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Abstract—A number of applications in social networks,
telecommunications, and mobile computing create massive
streams of graphs. In many such applications, it is useful to detect
structural abnormalities which are different from the “typical”
behavior of the underlying network. In this paper, we will provide
first results on the problem of structural outlier detection in mas-
sive network streams. Such problems are inherently challenging,
because the problem of outlier detection is specially challenging
because of the high volume of the underlying network stream.
The stream scenario also increases the computational challenges
for the approach. We use a structural connectivity model in
order to define outliers in graph streams. In order to handle the
sparsity problem of massive networks, we dynamically partition
the network in order to construct statistically robust models of
the connectivity behavior. We design a reservoir sampling method
in order to maintain structural summaries of the underlying
network. These structural summaries are designed in order to
create robust, dynamic and efficient models for outlier detection
in graph streams. We present experimental results illustrating
the effectiveness and efficiency of our approach.

I. INTRODUCTION

Many communication applications such as social networks,
IP networks and internet applications lead to the creation of
massive streams of graph data. This has lead to an increasing
interest in the problem of mining dynamic graphs [1], [2], [4],
[16], [21]. In a graph stream, we assume that individual graph
objects are received continuously over time. Some examples
of such application scenarios are as follows:

• Many information network objects can be expressed as
graph objects [19]. For example, a bibliographic object
from the DBLP network may be expressed as a graph
with nodes corresponding to authors, conference, or topic
area. The graph for the object may be represented in
a variety of ways, depending upon application-specific
requirements. In general, many objects in information
networks are represented as entity-relation graphs which
are drawn from a particular kind of schema. For example,
the internet-movie database can be represented as an
entity-relation graph, in which the structure of the object
corresponds to the relationships between the different
information elements.

• Social networks [2] typically contain massive patterns
of activity among the different users. Each user may
be considered a node, and the activity between them

may be considered an edge in the graph stream. The
pattern of interactions within a small time window, or
within users of a particular type may be considered a
structural network stream. Similarly, certain events in
social networks may lead to local patterns of activity,
which may be modeled as streams of graph objects.

• The user browsing pattern at a web site is a stream of
graph objects. Each object corresponds to the browsing
pattern of a particular user. The edges represent the path
taken by the user across the different objects.

The afore-mentioned examples typically correspond to sce-
narios in which the graphs are defined over a massive domain
of nodes. The node labels are typically drawn over a universe
of distinct identifers, such as the URL addresses in a web
graph, an IP-address in a network application, or a user
identifier in a social networking application. For example, in
the case of a graph with more than 107 nodes, the potential
number of edges could be of the order of 1013. In such a case,
the number of distinct edges in the stream is so large that it
becomes impossible to store them for offline processing. The
massive graph size also creates a huge challenge for dynamic
mining applications of the kind discussed in this paper.

In this paper, we will study the problem of outlier detection
in graph streams. Such outliers represent significant deviations
from “normal” structural patterns in the underlying graphs.
Some example of such deviations are as follows:

• Consider the case where the objects correspond to entity-
relation graphs for a movie. The nodes could correspond
to actors that are drawn from very diverse genres or
regions which do not normally occur together. In such
cases, the object may be considered an outlier. This is also
an interesting event, because it is likely that the movie
has some unusual characteristics which are usually not
present in most networks.

• In an academic network, two co-authors which are drawn
from groups that usually do not work together may some-
times publish together, especially when one of the authors
changes fields or if an interesting cross-disciplinary paper
is written. This is an interesting event from the perspec-
tive of outlier detection.



In general, unusual relationships in the graphs may be rep-
resented as edges between regions of the graph that rarely
occur together. Therefore, the goal of a stream-based outlier
detection algorithm is to identify graph objects which contain
such unusual bridging edges. Such unusual objects need to be
identified in the graph stream dynamically, as they are received
over time. The dynamic nature of the problem is particularly
challenging in the context of graph stream processing, because
of the high rate of the incoming stream, and the large number
of distinct edges received over time.

In order to address these challenges, we propose a proba-
bilistic algorithm for maintaining summary structural models
about the graph stream. These models are maintained with the
use of an innovative reservoir sampling approach for efficient
structural compression of the underlying graph stream. An
additional product of the results of this paper is that we
show how to dynamically maintain reservoir samples of the
graph with specific structural criteria satisfying a general
condition referred to as set monotonicity. While reservoir
sampling is typically used in the context of the stream scenario
[5], [20] with particular temporal statistical properties, there
is no known research on the topic of maintaining reservoir
samples which leverage the underlying structural properties
of graph streams. This kind of reservoir sampling is likely
to be useful for other applications which leverage particular
structural properties during graph sample maintenance.

This paper is organized as follows. The remainder of this
section presents related work. In section II, we define the
outlier detection problem for the graph scenario. In section
III, we discuss the approach of structural reservoir sampling.
We show how to use structural reservoir sampling in order
to solve the outlier detection problem for the graph stream
scenario. Section IV contains the experimental results. Section
V presents the conclusions and summary.

A. Related Work and Contributions

The problem of outlier detection has been studied ex-
tensively in the context of multi-dimensional data [7], [9],
[17], [18]. These techniques are mostly either distance-based
[17], [18] or density-based [7], [9] methods. However, these
methods cannot be easily generalized to non-spatial networks.
The problem of graph outliers presents a special challenge,
because the linkage structure in graph objects can be arbitrary,
and outliers can only be determined by examining the behavior
of the edges in the individual graph objects. Furthermore,
the stream scenario presents a special challenge, because the
stream objects can be examined at most once during the
computation. The related work of clustering has also been
studied in the context of graphs and graph streams [1], [2],
[4], [16], [19], [21]. A number of different methods for
network outlier detection have been discussed in [8], [11],
[13]. However, these methods are only applicable to static
networks, and not generally applicable to the case of dynamic
graph streams. The dynamic nature of graph streams presents
a special challenge which cannot be easily addressed in graph

mining techniques such as outlier detection, which require
intricate structural analysis.

In this paper, we will design the first known real-time and
dynamic method for outlier detection in graph streams. We also
design a structural reservoir sampling approach, which designs
the structural summarization required for such a dynamic
approach. This stream-based structural sampling method is
an additional useful by-product of our approach because it
satisfies a broad class of desirable properties known as the set-
monotonicity property. The broad class of properties satisfied
by the structural reservoir sample ensures that it is likely to
be useful for a variety of other applications beyond the outlier
detection problem.

II. PROBABILISTIC OUTLIER MODELING FOR GRAPH

STREAMS

We will first introduce some notations and definitions. We
assume that we have an incoming stream of graph objects,
denoted by G1 . . .Gt . . .. Thus, the ith graph in the stream
is denoted by Gi. Each graph Gi has a set of nodes, which
are drawn from the node set N . Each node is associated with
a unique identifier, which may be a string, such as the IP-
address in a computer network, or the user-identifier in a
social network. The set N may be very large in web-scale
applications. For example, in a networking application, the
node set may consist of millions of IP-addresses, whereas
in a social network, it may consist of millions of users. We
formally define the node set N as the base domain of nodes.

Definition 1 (Base Node Domain): The base node domain
defines the node set N from which the nodes of all the graphs
in the stream are drawn.
We note that the base node domain may vary dynamically
over time. For example, in a bibliographic information network
application, new nodes may be added to the base domain
continuously, as new authors (or other entities) are added to
the network. Each graph Gi is associated with a set of nodes
Ni ⊆ N and a set of edges Ai. In many real applications,
we work with the sparsity assumption, in which the node set
Ni of each graph Gi is small subset of base node domain N .
Next, we formally define the concept of a graph object in the
data stream:

Definition 2 (Stream Graph Object): Each graph object
Gi = (Ni, Ai) is defined as the set of nodes Ni and edges
Ai. The set Ni is a subset of the base domain node set N .
Each edge in the set Ai is an (undirected) edge between two
nodes in Ni.

We use anomalous edge structure in individual graphs (with
respect to the overall stream structural patterns) in order to
determine outliers. In such cases, outliers may be defined as
graph stream objects which have unusual connectivity struc-
ture among different nodes. Since the unusual connectivity
structure can be defined only with respect to the historical
connectivity structure, we need some way of representing these
structural statistics. The large size of the underlying graph, and
the massive number of distinct edges precludes the storage of
the entire network stream history explicitly in order to track



this structural statistics. Furthermore, the decision on whether
an incoming graph object is an outlier needs to be performed in
real time. In order to achieve this goal, we will dynamically
maintain node partitions which can expose abnormalities in
the connectivity structure, and will use it in order to make
real-time decisions about the incoming graph objects. Such
partitions should ideally represent the dense regions in the
graph, so that the rare edges across these dense regions are
exposed as outliers.

One challenge is that such a node partitioning needs to be
dynamically maintained for the graph stream, and a statis-
tical model needs to be concurrently maintained for outlier
determination. In order to achieve this goal, we will design a
structural reservoir-sampling approach in order to dynamically
maintain the partitioning. Such a structural reservoir sampling
has the property that it is biased towards creating node groups
which are densely connected. This bias towards maintaining
the dense regions is useful, because it helps expose abnormal
bridge edges across different partitions of the graph. This
also ensures that we do not need to use an approach which
maintains the optimum partitioning into dense regions of the
graph. We will defer the description of structural reservoir
sample maintenance (and corresponding node partitioning) to
a future section. First, in this section, we will show how to use
the node partitioning information for probabilistic modeling of
outliers.

In order to define the abnormality of edge behavior we
define the likelihood fit of an edge with respect to a partition
of the nodes C = C1 . . . Ck(C). The number of node partitions
in C is denoted by k(C). Each set Ci represents a disjoint
subset of the nodes in N , and C is the notation representing
the partitioning induced by the sets C1 . . . Ck(C). It is assumed
that the union of the sets C1 . . . Ck(C) is the base node domain
N . First, we define the structural generation model of edges
with respect to node partitioning C. This defines the probability
of an edge between a pair of partitions in the incoming graph
stream. This structural generation model will be useful for
probabilistic modeling of outliers, because a lower probability
edge provides evidence of outlier-like characteristics of the
underlying graph object.

Definition 3 (Edge Generation Model): The structural gen-
eration model of a node partitioning C = {C1 . . . Ck(C)} is
defined as a set of k(C)2 probabilities pij(C), such that pij(C)
is the probability of a randomly chosen edge in the incoming
graph object to be incident on partitions i and j.
The edge generation model discussed above includes the case
in which i = j and therefore both end points of the edge
may lie in the same partition. We also note that since we
are working with the assumption of undirected graphs, we
have pij(C) = pji(C). For a given node i, we denote the
partition identifier for i by I(i, C), which lies between 1 and
k(C), depending upon the membership of i in one of the
k(C) partitions. The k(C)th group of nodes is considered
to be special, and accommodates isolated nodes or outlier
subgraphs. We will discuss more about this partition in a later
section on structural reservoir sampling.

Definition 4 (Edge Likelihood Fit): Consider an edge
(i, j), a node partition C, and edge generation probabilities
pij(C) with respect to the partition. Then, the likelihood fit
of the edge (i, j) with respect to the partition C is denoted
by F(i, j, C) and is given by pI(i,C),I(j,C).
It is important to note that the likelihood fit of an edge can
be defined with respect to any partition in the network. The
purpose of using partitions for the generation model instead of
the individual nodes is to allow for a higher level of granularity
in the representation, so that enough statistical information
can be collected about the edges between the partitions in the
underlying stream. While it may not be possible to construct
a statistically robust model on the basis of edge presence or
absence between individual nodes, it may be possible to create
a statistically more robust model for groups of nodes which
correspond to the partitions. This is because a given stream
may not contain an edge between an arbitrary pair of nodes,
and therefore a sufficient amount of data is not available to es-
timate the underlying probabilities between individual nodes.
Furthermore, the compression of the statistics into a smaller
number of partitions also reduces the space-requirement of
maintaining these probabilities tremendously, since the number
of such probabilities is governed by the square of the number
of partitions.

We maintain multiple models in order to increase the
robustness of likelihood estimation. This corresponds to mul-
tiple ways of partitioning the nodes, and the corresponding
statistics also need to be maintained simultaneously. Since
each partitioning provides a different way to construct the
generation model, it provides a different way of estimate
the edge generation probabilities. This smooths out the local
variations which are specific to a given partitioning. By
combining these different ways of estimation, we can provide
a more robust estimate of the underlying probabilities. We
denote the r different ways of creating the partitions by
C1 . . .Cr. Specifically, the ith partitioning Ci contains k(Ci)
different partitions. The composite edge-likelihood fit from
these r different ways of creating the partitions is defined as
the median of the edge like-likelihood fits over the different
partitions.

Definition 5 (Edge Likelihood Fit (Composite)): The com-
posite edge likelihood fit over the different partitionings
C1 . . .Cr for the edge (i, j) is the median of the val-
ues of F(i, j, C1) . . . F(i, j, Cr). This value is denoted by
MF(i, j, C1 . . . Cr).
The likelihood fit for a graph object G is the product of the
likelihood fits of the edges in G. In order to fairly compare
between graphs which contain different numbers of edges, we
put the fraction 1/|G| in the exponent, where |G| is the number
of edges in the incoming graph stream object. In other words,
we use the geometric mean of the likelihood fits of different
edges in the incoming graph stream object. Therefore, we
define the object likelihood fit as follows.

Definition 6 (Graph Object Likelihood Fit): The
likelihood fit GF(G, C1 . . . Cr) for a graph object G
with respect to the partitions C1 . . . Cr is the geometric mean



Algorithm DetectGraphOutliers(Incoming Object: G
Stream Samples: S1 . . . Sr, Partitions: C1 . . .Cr
Probability Statistics: pnij(·),psij(·), pij(·))

begin
Compute likelihood probabilities of incoming graph

object G with the use of the stored probability
statistics in pij(·);

if likelihood probability is t standard deviations below
average of all graphs received report G as outlier;

Update stream samples S1 . . . Sr by adding the
edges in incoming object G; (Structural reservoir
sampling technique of section 3)

Update partitionings C1 . . .Cr from the
updated samples S1 . . . Sr and the corresponding
probability statistics pnij(·),psij(·), and pij(·);

end

Fig. 1. Outlier Detection Framework (Update and Computation Process for
Incoming Graph Object)

of the (composite) likelihood fits of the edges in G. Therefore,
we have:

GF(G, C1 . . . Cr) =
⎡
⎣ ∏
(i,j)∈G

MF(i, j, C1 . . . Cr)
⎤
⎦
1/|G|

(1)

The process of determination of the outliers uses the main-
tenance of a group of r different partitions which are implicitly
defined by dynamically maintained reservoirs from the graph
stream. At a given time, the algorithm maintains r different
reservoir samples, which are denoted by S1 . . . Sr respectively.
We will discuss the process of maintaining these reservoir
samples in the next section. These samples are essentially sets
of edges which are picked from the stream graph objects.
Each set Sm induces a different partitioning of the nodes
in the underlying network, which is denoted by the notation
Cm defined earlier. Specifically, this partition is induced by
determining the connected components in the subgraph defined
by the edges in Sm. Then, the statistical behavior of the edges
in the set corresponding to Qm = ∪r

j=1Sj − Sm is used
in order to model the edge generation probabilities. Thus,
we use a cross-validation approach in order to model the
likelihood statistics in a more robust way, and avoid overfitting
of the likelihood statistics to the particular structure induced
by a reservoir sample. Since many of the partitions may not
contain edges between them, we need a way to smooth out the
probability estimation process (rather than simply assigning
zero probabilities to such partition pairs). A straightforward
way of estimating smoothed edge edge probabilities is as
follows:

• We model the non-sample-estimated probability of an
edge between partitions i and j by assuming that the
probability of an edge between any pair of nodes is
equal. Therefore, the non-sample-estimated probability
probability between any pair of partitions is proportional

to the product of the number of nodes between these
two partitions. This computation is performed for each
partition Cm corresponding to sample Sm. We denote this
value by pnij(Cm).

• We model the sample-estimated probability of an edge
between partitions i and j as the fraction of the number
of edges in Qm which exist between partitions i and j.
While this estimation is much more accurate than the
previous case above, the problem with it is that it is rather
inaccurate for partition pairs (i, j) which contain a small
number (or none) of the edges from Qi. Therefore, the
uniform assumption above is helpful for smoothing, when
the data available for estimation is small. We denote this
value by psij(Cm).

• The estimated probability pij(Cm) of an edge between
partitions i and j is a weighted combination of the above
two factors. Therefore, for some small value of λ ∈ (0, 1)
we have:

pij(Cm) = λ · pnij(Cm) + (1 − λ) · psij(Cm) (2)

For each incoming graph stream object, we compute the
likelihood fit with the use of the above-mentioned estimated
probabilities. Those objects for which this fit is t standard
deviations below the average of the likelihood probabilities of
all objects received so far are reported as outliers. Then, we
will use the reservoir sampling approach discussed below in
order to update the edges in the different samples S1 . . . Sr.
These are also used in order to update the partitions C1 . . . Cr.
At the same time the values of pnij(·), psij(·), and pij(·) are
dynamically updated. More details on the methodology for
defining effective partitions, maintaining them with a reservoir
sampling approach, and updating underlying probability statis-
tics for model estimation are discussed in the next section. The
overall framework for outlier detection is illustrated in Figure
1.

In order to determine whether the likelihood probability of
an object is t standard deviations below the likelihood prob-
ability of all objects received so far, we need to dynamically
maintain the mean and standard deviation of the likelihood
probabilities of all objects maintained so far, in a way which
can be additively achieved for a data stream. For this purpose,
we maintain three values: (1) The sum of squares of likelihood
probabilities (second moment), (2) the sum of the likelihood
probabilities (first moment), and (3) the number of graph
objects received so far (zeroth moment).
It is easy to see that all of the above values can be maintained
efficiently and additively for a data stream. The mean and
standard deviation can be directly computed from the above
values, because both of the these statistical quantities can be
expressed as a closed function of moments of order at most 2
[6].

III. STRUCTURAL RESERVOIR SAMPLING:
METHODOLOGY AND APPLICATIONS

In this section, we will study the methodology of struc-
tural reservoir sampling, and its applicability to the problem



of model estimation for outlier detection. The aim of the
partitioning process is to construct clusters of dense nodes,
which would expose the outliers well. Since clustering is a
very challenging problem for the stream scenario, we will
create node partitions from samples of edges; it is well known
that the use of edge sampling [3] to create such partitions
are biased towards creating partitions which are dense. In
order to further increase the likelihood of outlier exposure,
we will use multiple choices of edge samples, in order to
create different kinds of node partitions. This is used in order
to improve the robustness of abnormality estimation. The
sampling methods discussed in [3], [14] are not applicable
to the case of the stream scenario and are also not designed
for maintaining specific structural properties in the underlying
partitions. In our particular case, the structural constraint is
that we would like each partition to have a certain minimum
number of points, or to constrain the total number of partitions
(in order to ensure robust statistics maintenance). Therefore,
we will design a structural reservoir sampling method for
graph streams. Furthermore, we anticipate that such a sampling
method is likely to have structural partitioning applications
beyond those discussed in this paper. Reservoir sampling [20]
is a methodology to dynamically maintain an unbiased sample
from a stream of elements. In this case, we extend the approach
to an unbiased sample of a structured graph with a structural
stopping criterion. We will impose an elegant solution in
which many natural and desirable structural properties of
the sample are maintained with the help of a monotonic set
function of the underlying edges in the reservoir. We define a
monotonic set function of an edge sample as follows:

Definition 7 (Monotonic Set Function): A monotonically
non-decreasing (non-increasing) set function is a function
f(·) whose argument is a set, and value is a real number
which always satisfies the following property:

• If S1 is a superset (subset) of S2, then f(S1) ≥ f(S2)

We note that the monotonic set function can be useful for
regulating the structural characteristics of the graph over a
given set of edges. Some examples of a monotonic set function
with corresponding structural properties are as follows:

• The function value is the number of connected compo-
nents in the edge set S (monotonically non-increasing).

• The function value is the number of nodes in the the
largest connected component in edge set S (monotoni-
cally non-decreasing).

Properties such as the above are very useful for inducing the
appropriate partitions with robust structural behavior. In some
cases, we can use thresholds on the above properties, which
are also referred to as stochastic stopping criteria. Next, we
define the concept of a sort sample with a such a stopping
criterion. We will first define this sample on a static data set
D, and then show how to generalize it to a data stream with a
reservoir sampling approach. We examine a restricted bunch of
subsets of D, in which the edges are sorted, and can be added
to S only in sort order priority; in other words, an edge
cannot be included in a subset S, if all the elements which

occur before it in the sort order are also included. Clearly, the
number of such subsets of D is linear in the size of D.

Definition 8 (Sort Sample with Stopping Criterion): Let D
be a set of edges. Let f(·) be a monotonically non-decreasing
(non-increasing) set function defined on the edges. A sort
sample S from D with stopping threshold α is defined as
follows:

• We sort all edges in D in random order.
• We pick the smallest subset S from D among all subsets

which satisfy the sort-order priority, such that f(S) is
at least (at most) α.

This means that if we remove the last element which was
added to the set, then that set (and all previous subsets) will
not satisfy the stopping criterion. As a practical matter, the
set which is obtained by removing the last element which was
added is the most useful for processing purposes. For example,
if f(S) is the size of the largest connected component, the
stopping criterion determines the smallest sample S, such that
the size of the largest connected component is at least a user-
defined threshold α. By dropping the last edge (v, w) which
was added to S, we are guaranteed that the size of the largest
connected component in S − {(v, w)} is less than α. This
ensures that none of the connected components is too large to
use for processing. Correspondingly, we define a penultimate
set for a sort sample.

Definition 9 (Penultimate Set): The penultimate set for a
sort sample S is obtained by removing the last element in
the sort order of sample S.

For the case of a fixed data set, it is fairly easy to create
a sort sample with a structural stopping criterion. We achieve
this by sorting the edges in random order and adding them
sequentially, until the stopping criterion can no longer be
satisfied. However, in the case of a data stream, a random
sample or reservoir needs to be maintained dynamically. Once
edges have been dropped from the sample, how does one
compare their sort order to the incoming edges in the stream,
and correspondingly update the sample?

The key idea is use a fixed random hash function, which
is computed as a function of the node labels on the edge,
and remains fixed over the entire stream. This hash function
is used to create a sort order among the different edges.
This hash function serves to provide landmarks for incoming
edges when they are compared to the previously received
edges from the data stream. Furthermore, the use of a hash
function fixes the sort order among the edges throughout the
stream computation. The fixing of the sort order is critical in
being able to design an effective structural sampling algorithm.
Therefore, for an edge (i, j) we compute the hash function
h(i ⊕ j), where i ⊕ j is the concatenation of the node
labels i and j. We note that the use of a sort on the hash
function value induces a random sort order on the stream
elements. Furthermore, a stopping criterion on the sorted data
set translates to a threshold on the hash function value. This
provides an effective way to control the sampling process. We
make the following observation:



Observation 1: Let D be a set of edges. let f(·) be a
monotonically non-decreasing (non-increasing) set function
defined on the edges. A sort sample S from D with stopping
threshold α is equivalent to the following problem:

• Apply a uniform random hash function h(·) to each edge
(i, j) in D.

• Determine the smallest threshold q, such that the set S of
edges which have hash function value at most q satisfy
the condition that f(S) is at least (at most) α.

We denote the corresponding threshold value with respect
to set function f , hash function h. data set D and stopping
threshold criterion α by H(f, h,D, α), and refer to it as the
stopping hash threshold for data set D. We make the following
observation about the stopping hash threshold:

Lemma 1: The stopping hash threshold exhibits a version
of set monotonicity with respect to the underlying data set.
Specifically, let us consider the monotonic set function f(·),
hash function h(·), stopping threshold α. Let us consider
two data sets D1 and D2, such that D2 ⊇ D1. Then, the
stopping hash threshold H(f, h,D2, α) is at most equal to
H(f, h,D1, α). In other words:

H(f, h,D2, α) ≤ H(f, h,D1, α) (3)

Proof: The set monotonicity of the hash threshold follows
directly from the set monotonicity of the function f(·). Since
D2 is a superset of D1, it follows that the sets of edges W2

and W1 derived by using the same hash function and hash
threshold on both data sets D2 and D1 would result in the
former set W2 being a superset of the latter set W1. As a result,
the set W2 may not be the minimal set to satisfy the stopping
criterion, if the hash threshold is chosen in order to make W1

satisfy the stopping criterion. Thus, the hash threshold for the
former set may (or may not) need to be further reduced in
order to make it satisfy the stopping criterion, though it never
needs to be increased. The result follows.
We note a stream can be viewed as a continuously increasing
set of edges. Therefore, the result above can be directly used
to conclude that the stopping hash threshold is monotonically
non-increasing over the progress of the data stream.

Corollary 1: The stopping hash threshold is monotonically
non-increasing over the life of the data stream.
This is a critical result, because it implies that edges which
have not been included in the current sample will never
be relevant for sampling over the future life of the data
stream. Therefore, the current sample is the only set we need
for any future decisions about reservoir sample maintenance.
Furthermore, the result also implies a simple algorithm in
order to maintain the reservoir dynamically. We dynamically
maintain the current hash threshold which is used to make
decisions on whether or not incoming elements are to be
included in the reservoir. For each incoming graph, we apply
the hash function to each of its edges, and we add the edge to
the reservoir, if the hash function value is less than the current
threshold value. We note that the addition of these edges will
always result in the stopping criterion being met because of set

function monotonicity. However, the set may no longer be the
smallest sort-ordered set to do so. Therefore, edges may need
to be removed in order to make it the smallest sort-ordered set
to satisfy the stopping criterion. In order to achieve this goal,
we process the edges in the reservoir in decreasing order of the
hash function value, and continue to remove edges, until we
are satisfied that the resulting reservoir is the smallest possible
set which satisfies the stopping constraint. For each incoming
graph, this process is repeated by first selectively adding the
edges for which the hash function meets the threshold, and
then removing edges if necessary. The corresponding hash
threshold is then reduced to the largest hash function value
of the remaining edges in the reservoir after removal. Clearly,
the removal of edges may result in a reduction of the hash
threshold in each iteration. However, it will never result in
an increase in the threshold, because all the added edges
had a hash function value lower than the threshold in the
previous iteration. It is important to note that we always use the
penultimate set derived from the sort sample for the purposes
of partitioning.

The above description explains the maintenance of a single
reservoir (and corresponding partition). For robustness, we
need to maintain r different reservoirs. Therefore, we need
to use r different hash functions, and corresponding reservoir
samples. These are used to define the r different partitionings
of the nodes as required by the outlier modeling algorithm.
We denote the penultimate sets of the r different reservoirs as
S1 . . . Sr. These will be used for the purpose of inducing the
r different partitionings denoted by C1 . . . Cr.

A. The Edge Sampling Approach to Partitioning: Discussion

The approach discussed above designs the partitions with
the use of edge sampling. A key question is as to why this
edge sampling approach should be useful in exposing outliers
in the underlying data. For example, if statistical robustness
is the only reason for creating multi-node partitions, then
why not design the node partitions randomly by assigning
nodes randomly to partitions? However, such an approach does
not expose the key edges which bridge significant partitions
in the underlying data, because we are specifically looking
for partitions which are statistically biased towards having a
small number of bridge edges among them. An edge sampling
approach is naturally biased towards creating partitions in
which individual components are statistically much denser
than the rest of the data. In fact, it has been shown in [14],
how edge sampling approaches have much higher likelihood
of containing cuts with lower value. A natural solution would
be to use a graph-partitioning technique [15], but this cannot
be implemented efficiently for the case of graph stream. We
will provide an intuitive qualitative argument as to why such
an edge sampling technique should work well, in addition to
its natural efficiency for a data stream.

The quality of outliers are clearly sensitive to the nature of
the partitions, because we would like the partitions to represent
densely connected nodes with a small number of bridge
edges. Such partitions expose regions of the graph between



which there are very few edges. Therefore, when an incoming
graph object contains edges which are bridges across such
partitions, the low likelihood of this occurrence is reflected
in the quantification of the corresponding likelihood fit. The
use of edge sampling probabilistically biases the partitions to
correspond to dense local regions of the graph, as discussed
in [14]. This is because connected regions in an edge sample
will typically be biased towards dense regions in the graph.
In fact, it has been shown in [14], that the use of repeated
edge samples will always retain the minimum cut across the
partitions with high probability. Such cuts are invaluable in
exposing the key bridge edges across the partitions in the
incoming stream objects. The use of multiple reservoir samples
provides robustness to the likelihood fit estimation process.

B. Choosing the Structural Function

Another key question which affects the quality of the
partitions is the choice of the function f(S), which is used
to control the partitions. Clearly, we would like to have a
compact number of partitions, so that the summary statistics
about the likelihood fits can be maintained compactly. One
possible approach is that we set f(S) to be the number of
connected components in the corresponding graph induced by
edge sample S. However, this approach is not likely to result
in discriminative creation of partitions, as most networks have
variations in structural density, and a sampling approach will
result in a vast majority of components to very small, and
a single component to be very large. Components which are
either too small or too large are not very helpful in exposing
anomalous structural behavior in a robust way. Therefore, it
is useful to set the function in such a way so as to control the
sizes of the underlying partitions from the reservoir. Therefore,
an effective alternative is to set f(S) to the number of nodes
in the largest connected component induced by the reservoir
edge sample S. A corresponding stopping threshold of α is
used on the function f(S). Thus, the stopping criterion ensures
that the sort sample defines the smallest set of edges, such that
the largest connected component is at least α. This ensures that
the largest partition has at most α nodes, when the penultimate
set derived from S is used.

C. Additional Implementation Details

While the use of a maximum partition size, improves the
selectivity of the larger connected components, there may still
be many partitions which are too small to provide robust
information about the likelihood fits of edges emanating from
such partitions. For example, newly encountered nodes in the
data stream are likely to be isolated nodes in partitions of
their own. Therefore, all partitions which contain less than
min thresh nodes are grouped into a single outlier partition,
which is treated as a unit during processing. For each of the
r different reservoirs, we also need to maintain the estimated
information about the probabilities pnij(Cm) and psij(Cm). The
values of pnij(Cm) need not be maintained explicitly because
it can be derived directly from the number of nodes in
the partitions. The values of psij(Cm) need to be maintained

explicitly. This is done by using the samples S1 . . . Sr, which
are defined as the penultimate sets of the corresponding sort
samples for the different reservoirs. For each partition Cm
induced by sample Sm, we dynamically maintain the statistics
of the edges in ∪r

i=1Si − Sm. The values of psij(Cm) are
maintained indirectly as the total number of edges among
all graph objects received so far which are incident between
partitions i and j (for partitioning Cm) using all the edges in
∪r
i=1Si−Sm. The corresponding probability can be estimated

by dividing this value by the total number of edges in all
graphs received so far in the stream. We note that the process
of dynamic maintenance may require the merging or division
of the statistics across different partitions, when new edges are
added to or deleted from the reservoirs. Furthermore, some
connected components may move into or out of the outlier
partition set, when new edges are added or deleted. These
operations may affect the value of k(Cm) over the course of the
data stream. For example, when two connected components are
merged, the corresponding rows and columns in the statistics
need to be merged as well. The reverse argument applies to a
split in the underlying components. Correspondingly, the size
of the maintained statistics k(Cm) × k(Cm) may vary over
the course of algorithm execution. However, for large enough
values of α, the maintained statistics is compact enough to
be maintained dynamically. Furthermore, when the same edge
occurs multiple times across a partition, it is counted an equal
number of times in the corresponding statistics.

In order to track the statistics above, it is necessary to
maintain the information about the connected components
dynamically during stream processing. The connected com-
ponents are tracked by using the spanning forests of each of
the edge samples dynamically. Thus, we need to maintain
r different sets of spanning forests corresponding to the
r different partitioning structures induced by the different
reservoirs. Efficient algorithms for dynamically maintaining
spanning forests of incrementally updated sets of edges are
discussed in [10], [12].

IV. EXPERIMENTAL RESULTS

In this section, we tested our outlier detection approach for
effectiveness and efficiency on a number of real and synthetic
data sets. We refer to our approach as the the GOutlier
method, which corresponds to the fact that it is a Graph
Stream Outlier Detection Method. Since there is no known
method for outlier detection in graph streams, we used the
graph clustering framework GMicro in [4] as a baseline. An
outlier was defined as a point which does not naturally belong
to any of the clusters. If an incoming graph lies outside the
structural spread (defined in [4]) of any of the current clusters,
then we assume that this graph is an outlier.

A. Data Sets

We used a combination of real and synthetic data sets in
order to test our approach. The data sets used were as follows:

(1) DBLP Data Set: The DBLP data set contains scientific
publications in the computer science domain. We further



processed the data set in order to compose author-pair
streams from it. All conference papers ranging from 1956
to March 15th, 2008 were used for this purpose. There
are 595, 406 authors and 602, 684 papers in total. We note
that the authors are listed in a particular order for each
paper. Let us denote the author-order by a1, a2, . . . , aq.
An author pair 〈ai, aj〉 is generated if i < j, where
1 ≤ i, j ≤ q. There are 1, 954, 776 author pairs in total. Each
conference paper along with its edges was considered a graph.

(2) Internet Movie Database Data Set: The Internet Movie
Database(IMDB) is an online collection of movie information.
We obtained five-year movie data from 2001 to 2005 from
IMDB in order to generate the graph stream. The stream
generation methodology is similar to the one used for the
DBLP data set. Each movie was considered a graph, and
actor and director pairs within a movie were considered edges.
The IMDB data set contained a total of 117, 856 movies and
16, 191, 159 actor-director pairs.

(3) Synthetic Data Set: We used the R-Mat data generator
in order to generate a base template for the edges from which
all the graphs are drawn. The input parameters for the R-Mat
data generator were a = 0.5, b = 0.2, c = 0.2, S = 17,
and E = 508960 (using the CMU NetMine notations). If an
edge is not present between two nodes, then the edge will
also not be present in any graph in the data set. Next, we
generate the base partitions. Suppose that we want to generate
κ base partitions. We generate κ different zipf distributions
with distribution function 1/iθ. These zipf distributions will
be used to define the probabilities for the different nodes.
The base probability for an edge (which is present on the
base graph) is equal to the product of the probabilities of the
corresponding nodes.

Next, we determine the number of edges in each graph. The
number of edges in each of the generated graph is derived
from a normal distribution with mean μ = 10 and standard
deviation σ = 2. The proportional number of points in each
partition is generated using a uniform distribution in [α, β].
We used α = 1, and β = 2. In order to generate a regular
graph, we first determine which partition it belongs to by
using a biased die, and then use the probability distributions to
generate the edges. In order to generate an outlier graph, we
first randomly pick two different partitions, and then select
one node from each and create an edge between these two
nodes as a bridge between those two partitions. In order to
add correlations, we systematically add the probabilities for
some of the other distributions to the ith distribution. In other
words, we pick r other distributions and add them to the ith
distribution after adding a randomly picked scale factor. We
define the distribution Si from the original distribution Zi as
follows:

Si = Zi + α1 · (randomly picked Zj) + . . .

. . .+ αr · (randomly picked Zq)

α1...αr are small values generated from a uniform distribution
in [0, 0.1]. The value of r is picked to be 2 or 3 with equal

probability. We use S1 . . . Sr to define the node probabilities.
We used a clustering input parameter of κ = 10.

B. Evaluation Metrics

We used a variety of metrics for the purpose of evaluation.
For the case of the synthetic data set (in which the “ground
truth” corresponding to the true outliers were known), we used
the false positive rate and the false negative rate. These
metrics are defined as follows:

• False Positive Rate: This is defined as the fraction of
normal graphs classified as outlier graphs.

• False Negative Rate: This is defined as the fraction of
outlier graphs classified as normal graphs.

It is clear that both metrics are fractions, and would lie in
the range (0, 1). The lower the value of each metric, the
better the quality of outlier detection. We further note that
it is possible to achieve different tradeoffs between the false
positives and the false negatives with the use of different
thresholds on the variable used for determining the outlier
quality. For example, in the case of the GOutlier method, this
variable is the likelihood probability, whereas in the case of
the GMicro method, this variable is the structural spread. By
using different thresholds on these variables, it is possible to
achieve different tradeoffs between false positives and false
negatives.

The case of real data is much more challenging, because
such metrics cannot be defined when the “ground truth” is not
available. Therefore, we will conduct some case studies for
real data sets by showing some interesting outliers which are
generated by the GMicro method, especially those which are
missed by the baseline approach. For efficiency, we tested the
processing rate with the stream progressing for both synthetic
data set and real data sets.

Unless otherwise mentioned, the default value of number
of samples was 10, and the stopping threshold of the number
of nodes in the largest connected component was set to 70.
In the baseline approach, the length of sketch table was set to
1000, and the number of hash functions was set to 15.

C. Case Studies for Real Data Sets

We will first present some examples of results obtained by
our algorithm on DBLP and IMDB data sets. We will only
pick the outliers discovered by our proposed algorithm but
ignored by the clustering algorithm as examples. This provides
intuition and insight about the effectiveness of the scheme, and
why it is able to determine interesting outliers.

Example 1: [DBLP] Yihong Gong, Guido Proietti, Christos
Faloutsos, Image Indexing and Retrieval Based on Human
Perceptual Color Clustering, CVPR 1998: 578-585.

As mentioned earlier, each graph in the DBLP data set
represents a paper, and the nodes represent the authors in
that paper. One of the papers discovered as an outlier is
shown above. This was because of the presence of authors
who naturally belonged to different partitions. Specifically,
the first author Yihong Gong and the third author Christos
Faloutsos belong to different partitions in our experiment. This



characteristic was observed over many different instantiations
of the partitioning. The common nodes which co-occur with
each of these authors were as follows:

• Nodes in Partition 1A: Yihong Gong, Chau Hock
Chauan, Masao Sakauchi, etc.

• Nodes in Partition 2A: Christos Faloutsos, Rakesh
Agrawal, Jiawei Han, Philip S. Yu, etc.

We notice that Partition 1A is a group of researchers in
computer vision and multimedia processing. On the other
hand, Partition 2A is a relatively large and growing community
which represents researchers in the database and data mining
area. In the above example, the first author and the third
author come from different communities, but they co-authored
an interdisciplinary work in database and computer vision
corresponding to an image indexing and retrieval paper. This
naturally represents an interesting anomaly, since such papers
are unusual in terms of the interactions of researchers from
diverse communities. The GOutlier Algorithm was able to
determine such outliers, because it observed that the co-authors
of this paper naturally belonged to many different partitions
in different instantiations of reservoir sampling. As a result, a
low likelihood probability was assigned to the corresponding
edges. Therefore, the algorithm (appropriately) discovered this
paper as an outlier.

Outlier 2: [DBLP] Natasha Alechina, Mehdi Dastani, Brian
Logan, John-Jules Ch Meyer, A Logic of Agent Programs,
AAAI 2007: 795-800.

We notice that all authors in this example are interested
in artificial intelligence, and especially agent systems. Then,
why is this paper classified as an outlier, because it would
seem that the authors are drawn from related groups? By
analyzing the partitioning information from the algorithm,
we further noticed that the four authors often fall into two
partitions (over different reservoir samples), and these samples
frequently contain the following other nodes:

• Nodes in Partition 2A: Natasha Alechina, Mark Jago,
Michael Lees, Brian Logan, etc.

• Nodes in Partition 2B: John-Jules Ch Meyer, Mehdi
Dastani, Frank Dignum, Rogier M. van Eijk, etc.

Through further understanding of the partitions, we realized
that the co-authorship behavior of these cohorts was defined
by geographical proximity. The first partition includes a group
of researchers in the United Kingdom, while the second
partition is composed of researchers in the Netherlands.
Before this paper was published, these two communities
were growing independently (likely because of geographical
separation), though they were working in the same area. This
paper is an unusual bridge between the two communities,
and is therefore an outlier. Such outliers can be very useful,
because they provide us with information about important
and interesting events in the underlying data.

Outlier 3: [IMDB] Movie Title: Cradle 2 the Grave (2003)
This movie was directed by Andrzej Bartkowiak, and the

actors include Jet Li, DMX (I), etc. Jet Li is a Chinese

actor who is known for his kung-fu films. As shown by the
outlier detection algorithm, he belongs to a partition which
also contain many Chinese actors and directors due to his
frequent appearances in many Chinese movies and shows.
DMX (I), on the other hand, appears more frequently in
various American TV shows and music rewards, since he
is an American rapper and actor. This movie was starred
by two actors from totally different backgrounds, and their
profile also did not fit the other set of actors often picked by
Andrzej Bartkowiak. Thus, this movie brings an unusual cast
of directors and actors together and is reasonably discovered
as an outlier.

Outlier 4: [IMDB] Movie Title: Memoirs of a Geisha
(2005)

This movie was directed by Rob Marshall, who is an
American film director. The cast of this movie is international
and includes Youki Kudoh, Gong Li, Suzuka Ohgo, Michelle
Yeoh, and Ziyi Zhang. This movie was quite different from
previous movies directed by Rob Marshall, which were of a
more American nature (such as, for example, Chicago[2002]).
Furthermore, the actors of this movie come from different
backgrounds. Actors such as Youki Kudoh and Suzuka Ohgo
are from Japan, and they have little appearances in American
movies. Some other actors such as Ziyi Zhang, Gong Li and
Michelle Yeoh are Chinese actors. Because of the unique
combination of backgrounds of the directors and actors, this
unusual movie is captured by the outlier detection scheme.

D. Effectiveness Results

While the real data sets provide interesting insights in terms
of the kinds of outliers the GOutlier algorithm can discover,
we also provide validation with synthetic data sets in which the
ground truth about the underlying outliers is also available. As
mentioned earlier, we use the false-positive and false-negative
rates in order to declare data points as outliers. For the case of
the GOutlier method, the value of t was set at 1.0, whereas for
the case of the GMicro method, the threshold on the spread
was also set at 1.0. The results for the false positive rate with
stream progression are illustrated in Figure 2(a). The number
of graphs processed is illustrated on the X-axis, whereas the
false positive rate is illustrated on the Y -axis. It is clear that
the proposed GOutlier scheme outperforms the baseline by
a wide margin in terms of the false positive rate. In fact, the
error of the GOutlier scheme was approximately half the error
of the GMicro scheme. In Figure 2(b) we have illustrated the
false negative rate for both approaches for the same setting
of parameters. As in the previous case, the progression of
the stream is illustrated on the X-axis, and the false negative
rate is illustrated on the Y -axis. One interesting trend for the
proposed GOutlier approach is that the false negative rate is
somewhat high in the initial phases of the scheme (though still
lower than GMicro), but it drops rapidly in steady state. The
reason is that the proposed scheme has not obtained enough
data in the beginning, and therefore it is more likely to miss
some real outliers. As more graphs are added, the constructed
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partitions represent the underlying data more accurately. As a
result, the false negative rate drops and is maintained at a low
rate. In comparison to the baseline approach, we also find that
the false negative rate of our proposed approach is significantly
lower.

We further examined the false positive rate versus the false
negative rate by varying the threshold t over which a graph
is reported as an outlier. In the outlier detection algorithm, if
the likelihood probability of the incoming graph is t standard
deviations below average of all graphs received, this graph
will be reported as an outlier. Therefore, the false positive
rate will increase but the false negative rate will decrease if we
decrease the value of threshold t, and vice versa. In this case,
we computed this metric over a fixed set of 10,000 graphs. The
tradeoff between the false positive rate and the false negative
rate is presented in Figure 2(c). The false positive rate is
presented on the X-axis, whereas the false negative rate is
presented on the Y -axis. The value of threshold t of GOutlier

and spread threshold of GMicro are also shown next to each
data point within the figure. It once again clearly shows that
Goutlier greatly outperforms GMicro on outlier detection in
terms of effectiveness. Based on our experiments, we found
that by using a value of t in the range [1.0, 1.1], we obtain a
good tradeoff between false negatives and false positives. This
can of course be varied depending upon different application-
specific scenarios.

E. Efficiency Results

We also tested the efficiency of the proposed approach and
the baseline approach for both synthetic data set and real data
sets. The results for the synthetic, DBLP and IMDB data
sets are illustrated in Figures 3(a), (b) and (c) respectively.
In each figure, the X-axis represents the progression of the
stream, whereas the Y -axis illustrates the stream processing
rate (in terms of the number of edges processed per second).
We noticed that the processing rate of our proposed approach



fluctuates somewhat with progression of the stream. This is
due to the maintenance of the edge sampling structure. When
more graphs are added, some edges have to be removed in
order to keep the number of nodes in the largest connected
component within the stopping threshold. The number of such
edges to be removed may vary with time, and in some cases,
no edges may need to be removed at all. As a result, the
processing rate can vary somewhat over time. It is evident
that the processing rate of our scheme is comparable with that
of the GMicro scheme. This is quite acceptable, considering
the tremendous qualitative advantages of our approach.

F. Sensitivity Analysis

It is also valuable to test the effectiveness and efficiency of
the proposed approach over different number of partitions. The
Figures 4(a), (b), and (c) show the results for the false positive
rates, false negative rates and running time respectively by
varying the number of partitions from 6 to 20. In all figures,
the X-axis illustrates the number of partitions, and the Y -axis
represents the different metrics. From Figure 4(a), it is evident
that setting the number of partitions either too small or too
large will increase the false positive rate. When the number
of partition is too few, it will not be a good representation of
underlying data, hence will not result in good discrimination.
Therefore, small random variations are sometimes reported as
positives. On the other hand, too many partitions will result in
difficulty in statistics estimation in any robust way, which will
also increase the false positive rate. In general, the number of
positives reported for too few or too many partitions is larger,
and therefore the number of false positives is also larger. An
inverse result to the false positive rate was observed for the
case of false negatives. In Figure 4(c). This is an artifact of
the natural tradeoff between false positives and false negatives,
because when the number false positives are larger, the number
of false negatives are generally fewer and vice-versa. Based
on the running time shown in Figure 4(c), the running time
of GOutlier scales almost linearly with increasing number
of partitions. This suggests that the GOutlier method is an
extremely efficient and scalable algorithm over a wide range
of parameter settings.

V. CONCLUSIONS AND SUMMARY

Streaming applications have become more common in the
graph domain because of numerous social networking appli-
cations which naturally generate such data. Such data may
often have anomalies in the form of unusual connections
between entities that are rarely linked together. In this paper,
we presented a method for outlier detection in graph streams
with the use of a structural reservoir sampling approach. The
reservoir sampling approach is designed to capture a summary
representation of the graph, while guaranteeing certain struc-
tural properties in this summary. The method proposed for
reservoir sampling is interesting in its own right as a general
method for sampling graphs, and may be useful for a number
of different graph applications which require summarization.
We present case studies of the outlier detection method on

the DBLP and IMDB data sets, and provide some interesting
examples of outliers. We also test the method on synthetic data
sets in which we show that our method is more effective than
competing methods. Furthermore, it is also extremely efficient
in terms of the speed of stream processing. Thus, this paper
presents an effective and efficient method for outlier detection
in graph streams.
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