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Abstract We consider systems of linear equations, where
the elements of the matrix and of the right-hand side

vector are linear functions of interval parameters. We

study parametric AE solution sets, which are defined

by universally and existentially quantified parameters,

and the former precede the latter. Based on a recently
obtained explicit description of such solution sets, we

present three approaches for obtaining outer estima-

tions of parametric AE solution sets. The first approach

intersects inclusions of parametric united solution sets
for all combinations of the end-points of the universally

quantified parameters. Polynomially computable outer

bounds for parametric AE solution sets are obtained by

parametric AE generalization of a single-step Bauer–

Skeel method. In the special case of parametric tolera-
ble solution sets, we derive an enclosure based on linear

programming approach; this enclosure is optimal under

some assumption. The application of these approaches

to parametric tolerable and controllable solution sets is
discussed. Numerical examples accompanied by graphic

representations illustrate the solution sets and proper-

ties of the methods.
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1 Introduction

Consider a system of linear algebraic equations

A(p)x = b(p) (1)

which has a linear uncertainty structure

A(p) = A0 +

K
∑

k=1

Akpk, b(p) = b0 +

K
∑

k=1

bkpk, (2)

where Ak ∈ R
n×n, bk ∈ R

n, k = 0, 1, . . . ,K, and p =

(p1, . . . , pK). The parameters pk, k ∈ K = {1, . . . ,K}
are considered as uncertain and varying within given

intervals pk = [p
k
, pk]. Such systems are common in

many engineering analysis or design problems (see El-

ishakoff and Ohsaki (2010) and the references therein),

control engineering (Matcovschi and Pastravanu, 2007;
Sokolova and Kuzmina, 2008; Bus lowicz, 2010), robust

Monte Carlo simulations (Lagoa and Barmish, 2002),

etc. Usually, the set of solutions to (1)–(2) which is

sought for is the so-called parametric united solution
set

Σ
p

uni = Σuni(A(p), b(p),p)

:= {x ∈ R
n | (∃p ∈ p)(A(p)x = b(p))}.

The united parametric solution set generalizes the uni-

ted non-parametric solution set to an interval linear

system Ax = b, which is defined

Σuni = Σuni(A, b)

:= {x ∈ R
n | (∃A ∈ A)(∃b ∈ b)(Ax = b)}.
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However, the solutions of many practical problems

involving uncertain (interval) data have quantified for-

mulation involving the universal quantifier (∀) besides

the existential quantifier (∃). We consider quantified so-

lution sets where all universally quantified parameters
precede all existentially quantified ones. Such solution

sets are called AE solution sets, after Shary (2002). Ex-

amples of several mathematical and engineering prob-

lems formulated in terms of quantified solution sets can
be found, for example, in Shary (2002); Pivkina and

Kreinovich (2006); Wang (2008). AE solution sets are

of particular interest also for interval-valued fuzzy rela-

tional equations, see Wang, S. et al. (2003) where the

concepts of so-called tolerable and controllable solu-
tion sets of interval-valued fuzzy relational equations

are introduced, their structure and relations are dis-

cussed. The literature on control engineering contains

many papers that explore problems related to linear dy-
namical systems with uncertainties bounded by interval

matrices, see, e.g., Sokolova and Kuzmina (2008) and

the references in Matcovschi and Pastravanu (2007);

Bus lowicz (2010). The tolerable solution set is utilized

in Sokolova and Kuzmina (2008) for parameter identi-
fication problems and in controllability analysis. As in

the other problem domains, the uncertain data involve

more parameter dependencies than in an interval ma-

trix with independent elements. So, the more realistic
approaches consider linear dynamical systems with lin-

ear dependencies between state parameters as in Mat-

covschi and Pastravanu (2007), or structural perturba-

tions of state matrices as in Bus lowicz (2010).

Although the non-parametric AE solution sets are
studied, e.g., in Shary (1995, 1997, 2002); Goldsztejn

(2005); Goldsztejn and Chabert (2006); Pivkina and

Kreinovich (2006), there are a few results on the more

general case of linear parameter dependency. A special
case of parametric tolerable solution sets is dealt with

in Sharaya and Shary (2011). A characterization of the

general parametric solution set is given in Popova and

Krämer (2011), and a Fourier–Motzkin type elimina-

tion of parameters is applied in Popova (2011) to de-
rive explicit descriptions of the parametric AE solution

sets.

In this paper we are interested in obtaining outer

bounds for the parametric AE solution sets. To our

knowledge, this is the first systematic approach to outer
estimations of parametric AE solution sets in their gen-

eral form. In Section 3 we prove that (inner or outer)

estimations of parametric AE solution sets can be ob-

tained by using only some corresponding estimations of
parametric united solution sets. In Section 4 we gener-

alize a Bauer–Skeel method (see Rohn (2010) and the

references therein), applied so far for bounding (para-

metric) united solution sets. The method is derived in

a form which leads to the same conclusion, proven in

Section 3, and requires intersecting the bounds of para-

metric united solution sets for all combinations of the

end-points of the universally quantified parameters. An-
other, single-step single-application parametric Bauer–

Skeel AE method is derived in Section 5 and both ap-

proaches are compared on several numerical examples.

The derivation of both forms of Bauer–Skeel paramet-
ric AE method is self-contained and no knowledge of

the original method is required. The special cases of

parametric tolerable and controllable solution sets are

discussed. In the tolerable case, an enclosure based on

linear programming approach is derived in Section 6.
Numerical examples accompanied by graphic represen-

tations illustrate the solution sets and properties of the

methods.

2 Notations

Denote by R
n,Rn×m the set of real vectors with n com-

ponents and the set of real n×m matrices, respectively.

A real compact interval is

a = [a, a] := {a ∈ R | a ≤ a ≤ a}.

As a generalization of real compact intervals, an inter-

val matrix A with independent components is defined

as a family

A = [A,A] := {A ∈ R
n×m | A ≤ A ≤ A},

where A,A ∈ R
n×m, A ≤ A, are given matrices. Simi-

larly we define interval vectors. By IR
n, IRn×m we de-

note the sets of interval n-vectors and interval n × m
matrices, respectively. For a ∈ IR, define mid-point

ac := (a + a)/2 and radius a∆ := (a − a)/2. These

functions are applied to interval vectors and matrices

componentwise. Without loss of generality and in or-
der to have a unique representation (2), we assume that

p∆k > 0 for all k ∈ K. The spectral radius of a matrix M

is denoted by ρ(M). The identity matrix of dimension

n is denoted by I. For a given index set I = {i1, . . . , ik}
denote pI := (pi1 , . . . , pik). Next, Card(S) denotes the
cardinality of a set S. The following definitions are re-

called from Popova and Krämer (2011).

Definition 1 A parameter pk, 1 ≤ k ≤ K, is of 1st

class if it occurs in only one equation of the system (1).

Definition 2 A parameter pk, k ∈ K, is of 2nd class

if it is involved in more than one equation of the sys-

tem (1).
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Let E and A be two disjoint sets such that E ∪ A = K.

The parametric AE solution set is defined as

Σ
p

AE = ΣAE(A(p), b(p),p) :=

{x ∈ R
n | (∀pA ∈ pA)(∃pE ∈ pE)(A(p)x = b(p))}.

Beside the parametric united solution set, there are sev-

eral other special cases of AE solutions:

– A parametric tolerable solution set is such that uni-

versal quantifiers concern only the constraint matrix

and existential quantifiers only the right-hand side.

That is, Ak = 0 for every k ∈ E and bk = 0 for every

k ∈ A. The parametric tolerable solution set is

Σ
p

tol = ΣAE(A(pA), b(pE),p)

:= {x ∈ R
n | (∀pA ∈ pA), (∃pE ∈ pE)

(A(pA)x = b(pE))}.

– In contrast to the tolerable solutions, a paramet-

ric controllable solution set is such that existential

quantifiers concern only the constraint matrix and
universal quantifiers only the right-hand side. Thus,

Ak = 0 for every k ∈ A and bk = 0 for every k ∈ E .

The parametric controllable solution set is denoted

shortly by Σ
p

cont.

Σ
p

cont = ΣAE(A(pE ), b(pA),p)

:= {x ∈ R
n | (∀pA ∈ pA), (∃pE ∈ pE)

(A(pE )x = b(pA))}.

For a given parametric system and index sets A,

E , there is a unique non-parametric system, resp. non-

parametric AE solution set Σ(A(pA,pE), b(pA,pE)),

where

A(pA,pE) := A0 +
∑

k∈A

Akpk +
∑

k∈E

Akpk,

b(pA,pE) := b0 +
∑

k∈A

bkpk +
∑

k∈E

bkpk.

On the other hand, every non-parametric system, resp.
non-parametric AE solution set, can be considered as

a parametric system, resp. parametric AE solution set,

involving n2+n quantified parameters. Thus, every non-

parametric AE solution set presents a special case of
parametric AE solution set involving n2 +n quantified

parameters.

For a nonempty and bounded set S ⊂ R
n, define its

interval hull by �S :=
⋂{y ∈ IR

n | S ⊆ y}. For two

intervals u,v ∈ IR, u ⊆ v, the percentage by which v

overestimates u is defined by

O(u,v) := 100(1 − u∆/v∆).

In Popova and Krämer (2011), it was shown that

every x ∈ Σ
p

AE satisfies the following inequality

|A(pc)x− b(pc)| ≤
∑

k∈E

|Akx− bk|p∆k

−
∑

k∈A

|Akx − bk|p∆k . (3)

Moreover, for parametric systems involving only 1st

class existentially quantified parameters, this system of

nonlinear inequalities describes exactly the set Σ
p

AE .

3 End-Point Bounds for Σ
p

AE

It follows from the explicit representation of the para-

metric AE solution sets (Popova, 2011) that the inter-

val hull of Σ
p

AE is attained at particular end-points of

the intervals for the 1st class existentially quantified

parameters and the universally quantified parameters.
Here we exploit this property to develop a methodol-

ogy for obtaining outer bounds of the parametric AE

solution set using only solvers for bounding parametric

united solution sets.

For a given index set I = {i1, . . . , ik}, define

BI := {(pci1+δi1p
∆
i1
, . . . , pcik+δikp

∆
ik

) | δ1, . . . , δk ∈ {±1}}.

Theorem 1 We have

Σ
p

AE =
⋂

p̃A∈BA

Σ(A(p̃A, pE), b(p̃A, pE),pE). (4)

Proof It follows from the set-theoretic representation of

Σ
p

AE (see (Popova and Krämer, 2011, Theorem 3.1))
that

Σ
p

AE =
⋂

p̃A∈p
A

Σ(A(p̃A, pE), b(p̃A, pE),pE).

Then, the assertion of the theorem follows from the

relation

(∀p ∈ [p] : b1 ≤ f(p) ≤ b2) ⇔
(

b1 ≤ min
p∈[p]

f(p)
)

∧
(

max
p∈[p]

f(p) ≤ b2

)

(5)

and because the polynomials involved in the explicit de-
scription of Σ(A(pA, pE), b(pA, pE),pE) are linear with

respect to all ∀-parameters. ⊓⊔

The next theorem gives a sufficient condition for a

non-empty parametric AE solution set to be bounded.

Theorem 2 LetΣ
p

AE be non-empty and for some p̃A ∈
BA the matrix A(p̃A, pE) be regular for all pE ∈ pE .
Then Σ

p

AE is bounded.
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Proof Σ
p

AE is not empty iff the intersection in (4) is not

empty. If for some p̃A ∈ BA the matrix A(p̃A, pE) is reg-

ular for all pE ∈ pE , then Σ(A(p̃A, pE), b(p̃A, pE),pE) is

bounded and its intersection (which is not empty) with

bounded or unbounded solution sets for the remaining
pA ∈ BA will be bounded. ⊓⊔

By Theorem 1, one can obtain (inner or outer) es-

timations of a bounded parametric AE solution set by

intersecting at most Card(BA) corresponding estima-
tions of the united parametric solution sets

Σ(A(p̃A, pE), b(p̃A, pE)), p̃A ∈ BA.

In particular, we have

Corollary 1 For a bounded parametric AE solution

set Σ
p

AE 6= ∅ and a set B′
A, such that B′

A ⊆ BA and

Σ(A(p̃A, pE), b(p̃A, pE),pE) is bounded for all p̃A ∈ B′
A,

we have

�Σ
p

AE ⊆
⋂

p̃A∈B′
A

�Σ(A(p̃A, pE), b(p̃A, pE),pE).

If the parametric system involves some 1st class ∃-

parameters pk, k ∈ E , we can further sharpen the es-

timation of the parametric AE solution set. Denote by

E1, E1 ⊆ E , the set of indices of all ∃-parameters which

occur in only one equation of the system. Since inf/sup
of Σ(A(p̃A, pE), b(p̃A, pE),pE) is attained at particular

end-points of pE1
, we have

Σ
p

AE =
⋂

p̃A∈B′
A

⋃

p̃E1∈BE1

ΣA,E,E1 ,

and

�Σ
p

AE ⊆
⋂

p̃A∈B′
A

�





⋃

p̃E1∈BE1

� ΣA,E,E1



 , (6)

where

ΣA,E,E1
:= Σ(A(p̃A, p̃E1 , pE\E1

), b(p̃A, p̃E1 , pE\E1
),pE\E1

).

By a methodology based on solving derivative sys-

tems with respect to every parameter (Popova, 2006)

one can prove that the interval hull of a united paramet-

ric solution set can be attained at particular end-points
of the parameters, which are not only of 1st class. The

parameters, for which we can prove this property, can

be joined to the set E1 in relation (6).

4 Bauer–Skeel Method for Parametric AE

Solution Sets

Bauer–Skeel bounds were used to enclose bounded and

connected non-parametric united solution sets (Stew-

art, 1998; Rohn, 2010) and later bounded and con-

nected parametric united solution sets (Skalna, 2006;
Hlad́ık, 2012). In this section, we extend the Bauer–

Skeel method to the case of non-empty bounded and

connected parametric AE solution sets. Since the fol-

lowing is a generalization of the Bauer–Skeel theorem,
we do not state the original one explicitly.

Theorem 3 For a fixed p̃A ∈ BA in the form of p̃k =
pck + δ̃kp

∆
k , δ̃k ∈ {±1}, k ∈ A, suppose that

A(p̃A, p
c
E) be regular and define

C :=

(

A(pc) +
∑

k∈A

δ̃kAkp
∆
k

)−1

= A−1(p̃A, p
c
E),

x∗ := C

(

b(pc) +
∑

k∈A

δ̃kbkp
∆
k

)

= Cb(p̃A, p
c
E),

M :=
∑

k∈E

|CAk|p∆k .

If ρ(M) < 1, then every x ∈Σ
p

AE satisfies

|x− x∗| ≤ (I −M)−1
∑

k∈E

|C(Akx
∗ − bk)|p∆k .

Proof We precondition (1) by C, so (3) reads

|CA(pc)x− Cb(pc)| ≤
∑

k∈E

|C(Akx− bk)|p∆k

−
∑

k∈A

|C(Akx − bk)|p∆k , (7)

that is

|CA(pc)x− Cb(pc)| +
∑

k∈A

|C(Akx− bk)|p∆k

≤
∑

k∈E

|C(Akx − bk)|p∆k . (8)

Since |u| + |v| ≥ |u± v|, we have
∣

∣

∣

∣

∣

CA(pc)x− Cb(pc) +
∑

k∈A

δ̃kC(Akx− bk)p∆k

∣

∣

∣

∣

∣

≤
∑

k∈E

|C(Akx − bk)|p∆k .

Rearranging we get
∣

∣

∣

∣

∣

C

(

A(pc) +
∑

k∈A

δ̃kAkp
∆
k

)

x− C

(

b(pc) +
∑

k∈A

δ̃kbkp
∆
k

)∣

∣

∣

∣

∣

≤
∑

k∈E

|C(Akx − bk)|p∆k ,
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or,

|x− x∗| ≤
∑

k∈E

|C(Akx− bk)|p∆k .

Now, we approximate the right-hand side from above

|x− x∗| ≤
∑

k∈E

|C(Akx− bk)|p∆k

≤
∑

k∈E

|CAk(x− x∗)|p∆k +
∑

k∈E

|C(Akx
∗ − bk)|p∆k

≤
∑

k∈E

|CAk||x− x∗|p∆k +
∑

k∈E

|C(Akx
∗ − bk)|p∆k

= M |x− x∗| +
∑

k∈E

|C(Akx
∗ − bk)|p∆k .

Hence

(I −M)|x− x∗| ≤
∑

k∈E

|C(Akx
∗ − bk)|p∆k .

Since M ≥ 0 and ρ(M) < 1, we have (I − M)−1 ≥ 0
and

|x− x∗| ≤ (I −M)−1
∑

k∈E

|C(Akx
∗ − bk)|p∆k .

⊓⊔
The application of Theorem 3 to the special case of

parametric united solution set has the following form,

which is identical with the Bauer–Skeel method gen-
eralized to parametric united solution sets in Skalna

(2006); Hlad́ık (2012).

Corollary 2 Let A(pc) be regular and define

C := A−1(pc),

x∗ := Cb(pc),

M :=
∑

k∈E

|CAk|p∆k .

If ρ(M) < 1, then every x ∈ Σ
p

uni satisfies

|x− x∗| ≤ (I −M)−1
∑

k∈E

|C(Akx
∗ − bk)|p∆k .

In the special case of parametric tolerable solution set

we have

Corollary 3 For a fixed p̃A ∈ BA let A(p̃A) be regular
and define

C :=

(

A(pc) +
∑

k∈A

δ̃kAkp
∆
k

)−1

= A−1(p̃A),

x∗ := Cb(pc) = Cb(pcE).

Then every x ∈ Σ
p

tol satisfies

|x− x∗| ≤
∑

k∈E

|Cbk|p∆k .

The special case of parametric controllable solution set

is discussed thoroughly in Section 5.

Corollary 4 The intersection of the solution enclosu-

res obtained by Theorem 3 (respectively Corollary 3) for
all p̃A ∈ BA is equal to the intersection of the solution

enclosures obtained by Corollary 2 for all p̃A ∈ BA.

Proof The proof follows immediately from the equiva-

lent representation of C and x∗ presented in the formu-
lation of Theorem 3. ⊓⊔

Thus, the derivation of the parametric AE version of

Bauer–Skeel method confirms Corollary 1.

Corollary 1 with using Bauer–Skeel enclosures for
the particular united solution sets gives the same re-

sult as the intersection of all enclosures by Theorem 3.

However, Corollary 1 with some other methods for en-

closing parametric united solution sets may give better

bounds.

Example 1 Let us consider the example from Popova

and Krämer (2011)

(

p1 p1 + 1

p2 + 1 −2p4

)

x =

(

p3
−3p2 + 1

)

,

where p1, p2 ∈ [0, 1] and p3, p4 ∈ [−1, 1]. For the sake

of simplicity, Σ∀p4∃p123 denotes the parametric AE so-

lution set where the universal quantifier is applied to

p4 and the existential one elsewhere. Similar notation

is used for other combinations of quantifiers.

In case of Σ∀p1∃p234 , see Fig. 1,

�

(

Σ∃p234(A(p
1
))
⋂

Σ∃p234(A(p1))
)

= �Σ∃p234(A(p
1
)).

That is why, enclosing sharply

�Σ∃p234(A(p
1
)) = ([−2, 3], [−1, 1])⊤,

we enclose �Σ∀p1∃p234 in a best way, although the set

Σ∃p234(A(p1)) is unbounded. The parametric Bauer–

Skeel method for Σ∃p234(A(p
1
),p234) gives the enclo-

sure ([−11/3, 3], [−1, 1])⊤ and the 25% overestimation

of x1 is because the method cannot account well the

row-dependencies in p2. Therefore, applying (6), we co-

mpute

�

⋃

p2∈{0,1}

Σ∃p234(A(p
1
)) = ([−2, 3], [−1, 1])⊤.

For Σ∀p2∃p134 we cannot obtain an enclosure since

the assumption ρ(M) < 1 is not fulfilled.
In case of Σ∀p4∃p123 , see Fig. 2,

Σ∃p123(A(p
4
))
⋂

Σ∃p123(A(p4)) ⊂ �Σ∃p123(A(p4)).
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-3 -2 -1 1 2 3 4
x1

-2

-1

1

2

x2

-3 -2 -1 1 2 3 4
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2
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-2 -1 1 2 3
x1
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0.5

1

x2

-2 -1 1 2 3
x1

-1

-0.5

0.5

1
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-3 -2 -1 1 2 3 4
x1

-2

-1

1

2

x2

-3 -2 -1 1 2 3 4
x1

-2

-1

1

2

x2

Fig. 1 Solution sets Σ∀p1∃p234
of the linear system from Example 1 for p1 ∈ {1, 0} (blue, green) and their intersection (yellow).

Since Σ∃p123(A(p
4
)) is unbounded, we cannot find

�Σ∀p4∃p123 and approximate the latter outwardly by

�Σ∃p123(A(p4)).

Applying the Bauer–Skeel method for parametric

united solution sets, we obtain

�Σ∃p123(A(p̃4),p123) =

([−4.9161, 4.4546], [−2.7203, 2.8742])⊤.

The overestimation is due to the row-dependencies in

p1 and p2. Therefore, applying (6), we compute

�

⋃

p̃1,p̃2∈{0,1}

Σ∃p3(A(p̃1, p̃2, p3, p4)) = ([−2, 3], [−1, 1])⊤,

which is the interval hull of Σ∃p123(A(p4)).

Remark 1 The formulation of Bauer–Skeel method is in

real arithmetic, therefore its implementation in floating-

point arithmetic will not provide a guaranteed enclo-

sure, especially for intervals with very small radii or ill-

conditioned problems. All computations below based
on Bauer–Skeel method were done in rational arith-

metic to avoid uncontrolled round-off errors. Instead of

Bauer–Skeel method for bounding a parametric united

solution set one can use the parametric fixed-point it-
eration, see Popova and Krämer (2007), which provides

guaranteed enclosures of comparable quality under the

same requirement for strong regularity of the paramet-

ric matrix. In fact, most of the general-purpose methods

for bounding a parametric united solution set require
strong regularity of the parametric matrix.

5 Another Form of the Bauer–Skeel Method

Below, we derive another form of the parametric Bauer–

Skeel method under stronger assumptions.

Theorem 4 Let A(pc) be regular and define

C := A−1(pc),

x∗ := Cb(pc),

M :=
∑

k∈K

|CAk|p∆k .

If ρ(M) < 1, then every x ∈ Σp
AE satisfies

|x− x∗| ≤ (I −M)−1

(

∑

k∈E

|C(Akx
∗ − bk)|p∆k −

∑

k∈A

|C(Akx
∗ − bk)|p∆k

)

.

Proof Consider the preconditioned parametric system

C · A(p)x = C · b(p). The characterization (3) for the

preconditioned system reads

|x− x∗| = |CA(pc)x − Cb(pc)| ≤
∑

k∈E

|C(Akx− bk)|p∆k −
∑

k∈A

|C(Akx− bk)|p∆k .

For the right-hand side of the above inequality, due to

|u| − |v| ≤ |u + v| ≤ |u| + |v|
we have

∑

k∈E

|C(Akx−Akx
∗ + Akx

∗ − bk)|p∆k −
∑

k∈A

|C(Akx−Akx
∗ + Akx

∗ − bk)|p∆k ≤

|x− x∗|
∑

k∈E

|CAk|p∆k +
∑

k∈E

|C(Akx
∗ − bk)|p∆k +

|x− x∗|
∑

k∈A

|CAk|p∆k −
∑

k∈A

|C(Akx
∗ − bk)|p∆k ,

which implies

(

I −
∑

k∈K

|CAk|p∆k

)

|x− x∗| ≤
∑

k∈E

|C(Akx
∗ − bk)|p∆k −

∑

k∈A

|C(Akx
∗ − bk)|p∆k .

Since M ≥ 0 and ρ(M) < 1, we have (I − M)−1 ≥ 0

and thus, the statement of the theorem. ⊓⊔

In the special case of a united parametric solution
set, Theorem 4 has the same form as Corollary 2. In

the special case of a parametric tolerable solution set,

Theorem 4 is the following.
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Fig. 2 Solution sets Σ∀p4∃p123
of the linear system from Example 1 for p4 ∈ {−1, 1} (green, blue) and their intersection (red).

Corollary 5 Let A(pc) = A(pcA) be regular and

C := A−1(pcA),

x∗ := Cb(pc) = Cb(pcE),

M :=
∑

k∈A

|CAk|p∆k .

If ρ(M) < 1, then every x ∈ Σ
p

tol satisfies

|x− x∗| ≤

(I −M)−1

(

∑

k∈E

|Cbk|p∆k −
∑

k∈A

|CAkx
∗|p∆k

)

.

In the special case of parametric controllable solution
sets, Theorem 4 is the following.

Corollary 6 Let A(pc) = A(pcE ) be regular and

C := A−1(pcE),

x∗ := Cb(pc) = Cb(pcA),

M :=
∑

k∈E

|CAk|p∆k .

If ρ(M) < 1, then every x ∈ Σ
p

cont satisfies

|x− x∗| ≤

(I −M)−1

(

∑

k∈E

|CAkx
∗|p∆k −

∑

k∈A

|Cbk|p∆k

)

.

The application of Corollary 4 requires strong reg-

ularity of the parametric matrix A(p̃A, pE) on the do-

main pE for some p̃A ∈ BA. Theorem 4 has a stronger

requirement: strong regularity of A(p̃A, pE) on pE for all

p̃A ∈ pA, resp. for all p̃A ∈ BA. Therefore Corollary 1,
resp. Corollary 4, have a larger scope of applicability

(and a bigger computational complexity) than Theo-

rem 4. Let us compare the two approaches for bounding

parametric tolerable and controllable solution sets.

Example 2 Obtain outer enclosures of the parametric

tolerable solution set for

A(p) =

(

p1 p2 + 1
2

−2p2 p1 + 1

)

, b(q) =

(

q1
q1 − q2

)

and p1 ∈ [0, 1], p2 ∈ [ 13 , 1], q1, q2 ∈ [−1, 2]. The exact

interval hull of the parametric tolerable solution set is

([− 2
5 ,

4
5 ], [− 2

3 ,
4
3 ])⊤. Applying Corollary 5 we obtain the

enclosure

([−36.904, 37.555], [−24.80, 25.38])⊤

which overestimates the hull by more than 95%. The
application of Corollary 4 yields the interval hull. The

conservative enclosure of the tolerable solution set pro-

duced by Corollary 5 is natural. Since every parametric

tolerable solution set is a convex polyhedron (Popova,

2011), its interval hull is attained at particular end-
points of the parameters, which is the approach ex-

ploited by Corollary 4. Indeed, shrinking the interval

for p2 to [ 999
1000 , 1] the overestimation produced by The-

orem 4 is reduced to 45%, resp. 35%. On the contrary,
when we enlarge the interval for p2 the parametric ma-

trix is no more strongly regular.

While the application of Theorem 4 is not suitable

for bounding parametric tolerable solution sets, this

theorem gives a better enclosure for a parametric con-
trollable solution set than the enclosure obtained by

Corollary 4 (the intersection of the solution enclosures

obtained by Theorem 3 for all p̃A ∈ BA).

Proposition 1 Under the same assumptions, the en-

closure of the parametric controllable solution set com-
puted by Corollary 6 is a subset of the enclosure com-

puted by Corollary 4.

Proof For a fixed endpoint of a fixed solution com-

ponent, the intersection of the solution enclosures ob-

tained by Theorem 3 for all p̃A ∈ BA is attained at a
particular p̃A ∈ BA. Let us consider an upper bound

attained at a particular p̃A ∈ BA. With the notations

from Corollary 6, that particular right endpoint of the

Bauer–Skeel enclosure by Theorem 3 is

x∗ + C
∑

j∈A

δ̃jbjp
∆
j

+ (I −M)−1
∑

k∈E

∣

∣

∣CAk

(

x∗ + C
∑

j∈A

δ̃jbjp
∆
j

)∣

∣

∣p∆k .
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We estimate the right endpoint from below as

x∗ −
∑

j∈A

|Cbj |p∆j + (I −M)−1
∑

k∈E

|CAkx
∗|p∆k

− (I −M)−1
∑

k∈E

|CAk|p∆k
∑

j∈A

|Cbj |p∆j

= x∗ + (I −M)−1
∑

k∈E

|CAkx
∗|p∆k

−
(

I + (I −M)−1M
)

∑

j∈A

|Cbj |p∆j .

Using (I −M)−1 = I + (I −M)−1M , we obtain

x∗ + (I −M)−1





∑

k∈E

|CAkx
∗|p∆k −

∑

j∈A

|Cbj |p∆j



 ,

which is the right endpoint of the enclosure by Corol-

lary 6. Similarly we prove a corresponding relation be-

tween the left endpoints of the enclosures. ⊓⊔

Example 3 Consider a parametric linear system where

A(p) =

(

p1 −p2
p2 p1

)

, b(q) =

(

2q
2q

)

and p1 ∈ [0, 1
2 ], p2 ∈ [1, 3

2 ], q ∈ [1, 3
2 ]. The exact in-

terval hull of the parametric controllable solution set

is ([2, 12/5], [−2,−6/5])⊤, see Fig. 3. Applying Corol-

lary 4 we obtain the enclosure

Σ
p

cont ⊆ ([1.186, 2.902], [−2.286,−0.263])⊤,

overestimating the components of the interval hull by
more than 76%, resp. 60%. However, by Theorem 4

(Corollary 6), we obtain the enclosure

Σ
p

cont ⊆ ([1.7802, 2.8352], [−2.2198,−0.8571])⊤,

and the overestimation is 62%, resp. 41%.

Bauer–Skeel method, in any of its forms, requires

strong regularity of the parametric matrix. Strong reg-
ularity (in the present formulation ρ(M) < 1 or (I −
M)−1 ≥ 0) must be checked when implementing the

method. Since it is a sufficient condition for a para-

metric matrix to be regular, Bauer–Skeel method may

fail for some regular matrices which are not strongly
regular, see the next example.

Example 4 Consider the parametric system from Ex-

ample 3 with other domains for the parameters: p1 ∈
[ 12 ,

3
2 ], p2 ∈ [0, 1] and q ∈ [1, 2]. The parametric matrix

is regular but not strongly regular. Therefore, by Theo-

rem 4 (resp. Corollary 6), we cannot find outer bounds

for the parametric controllable solution set which is con-

nected and bounded, see Fig. 4, and has interval hull
([8/3, 2(1 +

√
2)], [0, 4])⊤.

1.5 2.5 3 3.5
x1

-3

-2.5

-2

-1.5

-1

-0.5

x2

1.5 2.5 3 3.5
x1

-3

-2.5

-2

-1.5

-1

-0.5

x2

Fig. 3 The controllable solution set for the linear system from
Example 3 represented as intersection of the united solution
sets for q = 1 (light gray) and q = 3/2 (dark gray) together
with its interval hull and its enclosures obtained by Corol-
lary 4 and Corollary 6.

3.5 4 4.5 x1

1

2

3

4

x2

3.5 4 4.5 x1

1

2

3

4

x2

Fig. 4 The parametric controllable solution set for the linear
system from Example 4.

Example 5 We look for the controllable solution set of

the parametric system from Example 3, enlarging the
domain for q to q ∈ [1, 5

2 ]. Although the parametric

matrix is strongly regular on the domain for p1, p2, the

inequality

∑

k∈E

|C(Akx
∗ − bk)|p∆k ≥

∑

k∈A

|C(Akx
∗ − bk)|p∆k

does not hold, which means that Σcont = ∅. Thus, by

Theorem 4 we not only compute enclosures of the con-

trollable solution set, but also can sometimes detect

emptiness.
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6 LP Enclosure for the Parametric Tolerable

Solution Set

Besides the united solution set, tolerable solutions are

the most studied AE solutions to interval linear sys-

tems. In the non-parametric case, there are plenty of re-

sults, see Shary (1995); Beaumont and Philippe (2001);
Shary (2002); Pivkina and Kreinovich (2006); Rohn

(2006); Wang (2008), among others. The only general-

ization to a special class of parametric tolerable solution

sets is found in Sharaya and Shary (2011).
Corollary 4 provides an enclosure to the tolerable

solution set Σ
p

tol which is much sharper than the en-

closure provided by Theorem 4. By a careful inspection

of the characterization (3) we can derive a polyhedral

approximation of Σ
p

tol.

Proposition 2 For every x ∈Σ
p

tol there are yk ∈ R
n,

k ∈ A, such that

A(pc)x +
∑

k∈A

p∆k yk ≤
∑

k∈E

|bk|p∆k + b(pc), (9a)

−A(pc)x +
∑

k∈A

p∆k yk ≤
∑

k∈E

|bk|p∆k − b(pc), (9b)

Akx ≤ yk, −Akx ≤ yk, ∀k ∈ A. (9c)

Moreover, for parametric systems involving only 1st class
existentially quantified parameters, the x solutions to

(9) form Σ
p

tol.

Proof By (3), each x ∈Σ
p

tol satisfies

|A(pc)x− b(pc)| +
∑

k∈A

|Akx|p∆k ≤
∑

k∈E

|bk|p∆k ,

or,

A(pc)x +
∑

k∈A

|Akx|p∆k ≤
∑

k∈E

|bk|p∆k + b(pc),

−A(pc)x +
∑

k∈A

|Akx|p∆k ≤
∑

k∈E

|bk|p∆k − b(pc).

Substituting yk := |Akx| we get (9). ⊓⊔

The system (9) consists of linear inequalities with
respect to x and yks, so we can employ linear program-

ming techniques to obtain lower and upper bounds for

the components of x.

Proposition 2 also shows that the parametric toler-

able solution set is a convex polyhedron for paramet-
ric linear systems involving only 1st class parameters.

This is in accordance with the results from Sharaya and

Shary (2011); Popova (2011).

Linear programming (LP) techniques are well stud-
ied for bounding non-parametric AE solution sets, see

Beaumont and Philippe (2001). Proposition 2 general-

izes the LP approach for parametric tolerable solution

sets and provides exact bounds when the involved ∃-

parameters are only of 1st class. Recall that a para-

metric matrix A(p) is row-independent if for every k =

1, . . . ,K and every i = 1, . . . , n the following set has

cardinality at most one:

{j ∈ {1, . . . , n} | (Ak)ij 6= 0}.

Due to the equality relation in (Popova, 2011, eq. (5.3)),
inner and outer inclusions of a tolerable solution set,

where the matrix involves only row-independent param-

eters and the right-hand side vector involves only 1st

class parameters, can be computed by methods for the

non-parametric case. Therefore, Proposition 2 is partic-
ularly useful for linear systems involving row-dependent

parameters in the matrix and right-hand side vector

with independent components.

By using a standard linear programming technique

to calculate lower and upper bounds on x solutions of

(9), we have to solve 2n linear programs, each of them
with n(1 + Card(A)) variables and 2n(1 + Card(A))

constraints. For a non-parametric tolerable system Ax =

b, this number is too conservative. The system (9) may

be furhter reduced (Fiedler et al, 2006; Rohn, 1986) and

the interval hull of the tolerable solution set is deter-
mined by solving 2n linear programs, each of them with

only 2n variables and 4n constraints. If we call Corol-

lary 1 to compute an enclosure and linear programming

to calculate the subordinate interval hulls, then we have
to solve 2n ·2Card(A) linear programs, each with n vari-

ables and 2n constraints.

Example 6 Motivated by Example 5.2, Popova (2011),
let

A(1)(p) =

(

p1 p2
p3 p1 + 1

)

, A(2)(r) =

(

r r + 1
2

−2r r + 1

)

,

A(3)(s) =

(

s1 s1 + 1
2

−2s2 s2 + 1

)

, b(q) =

(

q1
q1 − q2

)

,

where p1, r, s1, s2 ∈ [0, 1], p2 ∈ [ 12 ,
3
2 ], p3 ∈ [−2, 0] and

q1, q2 ∈ [−1, 2]. Relaxing the parametric dependencies

in the interval systems A(1)(p)x = b(q), A(2)(r)x =
b(q), and A(3)(s)x = b(q) we get a standard interval

system Ax = b drawing

(

[0, 1] [ 12 ,
3
2 ]

[−2, 0] [1, 2]

)

x =

(

[−1, 2]
[−3, 3]

)

.

Consider first the interval systems A(1)(p)x = b(q) and

A(1)(p)x = b. Applying Corollary 4 we obtain

Σtol(A
(1)(p), b(q),p, q) ⊆ ([− 2

5 ,
4
5 ], [− 2

3 ,
4
3 ])⊤,

Σtol(A
(1)(p), b,p) ⊆ ([−1.167, 1.7], [−0.667, 1.334])⊤.
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Fig. 5 The tolerable solution sets for the linear systems
A(1)(p)x = b(q) (dark gray) and A(1)(p)x = b (light gray)
from Example 6 together with the enclosing boxes obtained
by Corollary 4.

The two parametric AE solution sets and the corre-

sponding enclosing boxes are presented on Fig. 5. The-
orem 4 cannot be applied since the parametric matrix

is not strongly regular. A linear programming approach

based on Proposition 2 gives

Σtol(A
(1)(p), b(q),p, q) ⊆ ([−0.4, 0.8], [−1, 1.286])⊤,

Σtol(A
(1)(p), b,p) ⊆ ([−1.3, 1.7], [−1, 1.4])⊤,

Σtol(A, b) ⊆ ([−1.167, 1.625], [−0.667, 1.334])⊤,

The LP enclosures to Σtol(A
(1)(p), b(q),p, q) and

Σtol(A
(1)(p), b,p) are not optimal since the system in-

volves a 2nd class existentially quantified parameter p1.

Since the matrix A(1)(p) involves only row-independent

parameters,

Σtol(A
(1)(p), b,p) =Σtol(A, b) ⊆

([−1.167, 1.625], [−0.667, 1.334])⊤,

which is the interval hull.

Now, we consider the systems A(2)(r)x = b(q) and
A(2)(r)x = b. For these systems Corollary 4 gives the

exact interval hulls

Σtol(A
(2)(r), b, r) ⊆ ([−1.3, 1.7], [−1, 1.4])⊤,

Σtol(A
(2)(r), b(q), r, q) ⊆ ([−0.4, 0.8], [−1, 1.4])⊤.

Proposition 2 gives the same enclosures.

For the parametric interval system A(3)(s)x = b,

Corollary 4 yields the exact hull

Σtol(A
(3)(s), b, s) ⊆ ([−1.3, 1.7], [−1, 1.4])⊤.

Since all parameters are of 1st class only, Proposition 2

gives the same result.

7 Conclusion

This paper presents a first attempt to propose and in-
vestigate methods providing outer bounds for paramet-

ric AE solution sets. The methods are general ones —

they are applicable to linear systems involving arbitrary

linear dependencies between interval parameters; the

parametric AE solution sets may be defined so that
A- and E-parameters are mixed in both sides of the

equations. Being the most general, these methods are

applicable to the special cases of non-parametric AE

solution sets, in particular non-parametric tolerable or
controllable solution sets.

From a methodological point of view, the meth-

ods we consider are based on a simple (though not

always complete) Oettli-Prager-type description (3) of

the parametric AE solution sets. This allows us to ob-
tain bounds for the parametric AE solution sets either

by bounding only parametric united solution sets or by

using only real arithmetic and the properties of classical

interval arithmetic. This makes the main methodologi-

cal and computational difference between the method-
ology employed in this paper and the methodology that

is used so far for estimating non-parametric AE solu-

tion sets (Shary, 1995, 1997, 2002; Goldsztejn, 2005;

Goldsztejn and Chabert, 2006), based on the arithmetic
of proper and improper intervals (called Kaucher inter-

val arithmetic).

The methods we present here provide outer bounds

for non-empty, connected and bounded parametric AE

solution sets. The first approach intersects inclusions of
parametric united solution sets for all combinations of

the end-points of A-parameters. This approach has ex-

ponential computational complexity, however provides

very sharp estimations of the AE solution sets, espe-

cially for tolerable solution sets and for general para-
metric AE solution sets when combined with sharp

bounds for the linear E-parameters. The second method

we discuss is a parametric AE generalization of the

single-step Bauer–Skeel method used so far for bound-
ing parametric united solution sets. In the special cases

of non-parametric (tolerable, controllable) AE solution

sets, this new method expands the range of available

methods for outer enclosures. However, while most of

the known methods for enclosing non-parametric AE
solution sets are based on Kaucher interval arithmetic,

the present method is based on the classical interval

arithmetic. Also, it is a direct method and therefore

a fast one. Finally, for parametric tolerable solution
sets, we proposed a linear programming based method,

which utilizes a polyhedral approximation of the set.

When each existentially quantified parameter is involved
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in only one equation of the system, this method yields

the interval hull of the parametric AE solution set.

We demonstrated that the approach intersecting en-

closures of parametric united solution sets for all combi-

nations of the end-points of A-parameters is applicable

to a larger class of parametric AE solution sets com-
pared to the parametric Bauer–Skeel AE -method. De-

spite its computational complexity, the first approach

may be more suitable for bounding tolerable solution

set of large-scale parametric systems if one exploits dis-
tributed computations and modern methods for solving

large-scale point systems which do not invert the ma-

trix. On the other hand, the parametric Bauer–Skeel

AE method provides better bounds for the parametric

controllable solution sets. This method implies a simple
necessary (sometimes and sufficient) condition for any

parametric AE solution set to be non-empty.

The present formulation of the parametric Bauer–

Skeel AE method is in real arithmetic, therefore its im-

plementation in floating-point arithmetic will not pro-
vide a guaranteed enclosure, unless combined with suit-

ably chosen directed rounding. A self-verified method,

which corresponds to the present parametric Bauer–

Skeel AE method, and provides guaranteed outer bounds

for nonempty connected and bounded parametric AE
solution sets will be presented in a separate paper.

The parametric Bauer–Skeel AE method and the in-

tersection of enclosures obtained by a self-verified meth-

od can be used for bounding only connected and bound-

ed solution sets. However, the interval Gauss-Seidel me-

thod, where the interval division is extended to allow
division by interval containing zero (Goldsztejn and

Chabert, 2006), can be used to enclose bounded discon-

nected solution sets. So, a parametric generalization of

the Gauss-Seidel method, may be helpful sometimes.

The parametric Bauer–Skeel AE method and most
of the general-purpose parametric self-verified meth-

ods do not provide sharp enclosures of the paramet-

ric united solution set when the system involves row-

dependent parameters. A parametric generalization of

the right preconditioning process, considered in Gold-
sztejn (2005) for non-parametric AE systems, may be

also helpful.

Searching best estimations of parametric AE solu-

tion sets one has to take into account the inclusion re-

lations between such solution sets (Popova, 2011), and
the properties of the methods.
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