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ABSTRACT Monitoring data contain the important status information of the monitored object, and are

the basis for following data mining and analysis. However, the monitoring data usually suffer the pollution

of the outliers, leading to negative effect on the subsequent data processing. To address the problem, this

paper proposed an outlier detection method based on stacked autoencoder (SAE). SAE has a powerful

capability of feature extraction and greatly preserves the original information of the data. The trained SAE

by normal data can learn the characteristics of normal data. When a set of data with outliers are inputted

to the trained network, there are larger reconstruction errors at the outliers between the original input data

and the reconstructed data obtained by using the encoding parameters and the decoding parameter mapping,

which provides a basis for locating outliers. Meanwhile, this paper introduced the Grubbs criterion and the

PauTa criterion to identify the reconstruction errors corresponding to the outliers based on the traditional

threshold method. The method can quickly isolate the abnormal data from the normal data according to

the reconstruction error and the identification criterion. The effectiveness and superiority of the proposed

method have been validated by experiment on real data and comparisons with traditional outlier detection

algorithms.

INDEX TERMS Condition monitoring, outlier detection, stacked autoencoder, monitoring data.

I. INTRODUCTION

With the continuous advancement of information technology

and the advent of the era of big data, all kinds of information

are presented in the form of monitoring data, which are char-

acterized by large scale, diversity, complicated information

and sparse value. At the same time, these data contain impor-

tant information, which is the basis for analyzing the data and

extracting value of the monitored object [1], [2]. However,

the original monitoring data probably are contaminated by

outliers due to the influences of environmental interference

(noise, shock and vibration), communication obstacles, sen-

sor fault and other factors [3]–[5]. On the one hand, the data

with outliers contain valuable information. On the other hand,

they cannot reflect the real situation completely. If these data

are directly used to the scenarios of modeling, state analysis,
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fault diagnosis and prediction, which will affect the accuracy

of the model, increase the probability of false-alarm and false

negatives and make wrong decisions [6]–[8]. Therefore, it is

necessary to adopt an efficient method to detect the outliers

of the monitoring data, thereby ensuring the quality of the

data and providing guarantee for the reliable process of the

subsequent analysis.

Outlier detection is a crucial step that must take prece-

dence over data analysis, and it seeks to separate abnormal

data from normal data in the dataset. Outliers usually exist

in the data in an isolated or continuous manner. In dif-

ferent fields, the characteristics and definitions of outliers

are not the same, and there are detection methods suit-

able for their own fields. Currently, the common outlier

detection methods can be roughly divided into five cat-

egories [9]–[12]: statistics-based, distance-based, density-

based, clustering-based approaches and computational

intelligence algorithms.
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1) The statistical-based method is the most traditional

method in outlier detection. The foothold of this meth-

ods is that outlier is usually an observation that sig-

nificantly deviates from other observations, so the

outliers can be identified by the statistical models of

the data [13]. Although statistical-based methods are

more difficult to adapt as increase of data’s com-

plexity and dimension, they are still the best algo-

rithms for certain problems in reality, and related

research has continued. For instance, Ahsan et al. [14]

proposes PCA Mix based control chart for out-

lier detection of mixed continuous and categorical

data. Hu et al. [15] proposes a meta-feature-based

anomaly detection approach (MFAD) to identify the

abnormal states of a univariate or multivariate time

series based on local dynamics. Huan et al. [9] uses

model selection-based support vector data descrip-

tion (SVDD) to detect outlier in Wireless Sensor

Networks.

2) The distance-based method mainly quantifies the

degree of deviation of outliers by distance, such as

Euclidean distance, Mahalanobis distance and Maxi-

mal Data Piling distance [16]. Among these methods,

the K-Nearest Neighbor (KNN) is the most common

method for distinguishing data by finding the near-

est K neighbors from the data to be identified. The

traditional KNN is often difficult to adapt to the sit-

uations that there are uneven distribution or abnor-

mal clusters in the dataset. For this reason, many

researchers have improved KNN and achieved certain

results [17]–[20].

3) The density-based approach is based on the idea

of neighborhood as well as the distance-based

approach. In most of the density-based approaches,

they assume that the density around a normal data

object is similar to the density around its neighbors,

whereas the density is considerably low than that of

its neighbors in case of an outlier. Among them, local

outlier factor (LOF), connectivity-based outlier fac-

tor (COF) and influenced outlier (INFLO) are exam-

ples of some well-known density-based approaches for

outlier detection [21]. The isolated forest algorithm is

a recently developed outlier detection method based

on density, it is widely used in industry because of

linear time complexity, high precision and the ability

of dealing with the big data [22]–[24].

4) The cluster-based method identifies the outliers by the

distance between the data to be identified and the

cluster center. Many different types of clustering

methods have emerged in the past several years,

including several algorithms based on partitioning,

density, fuzziness, grids and hierarchies [25], [26].

Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) is the most distinguished

density-based clustering algorithm among them, and

many clustering methods for outlier detection are

inspired by it. Some clustering methods accommodate

outliers by introducing an additional cluster, which

consists of the data far away from all cluster cen-

ters. In this way, outliers will be isolated from normal

data [27].

5) Most methods based on computational intelligence

are inspired by the natural or living nature to imitate

and solve problems with their principles and ideas.

Some of these methods have also been applied on

the field of anomaly data detection, such as artificial

neural networks [28], [29], genetic algorithms (GA)

[30]–[33], simulated annealing [34], [35], ant colony

algorithm [36], artificial bee colony algorithm [37].

The methods based on computational intelligence usu-

ally try to find the optimal solution satisfying certain

conditions by simulating the biological or natural prin-

ciples when detecting outliers, and those data that do

not satisfy the particular condition will be regarded as

outliers.

Although fruitful achievements have been reported by

these methods, most of these existing outlier detec-

tion approaches still have the following drawbacks.

Statistical-based methods are often difficult to deal with the

data with a high degree of nonlinearity. It takes time and

effort to detect outliers with distance-based and density-

based algorithms because it is necessary to compare with

a large amount of historical data for the methods, so their

real-time is poor. The performance of clustering-based algo-

rithms mainly depends on the selection of parameters, but

the optimal parameters are difficult to estimate in high

dimensional data. For different problems, methods based on

computational intelligence often need to find the optimal

solution to the problem according to different conditions.

If researchers can’t choose the appropriate screening condi-

tions or parameters, this will cause long-term operation of the

algorithm, fall into local optimum and premature, etc. There-

fore, the use of these methods based on computational intel-

ligence requires the researchers to have good professional

knowledge.

In recent years, deep learning has received extensive atten-

tion due to its strong ability of exploiting the high dimensional

and large-scale data. Based on the significant advantages

of deep learning algorithms and combined with the charac-

teristics of outlier detection, this paper proposes an outlier

detection algorithm based on stacked autoencoder (SAE) for

monitoring data. SAE only needs to use normal data to train

the model, which avoids the facts that there are fewer outliers

in real cases and it is difficult to extract the features of

outliers. At the same time, the SAE has the ability to handle

non-linear, high dimensional and large-scale data, and also

adapts to online detection. When a set of data with outliers

are input to the trained SAE model which has automatically

learnt the characteristics of normal data, larger reconstruc-

tion errors will occur on outliers. The outliers in monitoring

data can be quickly detected based on the reconstruction

errors.
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II. THE PROPOSED METHOD

A. BASIC CONCEPT OF SAE ALGORITHM

A stacked autoencoder model is usually constructed by

stacking several autoencoders that are the most typical

feed-forward neural networks [38]. The autoencoder consists

of encoder and decoder, the structure is shown in Fig. 1.

FIGURE 1. The structure of autoencoder.

The encoder maps input data into hidden layer with (1)

y = s(Wx + b) (1)

where x is input vector, W is weight matrix connecting the

input layer to hidden layer, b is bias vector belonging to

the nodes of hidden layer, s represents the sigmoid activate

function.

The decoder maps y into reconstruction vector z according

to

z = s(W ′y+ b′) (2)

where W ′ is weights connecting the hidden layer to output

layer, b′ is the bias vector belonging to nodes of output layer.

The reliability of the auto-encoder is estimated by its

reconstruction capability. To recover the input data from the

output layer as far as possible, the optimization of the model

parameters is to minimize the reconstruction error [39], [40]:

L (X ,Z ) =

{

H (B (x) |B (z) ) x ∈ {0, 1}

‖x − z‖2 x ∈ R
(3)

where X is a set of input vectors x, Z is the corresponding set

of reconstructed vector z, H represents the Bernoulli cross

entropy, B(x) and B(z) are the mean values of x and z.

SAE can be composed by stacking the encoder parts of

AE in each layer in the form of putting the hidden coders of

the upper layer as the input of the next layer, as presented as

Fig. 2.

SAE first performs pre-training layer-by-layer, which is

unsupervised, so the samples do not require labels in this

process. After pre-training, the network only needs to use

a small number of labeled samples for fine-tuning to get

better performance. This means can effectively avoid that the

SAE model falls into the local optimum [41]. The essence of

SAE is to encode the input layer by layer without losing key

information, so the decoder can be reconstructed back into

the input with a sufficiently small error [42].

FIGURE 2. The structure of SAE.

B. OUTLIER DETECTION BASED ON THE SAE

When the SAE algorithm is used for outlier detection, normal

data that are not contaminated by abnormal data constitute

the training set for training the SAE model. The training set

contain the basic characteristics of normal data. The SAE

model extracts and learns the distribution characteristics of

normal data through its deep structure.

The resulting SAE model has the ability to extract features

of normal data by tuning the parameters of the model, and

fully preserves the key information of the input data and

maintains an optimal reconstruction error. The training algo-

rithm is summarized as shown in Algorithm 1.

When constructing a SAE model for anomaly data detec-

tion, the key parameters include the number of network lay-

ers, the number of neurons in the hidden layer, the learning

rate, iterations, and the batch size. These parameters are

super-parameters. There is currently no a great way to explain

how to set them up.

For the number of network layers, the parameter is related

to the dimension of input data. When the data dimension is

large, more layers could be tried. At the same time, a model

with three-layer can often achieve a good detection effect for

most data. The number of neurons in the hidden layer is also

related to the dimension of the input data. The number of

neurons in each layer can be set according to the strategy of

step-down, realizing layer-by-layer compression and feature

extraction of data. Meanwhile, the compression of neurons in

each layer should not be too large, and excessive compression

may result in more information loss.

Learning rate is a crucial parameter in the SAE model

with values between 0 and 1. A too large learning rata may

produce loss explosion and shock; if the learning rate is too

small, the model will converge too slowly or over-fitting.

As setting the learning rate, experiment can try 1, 0.1, 0.01,
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Algorithm 1 Training SAE model

Input: the train dataset X={x};

Output: the trained SAE model

Step 1: Set training parameters: the number of network

layers L, the numbers of every layers’ neuron,

pretraining iteration Pi, fine-tuning iteration Fi,

the learning rata α, momentum m, batch size,

activation function.
Step 2: Pretraining

for i = 1 to Pi do

for j = 1 to L do

forward propagation to compute Z

yj is mapped to (j+1)th SAE

end for

end for
Step 3: Fine-tuning

for i = 1 to Fi do

Compute the reconstruction error of output of

layer L

for j = L-1 to 1 do

Compute the reconstruction error δj
end for

for j = 1 to L do

Update model parameter

∇Wj = δj (f (x))T , ∇bj = δj
Wj = Wj − α∇Wj − mWi, bj = bj − α∇bj

end for

end for

0.001, 0.0001 as the test value one by one, and then con-

tinue to approach the optimal learning rate by combining the

dichotomy strategy.

Iterations can be determined by directly observing the

loss of each iteration. When the minimum loss is reached

in a certain iteration or the loss is substantially constant

after certain iteration, the iterations can be set to the optimal

iterations. Increasing the number of iteration with the same

other parameters tends to improve the accuracy of the model,

but the model should prevent over-fitting and considers of

training costs in the iteration.

Batch size has relatively less impact on the model, and it is

a selected subset of all data in each step of the training. When

setting up data batches, it need only to ensure that the subset

of data under each batch can reflect the characteristics of most

data. It should be avoided that the subsets can only reflect very

local data features compared with the entire dataset.

At this time, when a group of data with random outliers are

input into the trained model, there is a bigger reconstruction

error will present between input data and the reconstructed

data obtained by the SAE parameters. In the paper, the recon-

struction error is defined as follow:

error = (x − z)2 (4)

where x is input data, z represents corresponding recon-

structed vector, x and z have same dimension.

The size of the reconstruction error is the basic criterion

for evaluating whether the data point is abnormal. In order

to obtain the exact location of the outlier more accurately,

the reconstruction error will be further analyzed here. Firstly,

the upper threshold T of the reconstruction error is deter-

mined. The data points will be classified as normal values

if the corresponding reconstruction errors are less than the

upper threshold. For suspicious data points that the recon-

struction errors are greater than or equal to the threshold,

further analysis is processed with Grubbs or variant of the

PauTa criterion (3σ criterion).

When the dimension of the input vector is less than or equal

to 100, the suspect data points will be determined with the

Grubbs criterion. First, the statistic gn is calculated as:

Gn =
en − ē

s
(5)

where en is reconstruction error, ē is the mean of the recon-

struction error, s is the standard deviation of the reconstruc-

tion error, and the dimension ofGn is consistent with the input

vector. Then the significance level α need to be determined,

and the corresponding critical value is found. If one suspect

data point satisfies with:

Gn > G1−a(n) (6)

the point is an abnormal value, otherwise it is a normal value.

When the dimension of the input vector is greater than 100,

there is variant of the PauTa criterion for judging the suspect

data points. The standard form of the PauTa criterion that is

used to recognize coarse error is:

Pn > 3σ (7)

where Pn = abs(en − ē), σ is standard deviation of the

reconstruction error, and the dimension of Pn is consistent

with the input vector. In order to make the PauTa criterion

more suitable for the reconstruction error of the SAE model,

the PauTa criterion is modified as follows:

Pn > 3Mσ (8)

where M is a constant that is greater than 0. if Pn corre-

sponding to a certain reconstruction error satisfies the above

formula, the corresponding input data point is recognized as

an abnormal value. Otherwise, the data point is normal.

When a group of data with random outliers are input into

the trained model, the detection process is summarized as

shown in Algorithm 2.

The trained SAE model can quickly identify outlier and is

still effective for high-dimensional and nonlinear data. On the

one hand, the trained SAE parameters can remove abnormal

data from the dataset to ensure reliability in subsequent pro-

cess of data modeling or analysis with an offline fashion.

On the other hand, it can isolate the abnormal data in time

and feed back to the corresponding processingmechanism for

monitoring data in an online way, which avoids false-alarm

and false negative due to abnormal data.
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Algorithm 2 The Detection Algorithm With Trained SAE

Input: the data x may be contaminated by outliers

Output: the location of outlier in x

Step 1: Encoder process

y1 = f (W1x + b1)

for i = 2 to L do

yi = f (Wiyi−1 + bi)

end for
Step 2: Decoder process

zL = f
(

W ′
LyL + b′

L

)

for i = L-1 to 1 do

zi = f
(

W ′
i zi+1 + b′

i

)

end
Step 3: Locate the location of the outliers

Calculate the error = (x − z)2

if error < T do

the data point is normal data

else

analysis the error with Grubbs or PauTa

end if

TABLE 1. Confusion matrix.

III. EXPERIMENTS

To test the performance of the proposed method, experiments

are designed on real dataset and simulation dataset. In order

to clarify the effect of SAE algorithm on outlier detection,

the detection results are divided into four categories: true

positive (TP), false positive (FP), true negative (TN) and false

negative (FN), as listed in Table 1.

The combination of the true attributes of the data and the

detection results of the algorithm can be presented in the form

of a confusion matrix [43].

With the confusion matrix, the detection effect of the SAE

algorithm is measured by accuracy, which is defined as:

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(9)

A. THE EXPERIMENT ON REAL DATASET

Four public datasets which are available for free from

the UCR public database [44] are selected to test the

practicability of the proposed method. The four datasets

are ADIAC, Chlorine concentration (Chl), FordA, Mallat,

respectively. Since the original dataset does not have abnor-

mal data, we artificially add the abnormal data in the dataset

to test the proposed algorithm. The experiments were per-

formed under the environment of MATLAB 2015b with

Intel (R) Core (TM)2 Quad CPU, 4G RAM (2.40GHz).

Table 2 shows the basic information and crucial parameters

for training a SAE model using a dataset.

First, the abnormal data were built by adding an isolated

outlier to the data sequence randomly. Half of the test data

are normal data; the others are abnormal data. When there

is a single outlier in the data, the abnormal data point will

generate a large reconstruction error when the reconstruction

errors of normal data are smaller after the data are recon-

structed, as shown in Fig. 3. After the reconstruction error

is obtained, the position of the abnormal data point can be

accurately located by (5)-(8).

The detection effects of proposed method are presented

in Table 3 over the entire test set. From the table, it can be seen

that the data can be recognized well whatever normal data or

abnormal data, and false-alarm and false negative were rare.

Meanwhile, the experiments were conducted to compare

SAEwith isolation Forest (iForest), Genetic Algorithm (GA),

K-means clustering method (K-means), K-nearest neighbor

algorithm (KNN) and principal component analysis (PCA)

in detection accuracy. Table 4 reported the detection results

of all methods.

In terms of accuracy, the SAE algorithm achieves more

than 93% detection accuracy on four datasets, and enjoys

the highest average accuracy. The other five algorithms

all have the problem of severely degraded detection accu-

racy on a certain dataset. This shows that the SAE method

has wide applicability on detecting abnormal data, and is

more adaptable to various scenarios where abnormal data

exists.

Next, the trained model was tested with continuous

outliers. The experiment built anomalous data by adding

5 consecutive outliers to the original data randomly. The

corresponding reconstruction errors were presented in Fig. 4.

It can be observed that the continuous outliers will continu-

ously generate large reconstruction errors after reconstruction

from Fig. 4, and the outliers in the middle will not be sub-

merged due to the influence of the adjacent outliers. It also

shows that the SAE model retains the key information of the

data as much as possible, the original basic features are not

missing due to the deep extraction of the data characteristics.

TABLE 2. The basic information and crucial parameters of datasets for training SAE.
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FIGURE 3. The reconstruction errors of four datasets when an isolated outlier in the data, where the red line represents
the upper threshold and the blue line represents the reconstruction errors.

TABLE 3. The detection results of isolated outlier.

TABLE 4. The detection results of isolated outlier in four datasets.

As above, the detection results of continuous outliers are

summarized in Table 5. In the paper, the result is recognized

as correct when all the data points are correctly classified.

Even if a data point is misclassified, the detection task will

TABLE 5. The detection results of continuous outliers.

be considered to have failed. As can be seen from the table,

the SAE model can still correctly classify normal data, which

further demonstrates that themodel has the ability ofmapping

feature well for normal data. For the recognition accuracies

of abnormal data, they reduced compared to the detection

results of the isolated outlier. But SAE still maintains a high

recognition accuracy. It is easy to understand that the proba-

bility of misjudgment of SAEmodel will increase because the

impacts of abnormal data on normal data and the interaction

between abnormal data gradually increase throughout the

feature mapping and data reconstruction.

As shown in Table 6, when there are continuous outliers

in the data, the SAE method is still stable and achieves the

superior average detection accuracy. It is worth noting that,

for isolated outliers and continuous outliers, the detection
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FIGURE 4. The reconstruction errors of four datasets when continuous outliers in real dataset, where the red line
represents the upper threshold and the blue line represents the reconstruction errors.

TABLE 6. The detection results of continuous outlier in four datasets.

accuracies of the other five algorithms on FordA dataset have

experienced different degrees of decline. It is because that

most of the outliers on the dataset belong to the local outlier

whose value is within the normal range of the entire dataset.

At this time, the other five algorithms are often difficult to

identify such outliers, and the proposed algorithm is still

valid for the situation. This illustrates that SAE has a unique

advantage in processing local outliers in time series data.

Throughout the experiment, the SAE model can isolate

abnormal data from normal data well and maintain an out-

standing detection accuracy. Meanwhile, from the experi-

mental results, SAE has better potential in dealing with local

outliers. It also confirms that the proposed method has the

ability to deal with real data and has better stability on differ-

ent datasets.

B. THE EXPERIMENT ON SIMULATION DATASET

This group of experiments are to show the process of iden-

tifying the outliers more clearly and test the detection abil-

ity. In this set of experiments, the dataset was acquired by

ANSYS program, and each piece of data corresponded to

the strain of a certain wing structure under normal or cer-

tain fault conditions. The experiment collected strain data

of 10 stations, each of which contained 60 strain values of a

certain station under aerodynamic forces. The training dataset

consisted of 972 sets of data, and each set of data included

600 values corresponding to strain values of 10 stations

respectively. This data represented the station strain of the

wing structure at different heights and speeds. Different SAE

models will be trained separately for each station, and then

the models will be put together to form a large detection

model that can monitor data quality of 10 stations at the

same time. In order to further verify the performance of the

proposed algorithm, a contrast experiment was carried out

between the proposed algorithm and the four other com-

mon algorithms of outlier detection. The four algorithms

are principal component analysis (PCA), K-nearest neighbor

algorithm (KNN) and K-means clustering method (K-means)

and Genetic Algorithm (GA), respectively.

First, research was conducted on the situation of isolated

outlier.When the data have an isolated outlier, its correspond-

ing station data were shown in Fig. 5. After reconstruction
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FIGURE 5. The data characteristic with isolated outlier in simulation
dataset.

FIGURE 6. The reconstruction error of data with isolated outlier in
simulation dataset.

by the SAE model, the reconstruction error was shown in

Fig. 6. From the Fig. 6, the error corresponding to the outlier

is significantly larger than the normal data’s, and the detection

effect is good.

In order to further prove the superiority of the proposed

algorithm to isolated outlier, the test dataset containing

1000 sets of data is constructed in the contrast experiment,

including 500 sets of normal data and 500 sets of abnormal

data with isolated outlier. Among the 500 normal data, there

are 50 sets of data for each station, and the same is true for

abnormal data. Since the dimension of the input data is 60 for

each SAE model of station, the algorithm will analyze the

reconstruction error by the Grubbs criterion.

In Fig. 7, the results of the five methods were summarized

at different significance levels. It can be seen that the pro-

posed algorithm is always superior to the other algorithms at

each significance level from the figure.

The optimal significance level of the SAE algorithm is

0.01, and 0.005 is the optimal significance level of the

other algorithms. In optimal significance level, the algorithm

FIGURE 7. The results of five algorithms to isolated outlier.

rankings are SAE, GA, KNN, K-means and PCA, and the

corresponding detection accuracies are 95.00%, 87.50%,

70.30%, 67.90% and 51.90% respectively. Regarding to

detection accuracy, the SAE algorithm performs very well

on detection of isolated outlier and is very stable at various

significance levels. Next is the GA algorithm, which also

achieves a high detection accuracy and stable performance.

The results of KNN and the K-means are very close and are

lower than the GA in turn. The PCA algorithm is obviously

not effective because the PCA algorithm is difficult to process

data with high nonlinearity.

When continuous outliers are added to the data, the data are

as shown in Fig. 8, and the corresponding reconstruction error

is presented in Fig. 9. As can be seen from Fig. 9, when there

are continuous outliers in the data, the reconstruction error

will produce a continuous peak, which ensures that successive

outliers can be efficiently identified.

FIGURE 8. The data characteristic with continuous outliers in simulation
dataset.

As above, the detection results of five algorithms are sum-

marized in Fig. 10. In addition to the fact that the detection

accuracy of the SAE algorithm is reduced at the significance
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FIGURE 9. The reconstruction error of data with continuous outliers in
simulation dataset.

FIGURE 10. The results of five algorithms to continuous outliers.

TABLE 7. Detection effect of SAE algorithm under optimal significance
levels.

level of 0.005, the detection accuracy is still very good in

other cases. The reason for this is that more abnormal data

were misjudged as normal data in the significance level.

On the whole, when there are continuous outliers in the

data, the optimal significance levels of all algorithms are

0.025 except GA which is 0.05. The rankings of the algo-

rithms are also SAE, GA, KNN, K-means and PCA, and

the corresponding detection accuracies are 93.50%, 77.00%,

76.30%, 73.00% and 64.40%, respectively.

Comprehensively considering the detection effects of the

proposed algorithm on the isolated outlier and continuous

outliers, the final significance level of the simulation dataset

is set to 0.05. At the significance level, the algorithm’s confu-

sion matrix and detection accuracy can be obtained from the

Table 7.

It can be seen that the SAE method has a good ability

to recognize the abnormal data in the simulation dataset,

which further confirms the usability of proposed method.

Throughout the simulation experiment, the proposed algo-

rithm is superior to the four methods for isolated outlier

and continuous outliers, which proves the superiority of the

proposed algorithm.

IV. CONCLUSION

In this paper, we proposed a method based on stacked autoen-

coder to detect abnormal data appearing in the monitoring

data. First, the SAE model is trained by normal data to obtain

the encoder parameters and decoder parameters of the model.

After the input vector is mapped by the encoder and decoder,

a reconstructed vector is generated. According to the size of

the reconstruction error, normal data and abnormal data can

be distinguished. It can be seen from the experiments that

the proposed method has a good detection effect on isolated

outlier and continuous outliers. The recognition effect of

the proposed algorithm for continuous outliers may decrease

with the increase of the proportion of outliers compared with

the isolated outlier, but it still maintains a high detection

accuracy.

In order to train a good SAE model, the key is to set the

parameters of the model, such as model depth, learning rate,

iterations, batches, and so on. These parameters are super-

parameters. There is currently no a great way to explain

how to set them up, so the optimal parameters are obtained

in constant trials. A good model of deep learning usually

requires a lot of data to train, and the method mentioned in

this article is no exception. However, SAE models achieved a

considerable detection result without too much training data

in the experiments, which shows that the proposed method is

not too dependent on the size of the training set.

The proposed method has an advantage in dealing with

large-scale, high-dimensional nonlinear data compared with

the traditional method, and has the potential ability to detect

outliers online and offline. When the abnormal data detec-

tion is performed offline, the aim usually is to remove the

abnormal data from the data set to ensure the reliability of

subsequent data modeling or analysis. The need for algorithm

runtime in this way is usually not as strong as online detection

methods. When the abnormal data detection is performed

online, it need isolate the abnormal data in time and feed

back to the corresponding processing mechanism to avoid

false-alarm and false negative due to abnormal data. This sets

a higher request on the real-time of the algorithm.

Although it takes a long time to train SAE model,

the trainedmodel does not occupy a large amount of resources

when it is used. Hence it does not affect the stability of
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the system when it is added to an existing system as a

pre-processing module, which means that the method has a

good ability to adapt to various scenarios. Of course, it does

not mean that the SAEmodel is always better than other algo-

rithms. Perhaps the traditional algorithms are more suitable

for some relatively simple monitoring data.

In the experiments, we also found it is because the abnor-

mal data are reconstructed to normal data to some extend that

a large reconstruction error will be generated at the outlier.

It shows that the proposed method can not only identify the

abnormal data, but also restore it. It is the focus of our work to

research the ability that the SAE algorithm restores abnormal

data for some time to come.
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