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Abstract—In this paper, we propose a novel outlier detec-
tion model to find outliers that deviate from the generating
mechanisms of normal instances by considering combinations
of different subsets of attributes, as they occur when there are
local correlations in the data set. Our model enables to search
for outliers in arbitrarily oriented subspaces of the original
feature space. We show how in addition to an outlier score,
our model also derives an explanation of the outlierness that
is useful in investigating the results. Our experiments suggest
that our novel method can find different outliers than existing
work and can be seen as a complement of those approaches.

I. INTRODUCTION

Outlier detection is important in many applications in-

cluding e.g. the detection of credit card abuse in financial

transactions data, the identification of measurement errors in

scientific data, or the recognition of exceptional protagonists

in athletic statistics, etc. Most of the recent work in outlier

detection refer to Hawkins’ definition of an outlier as “an

observation which deviates so much from other observations

as to arouse suspicions that it was generated by a different

mechanism” [1]. Several outlier detection schemata have

been proposed over decades differing widely in how an out-

lier is modelled and, thus, offer different features applicable

to varying scenarios. Here, we focus on the unsupervised

variant of the problem.

While in the early years of data mining, the features of

data sets were carefully selected, nowadays we are entering

the area of Big Data. There is a trend of measuring as much

parameters as possible because modern capabilities of data

generation produce data at low costs. Thus, a real world data

set usually contains several groups of observations (i.e., data

objects) that have been generated by different (typically un-

known) mechanisms or statistical processes. These different

generating mechanisms may show their effects in varying

subsets of attributes, i.e. a varying subset of features is cor-

related differently for each generating mechanism defining a

local correlation of features for the corresponding subset of

data objects generated. Typically, a mechanism is supposed

to have generated a minimum number of data objects in

order to be considered as significant. Outliers are those

objects that have not been generated by these mechanisms,

i.e. those objects that do not fit into the corresponding

local correlations. The subset of points that show a local

correlation are located on a common δ-dimensional hyper-

plane, where δ < d and d is the dimensionality of the full-

dimensional data space. As a consequence, outliers are those

objects that are not located on those hyperplanes rather than

objects that are in a less dense area in the full-dimensional

data space. In addition, in such a scenario, the task of outlier

detection is not only to identify possible outliers but also—

in order to find outliers at all—to automatically determine

the local correlations from which objects deviate. Almost

all existing approaches for outlier detection implicitly rely

on the assumption that all features are equally relevant for

detecting outliers and do not account for local correlations

nor for determining those local correlations.

This general idea and the difference of this idea to existing

approaches is visualized in Figure 1(a). A sample 3D data

set is shown that has been generated by three mechanisms

each following a unique correlation of (a subset of) features.

Existing approaches consider the full-dimensional space and

would most likely find objects n1 and n2 as outliers because

these objects deviate from all other objects significantly

when considering vicinity in the 3D space. Objects o1,

o2, and o3 on the other hand would most likely not be

detected because they do not deviate from the other objects

conspicuously if the full-dimensional space is considered.

However, objects n1 and n2 are located on one of the hy-

perplanes that represent the correlations of the corresponding

generating mechanisms and, thus, should not be seen as

outliers; these objects fit perfectly to the mechanisms that

have generated the normal instances. Rather, objects o1, o2,

and o3 are outliers because they deviate considerably from

any of the hyperplanes representing the generating mecha-

nisms. We can find these outliers only when considering the

subspaces that are perpendicular to the hyperplanes of the

generating mechanisms. For example, in the subspace that

is perpendicular to the hyperplane representing mechanism

1 all objects generated by mechanism 1 (including n2) are

dense and o1 deviates considerably from those objects. Thus,

in such a scenario, existing outlier detection approaches may

incorrectly classify normal instances as outliers and may

miss true outliers because these approaches do not take any

local correlations into account.
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Figure 1. The general idea of finding outliers in subspaces of the original
feature space by projecting the data to the orthogonal subspace S.

In this paper,1 we introduce an outlier model that detects

outliers as points that do not fit to any significant local corre-

lation in the data. Orthogonal to existing methods, this model

is the first approach to consider local correlations within the

outlier detection process. We simultaneously identify outliers

in arbitrarily oriented subspaces of the original feature space

and determine the relevant correlation of attributes that needs

to be considered to detect the corresponding outlier. This is

obviously beneficial in many applications, e.g. in scientific

domains where the relationship between causation and effect

can only be exploited when considering correlations among

attributes. Our new model should be seen as a complement

of the set of existing approaches rather than as a strict

rival because it computes a completely different type of

outliers under completely different assumptions. The benefit

of having quite different rationals and models to derive

outliers has been demonstrated for the construction of outlier

detection ensembles [4].

The remainder is organized as follows. We review related

work in Section II. Our novel outlier model is described

in Section III. An experimental evaluation of the proposed

method is presented in Section IV. Section V provides final

conclusions.

II. RELATED WORK

Existing unsupervised outlier detection approaches can be

classified as global or local. A global model is based on

properties compared over the complete data set assuming

one global generating mechanism underlying the normal in-

stances. A local outlier approach considers a local selection

of the data set which seems better suitable when multiple

generating mechanisms exist.

Existing outlier detecting methods differ in the way they

model and find the outliers and, thus, in the assumptions

they rely on, implicitly or explicitly. In statistics, outlier

detection is usually addressed by modelling the generating

mechanism(s) of the normal data instances using a single

or a mixture of multivariate Gaussian distribution(s) and

1This paper presents an improved version of the method COP as
discussed in [2, chap. 18]. See also the discussion in a recent survey [3].

measuring the Mahalanobis distance to the mean(s) of this

(these) distribution(s). Barnett and Lewis [5] discuss numer-

ous tests for different distributions in their classical textbook.

As a rule of thumb, objects that have a distance of more

than 3 · σ to the mean of a given distribution (σ denotes

the standard deviation of this distribution) are considered as

outliers to the corresponding distribution. The data mining

community developed many different approaches that have

less statistically oriented but more spatially oriented notions

to model outliers. Distance-based outlier models consider

the number of nearby objects or the distances to nearby

objects as an indication of the outlierness of an object [6]–

[11]. Angle-based outlier scores like ABOD [12] assess

the variance in angles between an outlier candidate and

all other pairs of points. Density-based approaches compare

the density of each object with the density of its neighbors

[13]–[18]. However, all these approaches rely implicitly on

the assumption that a globally fixed set of features (usually

all available attributes) are equally relevant for the outlier

detection process.

Some approaches try to account for a local feature rele-

vance and search outliers in axis-parallel subspaces of the

data space [19]–[27]. This is obviously a special case of

finding outliers in arbitrarily oriented subspaces. The most

recent of these approaches, HiCS [27], uses a Monte-Carlo

sampling approach to detect interesting feature combina-

tions, then runs an existing outlier detection method (in the

article they experiment with LOF [13], but suggest that any

other method will be usable) in each such subspace. The

feature selection is in fact global, locality is introduced by

the method used within the chosen projections. A recent

survey [3] is discussing subspace outlier detection in a

broader perspective.

So far, no outlier detection approach is considering local

correlations of attributes for outlier detection and searches

for outliers in arbitrarily oriented subspaces, analyzing the

locally relevant feature combinations only.

Outlier detection is orthogonal to clustering [28] where

the aim is to find a natural grouping of sets of similar data

objects, i.e. the generating mechanisms of a data set. In

fact, clustering algorithms have similar problems like outlier

detection approaches in the above described scenarios. Thus,

a plethora of specialized methods has been proposed for

the detection of clusters in subspaces of the data space

(see e.g. the surveys [29]–[31]), some taking into account

local correlations, e.g., [32]–[34]. Although outliers can

be seen as objects that do not fit well into any cluster,

clustering algorithms can usually not be used for outlier

detection because these algorithms search for clusters and

their corresponding subspaces rather than outliers and their

corresponding subspaces. Object that are not assigned to any

subspace cluster need not necessarily be remarkable outliers

in any of the subspaces in which the detected clusters exist.



III. OUTLIER DETECTION IN SUBSPACES

A. General Idea

In the following, we assume D ⊆ R
d to be a database

of n feature vectors in a d-dimensional space generated by

several mechanisms (i.e. statistical processes). Data objects

from the same generating mechanism are assumed to show

a similar correlation among some attributes such that they

are located on a common δ-dimensional (δ ≤ d) hyperplane,

hereafter also called correlation hyperplane. The basic idea

of our approach is that a data point o is an outlier w.r.t. a set

of “normal" reference objects N ⊂ D if o is not located on

the hyperplane spanned by the points of N . If the objects

in N and o itself are projected on the (arbitrarily oriented)

subspace perpendicular to the hyperplane spanned by the

objects in N , we can observe that the objects in N exhibit a

high density in that subspace whereas o is considerably far

apart from these objects. This idea is visualized in Figure

1(b). Thus, we consider a set of reference objects N for an

object o in order to evaluate the outlier degree of o w.r.t.

N similar to existing local outlier detection approaches.

However, fundamentally different to existing approaches, we

do not consider the density of o and the density of the

neighbors of o in the full-dimensional space. Rather, we

determine the correlation, i.e. the hyperplane, defined by

the neighbors of o and evaluate the deviation of o to its

neighbors in the subspace perpendicular to that hyperplane.

This procedure measures how good o fits to this correlation.

The motivating idea for this approach is the assumption

of possible dependencies among different attributes [35].

Different mechanisms that have generated the data will then

most likely exhibit also different sets of dependencies among

attributes. Eventually, these dependencies are also interesting

themselves in order to grasp possible underlying mecha-

nisms, since those mechanisms are presumably unknown a

priori and local.

In the following, we first introduce a concept to describe

local correlation models (Section III-B) which are used to

determine our outlier scores. In Section III-C we discuss how

to obtain a useful outlier score from the model. We discuss

the choice of the local reference set N in Section III-D

and present a method to derive an explanation for the found

outliers in Section III-E. Finally, a short description of the

outlier detection algorithm and a discussion of its properties

completes this Section (Section III-F).

B. Local Correlation Models

Correlations in 2 dimensions are commonly measured

using Pearson correlation and more generally by using

covariance. To abstract this to arbitrary dimensionality, it

is common to use the covariance matrix ΣN of N , where

σij := Cov(Xi, Xj) for attributes Xi and Xj . Prime

examples are Mahalanobis distance which is defined as:

dM (x, µ) :=
√

(x− µ)TΣ−1(x− µ)

and Principal Component Analysis (PCA), which decom-

poses the covariance matrix into a rotation matrix V con-

taining the eigenvectors and a diagonal matrix Λ containing

the associated eigenvalues in descending order such that

V ΛV −1 = Σ

Using this decomposition yields the following formulation

of Mahalanobis distance of x from mean µ:

dM (x, µ) :=
√

(x− µ)TV Λ−1V −1(x− µ)

The eigenvalues λ in Λ correspond to the variances along

the individual eigenvectors and sum up to the total variance

of the original data, Var(N). If a diagnonal matrix Ω is

defined using ωi :=
√

1/λi = λ
−

1

2

i , then ΩΩ = Λ−1. Since

V is a rotation matrix, V −1 = V T , and since Ω is a diagonal

matrix, Ω = ΩT , therefore

dM (x, µ) :=
√

(x− µ)TV TTΩTΩV −1(x− µ)

=
√

(ΩV T (x− µ))TΩV T (x− µ)

= L2(ΩV
T (x− µ))

As we can see from this (well-known) decomposition, Ma-

halanobis distance is closely related to Euclidean norm L2,

weighted by the eigenvalues along the principal components.

The eigenvectors in V describe the primary axes of the

data set, ordered with decreasing eigenvalues (variance).

If there is a strong correlation in the data set, the first

eigenvectors will be directed along this variance, while the

remaining eigenvectors are orthogonal and can be seen as

describing the deviation from the data set. For our local

correlation model, we want to exploit this property. By

replacing Ω with Ω̂δ (δ ≤ d) using

ω̂δ,i :=

{

0 iff i ≤ δ

ωi = λ
−

1

2

i iff i > δ

we obtain distances that do not take the first δ projected

dimensions into account. Assuming that the local data is δ
dimensional,

dE,δ := L2(Ω̂δV
−1(x− µ)) (1)

is therefore a good measure of deviation from the local

correlation. We call this δ the correlation dimensionality

of N . The correlation dimensionality is closely related

to the intrinsic dimensionality of the data distribution. If,

for instance, the points in N are located near a common

line, the correlation dimensionality of these points will be

approximately 1. The difficult part is to determine this

correlation dimensionality δ. In [36] the authors propose to

use a threshold α, and consider those dimensions such that

they explain the fraction α of the total variance:

argminδ

δ
∑

i=1

λi ≥ αVar(N)
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Figure 2. Illustration of the correlation dimension and the distance of an
object o to a hyperplane HN .

where α = 85% showed good performance. However,

this is a rather crude heuristic. In particular, there may

be more than one correlation (of different dimensionality)

present in the same set. A weaker one-dimensional (linear)

correlation can be embedded within a higher dimensional

manifold. Therefore, using a threshold may not necessarily

be adequate. Additionally, experiments have shown that even

in uncorrelated data, in particular when the sample size is

low and the dimensionality is high, there will be a significant

difference in the eigenvalues that may result in an incorrect

dimensionality. In an extreme case, when |N | < d there can

obviously be at most |N | − 1 non-zero eigenvalues.

These ideas are illustrated in Figure 2. Figure 2(a) shows

a set of points N that span a correlation hyperplane H
of correlation dimensionality 1 corresponding to a (perfect)

line. One eigenvector (v1) already explains the total variance

of N . The projection to the first eigenvector describes the

position of the object within the subspace, while the projec-

tions on the other eigenvectors describe the deviation from

the subspace. Figure 2(b) shows a set of points N that span

a correlation hyperplane H of correlation dimensionality 2

corresponding to a (perfect) plane. Here, two eigenvectors

are needed to represent the position of the object, while the

third would determine the deviation.

Let us note that in the displayed examples the correlations

are perfect, i.e. there is no deviation from the hyperplane but

all points within the set perfectly fit to the hyperplane. In

real-world data sets, this is obviously a rather unrealistic

scenario. The points will most likely deviate from the

(idealized) hyperplane. However, for a known correlation

dimensionality δ we can measure the deviation from the

correlation using Equation 1. It may seem a bit counter

intuitive to use the last vectors of the PCA result. The reason

is that the first (high variance) vectors will describe the

extend of the correlation hyperplane, while the orthogonal

(low variance) vectors describe the deviation, which we are

interested in here. This is visualized in Figure 2(c), where

the distance of an object o to a hyperplane HN is clearly

to be measured orthogonally to the hyperplane. Note that

we do not explicitly compute or use the hyperplane HN in

the following, but it is implicitly encoded in the distance

function.

In the first components (those spanning the subspace) the

data may be arbitrarily distributed. The remaining compo-

nents, however, seem to contain errors, which we can intu-

itively assume to follow approximately a normal distribution

if they are indeed not relevant.

The projection onto the last d − δ eigenvectors also

provides a very useful tool for evaluating the outliers found:

it is the difference vector between the true object location

and the idealized position the object was expected to be at,

which can easily be used as explanation for the outlierness

of an object, which we will use in Section III-E.

C. Correlation Outlier Probability

Even if we know the appropriate correlation dimension-

ality δ, the raw distances are not well suited for outlier

detection. A key improvement of LOF [13] over preceding

outlier detection methods such as the method of Knorr and

Ng [6] was to compare the distances associated with one

object to the distances of neighbor objects.

LoOP [18] is a variation of LOF that uses a local statistical

density estimation to become less sensitive to the choice of

the size of the neighborhood. By using normalization and

regularization, the outlier scores become also interpretable

as probabilities. A general framework for regularization of

arbitrary methods is discussed in [37].

Here, it is not reasonable to use the distance for density

estimation like in LOF, but instead we can assume that

the error distances correspond to a d − δ dimensional

normal distribution. After rescaling the data with Ω̂δ , we

can even assume the individual dimensions to be approx-

imately independent and identically distributed (i.i.d.), i.e.

∀i>δωiv
T
i (x − µ) ∼ N (0, 1). Then the deviation dE,δ

however is χ(d− δ) distributed, as it is:



dE,δ(x, µ) =

√

√

√

√

d
∑

i=δ+1

(ωivTi (x− µ))2

∼

√

√

√

√

d
∑

i=δ+1

N (0, 1)2

∼ χ(d− δ)

For convenience and simpler computations, we can also look

at the squared distances, which then are χ2(d−δ) distributed

(a special case of the Γ distribution), i.e.

dE,δ(x, µ)
2 ∼ χ2(d− δ) (2)

∼ Γ

(

d− δ

2
, 2

)

(3)

To improve accuracy, we can also try to fit a Gamma

distribution to the observed squared distances, instead of

relying on the data to be exactly χ2 distributed. We used the

maximum likelihood estimation by [38], but only applied it

to the 85% closest points, to avoid outliers from influencing

the parameter estimation.

For these distributions, the cumulative density function

(CDF) measures how many objects are expected to be closer

to the mean than the given distance. This is a very intuitive

value, ranging from 0 to 1, representing the probability, that

a random generated object has a smaller distance than the

observed instance.

At this point, we can now define the Correlation Outlier

Score by taking the maximal unlikely deviation, and this

way implicitly choosing the correlation dimensionality δ.

Definition 1 (Correlation Outlier Score):

Formally, the Correlation Outlier Score is defined as

COS(o) := max
δ

cdfΓ(dE,δ(x− µ)) (4)

Note that the exact shape of the Γ distribution depends on

the dimensionality δ − d, and for improved results can be

estimated from the observed distances (for each δ).

While this value can already be seen as an “outlier

probability” as suggested by [37], it is not yet entirely

intuitive. Obviously, 10% of objects are expected to have a

probability higher than 90% and 1% higher than 99%. This

linear behaviour of the score does not align well with the

intuitive use, where we would expect objects with a score of

more than 50% to be more likely outliers than inliers, and

this should be a much more rare occurrence than 50%.

To obtain this more intuitive probability, we adjust the

score in the style of hypothesis testing and compare the

hypothesis that the object is normally distributed to the

alternate hypothesis of the object coming from an arbitrary

different distribution. Note that this is not a proper statistical

test, but only a best effort to make the score easy to interpret

for humans. Assuming a true outlier rate of ϕ, an object o

with COS(o) = 1 − ϕ should have intuitively an outlier

probability of 50%, as there are expected to be as many

outliers as normal distributed objects with an equal or higher

distance. For normalization we propose to use the formula:

norm(p, ϕ) :=
ϕ · (1− p)

ϕ+ p

which rescales the score to norm(0, ϕ) = 1, norm(1, ϕ) = 0.

As normalization constant we used ϕ = 0.1%, but for large

data sets it may be appropriate to lower this value to decrease

sensitivity.

Definition 2 (Correlation Outlier Probability):

Let N denote a local set of reference objects. The correlation

outlier probability of o ∈ D w.r.t. N and an assumed outlier

rate ϕ, denoted by COPN (o, ϕ), is defined as

COPN (o, ϕ) := norm(1− COS(o), ϕ)

The role of ϕ is to make the scores more intuitive and usable.

As a final remark, note that we did not exclude δ = 0. In

this case, no correlation was detected and all dimensions are

treated as noise dimensions. Our method then degenerates

to a full-dimensional method, and (as we will see in the

experimental section) is well able to handle this.

D. Choosing a Reference Set

So far, we have not yet discussed how to choose the

reference set N w.r.t. which the correlation outlier prob-

ability COP(o) of an object o ∈ D is determined. As

discussed above, we assume an unknown number of different

generating mechanisms for the normal instances, thus, we

argue to use a local rather than a global approach. In fact,

we use the k-nearest neighbors (kNNs) of o for some input

parameter k as a reference set, i.e. those k (or more in case

of ties) objects in D having the smallest distance to o. In-

tuitively, k determines a threshold for the minimum number

of points necessary to determine a significant mechanism. In

addition, k should be large enough to span a δ dimensional

hyperplane, e.g. k > 3 · d as suggested in [39]. On the

other hand, k should not be chosen too high, because then

it is likely that N contains points that are generated by

different mechanisms themselves and PCA cannot detect a

meaningful correlation hyperplane.

In order to obtain the principal components in a more

stable and robust way (as we expect the presence of outliers),

we experimented with two methods. The first is Robust PCA

[39] (RPCA) using the suggested weight function 1−erf to

compute a weighted covariance matrix. Secondly, we applied

a RANSAC [40] variation during computing the covariance

matrix, with a threshold of d2M ≤ quantileχ(d)(0.9) to obtain

a consensus covariance matrix. RPCA comes at little extra

cost, as the weights are computed from the already known

distances. RANSAC PCA scales much more badly with

dimensionality, as it performs many iterations of PCA, which

is O(d3) in complexity and contributes significantly to the

overall complexity.



algorithm computeCOP

for each o ∈ D do:
compute Nk(o) the k-nearest neighbors of o;
determine ΣNk(o)

, V,Λ using robust PCA;
for each δ ≤ d do:

compute deviation from δ-dim hyperplane;
estimate deviation distribution via Γ or χ2;
compute COSNk(o)

(o) according to Definition 1;
if deviation > maximum deviation then:

update maximum deviation score;
store associated error vector;

end if

end for

compute COPNk(o)
(o) according to Definition 2;

end for

Figure 3. Computing the COP.

E. Explaining and Interpreting Outliers

Obviously, it would also be interesting for the user not

only to retrieve outliers but also to obtain an interpretation

and explanation why objects are considered outliers. As

indicated above, we can utilize our modelling of correlation

hyperplanes not only to derive outliers, but also to derive a

quantitative model that explains the correlation w.r.t. which

an outlier has been identified as an outlier. The outlier expla-

nation generated by COP consists of two main components:

the error vector which indicates the error estimated for the

object, pointing to the expected position of the object, and

the actual outlier score, which indicates how much more

likely the outlier is to come from a different (i.e., outlier)

mechanism as opposed to being just a rare object from the

same mechanism that generated N .

F. Algorithm

With the concepts described in the previous subsections,

we are now able to evaluate outliers by considering local

correlations in the data and derive a model for each outlier

o that explains why o is considered an outlier quantitatively

by means of an equation system. An efficient algorithm

for computing the outlier probability of all objects o ∈ D
is given in Figure 3. The only input parameter is k, the

number of nearest neighbors that are included into Nk(o),
which has already been discussed above. The algorithm

computes the k-nearest neighbors Nk(o) of each object

o which requires O(n2) time using a sequential scan but

can be supported by any well-established index structure

reducing the runtime to O(n · log n) on average. In addition,

for each object o the local correlation is computed using

PCA, which requires O(k · d2 + d3) time. The inner loop

includes matrix multiplications, but is O(d3) overall. In

general, k ∈ O(d) and k ≪ n, so the overall runtime

complexity is O(n2 · d3) without index and O(n log n · d3)
when using a spatial index for nearest neighbor search. With

RANSAC-PCA, the number of iterations is significant and

increases the runtime linearly by a factor of O(i) where

i ≫ d.

IV. EXPERIMENTS

We compared COP to the local outlier factor (LOF)

[13], the local correlation integral (LOCI) [16], and local

outlier probabilities (LoOP) [18]. These methods consider

full-dimensional densities around points and their neighbors.

We have extended LOCI slightly to turn it into a ranking

outlier detection scheme by using the kσ value at which

the point would turn into an outlier as rank. LOF and

LOCI are probably among the most prominent and well-

known outlier detection algorithms. All competitors have

been implemented within in the unified framework ELKI

[41], where also our new method COP is available.

A. Accuracy

As a baseline experiment, we generated 1000 objects

that are standard normal distributed in 2 dimensions. There

are no correlations in this data set and no true outliers,

only rare objects from the normal distribution. Figure 4

visualizes the result for k = 20, with the colors assigned

by the object score. As we can see, only a few objects

score higher than 0.1. A few objects that deviate more than

3 standard deviations were given a high score over 0.5,

while the remaining objects scored close to 0. Despite the

method being designed to detect correlations, it works very

well with this baseline approach. LOF is detecting similar

outliers, but none reaches the suggested threshold of 3, and

there is an almost linear progression with the outlier scores

on the outside of the distribution. The reason is that LOF

was designed with uniform density in mind. LOCI has big

problems with this data set, due to the fluctuations inside

the distribution. This can be seen as an issue of overfitting:

for many objects it will find a radius where the object has a

low local density compared to neighbor objects. We first

expected an implementation error, but if you inspect the

data closely, each of these objects can indeed be seen as

a local outlier at the particular radius. The results of the

approximate variant aLOCI [16] are slightly better, albeit it

still detects only outliers in sparse areas at the center of the

normal distribution. Similar to LOF, LOCI assumes that the

inliers form a uniformly dense region, which does not hold

for this data set. So even on this basic and uncorrelated test

set, COP outperforms LOF and LOCI with respect to quality

and usability of the scores.

As second toy example, we generated points along a

sinus curve (with low variance normal distributed error)

along with a few obvious outliers. Again we show the top

scores for COP and LOF in Figure 5. As expected, LOF

performs very well at detecting the obvious outliers, but fails

to detect outliers close to the sinus curve. If the threshold

is set too low, it starts detecting outliers inside the curve.

The main motivation for this example is to see how well

COP works in the presence of non-linear correlations. It

handles this situation surprisingly well: Many non-linear

correlations behave just like linear correlations in a small



(a) COP red > 0.1, yellow > 0.5, blue > 0.9 (b) LOF red > 1.1, yellow > 1.2, blue > 1.5, (c) LOCI red > 1.5, yellow > 2, blue > 3,

Figure 4. Scores on a standard normal distribution

enough neighborhood and the error by modelling them with

a linear approximation is not significant for outlier detection.

The scores produced by COP are very reasonable – objects

with a score larger than 0.5 (colored blue and green in

Figure 5(a)) can safely be considered outliers. Objects with a

score of 0.1−0.5 may still be worth further investigation, and

even objects with a score of just 0.01 are on the fringe of the

actual data distribution. Similar to LOF, LOCI (Figure 5(c))

was able to detect the obvious outliers, and even some of

the outliers nearby the sinus curve, but LOCI reacts much

more sensitive to fluctuations within the cluster, similar to

the observations in the previous example. Additionally, in

Figure 5(d) we visualize the error vectors produced by COP,

weighted with their outlier probability. Clearly, these vectors

fit the intuitition of measuring the divergence from a local

correlation as they point to a nearby location on the curve.

Only for the outlier at approximately 0.9, 0.5 the vector is

suboptimal. This object has 25% outliers in its 20 nearest

neighbors, so the robust PCA did not perform that well.

However, COP also has its limitations. It uses a well

defined outlier model, based on the deviation of a local trend.

Classic density-based outliers will not necessarily have such

a trend in their vincinity. Figure 6 visualizes such a situation.

While COP does very well in recognizing outliers near the

dominant correlation, the object marked as O (a typical

density-based outlier) is not detected, because the 20 nearest

neighbors (indicated with a green background) do not show

a strong correlation, and as such the object is by definition

not a correlation outlier. Other algorithms such as LOF

might also have problems detecting some of these outliers,

as the direct neighbors do also have a similar density. Only

a method based on global density will be able to detect this

outlier. This example shows the need to use multiple types of

outlier detection models and methods: global density, local

density and correlation outlier detection are different kinds

of outliers, best detected by different approaches.

(a) COP: red > 0.01, yellow >
0.1, blue > 0.5, green > 0.99

(b) LOF: red > 1.1, yellow >
1.5, blue > 2.0, green > 3.0

(c) LOCI: red > 1.5, yellow >
2.0, blue > 3.0, green > 4.0

(d) COP error vectors

Figure 5. Scores on a sinus distribution with low noise and a few strong
outliers

B. Scalability

We compared the scalability of COP with LOF, with-

out index acceleration. We did not include LOCI in the

benchmarks, since we were using the exact version for the

other comparisons which is known to scale very poorly. A

comparison with the approximate version aLOCI would have

been possible. However, this would not have produced novel

insights since aLOCI scales similar as LOF.

The runtime required to compute the COP value for
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Figure 7. Scalability of COP compare to LOF.

Figure 6. Strengths and limitations of COP: finds outliers close to the
correlation, but does not recognize density outliers.
red > 0.1, yellow > 0.99. Green indicates the 20 nearest neighbors of O

all database objects w.r.t. increasing database size n in

comparison to LOF is shown in Figure 7(a). Both ap-

proaches scale super-linear as expected. Let us note that

we used materialized neighborhoods for LOF so that each

neighborhood needs to be computed only once similar to

COP. However, this implies a considerably higher storage

overhead of LOF over COP. We also examined the scalability

of our novel outlier detection approach compared to LOF

w.r.t. the dimensionality d of the data points. The results

shown in Figure 7(b) suggest a linear scalability for LOF

and a super-linear growth for COP as expected. The impact

of the parameter k (minPts in LOF) on the runtime of the

algorithm is not very importat, as both methods scale almost

constant w.r.t. k, as it can be seen in Figure 7(c), supporting

our analysis that the inner loop of COP is O(k ·d2+d3). As

such, the methods are linear in k, but the iteration over the

k neighbors is comparably cheap as opposed to the matrix

inversion and neighbor search.

Unlike the pure scalability suggests, COP will not work

with arbitrarily high-dimensional data, because PCA will not

work very well with high-dimensional data. Not only does

it scale with O(d3), but it also requires a significantly larger

neighborhood with increasing dimensionality, which at some

point will no longer be truly local. Furthermore, it will likely

be affected by the curse of dimensionality. It is however

very reasonable to combine COP with methods that produce

subspace candidates to test, such as HiCS [27].

C. Results on Real-world Data

We used COP to find outliers in a data set containing 15

statistical measures for 413 former and current NBA players

obtained from the NBA website2. We removed players with

only a few games played, retaining 357 players.

Table I(a) depicts the top outliers according to COP, along

with a trend indication of the error vector. The actual 15-

dimensional error vectors are not as easy to interpret as the

general trend indication. The data set is quite diverse with

various types of outliers. Seven players scored the maximum

score of 1.0 is this model, and a large number of records

scored just slightly less. The key benefit here actually is to

have this error model that indicates how a particular record

is unusual. We will discuss the errors found by COP for

some of the top players, because there are some interesting

situations here.

Note that the error vectors point to the expected value.

Eddy Curry for example, was unusually successfull at reg-

ular and 3 point throws and overall points, but not in free

throws. Indeed in the data set he is given a 100% success

rate for 3 point throws, but only 64.8% on free throws. Bruce

Bowen played 661 games and 28.2 minutes on average, but

scores only on 56.8% of free throws. Dennis Rodman is an

exceptional rebounder, his blocks per game score is not low,

unless compared to his number of rebounds. Antoine Carr

is his very opposite, scoring low on rebounds and high on

blocks and fouls. He played a lot and is a good shooter.

Steve Kerr is an exceptional fair player and also extremely

good at shooting. He played 910 games, but only 30 in the

starting team. Steve Scheffler only played 5.3 minutes on

average, despite having not bad scoring values. The most

2http://www.nba.com



Table I
RESULTS ON REAL-WORLD DATA

(a) Top outliers found by COP in NBA data set.

Player COP Error vector trend

Eddy
Curry

1.0 -3PSuccess -Success -PointsPG FTSuccess -FoulsPG
OffRebounds -DefRebounds TurnoverPG AssistPG
StealsPG

Bruce
Bowen

1.0 FTSuccess -StartTeam -MinutesPG TurnoverPG
OffRebounds

Dennis
Rodman

1.0 -OffRebounds -SumRebounds -DefRebounds
FTSuccess BlocksPG PointsPG -Success
-GamesPlayed

Antoine
Carr

1.0 -GamesPlayed -FoulsPG -BlocksPG SumRebounds
OffRebounds -FTSuccess DefRebounds -Success

Steve
Kerr

1.0 FoulsPG -GamesPlayed -Success -3PSuccess
TurnoverPG -FTSuccess SumRebounds
OffRebounds DefRebounds

Steve
Scheffler

1.0 MinutesPG -Success FoulsPG TurnoverPG
SumRebounds DefRebounds PointsPG StealsPG
BlocksPG

Danny
Manning

1.0 GamesPlayed -FoulsPG -Success -StealsPG
-TurnoverPG

Allen
Iverson

0.999997 -TurnoverPG -StealsPG -PointsPG -MinutesPG
-AssistPG FoulsPG -StartTeam

John
Stockton

0.999989 -AssistPG -StartTeam -GamesPlayed -StealsPG
DefRebounds -TurnoverPG SumRebounds -Success
PointsPG BlocksPG

Andrei
Kirilenko

0.999891 -BlocksPG -StealsPG FoulsPG GamesPlayed
StartTeam -AssistPG

Avery
Johnson

0.999789 3PSuccess -AssistPG -StartTeam -GamesPlayed
FTSuccess FoulsPG -Success SumRebounds
DefRebounds OffRebounds

Dirk
Nowitzki

0.999678 -DefRebounds -SumRebounds -PointsPG
-MinutesPG -FTSuccess OffRebounds -BlocksPG
-3PSuccess

Charlie
Bell

0.999010 TurnoverPG -MinutesPG -StealsPG

Jason
Kidd

0.998700 -AssistPG -TurnoverPG -StealsPG -SumRebounds
-OffRebounds 3PSuccess -DefRebounds Success
-StartTeam FoulsPG -GamesPlayed

Shaquille
O’Neal

0.995704 -BlocksPG -PointsPG -SumRebounds -OffRebounds
FTSuccess -Success -DefRebounds -TurnoverPG
-StartTeam 3PSuccess -MinutesPG -FoulsPG
-GamesPlayed

(b) ALOI results.

Method COP LOF LoOP aLOCI

ROC AUC Score 0.82186 0.73131 0.77408 0.7112

interesting outlier however is Danny Manning. While all his

individual statistics are well within the range of the data set,

COP clearly indicated this player should have played more

games. Upon closer investigation we noticed that while he

is credited for playing 83 games total, he is also credited

for being in the starting team in 398 games – obviously an

error occurred during data entry of this data set.

We also applied LOF on that data set. Even when trying

to optimize the parameter minPts , LOF could not find

significant outliers. In all cases, the top outlier achieved a

LOF value of below 1.8. This indicates that the objects in

that data set exhibit a rather uniform density and outliers

like the measurement error can only be detected when

considering correlations as implemented by COP. The top

outliers found by LOCI were players that had played next
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Figure 8. ROC curves for ALOI data set

to no games. The highest score achieved was 2.1, which

would not have been considered an outlier by LOCI (the

suggested significance value is 3). This difference to the

results published in [16] is probably due to our NBA data

set covering more seasons and players than their version.

As second real-world data set, we used the Amsterdam

Library of Object Images (ALOI) [42], a collection of

110250 images from 1000 different objects in various light

conditions. We downsampled some objects to obtain rare

classes, so that 50000 images remain, 1508 of which are

from rare objects. We extracted Haralick texture features

[43] from the images, obtaining a 14 dimensional vector

space. This is a rather challenging data set, and none of the

methods evaluated performed excellent on this data set.

In Figure 8 we visualize the ROC curves for different

algorithms: the new method COP along with the well-

known local density-based outlier detection method LOF, the

variation LoOP, and aLOCI. COP clearly offers an improved

detection performance compare to all three methods. The

area under curve (AUC) values are given in Table I(b).

V. CONCLUSIONS

We proposed a local model that takes correlations among

varying subsets of attributes into account in order to find out-

liers in arbitrarily oriented subspaces. Our algorithm assigns

to a point a score of being an outlier w.r.t. a set of reference

points in the local neighborhood. An important contribution

of COP is to not only produce an outlier score, but also

to generate an explanation of how the outlier diverts from

the norm. This significantly helps analysis of the outliers by

a domain expert. The different abilities of COP compared

to LOF and LOCI as prototypes of classical local outlier

detection algorithms have been demonstrated on synthetic

and real-world data. COP provides a new paradigm for

outlier detection that exhibits rather different characteristics

orthogonal to established methods. As a consequence, COP

does not necessarily compete with existing outlier detection

methods but rather complements them, and is best used in

parallel with classic density-based outlier detection methods,

as they detect different types of outliers.
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