly limited com-

puting and power facilities. Exclusive reliance on wheel odometry was first planned

but then abandoned in recognition of the errors that would be induced by surface

slip, the eventual implementation of softer wheels that would thereby be of vary-

ing radius, and the passive differenced rocker suspension, which while excellent

for maintaining stability on bumpy terrain, makes estimating heading changes from

odometry inadequate. Certainly strategies can be applied for detecting slip some

proportion of the time—and [16] provides several methods for doing just this on

planetary rovers—but the design of Scarab’s suspension frustrates this approach

and arguably more complicated physical modeling might best be replaced by an

alternative sensing modality.

Conventional forward-facing visual odometry as used on the Mars Exploration

Rovers (MERs) [11] was considered but deemed impractical because lighting the

surrounding area would require more power than the rover can provide and induce

complex shadows. Instead, we decided upon using downward-facing visual odom-

etry. This provides tractable lighting requirements, however these forward-facing

techniques cannot be directly applied because the situation is ill-posed to compute

the 3-D incremental pose differences and the terrain beneath the rover is likely to be

too homogeneous for point-based feature tracking to work effectively. Rather, we

chose to rely on optical flow to provide an estimate of vehicle speed, which could

then be integrated to estimate incremental distance-traveled as part of a broader

odometry framework. Various methods, such as the Horn & Schunck algorithm [7],

have long existed for computing so-called dense optical flow over regions between

images. Such algorithms have been used, for instance, for autonomous heading con-

trol for obstacle avoidance for fixed-wing aircraft [21], estimating distance to the

ground and canyon walls from unmanned aerial vehicles [6], and autonomous land-

ing for helicopters [17]. In the odometry realm, downward-facing cameras have

been successfully used for positioning in pre-explored environments by correlating

the visible area against an existing database [8], however such methods are inappli-

cable to planetary rovers observing most patches for the first time.

Although an optical flow implementation using a typical camera would have been

straightforward, an intriguing alternative presented itself in the form of a custom-

built optical flow sensor from AirRobot GmbH [1] used for stabilization on its quad-
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rotor helicopters. This device, shown in Figure 2, contains four commodity optical

mouse sensors each attached to a lens of a different focal length and reports 2-D

velocity (in m/s) along the planar surface at which it is pointed and an estimate

of distance to this plane. The precise details of its operations are proprietary to

the manufacturer, but given that a scalar “tracking quality” value is known to be

returned by mouse sensors, we conjecture that height is derived by interpolating

across the quality values returned by each of the four sensors, with speed similarly

interpolated across the four focal-distance-compensated speed values. The sensor

nominally reports velocity with a resolution of 0.3mm/s within a range of ±10m/s

and height up to 2.5m with a resolution of 1cm.

Fig. 1 The Scarab lunar rover. The glow beneath

is from LED lighting for the optical flow sensor.

Fig. 2 The optical sensor used on Scarab, in a

custom ruggedized enclosure.

The use of optical mouse sensors for measuring ground velocity has a number of

benefits leveraging over a decade of commercial refinement. Key among these are

remarkably robust operation on a wide variety of surfaces, significant lighting insen-

sitivity, and extremely low cost (several US dollars) due to the volume in which they

are produced. These typically contain a 15 to 100 pixels-square camera sensor and

are believed to implement a fast hardware version of Horn & Schunck [14] reporting

sub-pixel flow rates at on the order of 1kHz. Designs based on laser interferometry

are becoming prevalent, however they are not as adaptable as they do not use simple

lenses. Due to their low cost and simplicity, there exists wide interest in the hobbyist

robotics community in these sensors. Several examples of their use in limited indoor

scenarios exist in the robotics literature (eg [15], [18], and [19]), but they have yet

to see use in a field robot application. A method similar to that described here using

a webcam and image correlation matching was presented in [12].

In this paper, we describe our odometry method using this sensor, present results

from extensive field testing, and draw conclusions on the effectiveness of commod-

ity optical flow sensors for pose estimation.

2 Odometry Method

We first assume that the vehicle can only instantaneously move along its current

heading vector, or equivalently assume the non-holonomic constraint of no wheel

side-slip. We believe this to be valid because except for rare cases such as sliding

laterally down a slope, wheel slip should occur only when skidding in place during

turns or failing to grip the ground during forward travel. Position is integrated based



4 Michael Dille, Ben Grocholsky, and Sanjiv Singh

on the current linear speed and heading vector at all times. Linear speed is estimated

from optical sensor readings, and the heading vector comes from the attitude deter-

mined by integrating IMU angular rate values. Uncertainty in the integrated pose is

propagated by modeling uncertainty for the optical sensor and the IMU. The next

section formalizes this procedure followed by methods for improved accuracy.

2.1 Basic Odometry Model

We begin by defining the vehicle position x and orientation θ in a chosen world

frame:
xt = [x,y,z]T , θ t = [θx,θy,θz]

T ≡ qt = [qs,qx,qy,qz]
T (1)

where the latter equivalence denotes that we may refer to the orientation as the Euler

angles θ t or a unit quaternion qt .

At each time-step, the IMU provides angular rates and linear accelerations in the

body frame:
ω t = [ωx,ωy,ωz], at = [ax,ay,az]. (2)

For a given state xt we may then write the vehicle unit heading vector ût in the

world frame. The non-holonomic velocity constraint can then be embedded in the

definition of the vehicle’s linear velocity as

vt = vbodyût (3)

where vbody is the scalar linear velocity, which is assumed to be directly provided

by the optical sensor. In actuality, it reports velocity in two dimensions, but to avoid

having to very precisely calibrate for any rotational offset, we simply take the norm

of the velocity vector it reports to be the speed and determine the sign from that of

the velocity reported along the axis most nearly aligned with the body.

At time t +1, given vt+1 and the previous values xt and vt, the new position may

be estimated as
xt+1 = xt +

1

2
∆ t(vt+1 +vt), (4)

where ∆ t is the time elapsed between t and t + 1, computed via trapezoidal inte-

gration of the velocity vector. A similar procedure for orientation is used. Namely,

q̇t = 1
2
qt ∗ [0, 1

2
(ωt +ωt+1)]

T

qt+1 = qt +∆ tq̇t
(5)

estimates the new orientation, where * denotes quaternion multiplication [10].

Dead-reckoning error uncertainty is propagated by the linearized covariance pre-

diction equation 1

Pk+1 = FkPkFT
k +GkQkGT

k , (6)
where
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Approximate trends in state uncertainty growth over time can be observed by

reducing Equation 6 to straight line constant speed motion with inital covariance

Pk = diag(Px Py Pψ). For x-axis-aligned motion, Equation 7 indicates along-track

1 For brevity, we here present uncertainty propagation for planar location and heading. The equa-

tions for the full 6-D model as we have implemented are a straightforward extension.
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and heading error increases proportional to the square-root of elapsed time. Cross-

track error exhibits faster error growth, linear in time due to initial heading uncer-

tainty plus growth at three-halves power of time due to heading rate noise. This

highlights the importance of low heading-rate uncertainty in achieving accurate

dead-reckoning.

Pk+∆ t =





Px,k 0 0

0 Py,k +V 2∆ t2Pψ,k V ∆ tPψ,k

0 V ∆ tPψ,k Pψ,k



+





∆ tσ2
V 0 0

0 1
3
V 2∆ t3σ2

ω
1
2
V ∆ tσ2

ω

0 1
2
V ∆ tσ2

ω ∆ tσ2
ω x



 (7)

Distance and heading error drift rates for the system have been determined

through ground-truthed experimental trials. Figure 3 shows the difference in changes

observed between the dead-reckoning solution and ground-truth for varying length-

time ensembles. Twenty thousand samples were compared over a two hour period

at thirty second ensemble increments. This trial indicates drift rates of 1.2m/
√

hour

in distance traveled and 2.5o/
√

hour in heading.

Fig. 3 Estimated drift rate for distance traveled (left) and heading (right) determined by comparing

changes over increasing time ensembles between the dead-reckoning solution and ground-truth.

2.2 Improved Attitude Estimation

While the error in the pose estimate provided by the above integration procedure will

necessarily grow without bound, several simple measures can be taken to greatly re-

duce attitude error. Many of these are intuitive and even commonplace in commer-

cial navigation systems, however they receive rare mention in the robotics literature

and are too often ignored in implementation.

A first strategy critical for long-term operation is to remove the approximately

15 degrees per hour on Earth (or 0.56 on the moon [2]) angular velocity the gy-

roscope will inherently pick up due to the rotation of the earth, which is done by

rotating the known angular velocity of the planet into the local coordinate system

and subtracting. When stationary, this measured angular velocity may even be used

to perform gyrocompassing. The gyroscope bias may be computed by averaging the

measured angular velocity vector while stationary (after subtracting the planetary

rotation rate). With some IMUs this may needed as often as every ten minutes for
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even short-term performance [5]. This step was not required in our case since this

value typically averaged to be negligible.

Another common technique is to use the gravity vector (weaker but still useful

at about 0.16g on the moon [3]) as measured by the IMU’s accelerometers when

stationary to estimate roll and pitch by taking arctangents of the accelerations along

the axes. We made use of this to reset drift in roll and pitch during stationary periods.

Given now two complementary sources of roll and pitch–this direct computation

most accurate when the attitude is slowly changing and integration of angular rates

just the opposite–we implemented a matched complementary Butterworth filter pair

to continuously merge these two streams, with a cutoff frequency of 0.05Hz found to

be most appropriate given the very slow motion of the rover. This provides excellent

results with errors in roll and pitch of typically much less than a degree at all times.

Finally, anticipating missions consisting of long stationary periods (primarily in-

tended for battery recharging) followed by short periods of motion, we additionally

clamped the measured angular velocity vector to zero when the vehicle is known to

be stationary to avoid blatantly unnecessary noise integration.

2.3 Velocity Scale Calibration

Ideally, the optical flow sensor returns a correctly scaled lateral speed regardless

of the distance between the sensor and the ground. We model the actual corrupted

scaled velocity returned as

vmeasured = s(h) · vactual +b+ν , (8)

where s(h) is a scaling factor that varies with the height h, and ν is noise. At most a

trivial bias term b was observed, and this was effectively dealt with by clamping the

measured velocity to zero when the vehicle is known to be stationary.

The height of the sensor is not fixed as Scarab is equipped with an active sus-

pension used to lower the body so that a core-drilling apparatus may operate. Cali-

bration trials at varying body heights were performed. Figure 9 shows a number of

such runs over distances varying between 10 and 30 meters. As it indicates, rather

different scaling values were found for daytime and nighttime operation, but within

each class, a simple quadratic fit provides reasonable compensation.

The sensor also exhibited a scale dependence on the surface type with values

tightly clustered for a given surface. An online auto-calibration scheme proved quite

effective by relying on the observation that during consistent straight-line motion,

wheel odometry can be very accurate. Every three seconds, a procedure runs that

tests a battery of heuristics to decide whether the wheel odometry from that period

is likely to be trustworthy. This includes for instance verifying that each wheel’s

velocity agrees closely with the average, all agree on direction, the reported velocity

is above a noise floor, and that the IMU is reporting minimal yaw rates. Primar-

ily, this eliminates periods including heavy slip or turning (implying likely wheel

odometry error). Each period is added as a learned data point over which a variation

of a recursive locally-weighted linear least squares algorithm is run to compute the

scaling factor as a function of body height. Each time a new velocity value from the

optical sensor is received, the best estimate of the scaling factor for that height is
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used. If insufficient calibration data points are available for the region surrounding

that height the scaling factor determined by the original manual calibration trials is

used as a fall-back.

An example run using the online scale calibration procedure is shown in Figures

10 and 11, which indicates that this process performs well, though unsurprisingly

not as well as a post-hoc batch method computing the scaling function from all the

data points at once (shown in Figure 12). However, it performed well enough and

eliminated most difficulties associated changing surfaces. All data presented uses it

unless otherwise indicated.

3 Experimental Results

During the course of system development and verification, we collected tens of

hours of data from field testing over several kilometers of traversal, including ex-

tended simulated lunar terrain at Moses Lake, Washington and Mauna Kea, Hawaii.

Field tests were conducted both during daytime and in total darkness, for which

high-intensity LED bars were mounted to the vehicle’s underbelly to illuminate the

area seen by the optical sensor.

Anecdotally, the optical sensor worked remarkably well across a wide variety of

surfaces, including dirt, mud, grass, asphalt, and sand. Tracking was poor on poured

concrete surfaces and nearly useless on painted concrete. Most of the extended field

testing took place over sand to best emulate lunar terrain, and it was noted that

typical auto-calibrated scaling factors were somewhat higher than for other surfaces,

likely explainable by somewhat poorer tracking on this relatively featureless terrain.

As the Honeywell HG1700 IMU used for odometric integration is part of a No-

vaAtel SPAN GPS-INS system, a convenient source of approximate ground truth

was also available. At the slow speeds the rover moves, INS position errors on the

order of tens of centimeters are large relative to short-term distances traveled, how-

ever over long distances, these relatively static uncertainties are small compared to

accumulated odometry error.

In the plots below, full odometry results are provided as well as the result of using

INS-provided attitude (the output of the INS Kalman filter that uses GPS data) in

place of integrated attitude. The purpose of this is to independently demonstrate the

effectiveness of the optical sensor (accumulating just distance-traveled error in the

odometry) and because further methods of improving heading accuracy would be a

priority in any future implementation.

An early observation was that even when the odometry-derived pose drifted sig-

nificantly, as shown in Figure 8 having atypically high gyro drift, the smoothness

of the integrated solution was much more useful to the on-board perception system

than that from the INS. Laser scanners are used to build local terrain and obsta-

cle maps. Pose jumps present false obstacles without resorting to complicated reg-

istration algorithms precluded by limited on-board computing. While a map built

from the integrated solution will not be globally correct, the resulting higher-fidelity

short-term maps are more valuable for local motion planning.
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As odometry error is inherently path dependent, errors accumulated over differ-

ent trials varied, however, the results shown in Figure 6 are representative. Data

from this run, a nearly 700m nighttime traverse at Moses Lake, is also used as the

examples for the described attitude improvement and scale calibration methods. At-

titude comparisons between the INS-reported values and integrated results are given

in Figure 5. Traces of easting, northing, and heading uncertainty, propagated using

the model described and the estimated covariances on angular rates and optical flow

velocity, are provided in Figures 13-15. Though this is just one example, the errors

lie within the uncertainties, lending credence to our propagation model and process

covariances.

4 Conclusions and Future Work

In this paper, we presented an implementation of vehicle odometry for a lunar rover

prototype using an optical mouse sensor to provide vehicle velocity. Results show

that with a moderate-grade IMU, errors can be small over long distances. Clearly the

weakest point in such a design is the accumulation of heading error, the reduction

of which would be a key focus of future implementation. The lunar application

may present some such reduction opportunities, perhaps via the stop-start nature of

motion during missions or observation from an orbiter. Other avenues of exploration

include using multiple sensors to track heading or relax the kinematic assumptions

[9] and designing a new sensor with focal lengths tuned for the mounting height.
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