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Abstract

In this paper we formulate basic results on outer generalized in-
verses of elements in rings. We characterize elements which have the
same idempotents related to their particular outer generalized inverses
and investigate positive generalized inverses in C∗-algebras.
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1 Introduction

Let R denote an arbitrary ring and let a ∈ R. We say that b ∈ R is an outer
generalized inverse of a provided that bab = b 6= 0 holds. For such an a we say that
it is outer regular. In this case ab and ba are idempotents, so called idempotents of
a corresponding to its outer generalized inverse b. In general, an arbitrary a ∈ R
need not to be outer regular, even in the case when R is a Banach algebra [3].
On the other hand, it is a consequence of the Hahn-Banach theorem that every
non-zero bounded linear operator on a Banach space is outer regular. The detailed
treatment of outer generalized inverses of operators on Banach and Hilbert spaces
can be found in [1], [13] and [14].

We say that c ∈ R is an inner generalized inverse of a ∈ R, if aca = a holds.
In this case a is called inner regular (or relatively regular). If c is both inner and
outer generalized inverse of a, then c is a reflexive generalized inverse of a.
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If c is an inner generalized inverse of a, then cac is a reflexive generalized inverse
of a. Hence, inner regularity of a implies the outer regularity of a. Also, if b is an
outer generalized inverse of a, then a is an inner generalized inverse of b.

The Drazin inverse of a ∈ R (see [7]) is the unique aD ∈ R (in the case when
it exists) such that the following hold:

aDaaD = aD, aaD = aDa, [a(aaD − 1)]n = 0,

for some non-negative integer n. The least such n is called the Drazin index of a,
denoted by ind (a). Obviously, ind (a) = 0 if and only if a is invertible and in this
case aD = a−1. If ind (a) ≤ 1, then aD is known as the group inverse, denoted by
a#.

If there exists aD, then a is called Drazin invertible.
We use A to denote a complex Banach or C∗-algebra with the unit 1.
In the case when A is a complex Banach algebra with the unit 1, the element

ad is the generalized Drazin inverse, or Koliha-Drazin inverse of a ∈ A (see [10]),
provided that the following hold:

adaad = ad, aad = ada, [a(aad − 1)] is quasinilpotent.

Quasinilpotent elements in a ring R are defined in the following way (see [8]).
For a ∈ R consider the following sets of commutators

comm(a) = {b ∈ R : ab = ba}, comm2(a) = {b ∈ R : bc = cb for all c ∈ comm(a)}.
An element a ∈ R is quasinilpotent, if 1 + xa is invertible for all x ∈ comm(a).

Hence, an element b ∈ R is the generalized Drazin inverse of a ∈ R, if the
following is satisfied:

b ∈ comm2(a), bab = b a(ab− 1) is quasinilpotent.

Here b must double commute with a to ensure its uniqueness. In Banach algebras
it is enough to assume simple commutativity. Such an b is denoted by ad.

If ad exists, we say that a is generalized Drazin invertible.
An element a ∈ R has the generalized Drazin inverse, if and only if there exists

the element p = p2 ∈ R, satisfying the conditions:

p ∈ comm2(a), ap is quasinilpotent and a + p is invertible.

The element p is called the spectral idempotent of a, denoted by aπ.
If A is a complex Banach algebra with the unit 1, then a ∈ A is generalized

Drazin invertible if and only if 0 is not the point of accumulation of the spectrum
of a. In this case aπ is the spectral idempotent of a corresponding to the set {0}.

If R is a ring with involution, then the Moore-Penrose inverse of a ∈ R (see
[16]) is the unique a† ∈ R (in the case when it exists), such that the following hold:

aa†a = a, a†aa† = a†, (aa†)∗ = aa†, (a†a)∗ = a†a.

2



If a† exists, then a is called Moore-Penrose invertible.
In the case when a ∈ A, where A is a C∗-algebra, the element a† exists if and

only if there exists some c ∈ A such that aca = a ([9] and [12]).
The Drazin and the Moore-Penrose inverse are particular outer generalized

inverses. For the detailed treatment of the Drazin and Moore-Penrose inverse in
Banach and C∗-algebras see [11]. Notice that the Moore-Penrose and the group
inverse are reflexive generalized inverses.

In this paper we investigate generalized inverses with prescribed idempotents.
In Section 2 we we find necessary and sufficient conditions for a, p = p2, q = q2 ∈ R,
such that there exists an outer generalized inverse b ∈ R of a, satisfying ba = p and
1−ab = q. In Section 3 selfadjoint and positive generalized inverses in C∗-algebras
are investigated. A result from [15] is extended to a more general setting. In
Section 4 we consider two different elements a, c ∈ R and their generalized inverses
a1, c1 ∈ R, such that the corresponding idempotents are equal: aa1 = cc1 and
a1a = c1c. Thus, some recent results from [4], [5], [6], [12], [17], [18] and [19] are
extended.

2 Outer generalized inverses with prescribed idem-
potents

Let X and Y be Banach spaces and let L(X, Y ) denote the set of all bounded
operators from X to Y . For A ∈ L(X, Y ) let B ∈ L(Y, X) be its outer generalized
inverse, R(B) = T and N (B) = S. Then we usually write B = A

(2)
T,S . If T and S

are given subspaces of X and Y , then it is easy to verify that A
(2)
T,S exists if and only

if the following hold: T and S, respectively, are closed and complemented subspaces
of X and Y , the reduction AT : T → A(T ) is invertible and A(T )⊕ S = Y . In this
case A

(2)
T,S is unique. The analogous result for elements of a ring is Theorem 2.1

We use R• to denote the set of all idempotents of R.
Definition 2.1 Let a ∈ R and p, q ∈ R•. An element b ∈ R satisfying

bab = b, ba = p, 1− ab = q,

will be called a (p, q)-outer generalized inverse of a, written a
(2)
p,q = b. (The unique-

ness of a
(2)
p,q is provided in the following theorem.)

Theorem 2.1 Let a ∈ R and p, q ∈ R•. Then the following statements are equiv-
alent:

(1) a
(2)
p,q exists;

(2) (1− q)a = (1− q)ap and there exists some b ∈ R such that pb = b, bq = 0,
bap = p and ab = 1− q.

Moreover, if a
(2)
p,q exists, then it is unique.
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Proof. (1)⇒(2): If a
(2)
p,q exists, then we can take b = a

(2)
p,q.

(2)⇒(1): We compute in the following way:

ba = pb(1− q)a = pb(1− q)ap = bap = p and bab = pb = p.

To prove the uniqueness, suppose that there exist two outer generalized inverses
b, c ∈ R of a, such that ba = ca = p, ab = ac = 1− q. Then we have

c = cac = cab = b. 2

If a
(2)
p,q satisfies a = aa

(2)
p,qa, then a

(2)
p,q = a

(1,2)
p,q is called a (p, q)-reflexive general-

ized inverse of a. It follows that a
(1,2)
p,q is also unique in the case when it exists.

If a ∈ R is generalized Drazin invertible and p = aπ is the spectral idempotent
of a, then ad = a

(2)
1−p,p.

If a ∈ R is Moore-Penrose invertible, p = a†a and q = 1− aa†, then a† = a
(2)
p,q.

(p, q)-outer generalized inverses are close related to a direct sum of a ring in-
volving principal ideals and annihilators. For u ∈ R, the right annihilator of u is
defined as follows: u◦ = {x ∈ R : ux = 0}.

Let a, p = p2, q = q2 ∈ R and b = a
(2)
p,q. If x ∈ R is arbitrary, then x =

qx + (1 − q)x. Obviously, bqx = b(1 − ab)x = 0 and qx ∈ b◦. Also, q(1 − q)x = 0
and (1− q)x ∈ q◦. On the other hand, if y ∈ b◦∩ q◦, then by = 0 and (1−ab)y = 0,
implying y = 0. Hence, R = b◦ ⊕ q◦. Analogously, the decomposition R = bR⊕ p◦

can be proved.
In the following theorem we give a generalization of the well-known result for

the Moore-Penrose inverse of a bounded linear operator with a closed range on
Hilbert spaces (see, for example, [2]).

Theorem 2.2 Let a, c ∈ A and p, q ∈ A• such that there exist a
(2)
p,q and c

(1,2)
1−q,1−p.

Then
ind (ac) ≤ 1 and a(2)

p,q = c(ac)# = cc
(1,2)
1−q,1−pa

(2)
p,q.

Proof. For the convenience we write a′ = a
(2)
p,q and c′ = c

(1,2)
1−q,1−p.

First we prove that c′a′ = (ac)#. Since a′a = p, aa′ = 1 − q, c′c = 1 − q and
cc′ = p, we get the following:

c′a′ac = c′pc = c′cc′c− p = aa′ = apa′ = acc′a′,

acc′a′ac = apc = acc′c = ac and c′a′acc′a′ = c′pa′c′a′aa′ = c′a′.

Hence, ind (ac) ≤ 1 and (ac)# = c′a′.
Finally, we have

c(ac)# = cc′a′ = pa′ = a′aa′ = a′. 2
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3 Positive generalized inverses and applications

Let H be a Hilbert space and let L(H) denote the set of all bounded operators
on H. For A ∈ L(H) we use R(A) and N (A), respectively, to denote the range
and the kernel of A. It is well-known that A† exists if and only if R(A) is closed.
Moreover, if A is selfadjoint, then A† is selfadjoint also and A† = A#.

For outer generalized inverses the following result can be proved.

Theorem 3.1 Let R be a ring with involution, a = a∗ ∈ R and p, q ∈ R•, such
that a

(2)
p,q exists and p + q = 1. Then the following statements are equivalent:

(1) a
(2)
p,q is selfadjoint;

(2) p = p∗ and q = q∗.

Proof. Let a = a∗ and a′ = a
(2)
p,q.

(1)⇒(2): Suppose that a′ = (a′)∗. Then

p = a′a = (aa′)∗ = (1− q)∗ = p∗ and q = (1− aa′) = (1− a′a)∗ = (1− p)∗ = q∗.

(2)⇒(1): Suppose that p = p∗ and q = q∗. Obviously, (a′)∗ is an outer gener-
alized inverse of a. We have

(a′)∗a = (aa′)∗ = (1− q)∗ = p = a′a and a(a′)∗ = (a′a)∗ = 1− q = aa′.

Since a′ = a
(2)
p,q is unique, it follows that a′ = (a′)∗. 2

For Hilbert space operators Theorem 3.1 can be expressed as follows.

Theorem 3.2 Let H be a Hilbert space, let A ∈ L(H) be selfadjoint and let T and
S be subspaces of H such that A

(2)
T,S exists. Then A

(2)
T,S is selfadjoint if and only if

T = S⊥.

We prove the following result, concerning the positivity of a and a
(2)
p,q in a C∗-

algebra. Let (·, ·) denote the inner product in a Hilbert space.

Theorem 3.3 Let A be a complex C∗-algebra with the unit 1. Let a ∈ A and
p, q ∈ A• such that p + q = 1 and a

(2)
p,q exist. Then the following statements are

equivalent:

(1) a
(2)
p,q ≥ 0;

(2) p = p∗ and q = q∗.

Proof. It is enough to prove the implication (2)⇒(1). Let J : A → B ⊂ L(H) denote
the Gelfand-Naimark-Segal isometric ∗-isomorphism, where B is a C∗-subalbegra
of L(H) for some Hilbert space H and J(1) = I is the identity operator on H.
Denote a′ = a

(2)
p,q,. Since a ≥ 0, it follows that J(a) ≥ 0 in B and also in L(H). By
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Theorem 3.1 it follows that J(a′) is selfadjoint. Let T = R(J(p)) and S = R(J(q)).
Obviously, T = S⊥ and, by the uniqueness of the outer generalized inverse with
prescribed range and kernel, J(a′) = (J(a))(2)T,S and the last operator is selfadjoint.
For all x ∈ H we get

((J(a))(2)T,Sx, x) = ((J(a))(2)T,SJ(a)(J(a))(2)T,Sx, x) = (J(a)(J(a))(2)T,Sx, (J(a))(2)T,Sx) ≥ 0.

Hence, (J(a))(2)T,S ≥ 0 in L(H). Since the spectrum of (J(a))(2)T,S in B coincides with

its spectrum in L(H), it follows that J(a′) = (J(a))(2)T,S ≥ 0 in B. It follows that
a′ ≥ 0 in A. 2

As an application, we extend the result of Ogawa [15].

Theorem 3.4 Let A be a C∗-algebra with the unit 1, let a ∈ A and p, q ∈ A• be
such that a

(1,2)
p,q exists. If a ≥ 0 and a

(1,2)
p,q ≥ 0, then the following statements are

equivalent:

(1) (a + bb∗)(1,2)
p,q = a

(1,2)
p,q − a

(1,2)
p,q b(1 + b∗a(1,2)

p,q b)−1b∗a(1,2)
p,q ;

(2) aa
(1,2)
p,q b = b.

Proof. Let 0 ≤ a
(1,2)
p,q = a′ = t∗t for some t ∈ A. Then b∗a′b = (tb)∗tb ≥ 0 and

1+b∗a′b is invertible. Hence, y = a′−a′b(1+b∗a′b)−1b∗a′ exists. Denote x = a+bb∗

and we have

xy = aa′ + [b(1 + b∗a′b)− aa′b− bb∗a′b](1 + b∗a′b)−1b∗a′

= aa′ + (b− aa′b)(1 + b∗a′b)−1b∗a′.

and

yx = a′ + a′b(1 + b∗a′b)−1[(1 + b∗a′b)b∗ − b∗a′a− b∗a′bb∗]
= a′a + a′b(1 + b∗a′b)−1(b∗ − b∗a′a).

Hence, yxy = y and

xyx = a + aa′bb∗ + (b− aa′b)(1 + b∗a′b)−1(b∗a′a− b∗ + b∗ + b∗a′bb∗)
= a + bb∗ + (b− aa′b)(1 + b∗a′b)−1(b∗a′a− b∗).

(2)⇒(1): If aa′b = b, then obviously y = x
(1,2)
p,q .

(1)⇒(2): Suppose that y = x
(1,2)
p,q . Then

0 = (b− aa′b)(1 + b∗a′b)−1(b∗a′a− b∗)
= (b− aa′b)(1 + b∗a′b)−1/2[(b− aa′b)(1 + b∗a′b)−1/2]∗.

Hence, (b− aa′b)(1 + b∗a′b)−1/2 = 0 and aa′b = b. 2

As a corollary, we get the following result.
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Corollary 3.1 Assume that the conditions from Theorem 3.4 are satisfied and let
c ∈ A be positive and invertible. Then the following statements are equivalent:

(1) (a + bcb∗)(1,2)
p,q = a

(1,2)
p,q − a

(1,2)
p,q b(c−1 + b∗a(1,2)

p,q b)−1b∗a(1,2)
p,q ;

(2) aa
(1,2)
p,q b = b.

Proof. We have to take b1 = bc1/2 and then replace b in Theorem 4.2 by b1. 2

4 Elements with equal idempotents related to outer
generalized inverses

In this section we characterize elements with equal idempotents related to their
outer generalized inverses. Notice that in [4] Castro-González, Koliha and Wei
characterized matrices with the same eigenprojections, i.e. the same projections
corresponding to the Drazin inverses of these matrices. They extended these results
to closed operators on Banach spaces in [5]. Results of this type are used to prove
error bounds for perturbations of operators with the same eigenprojections. Finally,
in [12] Koliha and Patricio proved analogous results for Drazin invertible elements
of a ring.

We need the following auxiliary result.

Lemma 4.1 Let c, s ∈ R satisfy cs = sc and s ∈ R•. Then c is invertible in R is
and only if cs is invertible in sRs and c(1− s) is invertible in (1− s)R(1− s). In
this case

c−1 = [cs]−1
sRs + [c(1− s)]−1

(1−s)R(1−s).

Now we prove the main result of this section.

Theorem 4.1 Let a ∈ R and let p, q ∈ R• be such that a
(2)
p,q exists. Then for b ∈ R

the following statements are equivalent.

(a) There exists the generalized inverse b
(2)
p,q ∈ R

(b) ba
(2)
p,qa = aa

(2)
p,qb and there exists the generalized inverse (ba(2)

p,qa)(2)p,q.

(c) ba
(2)
p,qa = aa

(2)
p,qb and 1 + a

(2)
p,q(b− a) is invertible.

(d) ba
(2)
p,qa = aa

(2)
p,qb and 1 + (b− a)a(2)

p,q is invertible.

Moreover, if previous statements are valid, then

b(2)
p,q = [1 + a(2)

p,q(b− a)]−1a(2)
p,q = a(2)

p,q[1 + (b− a)a(2)
p,q]

−1.

Proof. (a)⇒(b): We immediately obtain ba
(2)
p,qa = bb

(2)
p,qb = aa

(2)
p,qb. We also have

b(2)
p,q(ba

(2)
p,qa)b(2)

p,q = b(2)
p,q(bb

(2)
p,qb)b

(2)
p,q = b(2)

p,q.
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From
b(2)
p,q(ba

(2)
p,qa) = b(2)

p,qbb
(2)
p,qb = b(2)

p,qb = p

and
(ba(2)

p,qa)b(2)
p,q = bb(2)

p,qbb
(2)
p,q = bb(2)

p,q = 1− q

we conclude that the equality (ba(2)
p,qa)(2)p,q = b

(2)
p,q holds.

(b)⇒(a): Denote c = (ba(2)
p,qa)(2)p,q. We have cba

(2)
p,qa = p = a

(2)
p,qa and ba

(2)
p,qac =

1− q = aa
(2)
p,q = aa

(2)
p,qbc. Hence, we obtain

cbc = c(ba(2)
p,qac)bc(ba(2)

p,qac)

= caa(2)
p,q(ba

(2)
p,qac) = caa(2)

p,q

= caa(2)
p,qbc = c.

Also, we have
cb = cba(2)

p,qacb = caa(2)
p,qb = cba(2)

p,qa = p

and
bc = bcba(2)

p,qac = ba(2)
p,qac = 1− q.

It follows that b
(2)
p,q = (ba(2)

p,qa)(2)p,q.
[(a) and (b)] ⇒(c): We compute

(1 + a(2)
p,qb− a(2)

p,qa)(b(2)
p,qa + 1− a(2)

p,qa) = b(2)
p,qa + 1− a(2)

p,qa + a(2)
p,qbb

(2)
p,qa

+a(2)
p,qb− a(2)

p,qba
(2)
p,qa− a(2)

p,qab(2)
p,qa− a(2)

p,qa + a(2)
p,qaa(2)

p,qa

= 1.

Analogously, (b(2)
p,qa + 1 − a

(2)
p,qa)(1 + a

(2)
p,qb − a

(2)
p,qa) = 1 and consequently (1 +

a
(2)
p,q(b− a))−1 = b

(2)
p,qa + 1− a

(2)
p,qa.

(c)⇒(a): Notice that we have

c = 1 + a(2)
p,q(b− a) = 1− a(2)

p,qa + a(2)
p,qa[a(2)

p,qb]a
(2)
p,qa.

From Lemma 4.1 we know that a
(2)
p,qa[a(2)

p,qb]a
(2)
p,qa = a

(2)
p,qb is invertible in a

(2)
p,qaRa

(2)
p,qa =

R1. Denote

d = c−1a(2)
p,q =

(
1− a(2)

p,qa + [a(2)
p,qa(a(2)

p,qb)a
(2)
p,qa]−1

R1

)
a(2)

p,q = [a(2)
p,qa(a(2)

p,qb)a
(2)
p,qa]−1

R1
a(2)

p,q.

We prove d = b
(2)
p,q. Notice that

dbd = [a(2)
p,qb]

−1
R1

a(2)
p,qb[a

(2)
p,qa(a(2)

p,qb)a
(2)
p,qa]−1

R1
a(2)

p,q = d.

Also,
db = a(2)

p,qa
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and
bd = b[a(2)

p,qb]
−1
R1

a(2)
p,q = aa(2)

p,qb[a
(2)
p,qb]

−1
R1

a(2)
p,q = aa(2)

p,q.

Finally, if (a), (b) and (c) be satisfied, form the part (c)⇒(a) it follows that

(1 + a(2)
p,q(b− a))−1a(2)

p,q = b(2)
p,q.

The proof of all cases involving the part (d) are similar. 2

If a
(2)
p,q and b

(2)
p,q exist, then a = b−u = b−(b−a) is called the (p, q)-splitting of a

(see [6], [17], [18] and [19] for the notion of {T, S}-splitting of an operator, induced
by its outer generalized inverse with prescribed range and kernel). The generalized
condition number of a is defined as: κp,q(a) = ‖a‖‖a(2)

p,q‖.
We are able to prove the following result.

Theorem 4.2 Let a, b ∈ R and let p, q ∈ R• be such that a
(2)
p,q and b

(2)
p,q exist. Then

the following hold:

(a) a
(2)
p,q − b

(2)
p,q = b

(2)
p,q(b− a)a(2)

p,q = a
(2)
p,q(b− a)b(2)

p,q.

(b) If R is a Banach algebra and ‖a(2)
p,q‖‖(b− a)‖ < 1, then

‖a(2)
p,q(b− a)‖

κp,q(a)(1 + ‖a(2)
p,q‖‖b− a‖)

≤ ‖b(2)
p,q − a

(2)
p,q‖

‖a(2)
p,q‖

≤ ‖a(2)
p,q(b− a)‖

1− ‖a(2)
p,q(b− a)‖

≤ κp,q(a)‖b− a‖/‖a‖
1− κp,q(a)‖b− a‖/‖a‖ .

(c) If R is a normed algebra, then

‖a(2)
p,q‖

1 + ‖q(2)
p,q(b− a)‖

≤ ‖b(2)
p,q‖ ≤

‖a(2)
p,q‖

1− ‖a(2)
p,q(b− a)‖

.

Proof. The proof of (a) is elementary.
To prove (b), notice that from Theorem 4.1 we have the following:

b(2)
p,q − a(2)

p,q = (1 + a(2)
p,q(b− a))−1a(2)

p,q − a(2)
p,q

=

( ∞∑

k=0

(−1)k(a(2)
p,q(b− a))k − 1

)
a(2)

p,q

=
∞∑

k=1

(−1)k(a(2)
p,q(b− a))ka(2)

p,q.

Thus, we obtain the second and the third inequality of (b).
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To prove the first inequality of (b), we compute:

a(2)
p,q(b− a) = a(2)

p,qb− a(2)
p,qa

= a(2)
p,qb− b(2)

p,qb = (a(2)
p,q − b(2)

p,q)b = a(2)
p,q(b− a)b(2)

p,qb

= a(2)
p,q(b− a)a(2)

p,qa = a(2)
p,q(b− a)a(2)

p,q(1 + (b− a)a(2)
p,q)

−1(1 + (b− a)a(2)
p,q)a

= a(2)
p,q(b− a)b(2)

p,q(1 + (b− a)a(2)
p,q)a

= (a(2)
p,q − b(2)

p,q)(1 + (b− a)a(2)
p,q)a

The first inequality of (b) follows immediately.
(c) This part is elementary. 2
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University of Nǐs, P.O. Box 224, 18000 Nǐs, Serbia
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