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Abstract

Currently, few approaches are available for mixed-integer nonlinear robust optimiza-
tion. Those that do exist typically either require restrictive assumptions on the problem
structure or do not guarantee robust protection. In this work, we develop an algorithm
for convex mixed-integer nonlinear robust optimization problems where a key fea-
ture is that the method does not rely on a specific structure of the inner worst-case
(adversarial) problem and allows the latter to be non-convex. A major challenge of
such a general nonlinear setting is ensuring robust protection, as this calls for a global
solution of the non-convex adversarial problem. Our method is able to achieve this up
to a tolerance, by requiring worst-case evaluations only up to a certain precision. For
example, the necessary assumptions can be met by approximating a non-convex adver-
sarial via piecewise relaxations and solving the resulting problem up to any requested
error as a mixed-integer linear problem.

In our approach, we model a robust optimization problem as a nonsmooth mixed-
integer nonlinear problem and tackle it by an outer approximation method that requires
only inexact function values and subgradients. To deal with the arising nonlinear sub-
problems, we render an adaptive bundle method applicable to this setting and extend
it to generate cutting planes, which are valid up to a known precision. Relying on its
convergence to approximate critical points, we prove, as a consequence, finite conver-
gence of the outer approximation algorithm.

As an application, we study the gas transport problem under uncertainties in demand
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and physical parameters on realistic instances and provide computational results
demonstrating the efficiency of our method.

Keywords Robust optimization - Mixed-integer nonlinear optimization - Outer
approximation - Bundle method - Gas transport problem
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1 Introduction

In recent years, tremendous progress has been made in developing algorithms for
mixed-integer nonlinear optimization problems (MINLP). Nevertheless, they remain
one of the most challenging optimization problems studied to date, and in particular,
the global solution of even reasonably-sized instances can be out of reach. In addition,
optimization problems are typically prone to uncertainties in the input data due to
measurement errors, fluctuations or insufficient knowledge of the underlying applica-
tions’ characteristics. Ignoring these uncertainties might lead to decisions that are not
only suboptimal but even infeasible.

In robust optimization, we typically first define uncertainty sets containing the
realizations we wish to protect against. Decisions that are feasible for all realizations
within the uncertainty sets are termed robust feasible and from these, the ones with the
best objective value are called robust optimal. This results in an optimization problem
of the form

min C(x,y)
x,y
s.t. Vitx,y,u) <0 Vuel,ief{l,...,n} 1

xeX,yeYnzv,

with decision variables x, y and an uncertain parameter u. The task to determine the
worst-case realization of the uncertainty for a candidate solution is called adversarial
problem. For (1), this reads maxyezs jefs) Vi(x, y, ). Although robust optimization
problems are not tractable in general, practically efficient solution approaches have
been developed for broad classes of problems, for example for robust combinatorial
and for mixed-integer linear optimization. However, robust mixed-integer nonlinear
problems are still very challenging both in theory and in practice, where the develop-
ment of general approaches is still in its infancy. For a recent review of the current
state-of-the-art, we refer to [26].

Reformulations of the robust counterparts to an algorithmically tractable problem
rely on strong assumptions on the problem structure. In particular, it is usually neces-
sary for such exact reformulation approaches to assume that the problem is convex in
the decisions (x, y in (1)) and fulfills properties such as (hidden) concavity in the uncer-
tainty (« in (1)) [6]. In the non-convex case, one may use a reformulation of a robust
MINLP as polynomial optimization problem, which works if the contributing func-
tions are polynomials and the uncertain parameters are contained in a semialgebraic

@ Springer



1058 Journal of Optimization Theory and Applications (2022) 195:1056-1086

set (see, e.g., [24, 25]). In this paper, we pursue a different direction. Rather than an
exact reformulation approach or constraining functions to be polynomials, we choose a
direct outer approximation approach. For this, we consider problems that are of convex
type with respect to the decision variables (see Assumption 3.1). On the other hand,
we allow for nonsmoothness, a general non-concave dependence on uncertainties and
inexact worst case evaluations. Moreover, our only assumption for the uncertainty set
is compactness.

Our approach then yields solutions that are robust feasible up to a tolerance and we
consider both discrete and continuous decisions to be taken in the robust problem. The
considered class of problems for example occurs in robust gas transport problems with
discrete-continuous control decisions, nonlinear physical constraints and uncertainties
in physics and demand.

In order to develop the algorithm, robust MINLPs are rewritten as nonsmooth
MINLPs using an optimal value function of the adversarial problem. For an overview
of state-of-the-art methods for nonsmooth MINLPs we refer to [13], where, among
others, outer approximation approaches, extended level bundle methods and extended
cutting plane methods are discussed. Our approach relies on the outer approximation
concept to treat the nonsmooth MINLP. Outer approximation (OA) is an algorithm
that is used for solving MINLPs in wide contexts. For an introduction and references,
we refer to [17]. In the algorithm, a mixed-integer and typically linear master problem
is solved to global optimality, as originally proposed in [10] and [14]. Iteratively, for
fixed integral decisions, continuous subproblems are solved. Outer approximation for
nonsmooth MINLP was first discussed in [12, 34, 35]. For the practical application
of such a method, a concept for the solution of the arising nonsmooth subproblems is
required. [9] suggests to use a proximal bundle method for the latter and demonstrates
how appropriate cutting planes can be extracted at a solution.

Our Contribution Our approach follows the same lines, but we face an additional
challenge: for a general non-convex adversarial problem, the determination of the
worst case, which is required for the evaluation of the optimal value function, is itself
not tractable in general. Thus, to achieve algorithmic tractability, we allow for inexact
worst-case evaluations. In order to cope with this inexactness on the level of the
subproblems, we modify an adaptive bundle method from [23], which was recently
developed for the solution of nonlinear robust optimization problems with continuous
variables. Due to the inexactness, in contrast to [9], we only have access to an outer
approximation of the exact subdifferential. Nevertheless, we are able to show that
cutting planes for the outer approximation can be extracted, which are valid up to a
quantifiable error. With this, we are able to prove correctness and finite convergence
of the OA method in the presence of inexactness. In detail, we are able to guarantee
that the approximate solution determined by our OA algorithm is optimal up to a
given tolerance. Moreover, the robust constraints are satisfied up to a tolerance, which
is determined by the inexactness in the worst-case evaluation. The OA algorithm
with the adaptive bundle method is outlined as a general algorithm independent from
algorithmic details on the approximate solution of the adversarial problem. Here,
we use piecewise linear relaxations of non-convexities and solve them via a mixed-
integer linear optimizer. However, we point out that our approach can also be used with
alternative methods that find an approximate worst case. To evaluate the performance
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of the novel algorithm, we specify it for the robust gas transport problem with discrete-
continuous decisions. We demonstrate its efficiency by showing that our approach
efficiently solves large realistic instances that could not be solved before.

We note that another avenue to treat inexactness in MINLP problems is described in
[1], where an inexact version of a Benders’ decomposition is used. The combinatorial
setting considered there allows for binary decisions and continuous subproblems are
allowed to be solved inexactly by an oracle. In contrast to our method, finite conver-
gence is ensured via no-good cuts. The oracle’s response then only has to result in
valid inequalities that do not necessarily cut off the current iterate. Also for smooth
MINLPs, alternative concepts exist, which can handle inexactness. Among them is the
one in [27], where approximately fulfilled optimality conditions for the subproblems
are required.

Structure This work is structured as follows. Although the presented algorithm is
fully general, we prefer to start with an example application that falls into the consid-
ered class of problems in order to ease understanding of the subsequently introduced
technical considerations. Thus, in Sect. 2, we briefly introduce the robust gas transport
problem. In Sect. 3, we then derive the general setting of a nonsmooth MINLP that
models a robust MINLP and present the framework of an OA method for this. The
adaptive bundle method for continuous subproblems and resulting optimality condi-
tions are presented in Sect. 4. In Sect. 5, we derive an OA algorithm that can deal
with inexactness in function values, subgradients, and hence cutting planes obtained
from subproblem solutions. The type of inexactness thereby matches our results for
the bundle method’s output. We also prove convergence of the OA algorithm. Finally,
we present and discuss computational results for the gas transport problem in Sect. 6.

2 An Example Application for the Class of Problems Studied Here

We consider the stationary discrete-continuous gas transport problem, see [21], under
uncertainties. A decomposition approach for the continuous robust two-stage gas trans-
port problem is presented in [3] and a set containment approach for deciding robust
feasibility of this problem is proposed in [4].

In this problem, we aim to find a control of active elements, such as compressors,
valves or control valves, that minimizes the costs while ensuring that all demands are
satisfied and that no technical or physical constraints are violated. Feasibility needs to
be maintained even under uncertainties in demand and pressure loss coefficients.

A gas network is modeled by a directed graph G = (V, A) with |V| =n, |A| = m
and an incidence matrix A € {—1, 0, 1}"*™. The arcs model pipes, compressors and
valves. A state variable g € R™ denotes the gas flow, d € R" denotes the given bal-
anced demand and flow conservation must hold: Ag = d. Squared pressure values at
the nodes are denoted by 7 € R” and must fulfill bounds. For one root node » € V), the
pressure value is assumed to be fixed. The pressure change at compressors is associated
with a convex and differentiable cost function w(-), which is to be minimized.
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The pressure loss on an arc a € A, i.e., the difference between squared pressures
at connected nodes depends on the type of arc and we distinguish between pipes and
compressors. The pressure losses on pipes depend on the flow values and directions
as well as on pressure loss coefficients A, > 0. In detail, we have for every pipe
a = (u, v) the non-convex behavior [21]

Ty — Ty = —Aaqalqal. (2)

For compressors, we use a linear compressor model where a pressure loss is assigned
to every compressor a € A and depends on continuous and binary decision variables,
x and y, respectively. The binary variables y determine if a compressor is active and
the continuous variables x determine the pressure increase at active compressors. The
pressure loss at every active compressor a = (u, v) is then evaluated as

Ty =TTy =X - Y, 3)

which leads to a non-convex cost function w(x - y). Compressors in bypass mode
and open valves both behave like pipes with no pressure loss. We have further binary
decisions y on the opening of valves.

We robustly protect against uncertainties in demand and pressure loss coefficients
that are contained in a compact uncertainty set, i.e., (d, A) € U. After uncertain
parameters d and A are realized, the second-stage state variables g and 7 uniquely
adjust themselves by fulfilling flow conservation and the pressure loss constraints (2)—
(3). We require that the pressure values are bounded both from above and from below
by 7 € [, 7]. Further, we can write the pressure values, due to their uniqueness, as
a function of the decision variables (x, y) and the uncertain parameters (d, A). This
results in the following discrete-continuous robust gas transport problem.

r)rcli}p w(x - y) (ROgas)
s.t. w, —my(x,y;d,2) <0 Yd,\) eU,veV
my(x,y;d,A) — Ty, <0 Yd,\) eU,veV

x € [x,x],y € {0, 1},

The function 7, () can be evaluated by solving a system of nonlinear and non-convex
equations that involve, e.g., (2). This formulation relies on reformulation results in [3,
16]. Now, with

Vy(x. y. (d, ) :== max {lv —my(x, y;d, A), my(x, y;d, A) —fv}, 4)

we can rewrite the robust constraints via one constraint by
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G(x,y) = VyF(x, v, (d, 1) <0,
(xo3) = i, D Vi @, 1) < )

where the superscript ‘4’ denotes the positive part. With this, we write the discrete-
continuous robust gas transport problem in (R Ogqy) as

min w(x . y) (Pgas)
X,y

s.t. G(x,y) <0
x € [x,x],y € {0, 1},

For the case that no compressor is part of a cycle, it turns out that the constraint
function G is convex with respect to the continuous variable x. We refer to [2] for a
discussion of the appropriateness of this assumption.

Lemma 2.1 Under the assumption that no compressor is part of a cycle, the function
G(x,y) is convex in x.

This lemma follows from the analysis in [3] and we omit the proof here.

We have outlined this example application already here in order to ease understand-
ing of the subsequent sections where the general class of discrete-continuous robust
nonlinear problems is defined and where we present the novel OA algorithm that is
able to solve them.

3 Outer Approximation for Mixed-Integer Nonlinear Robust
Optimization

We write a robust optimization problem with a compact uncertainty set &/ C R as

min C(x,y)
X,y

s.t. Vitx,y,u) <0 Yueld,ie{l,...,n} (6)
xeX,yeYnZzv.

The variables have dimensions n, and n,, respectively. We have that X is a full-
dimensional box of form X = [x,x] € R" and that Y is compact. Moreover, the
objective function C : R**"» — R and the constraint functions V; : R+ 5 R
are locally Lipschitz continuous and satisfy the following convexity-type assumption.

Assumption 3.1 The functions C(-, -) and V;(-, -, u), for every u € U, i € [n], fulfill
the following generalized convexity assumption when denoted by f. The function
f X xYNZ"% — Ris convex with respect to x and it is true that for any pair
(x,y) € X x YNZ", there exists a joint subgradient (s*, s¥) such that the following
subgradient inequality is satisfied:
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X T y —
Fay)+ (jy> (;C _;) < f@F) V&) eX xYNLh, )

A sufficient condition for this assumption is joint convexity of the function f on
X x Y. The other way round, our assumption only implies convexity in the continuous
variable x. It is worth mentioning that, when we rely on Assumption 3.1, we have
to make sure that all subgradients we use indeed satisfy inequality (7), while this is
automatically true if convexity is assumed. More generally, it also suffices to specify
how to derive subgradients that fulfill (7). This covers the setting of the gas transport,
in which the functions are convex in the continuous decisions (see Lemma 2.1) and,
despite a lack of convexity (see (3)), one can derive subgradients with respect to the
binary decisions that fulfill (7). Further, here, we do not require convexity or concavity
in the uncertain parameter u. This hence covers the gas transport setting with the
non-convex dependence of pressure values on the uncertain parameters. Now, we
reformulate the robust optimization problem (6) as a nonsmooth MINLP with finitely
many constraints using the nonsmooth function

n
G(x,y) :=max V(x, y, u) := max Vv X,y u
(x. ) ueu<y>ueui;‘,<y)

as a constraint function. We obtain

min C(x,y) (P)
x’y

s.t. G(x,y)<0
xeX,yeyYnzh.

We note that the assumed generalized convexity of the functions V; (x, y, u) directly
carries over to G. To evaluate G, it is necessary to solve an adversarial problem that
determines a worst-case parameter maximizing the constraint violation. To make this
concept clear, we mention that in the robust gas transport problem, the adversarial
problem, i.e., to evaluate the function G in (4)—(5), is to find for fixed control decisions a
realization of demand and physical parameters that maximizes the violation of pressure
bounds.

The goal is to solve the MINLP (P) via an outer approximation approach. We sketch
the general framework of an OA method for (P) here by closely following [14, 35].
In an OA method, a master problem and a subproblem are solved in every iteration.
The master problem is a mixed-integer linear problem (MIP) that is a relaxation of
the original problem (P). Solving an MIP is in general NP-hard. However, many
algorithmic enhancements were developed so that MIPs can typically be solved to
global optimality by modern available solvers, even for large instances (see, e.g., [7]).
The linear relaxation of the original problem (P) in iteration K is the master problem:
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min 6 (M P¥)
x,y,0

s.t. 0 < ek — €oa
[linearized objective function] < 6
[linearized constraint function] < 0
xeX,yeynzv,

where @K € R denotes the objective value of the current best known solution and
€0a > 0 is a previously fixed optimality tolerance as typically used in an OA method
(e.g., by [14]). We detail below the linearized constraints, which are generated via
function values and subgradients. After termination, one has detected infeasibility
or has found a feasible €,,-optimal solution. By €,,-optimality, we mean that the
objective value deviates from the optimal objective value by at most €,,,.

Every OA iteration involves the solution of a subproblem where all integer variables
are fixed and one determines best values only for the continuous variables. However,
the subproblems are nonlinear. The solution of a subproblem, i.e., the resulting mixed-
integer candidate solution, is then used to generate linearized constraints that are valid
for all feasible solutions of the original problem (P) that still need to be considered.
These constraints act as cutting planes that are added to the master problem (M PX)
and strengthen the relaxation of (P). Further, they are chosen such that every feasible
integer assignment is visited only once, so that the OA method converges finitely with
a global €,,-optimal solution to the original MINLP.

In each iteration, one candidate integer solution from the feasible set Y is fixed.
For this fixed integer assignment, we solve a subproblem. This is either a continuous
subproblem of (P) or, in the case of its infeasibility, a so-called feasibility problem
that minimizes the violation of constraints. For a fixed integer assignment yg, the
continuous subproblem is

min C(x, yx) (NLP(yk))
xeX

s.t. G(x,yg)=maxV(x, yg,u) <0.
ueld

If the continuous subproblem is infeasible, we solve the feasibility problem, which
minimizes the violation of the constraint G (x, y) < 0 and is written as

min G(x, yx) = minmax V(x, yg, u). (F(yk))

xeX xeX ueld
Next, we detail the linearized constraints, i.e., the cutting planes in the master
problem (M PX). We first split the set of integer points in Y into two sets, depending

on whether the corresponding continuous subproblem is feasible or not:

T={yeYNZ" | (NLP(yg))is feasible},
S={ye¥YNnZ" | (NLP(yg))is infeasible}.
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In the course of an OA algorithm, we collect the investigated integer points in subsets
7K c 1,5K C S.Forfixed yx, we denote by xx a continuous solutionto (N L P (yx))
or (F(yk)). To strengthen the relaxation of the master problem, we collect lineariza-
tions at the mixed-integer candidate solutions (xg, yx ). In detail, we approximate the
functions C and G (or only G in the case of infeasibility) by linearizations generated
by function values and subgradients, («¢g, k), (€, nk), evaluated at (xg, yx). In
an iteration K, the linearized constraints (i.e., the constraints in (M PX)) are of the
form

Clxs,yn) + @f, BT) (x :x’) <0 vy, e TK
y—=YyJ
X — X
Gxy,ys) + T, nf)( - f) <0 vy, e TX (8)
y—YyJ
T T X — XL K
G(XL,YL)+(§L,77L)<y_yL> <0 Vy, € S*.

These cutting planes are then added to the master problem. To avoid cutting off an
optimal solution to the original problem (P), the cutting planes must be valid in the
following sense: they cut off a point only if it is infeasible or does not improve the
current best objective value by more than €,,. Further, to ensure finite convergence of
the algorithm, the cutting planes must cut off the current assignment of integer vari-
ables. To ensure this and hence correctness of an OA method, one usually requires in a
nonsmooth setting that the function values and subgradients fulfill KKT conditions of
the subproblem and therefore assumes that Slater’s condition holds (see, e.g., [9, 35]).
We proceed similarly and also assume that Slater’s condition holds in the following
form.

Assumption 3.2 If (NLP(yk)) is feasible, then there is an x € int(X) with
Vilx,yk,u) <0OVu eld,i € [n].

To illustrate this assumption, we briefly concretize it for the gas transport problem
from the preceding section: there, we require that for every possible realization of
the uncertain parameters, i.e., demand and pressure loss coefficients, there exists a
control of the active elements such that all pressure bounds are strictly fulfilled, i.e.,
T e (n, ).

In the presented setting, the solution of the subproblems (N L P (yk)) and (F(yg))
is a challenging task that is not accessible by standard methods. In particular, we face
non-concavities in the uncertain parameters so that the constraint function G, i.e.,
the adversarial problem G(x, y) = max,¢y V (x, y, u) for given x, y, may be only
approximately evaluable. In the next section, we investigate which properties can be
ensured for solutions to the subproblems in the presence of such inexact worst-case
evaluations.
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4 An Adaptive Bundle Method for the Continuous Subproblems

To solve continuous nonsmooth optimization problems, bundle methods are a practi-
cally efficient approach. As the latter are usually applied in an unconstrained setting,
we write the subproblems as unconstrained problems and penalize constraint violation
in the objective. Instead of (N L P(yk)), we aim to solve the following unconstrained
problem with an/;-penalty term Px (x) = Y max{0, x; —X, x —x; } and sufficiently
large penalty parameters ¥, x > 0:

min (C(x, YK) + ¥ mez}/){( V(x, yk,u) + 1/fox(x)> ) (NLPy(yk))

xeR

The existence of finite penalty parameters is ensured by Assumption 3.2. In partic-
ular, it ensures the existence of finite penalty parameters such that a point xgx solves
(NLPy(yg))if and only if it solves (N L P (yk)). This can be seen by using, e.g., [33,
Theorem 7.21] and we omit the details here. To treat (F'(yx)), we also use a penalty
formulation with a sufficiently large penalty parameter ¥x:

min max V(x, yk,u) + ¥x Px(x). (Fy(yk))

xeR™  yeld

In practice, we simply choose certain penalty parameters 1, ¥ x at the beginning,
which are then increased if required (see end of this section). We present in this section
an algorithm for the approximate solution of the penalized subproblems. We first write
the objective functions in the abstract form

9
glﬂégx fx)= ?ﬁf}v max v(x, u), ©)

where

Jx) =Clx, yg) + ¥ Gx, yg) + ¥x Px (x),
v(x,u) = Cx,yk) +¥V(x, vk, u) + ¥x Px (x).

For the feasibility problem (Fy (yk)), we set C = 0 and ¥ = 1, so that no separate
discussion is required. We further note that the integer variable yx is fixed during the
solution of a subproblem, so that we largely omit it in the remainder of this section.
Due to the unconstrained and nonsmooth character of (9), in principal a proximal
bundle type method can be applied for its solution. However, as (9) is solved in the
context of an outer approximation scheme, not only an (approximate) solution xx of
(9) is required, but also cutting planes in the sense of (8) have to be extracted. While
in a continuously differentiable setting, appropriate cutting planes can be determined
a posteriori by computing the gradients of the objective and constraints at the solution
Xk, in a nonsmooth setting, the situation is more involved. Roughly speaking, the
reason is that the subgradients at the solution xg are not unique and one has to choose
them such that they fulfill first-order optimality conditions. To overcome this, suitable
sequences of subgradients have to be constructed while the bundle algorithm is carried
out. This is demonstrated in [9] using an exact penalization proximal bundle algorithm.
While in principle the same idea can be applied to our setting, we are facing the
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additional difficulty that every evaluation of the function f requires the solution of
the adversarial problem

max V(x, y, u). (10)
ueld

This is in general a hard problem if the constraint functions V; are non-concave in
the uncertain parameter u as in the robust gas transport problem from Sect. 2. Thus,
we follow [23] and use in the following the relaxed assumption that problem (10) can
only be solved with a prescribed finite precision € ; > 0. This means that there is an
oracle, which provides for every given x and € ; an approximate worst case

uy € {uy €U | v(x,uy) > maxv(x, u) — €y}, (11
ueld

so that v(x, uy) > f(x) — €. Using this, we can define an overestimator for f as
Ja(x) :i=v(x, uy) + €. (12)

Furthermore, as a consequence of the inexactness, instead of an element from the exact
Clarke subdifferential of f at x, the best we can hope for is the following approximate
subgradient of f (see [23]).

8x € 0y v(x, uy).

This is an element of the Clarke subdifferential of v (-, u, ) with u, defined by the choice
in (11). This approximate subgradient lies in the following set, which is the convex
hull that contains d,v(x, u,) and the subdifferentials for all uncertain parameters that
better approximate the worst case.

5af(x) :=conv{g | g € dyv(x,u),u €U, v(x,u) > v(x, uy)}. (13)

This set can be interpreted as an outer approximation of the exact Clarke subdiffer-
ential at x. In [23], an adaptive proximal bundle method is suggested for this setting.
This algorithm—as most bundle methods—generates a sequence of serious and trial
iterates. The serious iterates form a sequence, which approach an approximate solu-
tion of (9). For each serious iterate, one generates a sequence of trial iterates that
improve the local approximation of f around the serious iterate by information about
function values and subgradients. The algorithm is able to work with elements from
the approximate subdifferential (13) if the error in (12) is chosen as follows: given a
current trial iterate x¥ (with inner loop counter k) and current serious iterate x, the
error bound 61;' for f, (xk) is set to

e§ =" |lx — xK|%. (14)

Here, €” is a previously chosen algorithmic parameter. For this, the following conver-
gence result is derived in [23].
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Corollary 4.1 [23, Corollaries 2, 3, 4] Let x| be such that Q := {x € R™:f(x) <
fa(x1)} is bounded and let f be lower C'. Let us use [23, Algorithm 1] with a stopping
tolerance € = 0 in line 3 there. Then two different situations can occur:

(1) The algorithm stops with a serious iterate x; after finitely many iterations. Then
we set X 1= X ;.

(2) All inner loops terminate finitely, but the outer loop does not terminate finitely. In
this case, the sequence of serious iterates x ; has at least one accumulation point;
we denote this by X.

In either of the cases, it holds that 0 € 5af()f).

Now, applying the adaptive bundle method to problem (9) for an approximate
solution xg, we obtain 0 € 9, f(xk) or—exploiting the structure of f—0 €
5a (C + ¥ G + ¥x Px)(xk).Giventhat C and Px donotdepend on u# and by exploiting
the convexity of C, G and Px with respect to x, this can be rewritten as

0 € dC(xgx) + V.G (xg) + ¥xdPx(xk). (15)

The challenge for the remainder of this section is now to construct elements o €
dC(xkg), & € 0,G(xg) and ¢ € 0 Px(xg), such that

a+yE+yxt =0, (16)

i.e., to construct suitable (approximate) subgradients of C, G and Py that realize the
optimality condition (15). It will turn out later that o and & can then be used to construct
cutting planes in the sense of (8). As already outlined above, such realizations cannot
be computed solely on the basis of the knowledge of xx. Rather than this, a deeper
insight into the algorithm from [23] and a couple of modifications, which we outline
in the sequel, are required. The full modified algorithm is detailed in Algorithm 2 in
Appendix A. We first require that whenever in Algorithm 2 an approximate subgradient
of f at a point x is evaluated, it is computed as

8x =s¢ +¥si + ¥xsy, A7)

where s¢. € AC(x), s; € 0xV (x, uy), sy € 9Px(x), and uy is an approximate worst
case in the sense of (11). This is realized in lines 20-21 of Algorithm 2.

Next, we make use of the so-called aggregate subgradient, which—together with
(17)—will be the key for deriving « and & in (16) and played already a crucial role
in the convergence proof in [23]. To introduce this, we repeat the definition of the
convex working model used in [23]. This is, at a serious iterate x, the piecewise linear
function

¢k (-, x) ;== max{m;(-,x) |0 <] <k —1}.

Here, m; (-, x) are cutting planes that are generated using approximate function values
and subgradients. More precisely,

mo(-, x) 1= fa(x) + gx" (- — x),
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with g, € d,v(x, uy), is a so-called exactness plane at the serious iterate x, and
miG,x)=4()—r, l=1,...,k—1

are cutting planes at trial iterates x!, where #(-) is the tangent plane at x’ and r; a
downshift with respect to the serious iterate x. Then, in every iteration the following
convex problem is solved in order to generate a new trial iterate x*.

min (2, ) + (@ =0 Qu(z =) + 1z = ¥ (1)

Here, 7x > 0 is a proximity control parameter and Q, a symmetric matrix, which
can be used to model second-order information. Now the aggregate subgradient g is
defined as

g = (0 + uD)(x — x5).

As x* is the unique minimizer of (18), g is a subgradient of the current working
model, i.e., g € Iy (x¥, x).

Now, we carry out the following three steps: First, we see that g/ tends to 0 along
a suitable subsequence. The claim is detailed in Lemma 4.1. We omit its proof as the
latter is a straight-forward combination of arguments from the convergence analysis in
[23]. Based on this, we introduce a stopping criterion for the bundle method. Second,
we show that every g;° can be split according to the partition in (17) and construct
the output of the bundle method. Third, we prove in Theorem 4.1 that the limits of
the individual parts of g satisfy the optimality condition (16). This implies that the
modified bundle method, with the proposed stopping criterion and output, generates
subgradients that fulfill the optimality condition (16).

Lemma 4.1 [23, proofs of Lemma 6, Theorem 1, Corollaries 3, 4]; [28, proofs of
Lemma 4, 7] We use the same assumptions as in Corollary 4.1 and use [23, Algorithm
1] without any stopping criterion. Then one of the following situations occur:

(1) The inner loop at a serious iterate x does not terminate finitely. Then x* — x, and
there is a subsequence of the inner loop indices k such that ¢ (x*, x) — f,(x),
and gf — 0 € 3 f (X).

(2) All inner loops terminate finitely, but the outer loop does not terminate finitely.
The sequence of all trial and serious iterates is bounded and there is a choice of
pairs of outer and inner loop indices (j, k(j)) and a subsequence of the outer
loop indices j such that x; — X, X0 g, qbk(j)(xk(j), xj) — fa(x) and
g,’:(j) — 0 €9, f(x).

Now, in order to make sure that we stop the proximal bundle algorithm at a point,
where the aggregate subgradient is small, we apply the following modification: rather
than using the abstract convergence criterion 0 € 9, f(x), we apply the criterion
llg;ll < €* with a tolerance €* = 0 (see Algorithm 2, line 8). Hence, in the cases
in which the bundle algorithm does not terminate finitely, we have a sequence of
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aggregate subgradients that converges to g* = 0 € 9, f(X). In the case of finite
termination, we find g; = 0 for a finite k.

Next we derive a partition of an aggregate subgradient g;, which is analogous
to the partition by which subgradients were derived in (17). In order to do so, we
first denote the subgradients at former trial iterates x’ by g;, so that g; € da f(x),
and elements of the exactness plane via the index / = 0. As ¢ (-, x) is convex and
piecewise affine linear with slopes g;, the aggregate subgradient g € d¢ (xk, x)isa
convex combination of subgradients g; with [ < k:

k—1 k—1
gi=> Ma. Y A=L (19)
1=0 [=0

Further, Af > 0 foranl € {0,...,k — 1} only if m;(x*, x) = ¢ (x*, x). As in the
course of the former bundle iterations, g; € éa f(x;) with I < k has been computed
via (17), we have the following partitions.

g =sk+ sk +yxsh, shed,Cil), sk € 3,6, sk € aPx(x'). (20)

Accordingly, we define, denoting by j the outer loop counter of the current serious
iterate x,

k—1 k—1 k—1
k k.l £k k.l k k.l
aj=ZAlsC, Sj :ZAISG, ¢; =ZAZSG. 21
=0 =0 =0
We note that the weights 2K ,1 €{0, ..., k—1} canbe computed by solving a linear

system of equations in line 11 of Algorithm 2.

In practice, we choose a €* > 0 and stop the bundle method as soon as ||g,’€k | is
sufficiently small at an iteration k£ with a solution xx = x*. As subgradients for the
current iteration K of the outer approximation algorithm, we then choose

ag =af, Ex =Ef. (22)

In Theorem 4.1, we finally formalize and justify this choice from a theoretical per-
spective, i.e., for €* = 0. In detail, we show that the choice (22) is correct in the sense
of the optimality condition (16) if we have | g;|| = O for a finite k. Moreover, we
prove that in all cases where the algorithm does not finitely converge, we can define
a suitable limit of (22) instead. We distinguish the following three cases of output of
the bundle method.

(1) In the case that the algorithm converges finitely within an inner loop at a serious
iterate x; with [|g;’|l = 0, we choose

Xk =Xj, €5 =6;~j, G(xk, yk) = Vi(xj, vk, ux;),

ak =ob, Ex =&, tx = ¢}, (23)
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(2) In the case that the algorithm converges with infinitely many iterations in an inner
loop at a serious iterate x;, we choose a subsequence of iterates k as in Lemma 4.1,
(1), and set

K XA
XK =)Cj, EG zefl’ G(XK7 yK) = V(Xj, yKvux]')v
. k bt . =k . k
ag = lim o, = lim &7, = lim ¥,
K k—oo 5[{ k—o00 é °K k— 00 gj

(24)

(3) In the case that the algorithm does not converge in an inner loop, we choose a
cluster point of the serious iterates as a solution. We choose a cluster point x and a
sequence of indices k(j) as in Lemma 4.1, (2):

XK =X, Eg :Ov G(.XK, )’K) = hm V(‘xj’yK’ux/)’
J—>00
k() 25)

ag = lim i, Ex = lim &Y, ¢4 = lim V.
J j—ood j—oo Tt

j—o00
Itisnoted thatin (1) and (2) above, e;-j denotes the error, which was required to compute

the serious iterate x; (see (14)). The choices in (23), (24) and (25) are justified by the
following result.

Theorem 4.1 The adaptive bundle method with subgradient generation in Algorithm
2 with €* = 0, with (23), (24) and (25) as output, and under the assumptions as
in Corollary 4.1, generates subgradients ag € 0C(xg), §K € 5aG(xK) and (g €
dPx (xg) withag + Y&k +¥xix = 0.

One of the key tools for the proof of this theorem is a suitable choice of a convex
overestimator of the working model ¢ (-, x) at a serious iterate x. In detail, we use as
an overestimator the point-wise supremum of all cutting planes that could be generated
at potential trial iterates z. These take the form m, (-, x) = f,(z) + g, (- — 2) — 12,
where f,(z) and g, € d,v(z, u;) are approximate function values and approximate
subgradients at z, and r, a downshift with respect to x. With these, the overestimator
is defined as

GC.x) i=sup | {meo0luz €U v(zug) = @) = €'l = 21z € BO M)\ (x})

U{moC, 0l € U, v(x, uy') = v(x,ux)}}, (26)

where M is chosen such that x and all possible trial iterates lie in B(0, M) (see [23]).
In an analogous way, we define an overestimator for G only:

¢ x) = sup{ (MG o0z €U, vz uz) > f2) — €'llx —zl1% 2 € BO, M)\ {x}}

U{mg(-,x)mx/ eU,v(x,uy) :v(x,ux)}}, 27

with cutting planes mZG G, x)=Gu(2) —}—sé T (-—z) —r; at z with approximate function
value G, (z) and approximate subgradient s, € d( > i, V(z, u.)). Before we move
on to the proof of Theorem 4.1, we import an auxiliary result from [23].
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Lemma4.2 [23, Lemma 3] For the first-order model ¢ (-, x), as defined in (26), the
following properties hold:

(1) $x,x) = fo(x),
(2) 3p(x,x) C 3 f(x),
(3) dr(-, x) < ¢(-, x) for the working model ¢y (-, x).

The same holds if we replace ¢ by the first-order model ¢© defined in (27) and f by
G.

Proof of Theorem 4.1 We divide the proof into two claims concerning convergence in
the inner or the outer loop, respectively.

Claim 4.1 If the inner loop at a serious iterate x = X does not terminate finitely,
then there is a subsequence of the indices k such that the limits of subsequences
o = limg_ oo a?, E:=limg_ oo E;‘ and ¢ = limg_ o {;‘ exist and fulfill

o« €dC(x), E€3,G(x), L €3Px(x), 0 =0a + Y& + YxC. (28)

Proof We recall that the aggregate subgradients at the trial iterates x* are given by
(19)-(20). From Lemma 4.1, (1), we have x* — x, so that, with local boundedness
of the Clarke subdifferential [8] and compactness of I/, we obtain boundedness of the
sequences (s(kj)k, (sé)k, (séc()k. The sequences (a?)k, (é}‘)k, (Cj'.‘)k as their respective
convex combinations thus are bounded as well. For the aggregate subgradient g, it
holds that

gi = o + Y& +yxi). (29)

By Lemma4.1, (1), g; converges, passing to a subsequence, to 0. We pass to a suitable

subsequence of this such tl~1at the limits «, § and ¢ are well-defined. Further, it follows
from (29) that 0 = o + V& + ¥x¢.

It remains to prove the first part of (28). We use the definition of the first-order models
in (26) and (27). As the functions C and the /;-penalty function Py are convex and
not affected by inexactness, we have

¢ (%) = CC)+ ¥, x) + Yx Px (). (30)

This first-order model ¢ is approximated by the working model ¢ (-, x), which is
refined in every iteration. At the iterate xk, we have br (xk LX) = ml(xk ,x) for
[ with Ai > 0, so that the working model’s value can be written as ¢k(xk ,X) =

;:é Af‘m;(xk , X). We now partition the cutting planes m; (-, x) analogously to (17).
First, we recall that every cutting plane is generated by a tangent plane and a down-
shift term: m; (-, x) = #;(-) — r;. The slope of the tangent plane 7 () is g;, derived via
gl = s’C + wslG + Xsé(. As we have this partition at hand, we can partition the cutting
plane m; (-, x) into
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mi(, x) = mf ¢, x) +ym ¢, x) + Yxmy ¢, x),

with mlc(-, x) = tlc(-), m[G(~, X) = th(~) —r; and le(~, X) = th(-). The slopes of
these cutting planes are slc, slG and sé(, respectively. Further, they underestimate C(-),
¢ (-, x) and Px(-), respectively, so that the following subgradient inequalities hold
for every ! < k and any z:

mf (xF, x) 4+ sh(z — x*) < C(2), (31a)
m (¥, x) + sk (2 — x5) < ¢z, %), (31b)
mX (%, x) + s (z — x5) < Px(2). (3lc)

From this, we derive subgradient inequalities for the functions C(-), ¢%(-, x) and
Px () as follows: We multiply the inequalities by the corresponding factors )Lf, sum
over [ < k and add a zero-term to the left-hand side. It follows for any z that

k—1 k—1
Ch) = b+ afmf o x) + ) afsez — x¥) < C). (32a)
=0 =0
k—1 k—1
¢k, ) = g8, )+ Y amP R ) + Y s — 2 = 99z ),
=0 =0
(32b)
k—1 k—1
Px(x) = Px (") + > " afmf ok x0) + ) afskz = x) < Px(@). (32c)
=0 =0
Using the convex e-subdifferential (see, e.g., [5]) and (21), we have
L k—1
of e dlcle®), e =ceh) =) afmf k), (33a)
=0
L k—1
§f e dl0lgCh o). e =90t 0 = afmP R 0. (33b)
=0
L k—1
¢ € X Py (xb), e = Px(x) = D afmf (k. x). (33¢)
=0

Further, we have for every / < k with kf‘ > 0 that ¢p(x*, x) = mlc(xk) +
wmp () + pxmi (xF).
By (30), it thus holds that
¢k, x) — g (x*, x) = €¢ + e + Yxek. (34)

From Lemma 4.1, (1), we have that x* — x. Further, from Lemma 4.1, (1), and
Lemma 4.2, (1), it follows that ¢ (x*, x) — f.(x) = ¢(x, x). Thus, ¢ (x*, x) —
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¢ (xF, x) — 0. As the summands on the right side of (34) are non-negative, they also
converge to 0.
We thus have convergence of ec, GG and X ¥ to 0, convergence of x* — x, and

convergence of a .f;k and { to o, € and ¢, respectively. With (33), it thus follows

that o € 8C(x) S € 8¢G(x x) and ¢ € dPx(x) (see, e.g., [20, Proposition 4.1.1]).
The claim & € 3,G(x) follows by the result ¢ (x, x) C da f(x) from Lemma 4.2, (2),
which holds analogously for ¢©. O

We note that the proof for the case of finite termination (i.e., (23)) follows as a special
case of the proof of Claim 4.1. From the definition of the aggregate subgradient g,
we see that g/ = 0 implies that the trial iterate x¥ and the serious iterate x coincide.
With this, we can follow the proof of Claim 4.1 until we arrive at formula (33). Now,
using x¥ = x, it is straight-forward to show that ef; = eé = el)‘( = 0 without passing
to the limit.

Claim 4.2 If the outer loop does not terminate finitely with serious iterates x ; and a
cluster point X, then there is a choice of a subsequence of inner loop indices k(j)
such that the llmzts of subsequences o := lim;_, ozk(]) & = limj Ef(]) and

¢i=1limj_ { ) exist and fulfill

o €dC(X), € € 0,G(X), ¢ € IPx(X), 0 =a + Y& + Yy,

Proof The proof can be conducted by following the proof of Claim 4.1. Minor changes
have to be made as follows: We do not consider a fixed serious iterate but rather a
sequence (x ) of serious iterates with a cluster point x. As a sequence of trial iterates,
we consider a sequence (x¥(/)) ;j that has the properties as ensured by Lemma 4.1, (2).
This sequence has x as a cluster point and it holds by Lemma 4.1, (2), and Lemma 4.2,
(1), that ¢>k(j)(xk(j), xj) = fa(x) = ¢(x, x). Finally, the claim follows analogously
to the proof of Claim 4.1 O

With this, we have handled all cases in Theorem 4.1. O

Remark 4.1 From convexity of C and V; (i € [r])in x, we infer that the approximate
subdifferential 9, f(+) is contained in a convex e-subdifferential (see, e.g., [29]): with
gx € 0yv(x, u,) and denoting the error in the evaluation of G(x) by eg = f(x) —
v(x, uy), we have

v(x, ux) + g1 (2 = x) < vz, ux) Yz € R™ = v(x,uy) + gl (z — x) < f(2) Vz € R™

= f(x)+ T _ P Ny [GPJ
8y 2—x) < f(@) +e5 Ve R = gy € 31961 f(x).

This shows 9, f(x) C glec) f(x). Thus, the appr0x1mate optimality cond1t10n 0 e
8 f(x) already implies f(x) < min, f(x) + eG, i.e., that the pomt X is eG optimal.

We further note that in practice, we may not have access to EG, but we have the
required precision of the corresponding function evaluation eg , determined by (14)
and specified in (23)-(25) for the three different termination scenarios, which is an
upper bound for the exact error eg.
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Subgradients w.r.t. Integer Variables We now provide formulas for subgradients
with respect to integer variables. Havmg generated Ex via the adaptive bundle method
as described above, we have SK = Z, —0 Fokst ¢ With k the bundle iteration index at
which we stopped and sG e 9, VK, yk, xz). Now, we compute in every bundle
iteration a subgradient sé;’ y such that (sfj, sé;’ y) fulfills the subgradient inequality (7)

for V(.,-,u,) at (x!, yx) and choose
k—1
K = Z )‘;CslG,y’
1=0
with weights )\5‘ from (19) as an integer subgradient. Analogously, we compute

,3]( = Z)‘kSCy

These subgradients, Bx and 7g, fulfill the subgradlent inequality (7) for C(-, -) at
(xk, yx) and for G(-, -) at (xg, yx) up to the error eG in G(xK vk ). For a theoretical
justification, the proof of Theorem 4.1 can be extended in a straight-forward way. In
particular, the required subgradient inequalities can be derived from an appropriate
extension of (31) and (32).

Inexactness in Solution Output We finally comment on the inexactness in the
solution output (23)-(25) and possibilities to enhance its quality. In particular, it is in
an OA approach of interest to decide on the feasibility of the continuous subproblem
(NLP(yx)).

If we approximately solve the feasibility problem (F (yx)) with the adaptive bundle
method and obtain an output G (xx, yk) > 0, then we know that (N L P(yk)) is indeed
infeasible. Otherwise, if we solve (F' (yx)) with output G(xk, vk) = 0,or(NLP(yk))
with any value for G(xk, vk ), we do not know if (N L P(yg)) is feasible or not. For
the latter case, we have the following three options. As preferred option, we can always
simply increase eG by G(x K> YK ), then set, in (23) (25), G(xK, vk ) to 0 and correctly
label the problem as feasible with tolerance € X ¢ - If this leads to a larger feasibility error
eg than desired, we can re-run the bundle method with increased penalty parameter
and we can use a refinement strategy in the bundle method that has been proposed in
[23, Corollary 5]. This strategy involves re-evaluations of function values at serious
iterates and leads to an exact convergence result, i.e., to 0 € d f(x) in Corollary 4.1.
This option can however be rather expensive. We note that Assumption 3.2 ensures
that, if (NLP(yg)) is feasible, then this strategy of exactly solving the penalized
problem (N L Py (yk)) leads to a feasible and optimal solution to (N L P (yg)).

In contrast to inexactness in the feasibility with respect to G(xk, yk), we require
exact feasibility with respect to the constraint x € X. To achieve this, we can rely on
the options above and hence can assume that xx € X for the solution output. We note
that in our computational experiments, we never needed to employ these options to
achieve feasibility with respect to X.
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For xg € X, the subdifferential of the penalty term Py (xg) is contained in the normal
cone of X at xg, which we use in the following and which we denote by

NX,xg)={zeR™ :zT(x —xg) <0 Vx € X}.

As we assume xx € X, our results thus hold for d Px (xg) replaced by N (X, xg).

5 Inexactness in Function Values and Subgradients

In the previous section, we have seen that inexact worst-case evaluations lead to the
following situation: for every iterate (xg, yx), an eg -optimal solution to the adver-
sarial problem with a known tolerance eg is available. Denoting the approximation
of the function value G (xg, yx) by G(xK, vk ), we thus have

G(xk, yk) = V(xk, yk, i) > max V (g, i, u) = el
u

Having access to the approximate worst case i, one has natural access to a subgradient
& € 0,V (xk, yk, it), which fulfills

Gk, yk) + &7 (z — xk) < G(z, yx) Yz e X.

Such an approximate subgradient then lies in the convex eg-subdifferential of G atxg,
where eg denotes the exact error in the evaluation of G. It will be shown later in this
section that any such subgradient can be used to generate a cutting plane, which cuts
off a point only if it is infeasible or if it does not improve the current best objective
value. However, in order to guarantee that our OA algorithm converges in a finite
number of iterations, it is also required that every integer assignment should be visited
only once. For this, we need the following stronger assumption.

Assumption 5.1 At an arbitrary iteration K, the problerns (NLP(yK)) and (F(yk))
can be solved with output (xK, C(xk, YK), eG, G(xK YK), AK, f;‘K ;K) such that
xg € X,

30 < € <€ Gxk. yk) = Glxg. yK) — €5, (35a)

_ »
akg € 0,C(xk,yk), ék € 3)[:G]G(XK, YK), ¢k € N(X, xg),

(35b)
I, ¥x: 0 = ag + Véx + Vxik. (35¢)

For the feasibility problem (F (yg)), we simply set C = 0 in (35b2 and Y = 1in
(35c¢). Further, if (N L P(yk)) is feasible, then it can be solved with G (xg, yx) = 0.

In Sect. 4, we have shown that Assumption 5.1 is satisfied when applying the
adaptive bundle method from [23] with the modifications outlined in Algorithm 2 to
the subproblems (N L P(yg)) and (F (yk)). In this case, Assumption 5.1 does not need
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to be checked. Nevertheless, the OA method we develop also allows the integration
of any other method, as long as it fulfills Assumption 5.1.

To generate the linearized constraints of the master problem, we also need suitable
subgradients with respect to the integer variables. More precisely, when we have

~ P
subgradients ax € 9,C(xk, yk), €k € 8)E€G]G(x1(, vk) at hand, we use subgradients
Bk and 7k with respect to the integer variables, such that

T _
Clxk, yk) + <“K> (x _xK> <CE 7y YE ) eXxYnzv, (36)

Bk y— YK
£ Tz —x

G(xK,yK>+(f<> ( K)sG(f,yHeg VX, §) e X xYNZ".
Nk Yy =YK

(37)

We have detailed in Sect. 4, how such subgradients Sg and 7k can also be generated
in the course of the adaptive bundle method.

As we evaluate G only inexactly, we need an according notion of inexactness for
the sets SX and 7X, which are in an exact setting subsets of S and 7', respectively (see
Sect. 3). At an integer point that we label as infeasible, we underestimate the minimum
value of G (see Assumption 5.1). These integer points are hence indeed infeasible and
we collect them in a set SK C S with

SK .= {y. | L < K, Assumption 5.1 is fulfilled for (F (yx)) with G(xg, yx) > O}.

In contrast, integer points we label as feasible may in reality be infeasible. We col-
lect them in the following set, which is an inexact version of visited feasible integer
assignments.

TK :={y; | J < K, Assumption 5.1 is fulfilled for (N L P (yx)) with G (xx, yx) = 0}.

If G(xK, vk ) = 0 for the obtained solution to (N L P(yg)), then we set yx € Tk,
In this case, it holds that G(xK, vk ) = 0 with G(xK, vk) > G(xg, k) — eg and we
say that (yg, xg) is eg-feasible.

In an iteration K, we obtain as inexact master problem (i.e., an inexact version of
(M PXY), with approximate function values G(., ) and subgradients g, n,

min 0 (MPK)
x,y,0

s.t. 6 < @K—eoa

X — X ~
Clxy,y) + (oﬁ,ﬂ})( - ’) <0 Vy; e TX
y—YyJ
~ =T ~T X —XJ K
Gy, yn)+Epnp | <0 Vy;eT
y—YyJ
~ T =T X — XL oK
G(XL,yL)—i-(éL,'?L)(y_yL) <0 VyL €S

xeX,yeYnzh.
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5.1 Algorithm

With these algorithmic concepts at hand, we now state the OA method for mixed-
integer nonlinear robust optimization with the notion of inexactness formalized in
Assumption 5.1. We use the adaptive bundle method from Sect. 4 for the solution
of the continuous subproblems. The corresponding steps in the outer approximation
algorithm outlined below are marked by “bundle.” Moreover, if the bundle method is
used, the computations in line 6 and line 12 can be realized as detailed in the paragraph
on subgradients w.r.t. integer variables and the condition in line 16 can be realized by
the strategies in the paragraph on inexactness in the solution output, both at the end
of Sect. 4. However, we note that the OA method does not rely on a specific method
for these steps and is thus not restricted to the bundle method suggested here. For the
subproblems, any method that leads to solutions fulfilling Assumption 5.1 can be used
instead.

Algorithm 1 OA for mixed-integer nonlinear robust optimization with inexactness
1: Fix parameter €,4 > 0.
2: Choose initial values: yl ey, §0 = 70 = @, e = 0o, K =1.
3: while MPK—1 feasible do
4:  Solve (NLP(yg)), fulfilling Assumption 5.1, with output
denoted by (xK, C(xg,YK), eg, G(xk.yK) ok, Ex, {K). > bundle

5 if G(xg, yg) = O then

6: Compute Bk, g fulfilling (36)-(37).

7: TK « 7K1y (yg}, §K « §K-1,

8: 0K — min{®K-1 Cc(xk, yx)}.

9: else

10: Solve (F(yk)) fulfilling Assumption 5.1, with output
denoted by (xK, C(xk,YK), eg, Gxk. yK). ak. £k, {K). > bundle

11: if G(xg,yx) > O then

12: Compute 77g fulfilling (37).

13: TK  7K-1 3K <—5‘K_1U{yK}.

14: ok «— k-1,

15: else

16: Go to Step 4 and enforce G(xK, yg) =0.

17: end if

18:  endif

19:  Solve (1\71731( ) and denote the solution’s integer part by yx 1.
20:  Increase K by 1.

21: end while

22: SetK* e {J | J <K,0K =C@xy,y)).

23: Return (xg=, yg*).
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5.2 Inexact Cutting Planes

We now prove correctness and finite convergence of the proposed OA method. There-
fore, we closer examine the cutting planes generated by the two types of continuous
problems.

Cutting Planes Generated by the Continuous Subproblem We show that the lin-
ear constraints with respect to 7X in (mK ) are valid and cut off the current integer
solution. In an iteration K, let xx be an approximate solution to the continuous sub-
problem (N L P(yg)) that fulfills Assumption 5.1. We consider the following inexact
cutting planes:

G(xk, yk) +EF(x — xk) +iik(y —yk) <0 (38a)
Cxk, yk) +ak(x —xx) +BL(y —yk) <6 (38b)
0 < ®K — €oa (38¢)

OX = min{Ok_1, Cxk, yk)}.  (38d)

The constraints are valid in the sense that they cut off infeasible solutions, and
feasible solutions only if they do not improve the current best objective value by more
than €,,. We prove this and further show that (38) cuts off the current integer solution:

Lemma5.1 If (x,y) € R js feasible for (P) and infeasible for (38), then
C(%,y) > ©K —¢,,. Furthermore, for any x € X, (%, yx) is infeasible for (38).

Proof We prove the first claim: Let (X, y) € R be feasible for (P) and infea-
sible for (38). We show feasibility of (x, y) for (38a). There exists an eg > (0 with

G(xk, yk) = G(xk, yk) — €’ and with (37), we have

Gk, yk) +ELG —xk) + 75 (3 — yk) < G(X, §).

As G(x,y) < 0due to feasibility of (x, y) for (P), it follows that (x, y) fulfills (38a).
It hence violates (38b)—(38c). This implies that C (%, j) > OK — ¢,,.

We prove the second claim by contradiction: We assume that there exists an x € X
such that (x, yg) is feasible for (38). Then,

G(xk. k) + &g (¥ —xg) <0 (39a)
Clrk. yk) + g (X —xg) <6 (39b)
6 <OK — ¢, (39¢)

0K = min{OX~!, C(xk, yk)}. (39d)

As G(xK, ykx) = 0, we have ég (x —xg) < 0. It follows from Assumption 5.1,
(35b), (35¢), that aIT(()E — xg) > 0. Hence, due to (39b), C(xk, yx) < 6, which
contradicts (39¢),(39d). ]
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Cutting Planes Generated by the Feasibility Problem Let xx be an approximate
solution to the feasibility problem (F (yg)) fulfilling Assumption 5.1. We consider the
cutting plane

Gk, yk) +EF(x —xk) + 71k (y — yk) <O. (40)

We note that we have no inexactness with respect to the claim that the nonlinear
subproblem is infeasible: if the underestimated optimal value of the feasibility problem
indicates infeasibility, the subproblem is indeed infeasible. We now prove that the
cutting plane (40) cuts off the current integer solution without cutting off any feasible
solution.

Lemma5.2 If (X, y) € R js feasible for (P), then it is feasible for (40). Further-
more, for any x € X, (X, yg) is infeasible for (40).

Proof From feasibjlity of (x, y) for (P), it follows that G(x, y) < 0. As there is an
€l > 0 such that G(xk, yx) = G(xg, yk) — €5 and by (37), it holds that

Gk, yk) +ELG —xk) + k(3 — yk) < G(X, §),

so that (x, y) fulfills the constraint (40).
We prove the second claim by contradiction: We assume that there exists an x € X
with

Gk, yk) +EL G —xx) + 1k (yk — yx) < 0.

From Assumption 5.1, (35b), (35¢), it follows that L (¥ —xx) > 0. As ij% (yxk —yk) =
0, this is is a contradiction to G(xK, yk) > 0. O

5.3 Finite Convergence of the Outer Approximation Method

We now combine the results from the preceding section to show that Algorithm 1 ter-
minates after finitely many steps and that a solution (x g+, yg+) found by the algorithm
is eg "_feasible and €oq-optimal. The proof uses similar arguments as, e.g., [35] and
[14].

Theorem 5.1 If (P) is feasible, then Algorithm 1 terminates after finitely many itera-
tions with a solution (xg+, yx+) that is eg* -feasible and €,q-optimal for (P). If (P) is
infeasible, Algorithm 1 either outputs a solution (xg+, yx+) that is eg *-feasible and
€oq-optimal for (P) or detects infeasibility, after finitely many iterations.

Proof 1t follows from Lemma 5.1 and Lemma 5.2 that, if (MTDK ) is infeasible, then
Algorithm 1 either correctly detects infeasibility of (P) or outputs an €,,-optimal
solution. Further, any candidate solution (xg, yx) with feasibility tolerance eg is eg -
feasible. Finite convergence follows from the fact that, by Lemma 5.1 and Lemma 5.2,

each integer point in Y is visited only once. O
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The OA method thus is applicable to mixed-integer nonlinear robust optimization
with the notion of inexactness specified in Assumption 5.1. We use inexact worst-
case evaluations with precision eg and therefore may accept solutions that are only
eg -feasible. Consequently, we cannot achieve a better result than the approximate
feasibility in Theorem 5.1.

In an iteration K of the OA method, the feasibility tolerance eg is not specified
before the subproblem is solved. Whether or not this can be specified in advance
depends on the method used for the subproblem. In any case, if the subproblem’s
solution happens to be the final solution of the OA method, the algorithm outputs this
solution, which is €£ -feasible.

6 Numerical Results for the Gas Transport Problem

We implemented the OA approach with the adaptive bundle method in MATLAB and
Python with Gurobi 8.1 [18]. We approximated the adversarial maximization problem
via piecewise linear relaxation, for which we used the delta method [15]. This was
implemented in Python with Gurobi 8.1. The experiments were done on a machine
with an Intel Core 17-8550U (4 cores) and 16GB of RAM.

We used instances from the GasLib library, which contains realistic gas network
instances [31]. We slightly modified the instances such that they fulfill our assumptions.
The modified instances are publicly available as online supplement to this paper.
We evaluated our methods for networks with up to 103 nodes. The two smallest
GasLib instances are defined on networks with 11 and 24 nodes, respectively, and
the robust gas transport problem is solved by our method within only a few seconds.
The computational results get more interesting for the larger GasLib instances with
40 and with 103 nodes, on which we focus here. These networks are of the sizes of
real networks.

In the adaptive bundle method, we used the stopping criterion g < 107 along
with heuristic stopping criteria from [23, Section 4.3]. Nevertheless, as it can be seen
from the following tables, the required precision for the aggregate subgradient is met in
almost all cases. In the tables, we list the computational times spent within the bundle
method as ‘runtime bundle.” The main part of the OA method’s running time is spent
for the subproblems. For the OA iterations in which no approximate feasible solution
could be found, we list the accumulated running times for the runs of the bundle method
working on (F (yg)) and (NL P (yg)). We did not need to resolve (N L P (yg)) (line
16 in Algorithm 1) in our experiments. The bundle method’s running time is mainly
spent for solving the adversarial problems up to the required precisions. In order to
reach a solution within reasonable running time, we bounded the required precision by
1073 for the 40-node instance, i.e., el} > 1073, and by 10~! for the 103-node instance,

ie., el} > 10~L. As it can be seen from the tables, where Eg denotes an upper bound
on the exact a posteriori error, this did not prevent this error from becoming small.
As cost function w in (Pggy), We used compressor costs, determined by the achieved
difference of squared pressures. We internally scaled these costs by a factor of 1072,
For the use of valves, we did not charge any costs.
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In Tables 1 and 2, results are presented for a slightly modified version of GasLib-40
with 40 nodes, 5 compressors and 2 valves. In detail, we removed a compressor on
a cycle in the original instance in order to fulfill the assumption of Lemma 2.1. We
replaced it by a valve and added another valve on a cycle. As a benchmark result, we
first applied our method to the nominal problem, for which we obtained—within a few
seconds—optimal compressor costs of 1148. Then, we solved the robust problems with
different uncertainty sets, namely once with 5% and once with 10% deviation from the
nominal value : [0.975-d, 1.025-d],[*, 1.05-A]and [0.95-d, 1.05-d],[A, 1.1-A]. These
sets yield a robust protection against a reasonable amount of parameter deviation. The
corresponding results are presented in Table 1 and 2, respectively. From these results,
we compute the price of robustness, which is the relative increase of compressor costs
caused by the robust treatment of uncertainties. For the first uncertainty set, it amounts
to 45% and for the second to 93%. The larger uncertainty set thus leads to almost twice
the nominal compressor costs.

In Table 3, we present results for a modified version of GasLib-135 that has 103
nodes, 21 compressors, which are not on cycles, and 3 valves. As uncertainty sets for
the demand and for pressure loss coefficients d and A, we used the set of balanced
demands in [0.975 - d, 1.025 - d] and the set [A, 1.05 - 1], respectively. Typically, the
running time for the adversarial problems, and thus for the whole method, increases
when we enlarge the uncertainty set. In order to keep the adversarial problems solvable
within a reasonable amount of time, we restricted ourselves to an uncertainty set of
5% deviation for this network.

For the nominal problem, we encountered—within less than one minute—an opti-
mal objective value of 704.2, so that the price of robustness amounted to 30% for the
chosen uncertainty sets, which is in the same order of magnitude as in the case of the
smaller instance.

Table 1 GasLib-40 with uncertain parameters in [0.975-d, 1.025-d] and [A, 1.05- 1] and 7 binary decision
variables

(C] Penalty € g Runtime bundle  ||g*|| Active compressors  Open valves
0 Inf 4821.1  24le+01 - - 2,3,4 1,2
1 Inf 4821.1  8.48e-04 42.56 0 1,2,3,4,5 1,2
2 20640 O 0 22.79 6.34e-08 5
3 16640 O 0 1.36 1.81e-08

Table 2 GasLib-40 with uncertain parameters in [0.95 - d, 1.05 - d] and [A, 1.1 - A] and 7 binary decision
variables

(€] Penalty € g Runtime bundle  ||g*|| Active compressors  Open valves
0 Inf 64504  1.03e+02 - - 2,3,4 1,2
1 Inf 64504  9.40e-04  343.68 0 1,2,3,4,5 1,2
2 26157 0 0 7.81 1.35¢-08 5
3 26157 3274 5.02e-03  537.29 1.60e-07 5 2
4 22154 0 0 4.45 2.53e-08
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Table 3 103-nodes instance with uncertain parameters in [0.975 - d, 1.025 - d] and [A, 1.05 - A] and 24
binary decision variables

® Penalty € g Runtime bundle | g*|| Active Open valves
compressors
0 Inf 635.8 8.40e-07 - - 1-21 1,2
Inf 128.7 3.94e-07  90.95 1.25e-07
2 Inf 214044  8.81e+01  0.00 0 2,3,6-8, 1,3
11-15, 17,
20,21
3 19174 0 4.90e-04  63.68 9.77e-08 4 1,3
4 1917.4  608.0 1.36e-09  22.87 9.82e-12 4,14 1,3
5 9174 0 0 10.50 1.56e-14 6 1,3
6 917.4 0 0 12.52 7.02e-08 2,14 1,3
7 917.4 0 0 18.02 7.38¢e-08 14 1,3
8 917.4 0 0 7.64 2.07e-09 6,14 1,3
9 917.4 0 0 8.35 1.33e-07 4,6 1,3
10 9174 0 0 9.02 9.52e-08 2,6 1,3
11 9174 0 6.87e-05 4.16 9.07e-11  2,4,14 1,3
12 9174 0 0 11.11 2.65e-08 2,4,6 1,3
13 9174 0 0 12.08 2.33e-08 4,6, 14 1,3
14 9174 0 0 1.64 1.26e-10  2,4,6, 14 1,3
15 9174 0 0 10.62 8.9%9¢-08 2,6, 14 1,3
16 9174 0 5.57e-05  5.09 1.07e-08

We care to mention that the considered robust setting that allows for discrete-
continuous decisions has not been solved in the literature so far. The case of only
continuous decisions is roughly comparable to one iteration within our OA method.
This simpler case has been treated by a decomposition approach specifically designed
for robust gas networks in [3]. There, the instance GasLib-40 could be solved within
a few seconds or a few minutes—depending on an error in the relaxation of non-
convex constraints. We have observed that the discrete-continuous robust gas transport
problem on instances of size 40-nodes and 103-nodes are solvable within a few minutes
by our method where we obtained—up to a small tolerance in the last case—robust
feasible solutions. Thus, although our method is a general approach for mixed-integer
robust optimization that is applicable in wider contexts as [3], it solves a challenging
and more complex robust optimization task within a similar order of running time as
could be obtained in [3].
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7 Conclusion

We proposed an outer approximation approach for nonlinear robust optimization with
mixed-integer decisions and inexact worst-case evaluations. In the core of this, an
adaptive bundle method was used to solve the continuous subproblems. In general,
the method can be applied to robust problems, in which uncertain parameters enter
the problem in a non-concave way and in which only approximate worst cases are
computationally accessible. This setting is extremely challenging, and no general
solution approach exists. According to our numerical results, it performs very well
on an example application in robust gas transport and can solve relevant real-world
problems.

There are possibilities to improve the performance of the method. As proposed in
[9], the bundle method in an iteration of the OA method could be initialized by the
use of cutting planes from earlier runs. One could thereby think of an appropriate
downshift mechanism of recycled cutting planes, as used in bundle methods to recycle
cutting planes from former outer loops. Another idea would be to exchange cutting
planes between the bundle method’s cutting plane model and the master problem
in the OA approach. Also, to accelerate the master problems’ solution, one could
employ a so-called single-tree approach, as proposed in [32], where the branch-and-
bound tree for the MIP’s solution is not re-built in every iteration. Further, one could
employ regularization strategies in order to avoid large step-sizes between the master
problems’ solutions [1, 9, 22, 30].

Apart from accelerating the proposed approach, there are possibilities of extending
the scope of applicability of our method. Probably the most interesting case would be
arelaxation of the convexity assumption. One possible avenue here would be to resort
to concepts of pseudo- and quasi-convexity, as has been done for the related extended
cutting plane methods [11] and extended supporting hyperplane methods [36]. As
pointed out in [13], a suitable framework for the OA method could be the one by
[19], which requires only quasi-convexity. Such an integration could be a challenging
subject of future research and requires a substantial extension of our results.

Acknowledgements The authors thank the DFG for their support within Project BO6 in CRC TRR 154, as
well as within Project-ID 416229255 - SFB 1411.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability All data generated or analyzed during this study are included in this published article and
its supplementary information files.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer


http://creativecommons.org/licenses/by/4.0/

1084 Journal of Optimization Theory and Applications (2022) 195:1056-1086

Appendix A. Algorithm: The Adaptive Bundle Method

Algorithm 2 Adaptive bundle method with subgradient generation

" X1

I: Fix parameters: 0 <y < ' <1,y <y <1,0<g<T <00,0<v <T —q,€ >O,ef > 0,
e* > 0. .

2: Choose initial values: Starting point x1, Q1 = QIT st. —qZ < Q1 < q7Z, rf st. Q1 + rfl' > 0. Set
j=1

3: while True do > removed stopping test "dist(0, O fxj)) <é€"
4:  Initialize inner loop with serious iterate x;: 7] = T?. Setk = 1.
5:  Solve the program > Trial step generation
min_ & (K x) + 2k — )2

xkern ! 2 !
6:  Compute f, (xk) with e’} =€"||x = xk ”2. > Adaptive function value approximation
7o Setgl =(Q; + uD)(x; —xb).
8: if [gfll < €* then
9: Stop. > Stopping test
10:  endif

11:  Compute A;‘ Sk Af‘gl =gi N Dk }L;‘ =1 /\Aﬁ< >0= m[(xk,x_i) = dbk(xk,x_i).

12: Set a,{ =Yk A;‘SIC, é,{ =<k A;‘xg.
> Subgradient generation
Sa(xj)— fa k)

13: if pp = m > y then > Acceptance test
14: Xjp1 < Xk,
r
15: o B t Pk =" &> Update t#
A 1210 pr =T,
16: Set Q41 8.t Qj11 =Q]T+1,—q15 0j+1 = qT. > Update Q;
17: Q41+ T?ﬁ-ll— # vZ: Increase rj‘_‘_l st Qjq1+ rﬁ_lI > vZ.
18: sz « min{r;i‘*ﬂ, T}.
19:  else
20: Compute sé, SJC‘; and sl)‘(
sk e 8,C (b, sE € .G (R, sk € Py ().
21: Set gx =slé+1//sé+1/fxs§. )
22: Generate a cutting plane my (-, x ;) with g € Baf(xk).
) s faap—MGFag)
23: if o = 7&@]‘)7%(}(,‘%/_) > y then > Update i
24: Tht] < 27%.
25: end if
26: Build new working model ¢ 1: add my (-, x ) to ¢. > Update ¢y
27: Increase k and go to Step 5: Trial step generation.
28:  endif

29:  Increase j.
30: end while
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