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The numerical flow prediction of highly complex flow systems, such as the aerothermal flow through an entire

aircraft gas turbine engine, requires the application of multiple specialized flow solvers, which have to run simulta-

neously in order to capture unsteady multicomponent effects. The different mathematical approaches of different

flow solvers, especially large eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) flow solvers,

pose challenges in the definition of boundary conditions at the interfaces. Here, a method based on a virtual body

force is proposed to impose Reynolds-averaged velocity fields near the outlet of an LES flow domain in order to

take downstream flow effects computed by a RANS flow solver into account. This method shows good results in the

test case of a swirl flow, where the influence of a flow contraction downstream of the LES domain is represented

entirely by the Reynolds-averaged velocity field at the outlet of the LES domain.

I. Motivation

N UMERICAL simulations of complex large-scale flow systems
must capture a variety of physical phenomena in order to pre-

dict the flow accurately. Currently, many flow solvers are specialized
to simulate one part of a flow system effectively, but are either in-
adequate or too expensive to be applied to a generic problem.

As an example, the aerothermal flow through a gas turbine engine
can be considered. In the compressor and the turbine section, the
flow solver has to be able to handle the moving blades, model the
wall turbulence, and predict the pressure and density distributions
properly. This can be done efficiently by a flow solver based on the
Reynolds-averaged Navier–Stokes (RANS) approach. On the other
hand, the flow in the combustion chamber is governed by large-
scale turbulence, complex mixing processes, chemical reactions,
and the presence of fuel spray. Experience shows that these phe-
nomena require an unsteady approach.1 Hence, the use of a large
eddy simulation (LES) flow solver is desirable.

Although many design problems of a single-flow passage can be
addressed by separate computations, only the simultaneous com-
putation of all parts can guarantee the proper prediction of multi-
component phenomena, such as compressor/combustor instability
and combustor/turbine hot-streak migration. Therefore, a promising
strategy for performing full aerothermal simulations of gas turbine
engines is the use of a RANS flow solver for the compressor sec-
tions, an LES flow solver for the combustor, and again a RANS flow
solver for the turbine section (Fig. 1).

Previous work has established the communication and protocols
for two different flow solvers running simultaneously to exchange
flow data on the interfaces.2−4 The processing of the obtained data
to meaningful boundary conditions is discussed here for the LES
outflow boundary.

II. Interface Boundary Conditions

The simultaneous computation of the flow in all parts of a gas
turbine with different flow solvers requires an exchange of infor-
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mation at the interfaces of the computational domains of each part.
The necessity of information exchange in the flow direction from
the upstream to the downstream flow solver is self-explanatory:
the flow in a passage is strongly dependent on mass flux, velocity
vectors, and temperature at the inlet of the domain. However, be-
cause the Navier–Stokes equations are elliptic in subsonic flow, the
downstream flow conditions can have a substantial influence on the
upstream flow development. This can easily be imagined by con-
sidering that, for instance, a flow blockage in the turbine section of
the gas turbine can determine and even stop the mass flow through
the entire engine. This means that the information exchange at each
interface has to go in both downstream and upstream directions.

Considering an LES flow solver computing the flow in the com-
bustor, information on the flowfield has to be provided to the RANS
flow solver computing the turbine as well as to the RANS flow solver
computing the compressor; at the same time, the LES solver has to
obtain flow information from both RANS flow solvers (Fig. 2). The
coupling can be done using overlapping computational domains
for the LES and RANS simulations. For the example of the com-
bustor/turbine interface this would imply that inflow conditions for
RANS will be determined from the LES solution at the beginning
of the overlap region, and correspondingly the outflow conditions
for LES are determined from the RANS solution inside the overlap
region.

However, the different mathematical approaches of the different
flow solvers make the coupling of the flow solvers challenging.
Because LES resolves large-scale turbulence in space and time,
the time steps between two iterations are relatively small. RANS
flow solvers average all turbulent motions over time and predict
ensemble averages of the flow. Even when a so-called unsteady
RANS approach is used, the time step used by the RANS flow
solver is still usually much larger than that for an LES flow solver.

The specification of boundary conditions for RANS from LES
data is relatively straightforward. The LES data can be averaged over
time and used as boundary condition for the RANS solver. The prob-
lem of specifying inflow conditions for LES from upstream RANS
data is similar to that of specifying LES inflow conditions from ex-
perimental data, which are usually given in time-averaged form, and
has therefore been investigated in some detail. A method that has
been successfully applied in the past is, for instance, to generate a
time-dependent database for inflow velocity profiles by performing
a separate LES simulation, in which virtual body forces are applied
to achieve the required time-averaged solution.5 Current investiga-
tions aim to adapt this method to render the mean flow statistics
flexible in order to take unsteady RANS solutions into account.6,7

In the present study the remaining flux of information from a
downstream RANS computation to an upstream LES computation
is investigated. LES computations have already shown that the flow
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Fig. 1 Gas turbine engine.

Fig. 2 Gas turbine combustor with interfaces.

can be sensitive to the outflow conditions.8,9 The outflow conditions
for LES have to be specified so that the time-averaged mean values
of all computed quantities match the RANS solution at a given
plane, but the instantaneous solution at the outflow still preserves
the turbulent fluctuations.

III. Outflow Boundary Treatment

A natural choice to ensure a transfer of flow information from
the downstream domain to the upstream domain would be to pre-
scribe the outflow pressure distribution. However, modern LES flow
solvers are often based on a low-Mach-number formulation. With
this approximation, acoustic pressure fluctuations are neglected and
the hydrodynamic pressure variations are determined by a Poisson
equation. In this formulation, at the outflow, conditions are deter-
mined by the so-called convective outflow condition

∂φ

∂t
+ uc

∂φ

∂n
= 0 (1)

where φ is any scalar or velocity component, uc is the convective
velocity, and n is the coordinate in the direction of the outward nor-
mal at the boundary. The pressure at the outlet adjusts accordingly
to the velocity distribution determined by the Poisson equation and,
hence, it cannot be prescribed.

The method that will be investigated in the current study is to
add virtual body forces to the right-hand side of the momentum
equations inside the overlap region of the computational domains
of the LES and the RANS flow solver. The goal is to drive the LES
solution toward the mean velocity profiles of the RANS solution.

For a constant-density flow that is stationary in the mean, the
body force is given by

Fi (x) = σ (〈ūi 〉RANS(x) − 〈ū〉i,LES(x)) (2)

where 〈ūi 〉RANS is the vector of target velocities obtained from the
RANS computation and 〈ūi 〉LES is the vector of time-averaged ve-
locities from the LES computation. The factor σ corresponds to an
impedance associated with the strength of the body force.

The forcing term in Eq. (2) involves only mean velocities, while
the corresponding momentum equation is solved for the instanta-
neous velocities. As a result, the mean velocities from the LES
simulation are corrected without attenuating the resolved turbulent
fluctuations. It will be shown later that, to achieve this goal, the

averaging time for 〈ū〉i,LES needs to be longer than the characteristic
times of the turbulence. Equation (2) also shows that the forcing term
tends to zero if the actual mean velocity from the LES approaches
the target velocity, which is a consistency requirement. Note also
that the RANS velocities are prescribed not only in one plane, but
in the entire overlap region.

The choice of σ controls the characteristic response time of the
LES solution to a change in the outlet boundary condition. If σ tends
to zero, the body force becomes essentially ineffective, resulting in
a drift of the outflow mean velocity profile toward the unforced so-
lution. High values of σ lead to faster change to the desired velocity
field, but may lead to numerical instabilities.

An estimate for an adequate choice of σ can be given by a one-
dimensional analysis of the stationary Euler equations:

∂u

∂t
+ u

∂u

∂x
= −

∂p

∂x
+ σ (〈ū〉RANS − 〈ū〉LES) (3)

To simplify the equation, we assume a zero pressure gradient and a
constant convection velocity with the bulk velocity uB . Furthermore,
the flow is stationary, which makes 〈ū〉LES = u. With 〈ū〉RANS = ut ,
the target velocity in Eq. (3) becomes

uB

∂u

∂x
= σ (ut − u) (4)

This ordinary differential equation can be solved analytically and
leads to the following expression for u:

u(x) = ut + (u0 − ut ) exp[−(σ/uB)x] (5)

with u0 being the velocity at the beginning of the forcing region.
We now want to determine σ so that at the end of the forcing

region at x = lF the velocity difference is smaller than the relative
error:

ε = |u(lF ) − ut |/ut ] (6)

Thus, Eq. (5) leads to

σmin = (uB/lF ) ln(|u0 − ut |/εut ) (7)

Although this estimate for σ ensures the accuracy of the approach
for steady flows, in truly unsteady coupled computations a higher
value for σ should be used to decrease the time-lag in which the flow
solution adjusts to the target velocity obtained from an unsteady
downstream computation.

On the upper end, σ is limited by numerical stability. Here, it is
useful to write σ as an inverse time-scale τF . The upper limit is then
defined corresponding to the Courant–Friedrichs–Lewy condition:

σmax = (1/τF )max = uc/&xF (8)

with &xF being the size of the smallest cell in the forcing region
and uc the local convection velocity in this cell.

IV. Large Eddy Simulation Flow Solver

To test the body force for a boundary treatment, this method was
implemented into an LES flow solver. The LES flow solver devel-
oped at the Center for Turbulence Research by Pierce and Moin9 has
been used. The flow solver solves the filtered momentum equations
with a low-Mach-number assumption on an axisymmetric structured
mesh. A second-order finite-volume scheme on a staggered grid is
used.10

The subgrid stresses are approximated with an eddy-viscosity
approach. The eddy viscosity is determined by a dynamic
procedure.11,12 For numerical purposes a convective boundary con-
dition is applied at the outlet plane of the LES domain.
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Fig. 3 Geometry of the pipe test case.

Fig. 4 Laminar pipe flow: radial profiles of axial velocity component

〈〈ū〉〉x.

V. Numerical Experiment: Pipe Flow

To prove the feasibility and the well-posedness of this approach,
a pipe flow has been computed (Fig. 3). The pipe has a length of
five times the diameter D and the virtual body force is applied in a
volume of length 2.5D at the end of the pipe flow to force the flow
to a solution that would not naturally occur in this flow. The mesh
consists of 128 × 32 × 64 cells.

A. Laminar Flow: Feasibility

As a first step, a laminar pipe flow at a Reynolds number Re = 103

is considered. Figure 4 shows the resulting velocity profiles. The
solid line shows the parabolic inlet profile corresponding to the
solution of a fully developed pipe flow. Without forcing, this would
be the solution at any downstream location in the pipe. The circles
denote an arbitrarily chosen velocity profile, with the same mass
flow rate as the inlet profile, which is to be matched at the outlet,
considering these two velocity profiles as the initial and the target
velocity. For a desired accuracy of 1% (ε = 0.01) this leads to

σmin =
1.0

2.5
· ln

(

|2.0 − 0.75|

0.01 · 0.75

)

= 2.05 (9)

σmax =
1.0

5.0/128
= 25.6 (10)

For all pipe flows computed here, σ was chosen to be σ = 6.0, except
as stated otherwise.

Figure 4 shows the effect of the body force on the flow develop-
ment. The dash-dotted line is a profile just upstream of the forcing
region. The profile is different from the inflow solution, indicating
that forcing influences the flowfield even upstream of the forcing
region. After applying the virtual body force, the computed velocity
profile quickly converges towards the imposed velocity profile.

B. Robustness Against Choice of σ

To show the robustness of the method for the choice of σ , sev-
eral computations were performed with varying σ . Figure 5 shows

Fig. 5 Laminar pipe flow: profiles of axial velocity at the outlet

(x/D = 5.0) in dependence on body force constant σ.

Fig. 6 Laminar pipe flow: temporal development of body force in the

outlet plane in dependance of body force constant σ.

that with increasing σ the accordance of the LES solution with the
imposed profile improves. The solutions using σ ≥ σmin show sat-
isfactory results. Computations using σ = 35.0 > σmax resulted in a
diverging solution.

The temporal development of the body force dependent on the
body force constant σ is shown in Fig. 6. Here, the spatial aver-
age of the body force in the outlet plane is computed and normal-
ized with the bulk velocity and the diameter. Above the minimum
σ the body force converges to the same residual body force that
is needed to uphold the enforced velocity distribution. A higher
body force allows the solution to converge in a shorter period of
time.

C. Robustness Against Mass Conservation

An important test for consistency and well-posedness is the en-
forcement of a velocity profile that does not conserve mass. The ex-
change of the velocity profiles between RANS and LES flow solvers
may introduce numerical errors, especially due to the interpolation
between two different meshes, which could accumulate over time.
In order to investigate the behavior of the proposed LES outflow
conditions when this problem is encountered, an additional compu-
tation was made, where a “nonconservative” velocity profile, with a
different mass flow rate, was used in the forcing. Figure 7 shows the
resulting velocity profiles. The squares denote the imposed velocity
profile, which clearly underestimates the mass flux. However, the
computed velocity profile at the end of the forcing region has the
same mass flux as the inlet profile. This shows that the method is



SCHLÜTER, PITSCH, AND MOIN 159

Fig. 7 Laminar pipe flow: profiles of axial velocity component.

Nonconservative velocity profile imposed.

robust against inaccuracies resulting from the exchange of velocity
profiles.

D. Turbulent Flow: Choice of Averaging Time-Span for 〈〈ūi〉〉LES

The next test case considered here is a turbulent pipe flow at
Reynolds number Re = 15 × 103. The inflow conditions were cre-
ated by an auxiliary LES computation of a periodic turbulent pipe
flow recording a data base for the actual computation. The nondi-
mensionalized bulk velocity at the inlet is uB = 1.0 and the turbu-
lence level is 10%.

Applying the proposed correction of the LES outflow by virtual
body forces to this problem leads to the question of how to define
the mean value 〈ū〉LES of the LES computation. Several approaches
have been tested:

1) Actual velocity 〈ū〉LES = u(t): this results in a strong damp-
ing of turbulent fluctuations, because fluctuations of the velocity
obviously lead to a counteracting virtual body force.

2) Overall mean value

〈ū〉LES =
1

t − t0

∫ t

t0

u(t) dt

this ensures the least interference with turbulent fluctuations, but
does not allow for unsteadiness in the mean profiles.

3) Averaging over a trailing time window

〈ū〉LES =
1

&t

∫ t

t − &t

u(t) dt

here, it has to be ensured that &t is long enough to average the
turbulent fluctuations, but short enough to allow for unsteadiness of
the mean profiles.

To determine the influence of the choice of the averaging time-
span, several computations were performed with varying approaches
and varying length of the trailing average. Figure 8 shows the mean
velocity field for using a trailing time-window of length &t = 1.0
for determining 〈ūi 〉LES. Because velocity difference on the axis
is smaller than in the laminar case, the minimum forcing factor
decreases to σmin = 1.68. Because the actual forcing parameter re-
mained constant at σ = 6.0, the flow adjusts to the new velocity
profile quicker.

Figure 9 shows the mean velocity profiles for a turbulent pipe
flow using no averaging [〈ū〉LES = u(t)]. As can be seen, the mean
velocity field is indistinguishable from the previous computation.

However, there are some remarkable differences in the turbulent
fluctuations. Figure 10 shows the axial development of the turbulent
kinetic energy integrated over the cross section. At the inlet, the
level of turbulent kinetic energy corresponds to the defined inflow
conditions.8 In the first half of the pipe, the level then decreases to
a level corresponding to the natural state for the chosen parameters.

In the second half of the pipe, the body force is employed. Be-
cause of the new shape of the velocity profile, which possesses two

Fig. 8 Turbulent pipe flow: radial profiles of axial velocity component

〈〈ū〉〉x. Averaging for 〈〈ū〉〉LES using trailing time-window ∆t = 1.0.

Fig. 9 Turbulent pipe flow: radial profiles of axial velocity component

〈〈ū〉〉x. No averaging used [〈〈ū〉〉LES = u(t)].

Fig. 10 Turbulent pipe flow: axial development of turbulent kinetic

energy k = 1
2

(
√

u′2 +
√

v′2 +
√

w′2) integrated over the cross section.

additional inflection points and higher radial velocity gradients, the
turbulence level increases, if approach 2, the overall mean, is used.
Using approach 1 results in nearly complete attenuation of the tur-
bulence. Employing a trailing time-window for the determination
of 〈ūi 〉LES improves the turbulence levels if the trailing window is
sufficiently long.

The same trend can be seen in the radial distribution of the tur-
bulent kinetic energy (Fig. 11) and the shear stresses (Fig. 12).

Here, averaging over one nondimensional time unit, given by the
ratio of pipe diameter and bulk velocity, was found to be sufficient.
This seems reasonable, because the previously mentioned criteria
require the averaging time to be on the order of the Eulerian integral
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Fig. 11 Turbulent pipe flow: radial profiles of turbulent kinetic energy

k = 1
2

(
√

u′2 +
√

v′2 +
√

w′2) at the outlet (x/D = 5.0) for different averag-

ing time span for 〈〈ūi〉〉LES.

Fig. 12 Turbulent pipe flow: radial profiles of shear stress u′v′ at the

outlet (x/D = 5.0) for different averaging time-span for 〈〈ūi〉〉LES.

Fig. 13 Turbulent pipe flow: radial profiles of azimuthal velocity com-

ponent 〈〈ū〉〉φ.

timescale of the turbulence, which for a turbulent pipe flow is pro-
portional to the ratio of pipe diameter to bulk velocity.

E. Swirl Flow

To show the ability of the boundary treatment to affect not only the
axial velocity component, swirl was added to the turbulent pipe flow
by the body force. The pipe flow in the upstream part of the pipe is
identical to the previous case: a nonswirling turbulent pipe flow. The
target velocity for the axial component was defined as in the previous
case. The azimuthal velocity component of the target velocity was
defined by an experiment13 for a swirl number of S = 0.6 scaled

down by a factor of 2 in order to obtain a weakly swirling flow with
the swirl number S ( 0.38, with S defined as

S =
1

R

∫ R

0
r 2〈ū〉x 〈ū〉φ dr
∫ R

0
r〈ū〉2

x dr
(11)

where ux is the axial velocity component, uφ the azimuthal velocity
component, and R the radius of the nozzle.

With the maximum velocity difference &uφ = 0.5 the minimum
forcing constant σmin = 1.84 can be computed. As in the preceding
cases σ = 6.0 has been used.

Applying this target velocity field to the pipe-flow computation
yields the solution for the azimuthal velocity component shown in
Fig. 13. The swirl velocity is attained at the end of the forcing region.

The results of the pipe-flow investigation demonstrated that the
proposed treatment of the LES outflow conditions with virtual body
forces can be used to enforce a mean flow solution at the LES
outflow and that the enforced outflow conditions can indeed alter
the upstream flowfield.

VI. Validation: Cold Flow of a Swirl Combustor

To validate the proposed method for treating LES outflow con-
ditions for an LES/RANS interface, the method will be applied to
a more complex configuration. Whereas the previous test case of
pipe flow has shown the feasibility of the priciple of the body force
method, the next test case aims to prove that the upstream influence
of the proposed outflow treatment is captured.

Fig. 14 Swirl flow geometry with contraction.

Fig. 15 Reduced swirl flow geometry without virtual body force.

Fig. 16 Reduced swirl flow geometry with virtual body force.



SCHLÜTER, PITSCH, AND MOIN 161

As a test case, the cold flow in an idealized swirl combustor ge-
ometry is considered. The geometry consists of an axisymmetric
expansion with an expansion ratio of 1:2. The inlet of the compu-
tational domain is set 0.5D upstream of the expansion, where D
denotes the diameter of the pipe upstream of the expansion. The
combustion chamber is 3D long and ends in a contraction with the
same ratio as the expansion 1:2.

The flow at the inlet is swirled with a swirl number S = 0.38. As
in the swirling pipe flow, the mean azimuthal velocity component
is that of an experiment13 with a swirl number S = 0.6 scaled down
by a factor of 2. The inflow conditions were created by a auxiliary
LES computation of a swirling periodic pipe flow.

The swirl number of S = 0.38 has been chosen because it is
slightly above the critical limit at which a central recirculation zone
develops, and where the flow is believed to be most sensitive to
outer influences such as the outflow boundary conditions.14 Swirl
flows are dominated by large-scale turbulence making these flows
a field of application of LES par excellence. LES usually achieves
high levels of accuracy in predicting swirl flows.9,15

To demonstrate the importance of LES outflow conditions
and to prove the ability of the proposed LES outflow treatment
with virtual body forces to prescribe outflow conditions cor-
rectly, three different outflow geometries have been considered:

Fig. 17 Velocity profiles for different axial locations: ——, contraction (case 1); – – –, reduced geometry without virtual body force (case 2); and

symbols, reduced geometry with virtual body force (case 3).

1) the entire geometry: the swirl flow with the contraction (Fig. 14),
2) a swirl flow where the computational domain is cut off just up-
stream of the contraction of case 1 at x/D = 2.75 (Fig. 15), and
3) the same geometry as in case 2 but with the proposed boundary
condition applied in order to simulate the effect of the contraction
(Fig. 16).

The mesh size of geometry 1 consists of 384 × 64 × 64 cells,
whereas the mesh used for cases 2 and 3 consists of 256 × 64 × 64
cells. The point distribution of both meshes is the same, except
for the contraction itself. The smallest cell is near the edge of
the expansion and has a edge length of (0.005D. The time-step
was determined by the CFL condition and was around &t ( 2.5 ×

10−3 · D/uB . The computations were running five flowthrough
times before flow statistics were recorded. The flow statistics rep-
resent the average over two flowthrough times.

Case 1 will be considered as the reference case. Because the
computational domain includes the contraction, its influence on the
upstream flow will be correctly reflected in the LES solution. For
case 2 the computational domain has been reduced and the contrac-
tion is outside of the LES domain. Convection boundary conditions
are applied at the outflow boundary and the body-forcing method is
not applied. Hence, influence of the contraction on the LES flow-
field is neglected in case 2. This case is used only to demonstrate
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Fig. 18 Profiles of velocity fluctuations for different axial locations: ——, contraction (case 1); – – –, reduced geometry without virtual body force

(case 2); and symbols, reduced geometry with virtual body force (case 3).

the influence of the downstream contraction on the flowfield within
the entire domain.

Figure 17 shows the mean velocity profiles in cases 1 and 2. It can
be seen that the velocity profiles of the computation with the reduced
geometry 2 (dashed line) differ from the profiles of the computation
of the full geometry 1 (solid line). Hence, it is apparent that the
downstream geometry variation has a substantial influence on the
entire domain, and that geometry 2 cannot be used to approximate
the flow in geometry 1 without special boundary treatment.

To take the contraction outside of the computational domain into
account, the proposed outflow boundary treatment is employed in
case 3. Instead of using a separate RANS computation, which may
introduce another source of error, the Reynolds-averaged velocity
profiles from the LES computation of case 1 are imposed on the
reduced geometry in the region x/D = 2.0–2.5 with virtual body
forces. The averaging time span to compute 〈ūi 〉LES for the body
force was &tave = 2D/uB , with D the diameter of the pipe upstream
of the expansion, and hence, 2D the diameter of the combustion
chamber and uB the bulk velocity in the upstream pipe. The forcing
constant was set to σ = 8.0, with σmin ( 2.3.

Figure 17 shows the mean velocity profiles of case 3 (black dots).
It can be seen that not only the velocity profiles inside the virtual-

body-force volume adjust, but also the velocity profiles upstream.
The LES computation of the reduced geometry with the virtual body
force delivers essentially the same prediction as the computation of
the entire geometry.

The influence of the LES outflow condition on the turbulent ve-
locity fluctuations is shown in Fig. 18. The different mean velocity
distribution caused by the presence of the contraction results in a
different turbulence distribution (compare solid line and dashed line
in Fig. 18). The employment of the virtual body forces corrects not
only the mean velocity field, but also the turbulent quantities (com-
pare solid line and filled circles in Fig. 18). The virtual body force
results in an adjustment of the turbulent quantities so that the flow
upstream of the body force volume is nearly indistinguishable from
the complete computation with the contraction.

The same trend can be observed in the shear stresses (Fig. 19).
Because the mean velocity field adjusts to the new outflow condi-
tions, the production and transport of shear stresses adjusts to the
new velocity field.

In Fig. 20, the axial pressure distribution on the axis is shown.
Caused by the differences in the flowfields of cases 1 and 2, espe-
cially in the extend and strength of the recirculation zone, the pres-
sure distribution differs. Although the proposed outflow boundary
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Fig. 19 Profiles of shear stresses for different axial locations: ——, contraction (case 1); – – –, reduced geometry without virtual body force (case 2);

and symbols, reduced geometry with virtual body force (case 3).

Fig. 20 Axial pressure distribution on the axis: ——, contraction

(case 1); – – –, reduced geometry without virtual body force (case 2);

and symbols, reduced geometry with virtual body force (case 3).

adjustment by virtual body forces acts only on the velocity com-
ponents and not on the pressure itself, the pressure distribution ad-
justs to the correct outflow condition. The pressure distributions
from the cases 1 and 3 are in agreement upstream of the body-force
volume.

VII. Conclusions

The results of this study show that the outflow conditions may
have a major impact on the accuracy of LES computations. Hence,
a proper description of the outflow conditions is mandatory.

To avoid the computation of the downstream geometry with LES
a method has been proposed to correct the outflow conditions. This
method ensures the adjustment of the LES flowfield to the statis-
tical data computed by a downstream RANS flow solver without
destroying the resolved turbulent fluctuations.

The adjustment of the LES outflow has an effect throughout the
entire flowfield. The resulting prediction of the flowfield is nearly
indistinguishable from an LES computation of the entire domain.
This allows a drastic decrease in computational costs. Furthermore,
it opens up the possibility to use multiple specialized flow solvers
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in order to extend the spectrum of physical processes that can be
simulated.

Future efforts will use this method in integrated LES/RANS com-
putations for turbomachinery applications.
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