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Abstract— In this paper, we propose a visual place recognition
algorithm which uses only straight line features in challenging
outdoor environments. Compared to point features used in most
existing place recognition methods, line features are easily found
in man-made environments and more robust to environmental
changes such as illumination, viewing direction, or occlusion.
Candidate matches are found using a vocabulary tree and
their geometric consistency is verified by a motion estimation
algorithm using line segments. The proposed algorithm operates
in real-time, and it is tested with a challenging real-world
dataset with more than 10,000 database images acquired in
urban driving scenarios.

I. INTRODUCTION

Place recognition algorithms are used in several applica-

tions such as simultaneous localization and mapping (SLAM)

and autonomous robot navigation. In robotics, the geometry-

based localization process often exhibit scalability problems

because, during pose estimation, small errors accumulate and

eventually it becomes too large to be corrected via geomet-

ric reasoning. Therefore, many recent robotics applications

utilize appearance-based techniques for the localizations [1]–

[4].

Currently, most visual place recognition systems use point

features, such as the scale-invariant feature transform (SIFT)

[5] or speeded-up robust features (SURF) [6]. In SLAM

researches, however, there has been some approaches using

lines as landmarks [7]–[10], because lines can effectively

convey structural information with fewer number of them,

as a line spans over a one-dimensional space, rather than a

single point in a space (see Figure 1). However, they have

not been widely adopted because tracking lines are harder

than tracking points and recognizing them is difficult due to

the lack of reliable feature descriptors.

Previously, we proposed a system [11] that reliably rec-

ognizes places in structured indoor environments with only

line features, and we aim to extend the method to outdoors

in this work. In [11], we used a Bayesian filtering framework

to reduce the influence of the noisy responses from the

vocabulary tree. However, the approach has a limit that all

scenes in both of the query and the database need to be

in sequential orders because the Bayesian filtering works

under that assumption. In this work, however, we utilize a
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Fig. 1. An outdoor scene, and two figures containing 498 line features and
1758 SURF features, respectively, extracted from the scene. Straight lines
are preferred over points, because they represent structural information more
effectively.

geometric verification algorithm instead of the filtering, and

the scenes do not need to be in sequential orders. To the best

of our knowledge, there has been no visual place recognition

system using only line features in outdoor environments.

We utilize the vocabulary tree presented by Nister et al.

[12] that we train for finding matching hypotheses. Then,

for geometric verification of the hypotheses, we adopt an

idea from Zhang [13] to estimate a relative motion between

two scenes with line segments. We show that the retrieval

performance of a vocabulary tree built with line descriptors

works better than a tree built with state-of-the-art point

descriptors in a structured outdoor environment, and the

potential of using line descriptors in practical visual place

recognition systems. We utilize the mean standard-deviation

line descriptor (MSLD) proposed by Wang et al. [14] as a

descriptor for line segments.

The main contributions of this paper are as follows:

• A geometric verification algorithm using line segments

• A real-time implementation and experimental validation

of a place recognition algorithm that uses only line

features under challenging conditions

The remainder of this paper is organized as follows.

Section II describes algorithms for finding matching hypothe-

ses using a vocabulary tree, and presents an experimental

evaluation of the retrieval performance of the tree trained

with line descriptors, by comparing it with another tree

trained with SIFT. Section III presents a motion estimation

algorithm used to verify candidate matches. In Section IV,

we provide results obtained from experiments conducted in



urban driving environments containing several environmental

changes. This paper concludes in Section V.

II. SCENE REPRESENTATION WITH LINE SEGMENTS

A. Line Extraction and Description

In order to extract line segments, we devised a simple but

reliable extractor inspired from [15]. Given an image, Canny

edges are detected first and the system extracts line segments

as follows: At an edge pixel the extractor connects a straight

line with a neighboring one, and continues fitting lines and

extending to the next edge pixel until it satisfies co-linearity

with the current line segment. If the extension meets a high

curvature, the extractor returns the current segment only if

it is longer than 20 pixels, and repeats the same steps until

all the edge pixels are consumed. Then with the segments,

the system incrementally merges two segments with length

weight if they are overlapped or closely located and the

difference of orientations is sufficiently small.

Descriptor vectors for the segments are generated using

MSLD [14]. For each segment, the MSLD first identifies

the perpendicular direction d⊥ with its average gradient

direction, and parallel direction d‖ rotated 90 degrees from

d⊥ in clockwise. For every pixel on the segment, it sets c
subregions each with a size of r× r along to the d⊥ in a non-

overlapping manner. If a line segment consists of l pixels, it

results c× l subregions on the segment. In this work we use

the same settings c = 9, r = 5 as in [14]. In each subregion,

accumulating distributed gradients along the direction d⊥,

d‖ and their opposite directions results a histogram with four

bins. With the mean and standard deviation of the histograms

calculated along the d‖ results (4+4)×9 = 72 dimensional

vectors. This statistical representation allows robust matching

between two line segments with noisy locations of end

points.

B. Vocabulary Tree

The visual bag-of-words approach maps an arbitrary fea-

ture to a visual word using a pre-built dictionary, and repre-

sents the scene with the set of words to recognize it. In other

words, to get a dictionary, it divides the feature space by

clustering given huge number of training features. Then for

each of arbitrary features, it assigns one of the cluster index

to the feature to efficiently represent scenes. The vocabulary

tree [12] is one of the most popular algorithms among

the visual bag-of-words family. It hierarchically divides the

feature space to offer more efficient and effective way in

both of training and querying phases, and it enables online

database insertion and querying when it is utilized with an

inverted file mechanism.

We extracted eight million MSLD descriptors from eight

tourism videos of historical buildings in Europe, and used

them as the training set to build a vocabulary tree. Then,

we performed hierarchical k-means clustering of branching

factor k = 50, number of levels l = 3, with the training set

resulting a tree with 127551 nodes. Following the analysis

of the authors of [12], we use only 125000 leaf nodes in

this work. In Section II-C, we experimentally evaluate the

retrieval performance of the tree.

In the phase of database construction, every descriptor

vector in the scenes inserts the ID of the image to the

corresponding leaf node. Similarly, when querying a scene,

also every descriptor vector in the query image traverses

through the tree to reach a leaf node, then images of the ID

listed in the node represent potential candidate matches and

receive votes. In this voting scheme, we use the normalized

difference with term frequency-inverted document frequency

(TF-IDF) weighting [16] in the L1-norm [12].

We define the query q and the database d vectors as

follows:

qk = nkwk, (1)

dk = mkwk. (2)

Here,

nk =
number of word k

number of total words in query scene
(3)

is the term frequency of the word k in the query image, and

mk =
number of word k

number of total words in the database scene
(4)

is the term frequency of word k in a database image.

Moreover, wk is the inverted-document frequency given by

wk = ln
N

Nk

, (5)

where N is the total number of database images, and Nk

is the number of database images containing the word k.

Then, if the word k is observed in the query scene, the score

assigned to the database image i is given by

si = 2 +
∑

k|qk 6=0,dk 6=0

(

|qk − dk| − qk − dk
)

. (6)

In this scoring scheme, the words with high “term frequency”

(i.e., they frequently appear in an image) receive higher

scores. Meanwhile, words with high “inverted-document

frequency” (i.e., they also frequently appear in other images)

are penalized.

C. Evaluation of the Vocabulary Tree in an Outdoor Envi-

ronment

In order to verify the performance of the vocabulary tree of

MSLD line descriptors, we performed experimental compar-

ison with another vocabulary tree trained with SIFT in the

identical environment. We used a standard implementation

of the SIFT from [19]. For this experiment, we acquired

images with a robot-equipped camera in Myung-dong, Seoul,

while travelling a 235 meter-long loop twice. In building the

vocabulary tree with the SIFT features, we used the same

settings that are used to build the vocabulary tree with the

MSLD features (i.e., the same eight videos, eight million

SIFT features, k = 50, and l = 3).

In the sequence, the 721 scenes acquired from the first

travel are used as a database, and the 682 scenes from the

second travel are used as queries. In Figure 2, (a) shows the
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(b) samples of the scenes used in the vocabulary tree evaluation 

(a) trajectory followed for the sequence acquisition 

Fig. 2. Experimental evaluation of the trees

trajectory followed for the sequence acquisition, (b) shows

some examples of the scenes, and (b) and (c) are the results

of the evaluation. The top five scored returns from the query

are represented by points darkened according to their scores.

Since it is difficult to obtain the actual trajectories of the

robot, we tried to maintain the velocity of the robot to be

constant, and to follow the almost same trajectories. Then,

we can approximate its retrieval accuracy by following two

steps: First, we adjust the scale of the vertical axis to be

equal to the scale of the horizontal axis. Then, with an

assumption that correct matches should be on the diagonal

line, we consider a query is successful if at least one of

the top five returns is not farther than ten frames from the

diagonal line. In the case of MSLD, the number of successful

returns was counted as 657, and it was 630 in the case of the

SIFT. As shown in Figure 2.(b) and (c), we observe that the

vocabulary tree built with the SIFT descriptors shows a little

more spread distribution of the points along the diagonal line

than the case of the MSLDs. Because the tested area was very

structured, it is more reasonable to attribute this result to the

experimented environment and not the performances of the

SIFT or the MSLD. The results are given in Table I.

TABLE I

EXPERIMENTAL EVALUATIONS OF THE VOCABULARY TREES

  MSLD SIFT 

edge threshold . 500 

line length 20 . 

# database 721 

# query 682 

# success return 657 630 

% success 96.33% 92.38% 

# feature 148,513 625,338 

From top to bottom, each row indicates edge threshold: an 

edge threshold used in keypoint extraction for SIFT features, 

line length: threshold of minimum length in line segment 

extraction, # database: number of scenes stored in the 

database, # query: number of query scenes, # success 

return: number of scenes counted as successful return, % 

success: percentage of the successful returns to the database, 

# feature: total number of features used in this evaluation 

III. MOTION ESTIMATION USING LINE SEGMENTS

More scenes in the database, higher ambiguity in the best

hypothesis selection is unavoidable if the vocabulary tree is

used alone for finding the best match because it does not

take into account any geometric information of the features.

Therefore, geometric verification of the feature configura-

tions is employed to improve the retrieval accuracy. In most

visual place recognition systems that use point features,

multiple-view geometry such as epipolar constraint is used

to find only consistent matches using five point algorithm

[17] or eight point algorithm [18]. Under an assumption that

corresponding feature points in two views come from the

same rigid 3D scene, it verifies them with the geometry of

features. In case of line matches, it is well known that a

relative motion between two views cannot be determined

from any number of line matches [7]. However, there has

been some algorithms which computes the relative motion by

maximizing the overlap of the matched line segments. In this

work, we use a similar approach as Zhang [13] to estimate

motion between a query and a hypothesis image using line
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Fig. 3. Two line segments in correspondence. In this case, the overlap
length is defined as the length of the line segment l′.
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Fig. 4. All possible cases of the two line segments. In each case of (a)-(d),
the overlap length is defined as the length of the thick line. In (e) and (f),
the overlap lengths are defined as the gap represented by the dotted lines.

segments. However, the following different techniques are

adopted for our objective.

• Instead of using the downhill simplex method for op-

timization in [13], we utilize a nonlinear least square

method to guarantee real-time performance.

• In the design of the cost function, we use a much

simpler cost function and utilize a robust loss function to

reduce the effects of outliers in feature correspondences.

A. Maximizing Overlap Length of the Matched Segments

under Epipolar Geometry

Figure 3 shows the definition of the overlap length of

the matched segments. We denote a line segment in the

first image as l and a corresponding line segment in the

second image as l′. The rotation matrix and translation vector

between two images are denoted as R and t, respectively.

The essential matrix E becomes [t]×R where [t]× denotes

the skew symmetric matrix of t. The epipolar line l′p in the

second image of a point p in the first image can be written

as

l′p = Ep̃, (7)

where p̃ is the homogeneous coordinate of the point p. For

the epipolar lines l′e and l′s of the two end points e and s of

l, we can then compute their intersections with the matched

line l′ as ẽ′′ = l′× l′e, s̃
′′ = l′× l′s, respectively. Because the

line segments are oriented, and if the motions are relatively

small, the possible combinations of the two segments can

be considered as shown in Figure 4. We denote the overlap

length in the second image as L′ and it can be calculated

simply by the following equation.

L′ =
1

2

(

‖ve′′s′′‖+ ‖ve′s′‖ − ‖ve′′e′‖ − ‖vs′′s′‖
)

, (8)

where vab represents a vector between points a and b. The

overlap length L′ is calculated only if (e′ − s′) · (e′′ − s′′).
We should consider a symmetric role of the both images.

Therefore, we denote the overlap length L in the first image

and calculate it in the same way. Moreover, the overlap

lengths L′
i, Li are divided by li, l

′
i, respectively, to remove

the influence of the length of the line segments, where li

l′𝒆 

l′𝒔 
l′  

Fig. 5. The epipolar geometry reduces the search region for a line segment
l. The matching line segment l′ should have at least one of the its endpoints
in the region.

and l′i denote the lengths of the line segments li and l′i,

respectively.

Then, if a sufficient number of correspondences are given,

by maximizing the overlap lengths defined by the whole

matched segments the relative motion between the two views

can be determined [13]. Finally, the motion estimation prob-

lem can be defined as minimizing following cost function

for all i-th correspondences.
∑

i

(

(1− Li/li)
2
+ ((1− L′

i/l
′
i)

2
)

. (9)

B. Optimization using a Nonlinear Least Square

For the optimization, we have implemented the Levenberg-

Marqardt (LM) iteration method to achieve real-time per-

formance. The LM is a widely used nonlinear least square

method which shows good results by augmenting its normal

equation so that transitions between Gauss-Newton and gra-

dient methods occur according to its convergence. In order to

reduce the influence of outliers in feature correspondences,

we adopt the Cauchy loss function given by

ρ(c) = s2 log(1 + c2/s2), (10)

where c is the cost and s is some constant. This function

approximates c2 for small values of c, and the s determines

the range of the approximation. In this work, we empirically

set the s to 0.3. The resulted cost function is as follows.

C =
∑

i

ρ
((

(1− Li/li)
2
+ ((1− L′

i/l
′
i)

2
))

. (11)

Since the problem is nonlinear, initial guesses are impor-

tant to obtain an acceptable solution. Similar to [13], we

use icosahedrons to get uniformly distributed initial samples.

For translation vector t ∈ R
3, we get 40 samples from a

hemisphere of a tessellated icosahedron because if t is a

solution, so is −t. Since the scale of the translation t is

inherently unrecoverable, we assume the t of unit length and

use it in the spherical coordinate system in the optimization.

Therefore, the t would be (φ, θ) in R
2. For the rotation vector

r ∈ R
3, we also sample 20 unit vectors from the faces of

the original icosahedron (i.e. not tessellated). Since the angle-

axis representation of the r has its norm as the rotation angle,

we multiply each sample with π
6
, π
3

, resulting 40 samples for



(a) (b) (c) 

Fig. 6. Examples of warping of line segments. With an assumption of
infinite depth of endpoints, the line segments in (a) are warped onto (b) and
(c) with the relative motions estimated by the proposed algorithm.

r. Adding a zero vector to the set of rotation samples results

total 40×41=1640 samples. With those initial samples, the

system calculates initial costs using the Equation (11). Then,

only 10 samples which yield the smallest cost are used to

carry out the optimization process independently. The final r

and t resulting the minimum cost are accepted as the motion

between the two scenes.

C. Geometric Verification of Two Scenes

As shown in Figure 5, the epipolar geometry reduces the

search space for line segments. Furthermore, if we assume

long distances of the 3D line segments in the world from the

camera, we can warp their imaged segments from one image

to another by treating their endpoints as in infinite depths.

Then, the angle difference between the warped segment and

the matching segment should be small. Therefore, the system

searches line segments which holds those two constraints,

and returns the matches if the distance of the two descriptor

vectors of the segments are closer than a given threshold,

ηd, and its nearest neighbor distance ratio is smaller than a

threshold, ηr. Figure 6 shows two examples of the warping

of the line segments with our motion estimation implementa-

tion. The images in column Figure 6. (a) show the reference

image and extracted line segments, and the columns Figure 6.

(b) and (c) show the target images and warped line segments

from (a).

The hypothesis with the maximum number of the matches

or with the minimum cost of the matches can be chosen as

the recognized scene. We tested each scheme, and it returned

some false positives which were not generated in the case of

using the other scheme. Therefore, we define a score of the

hypothesis, gi, and it is calculated as following equation.

gi =
∑

j

1

dj

√

1 +
(

1

dj

)2
, (12)

where dj denotes the distance of the descriptor vectors of the

j-th match. The scoring scheme takes into account both of

the distance of descriptor vectors as well as the number of the

matches. Finally, the hypothesis of the top score is returned

as the recognized scene if the score g is higher than a given

threshold, ηg . All the parameters and thresholds mentioned

so far are given in Table II.

Fig. 7. The trajectory followed for the acquisition of the sequences used
in the experiments.

(a) 

(b) 

(c) 

Fig. 8. Experimental results under three environmental changes: (a) season
change, (b) illumination change, and (c) weather change. In each case,
the left-bottom image is a query scene, and the right-bottom image is a
recognized scene. The result of the motion-guided feature matching is shown
above the query and recognized scenes.



IV. EXPERIMENTS

In this section, we present the experimental results con-

ducted under three environmental changes: season, illumina-

tion, and weather. For image acquisition, we used a black box

camera (DBL-100, Dabonda, 130-degree of FOV.) equipped

in a vehicle, and the optical distortions are removed before

the experiments. The database contains 10,439 scenes, and

they were gathered in three different days at around noon

in the middle of September, 2013, which were in the fall,

with driving scenarios in Seoul. About half of the scenes

were acquired on roads, and the rest were gathered in the

campus of Hanyang University. The trajectory followed in

the sequence acquisition was about seven kilometers long.

Three sequences were also gathered in different days to

use them as queries. The first sequence is gathered in summer

in order to use it for the experiment under season change,

and the second one is gathered in an early morning before

sunrise for the experiment under illumination change. The

last sequence is gathered in a rainy day for the experiment

under weather change. All the experiments were performed

in real-time using an Intel i7-2600K processor. The results

are given in Table II, and demo videos can be seen at [20].

The flow of the algorithm in this experiment is as follows:

• The current input scene is queried to the vocabulary

tree, and the tree returns the top m hypotheses.

• For each of the returns, features in the current scene

and the hypothesis scene are matched with a distance

threshold, ηdi of descriptor vectors and a ratio threshold,

ηri of the nearest neighbor distances. If the ratio of

the number of matches to the number of features in

the query scene is higher than a threshold, ηa, the

hypothesis takes further steps, or is discarded.

• For each of the hypotheses come from the previous step,

the system estimates motions between the query and the

hypotheses scenes.

• With the motions, the system matches features again

between the two scenes with weaker thresholds, than in

the second step (i.e. ηd > ηdi, ηr > ηri), and calculates

the score gi for each hypothesis.

• The top scored hypothesis i is returned as the recog-

nized scene if gi is higher than a threshold.

A. Experiment under Season Change

In this experiment, we used a sequence gathered in a

summer while database scenes were gathered in a fall. Figure

Fig. 9. An example of false positives. The repeated pattern in the database
(right) scene satisfies both of close distance of descriptor vectors and
geometric configurations with a pattern on the query (left) scene, and this
leads to false positives.

TABLE II

PARAMETER SETTINGS AND PERFORMANCES

A B C 

resolution 720×405 

line length 20 

# database 10,439 

# msld db 1,546,231 𝜼𝒅𝒅,𝜼𝒓𝒅 0.4, 0.6 𝜼𝒂 0.05 0.10 0.05 0.10 0.05 0.10 𝜼𝒅,𝜼𝒓 0.7, 0.7 𝜼𝒈 0.05 

# query 872 1573 1917 

# msld query 144,229 235,704 286,012 

# recog 356 205 1199 966 1227 771 

# false pos 0 0 8 0 14 0 

# false neg 516 667 374 607 690 1146 

avg time line [ms] 22.65 19.06 18.40 

avg time query tree [ms] 6.13 6.05 5.25 5.32 5.52 5.54 

avg time opt [ms] 10.87 12.57 11.55 13.33 18.69 18.39 

avg time init match [ms] 2.63 2.39 2.32 2.31 2.34 2.31 

avg time init cost [ms] 4.86 5.98 5.75 6.93 5.09 6.64 

avg time epi match [ms] 2.82 2.61 2.35 2.28 2.65 2.73 

avg time query [ms] 129.39 106.63 222.60 193.69 133.18 114.54 

From top to bottom, each row indicates resolution: image resolution 

used, line length: minimum length threshold in line extraction, # 

database: number of scenes in the database, # msld db: total number of 

MSLD descriptors in the database, 𝜼𝒅𝒅,  𝜼𝒓𝒅 ,  𝜼𝒂 ,𝜼𝒅,𝜼𝒓,𝜼𝒈: please refer 

to the main text, # query: number of queried scenes, # msld query: total 

number of MSLD descriptors in the query scenes, # recog: number of 

recognized scenes, # false pos: number of false positives, # false neg: 

number of false negatives, avg time line: average elapsed time for line 

segments extraction, avg time query tree: average elapsed time in 

querying to the vocabulary tree, avg time opt: average elapsed time of 

optimization for motion estimation, avg time init match: average 

elapsed time for initial MSLD matching, avg time init cost: average 

elapsed time for calculation of the initial costs, avg time epi match: 

average elapsed time for the motion-guided MSLD matching, avg time 

query: average elapsed time for a query. 

8. (a) shows examples of the query and recognized scenes,

and a motion-guided MSLD matching result between the two

scenes is also given. As shown in Table II, total 872 scenes

are queried and 356 and 205 scenes are recognized with

different thresholds ηa = 0.05 and ηa = 0.10, respectively.

B. Experiment under Illumination Change

For this experiment, we gathered a sequence starting at

AM 6:01, 11 September, 2013, which is eight minutes earlier

from the sunrise in Seoul. We can observe motion blurs on

the sides of the images because the camera maximized its

exposure. As shown in Table II, however, it results the least

number of false negatives. We analyze this as an effect of

the uncrowded roads. When the threshold ηa = 0.05, this

experiment shows eight false positives, and an example of the

false positives is shown in Figure 9. As shown in the figure,

the query and the database scenes commonly have a repeated

pattern on the roads satisfying both of the close distances



of the descriptor vectors and the geometric configuration of

the features, and this leads to the false positive. However,

the false positives are not generated with stronger threshold

ηa = 0.10 because it discards the hypothesis, but this also

increases the number of true negatives.

C. Experiment under Weather Change

For this experiment, we acquired a sequence in a rainy

day, and the windshield wipers of the vehicle were in

operation. This experiment generates 14 false positives in

1,227 recognitions. By adjusting the threshold ηa from 0.05

to 0.10, the false positives are removed, but it also increases

the number of the false negatives as in the other experiments.

Figure 8. (c) shows an example of this experiment. Although

raindrops on the windshield and the wipers made blur and

occlusions, the system was not much affected.

D. Experimental Results

We evaluated the proposed algorithm in three different

conditions. The precisions of the three experiments were

99.76%, 99.33%, and 98.86% in the same thresholds, re-

spectively. The thresholds were set so that false-positive

results are minimized. The experimental results revealed

that our method can robustly recognize the place in signif-

icantly changed environments. It also denotes that implying

the thresholds can be generalized to various environmental

changes. In addition, the computational time measured as

averagely 150 ms makes the demonstration real-time.

V. CONCLUSION

In this paper, we proposed an outdoor place recognition

algorithm using only straight line features. A vocabulary tree

built with line descriptors is used to find candidate matches,

and a motion estimation algorithm is used to verify them. In

order to evaluate the retrieval performance of the vocabulary

tree built with MSLD line descriptors, we performed an

experimental comparison with other tree built with SIFT, and

the vocabulary tree trained with the line features exhibits bet-

ter results in a structured outdoor environment. We tested our

algorithm with three challenging environmental changes such

as season, weather, and illumination. The database scenes

consist of more than 10,000 images, and the experimental

results demonstrated the real-time performance, and reliable

accuracy of the precision rate higher than 98%.
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