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Abstract Low-cost urban air quality sensor networks

are increasingly used to study the spatio-temporal vari-

ability in air pollutant concentrations. Recently installed

low-cost urban sensors, however, are more prone to

result in erroneous data than conventional monitors,

e.g., leading to outliers. Commonly applied outlier de-

tection methods are unsuitable for air pollutant measure-

ments that have large spatial and temporal variations as

occur in urban areas. We present a novel outlier detec-

tion method based upon a spatio-temporal classification,

focusing on hourly NO2 concentrations.We divide a full

year’s observations into 16 spatio-temporal classes,

reflecting urban background vs. urban traffic stations,

weekdays vs. weekends, and four periods per day. For

each spatio-temporal class, we detect outliers using the

mean and standard deviation of the normal distribution

underlying the truncated normal distribution of the NO2

observations. Applying this method to a low-cost air

quality sensor network in the city of Eindhoven, the

Netherlands, we found 0.1–0.5% of outliers. Outliers

could reflect measurement errors or unusual high air

pollution events. Additional evaluation using expert

knowledge is needed to decide on treatment of the

identified outliers. We conclude that our method is able

to detect outliers while maintaining the spatio-temporal

variability of air pollutant concentrations in urban areas.
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1 Introduction

Air quality is monitored globally, with national monitor-

ing networks being used to assess air pollution in relation

to environmental limit values. In Europe, national, re-

gional, and local environmental agencies operate these

monitoring networks according to EU guidelines

(European Parliament and Council of the European

Union 2008), complying to high standards of equivalen-

cy (EC Working Group on GDE 2010). Each European

country has a network of air quality monitoring stations

that are located in urban, suburban, and rural areas.

Health effects of air pollution have attracted public

and scientific attention globally as the global burden of

disease of outdoor air pollution is significant (Cohen

et al. 2017). The health risks are typically highest in

urban areas because of their high population density, a

high density of schools and hospitals, and higher air

pollution concentrations. In recent local networks, urban

air quality is measured using a larger number of sensors

than in national air quality networks, allowing detection
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of more local sources. In response to the increasing civil

interest in the air they breathe, more local initiatives

have resulted in extended low-cost monitoring net-

works. These provide more detailed spatio-temporal

data on air quality. Data from such sensor networks

however are more prone to result in errors, and their

spatio-temporal data quality is often unknown (Snyder

et al. 2013). This leads to an increased need for data

evaluation. Data evaluation of low-cost air quality net-

works typically includes outlier detection, comparison

with classical monitors, comparison of inter-sensor mea-

surements, and evaluation of the stability of sensors. In

this paper, we focus on outlier detection.

Outlier detection is an important part of data cleaning

and particularly relevant for low-cost air quality sensor

networks. Outlier detection is defined as the detection of

values that are statistically significantly different from

the expected value at a given time and location. Outlier

detection is important not only for detecting air pollution

events but also for removing errors that might otherwise

affect data analysis and comparison, including unneces-

sary unrest among the population if data are publicly

available online. Errors in this context refer to inaccura-

cies due to air quality sensor faults, mistakes in the

human handling of the sensors, or positioning of the

sensors under conditions for which they are not de-

signed. Events are valid observations of very high or

low air pollutant concentrations compared to the con-

centrations expected at a given time in a given location

(Zhang et al. 2007). True events can be related to very

local sources (e.g., a small fire, truck idling within

meters of a monitor) or to very unusual weather circum-

stances such as low mixing height and high atmospheric

stability resulting in poor dispersion of emitted

pollutants.

Functional outlier detection, as a common type of

temporal outlier detection, compares various function

curves of fixed time periods. In the past, this method

was applied to PM10, SO2, NO, NO2, CO, and O3 to

detect months with unusually high air pollutant concen-

trations (Martínez Torres et al. 2011), or to detect work-

ing days and non-working days with outlying NOx

levels (Febrero et al. 2007, 2008; Sguera et al. 2016).

Functional outlier detection is used to compare entire

vectors of measurements (e.g., all observations in a

month) and is therefore less suitable for the detection

of individual outliers. Comparing an observation only to

its temporal neighborhood may also lead to the neglect

of a systematic bias in the sensor.

In spatial outlier detection, an observation is com-

pared to the observations in its spatial neighborhood.

Bobbia et al. (2015) used kriging to detect outliers in

PM10 concentrations on a provincial scale. Spatio-

temporal outlier detection combines the spatial neigh-

borhood with a temporal neighborhood. It has been

applied to PM10 measurements at the European scale

(Kracht et al. 2014). At this scale level, however, only

rural and urban background stations can be used, as the

methods are not suitable for dealing with the wide

spatial variation of air pollutants in an urban area.

For an urban air quality sensor network, both spatial

and spatio-temporal outlier detection have only been

applied to air pollutants that show a low spatial varia-

tion. Hamm (2016) and Shamsipour et al. (2014) ap-

plied spatial and spatio-temporal outlier detection

methods on PM10, which in cities is mostly dominated

by regional background concentrations from sources

outside the city (Eeftens 2012). Distance-weighting

techniques such as kriging were successfully applied

to urban PM10 for filling missing values and for outlier

detection. There was no need for space varying covari-

ates because PM10 concentration was not related to the

type of location or street (Hamm 2016). For NO2, how-

ever, the concentrations can vary over short distances,

e.g., governed by the traffic density of a street (Briggs

1997; Cyrys 2012). As the distances over which NO2

concentrations vary (tens of meters) are commonly

shorter than the distances between sensor locations (ki-

lometers), spatial outlier detection methods based on

distance-weighting cannot be applied to NO2 measure-

ments in cities.

The objective of this study was to develop an adequate

outlier detection method for an urban air quality sensor

network. Such a network is characterized by a fine-scale

spatial and temporal variation in air quality. For this study,

we use NO2 data from an air quality sensor network

located in the city of Eindhoven, the Netherlands.

2 Data Preprocessing

The air quality sensor network in Eindhoven (Fig. 1)

was established by the AiREAS civil initiative (Close

2016), and is the first fine resolution urban air quality

sensor network in the Netherlands. It was installed in

November 2013 and has been operated continuously

since. The network consists of 35 weatherproof airboxes

of size 43 × 33 × 20 cm, containing an array of sensors.
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Each airbox measures particulate matter, ozone (O3),

and/or nitrogen dioxide (NO2) and also temperature

and humidity as the air flows through (Hamm et al.

2016). The airboxes have a fixed position and are at-

tached to lamp posts for power supply.

We focus on NO2, as an air pollutant with a high

spatial variability in urban areas (Cyrys 2012). The hour-

ly concentrations measured by the conventional moni-

tors in Eindhoven ranged from 2.5 to 123.8 μg m−3 in

2016, with a mean of 28.6 μg m−3 and a standard

deviation of 16.5 μg m−3. The distribution of NO2 con-

centrations is skewed with a long right tail (P95 =

61.0 μg m−3, P99 = 78.8 μg m
−3). The airboxes measure

NO2 concentrations using a Citytech Sensoric NO2 3E50

sensor adapted by the Energy Research Center of the

Netherlands (ECN). The concentration of air pollutants

is measured every 10 min. The data are sent to a server

using a GPRS connection (Hamm et al. 2016). To reduce

the noise, the 10-min NO2 measurements were averaged

to hourly values for the current analysis. Data for the full

year of 2016 were used for this study. The sensors were

calibrated at the end of 2015.

The data were cleansed before being used. Negative

concentration values occurred when the concentrations

were below the limit of detection and were removed from

the dataset (1.5%). Zeroes in the data indicated a sensor

failure and were removed from the dataset (1%). High

peaks in NO2 concentrations can occur in 10-min data if

the sensor is exposed to a high concentration peak for a

short period of time. Similar peaks in hourly concentration

data however aremore likely to be caused by sensor failure

and influence the outlier detection. To carefully remove

extreme peaks in hourly concentrations, we turned to the

two conventional NO2 monitors in Eindhoven, which are

part of the national air quality monitoring network. We set

a threshold equal to three times the maximum hourly

concentration measured in 2016. In doing so, concentra-

tion values xi> 372 μg m
−3 were removed (0.02%). Such

extreme peaks are impossible to occur under natural con-

ditions in this city and are most probably caused by sensor

Fig. 1 Locations of the airboxes in the city of Eindhoven, the Netherlands, at urban background locations (circles) and urban traffic

locations (triangles)
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failures. Such failures also caused frozen concentration

values for several hours or days. Those values were re-

moved from the dataset as well (1.5%). One airbox

showed a consistent positive bias. Including it in the

analysis not only showed the many outliers of the airbox

but also strongly influenced the percentage of outliers that

could be detected in other airboxes, which almost dropped

to zero. Therefore, data of this airbox was removed prior to

the final outlier detection shown here.

3 Methods

Outlier detection is based upon checking whether an

observed concentration value falls within a given confi-

dence interval, set by

μ� z� σ ð1Þ

where μ is the mean NO2 concentration level in μg m
−3,

σ is the standard deviation, and z is an indicator of the

size of the confidence interval. We consider Eq. (1) for

grouped NO2 concentration observations within tempo-

ral, spatial, and spatio-temporal neighborhoods. Assum-

ing independence and normality, then the value of z is set

at 1.96 for a 95% confidence level (Kracht et al. 2014) or

at 2.97 for a 99.7% confidence interval, depending on the

required strictness of the outlier detection. We used z =

2.97, which in related studies has been rounded to z = 3

(Martínez Torres et al. 2011; Shamsipour et al. 2014).

NO2 concentrations in an urban setting, however,

highly depend on the proximity of busy roads, and

therefore, too much noise in concentrations is found

within the neighborhood to detect values that are abnor-

mally high given their location. Similarly, temporal

neighborhoods have a highly temporally dependent var-

iation in air pollutant concentrations over the day.

We propose to overcome this by classifying the lo-

cations and time periods into 16 spatio-temporal cate-

gories distinguished by different levels of air pollution.

To do so, we divided the measurement locations into

two categories: urban traffic and urban background

locations. These take into account the positions of the

airboxes near specific land use types, the presence of

traffic, and distance from the center. We take four inter-

vals: traffic hours (6:01–9:00 and 16:01–20:00 UTC

time), off-peak hours (9:01–16:00 and 20:01–22:00

UTC time), transition periods (22:01–1:00 and 5:01–

6:00UTC time), and night hours (1:01–5:00UTC time).

Days of the week were divided into two classes:

weekdays (Monday to Friday) and weekend days (Sat-

urday and Sunday). This all resulted into 16 classes:

eight temporal classes and two spatial classes. For each

spatio-temporal class K, the three steps described below

are taken to detect outliers.

1. We transformed the NO2 concentrations using the

square root transformation to obtain approximately

normally distributed values (Fig. 2), i.e., to justify

the use of Eq. (1).

Before transforming the NO2 concentration values, in

line with Kracht et al. (2013), we added a value of (1 −

minimum value of all observations) to all observations to

prevent values < 1 μg m−3 from increasing during square

root transformation while values > 1 μg m−3 decrease:

xc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NO2c þ 1−min NO2cð Þð Þ
p

ð2Þ

where NO2c is an observation and xc is the transformed

observation in spatio-temporal class K, where K ¼ ⋃c∈C
xcð Þ and c is an observation index in C = {1…NC} for NC

total number of observations in class K. Note that xc has

coordinates in space and time.

2. As a result of the transformation in Eq. (2), the

distribution of NO2 concentrations is truncated at

the left at 1 μg m−3. The resulting distribution thus

showed a truncated normal distribution (Fig. 3).

For each square-root-transformed NO2 observation

xc, i, we temporarily excluded the ith observation from

the NO2 concentration dataset in order to avoid impact

of the observation, a potential outlier, on the standard

deviation and mean. We then obtained the mean and

standard deviation of the remainder of the dataset as

m−i
K ¼

∑c xcð Þ−xc;i
NC−1ð Þ

ð3Þ

s−iK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑c xc−m
−i
K

� �2
− xc;i−m

−i
K

� �2

NC−2ð Þ

s

ð4Þ

where summation extends over all hourly NO2 observa-

tions xc in one spatio-temporal class K and m−i
K and s−iK

are the mean and the standard deviation of all hourly
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NO2 observations excluding the ith observation xc, i,

respectively. Note that c, i ∈C and NC is the total num-

ber of observations in class K.

Equations (3) and (4) provided both the mean and the

standard deviation of the truncated normal distribution

of NO2 concentrations, referred to as m
−i
K and s−iK . Equa-

tion (1) requires a normal distribution, and therefore, we

are more interested in the mean and standard deviation

of the underlying normal distribution, referred to n−iK and

t−iK , respectively, rather than the mean and standard

deviation of the truncated normal distribution. We use

a maximum likelihood estimator to obtain estimated

values n−iK and t−iK . The log likelihood function is given

as

∑cln f xcjθð Þð Þ ð5Þ

where f(xc| θ) is the probability density function of the

truncated normal distribution of NO2 concentrations,

returning the probability of observing xc given a set of

parameters θ ¼ m−i
K ; s−iK ; a; b

� �

, for a ≤ x ≤ b. In our case

of left truncation, we have a = 1 and b =∞. Then, the

probability density function is given as

f xcjθð Þ ¼

ϕ
xc−n

−i
K

t−iK

� �

t−iK 1−Φ
a−n−iK
t−iK

� �� � ð6Þ

Imputing Eq. (6) into the log likelihood function and

taking θ1 ¼ n−iK ; t−iK
� �

gives

L θ1ð Þ ¼ ∑c ln ϕ
xc−n

−i
K

t−iK

� �� �

−ln t−iK 1−Φ
a−n−iK
t−iK

� �� �� �� �

ð7Þ

where ϕ(∙) is the probability density function of the

normal distribution and Φ(∙) is the corresponding cumu-

lative distribution function. Optimization of the log

likelihood function Eq. (7) using Nelder and Mead

(1965) gives maximum likelihood values for n−iK and

t−iK . We used the parameters m−i
K and s−iK as starting

values.

For each observation xc, i removed from the dataset,

n−iK and t−iK are computed on the remainder of the

spatio-temporal class dataset as described above.

3. Next, Eq. (1) is adapted to find the lower and upper

thresholds of values considered outliers:

n−iK � z� t−iK ð8Þ

which is computed for each individual observation. If

the ith observation xc, i falls outside this interval, it is

considered to be an outlier. The observations of spatio-

temporal class K are backtransformed after the outlier

detection:

NO2c ¼ xcð Þ2− 1−min xcð Þð Þ ð9Þ

returning the NO2 concentrations in μg m−3. Depending

upon the purpose of the outlier detection, the outlying

observations can then be removed or further investigated.

We further computed the thresholds for the entire

dataset, without removal of observation xc, i in Eqs. (3)

and (4). The mean and standard deviation of the under-

lying normal distribution are then expressed by nK and tK,

respectively, which results in the following thresholds:

nK � z� tK ð10Þ

which are also back-transformed using Eq. (9). These

thresholds are not used for actual outlier detection, but

as an approximation of the thresholds for each spatio-

temporal class. This allowed us to compare the thresholds

of the 16 spatio-temporal classes. Given the large number

of observations in each class, the thresholds are not highly

affected by removing one of the observations.

For comparison with conventional monitors, the

same analysis was repeated with data from the two

NO2 monitors in Eindhoven which are part of the na-

tional air quality monitoring network. Both convention-

al monitors are located in an urban traffic location and

therefore considered as the same spatial class. We used

the temporal classification similar to the one used in the

analysis of the airbox data.

4 Results

Of the 25 airboxes measuring NO2 that were used for

this analysis, 11 were classified as urban background

locations, and 14 were classified as urban traffic loca-

tions. Table 1 shows the approximated upper thresholds

for outliers in each spatio-temporal class (Eq. (10)). All

lower thresholds were equal to zero. For the values of nc
and tc of each spatio-temporal class, we refer to Table S1
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in the supplementary materials. Table 2 shows the per-

centage of outliers detected per spatio-temporal NO2

concentration class using a full year of hourly NO2 data.

Note that our method defines unusual observations,

which are not necessarily errors, but which could also

be very unusual air pollution events related to local

sources, or extreme weather conditions of low wind

speed and high atmospheric stability.

Table 2 shows that the period of night hours during the

weekend has an increase in the number of outliers, both

for urban traffic locations and urban background loca-

tions. Both nc and tc are relatively small in these spatio-

temporal classes compared to other spatio-temporal clas-

ses. The combination of a short right tail and the relatively

small nc and tc cause the upper threshold to be low while

detecting a relatively high number of outliers in the

thicker tail. All categories have an approximately similar

percentage of outliers and there are no large deviations.

The boxplots in Fig. 4 show the range in concentrations

that were considered outliers for each spatio-temporal

class. The lower whiskers are short and close to the

threshold values shown in Table 1. Especially during

off-peak hours in theweekend, the range in concentrations

of the outliers is large. Extreme outliers, denoted by the

dots, representing observations outside 1.5 × IQR (inter-

quartile range) of the outliers, occur in many spatio-

temporal classes. Note that these boxplots are only based

on the outliers, which is a small number of observations.

Figures 5 and 6 show NO2 measurements during

2 weeks in 2016 containing outliers. Figure 5 shows the

week from April 25 until May 1, of an urban background

location, whereas Fig. 6 shows the week from February 8

until February 14 of an urban traffic location. The con-

centrations at the urban traffic location were higher than

those at the urban background location. Due to the spatial
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0 100 200 300 400

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0
1

0
0

0
0

0
a

NO2 concentration (µg/m3)

0 5 10 15 20 25

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

b

F
re

q
u

e
n

c
y

F
re

q
u

e
n

c
y

Fig. 2 Distribution of NO2 concentrations a before square root

transformation and b after square root transformation

0−5

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

NO2 concentration (sqrt−transformed)

Truncated

Underlying 

Normal Distr.

Truncation Point

105 15 20

D
e

n
s
it
y

Fig. 3 The truncated normal distribution of square-root-

transformed NO2 concentrations (solid line) and its underlying

normal distribution (dot dashed line). The truncation point is set

at 1 (dotted line)

111 Page 6 of 13 Water Air Soil Pollut (2018) 229: 111



classification, some concentration values are considered

outliers at the urban background location, while they are

non-outliers at the urban traffic location. The temporal

classification is also visible in Fig. 6: concentration values

that are considered outliers at one point in time can be

considered non-outliers at other points in time, e.g., during

rush hours in which higher concentrations are expected.

This is a major difference as compared to applying the

outlier threshold on the entire dataset without classifica-

tion (Eq. (1)), yielding an expected 0.3% of outliers as

cutoff peaks without taking spatio-temporal variability in

the NO2 concentrations into account.

Figure 5 shows two outliers, labeled (a) and (b),

occurring during the night, in the early morning (1:00–

3:00) of April 28. During weekday night hours at an

urban background location, the transformed (Eq. (2))

parameter estimations are nc = 3.965 and tc = 1.265. En-

tered in Eq. (8) with z = 2.97, and back transformed

using Eq. (9), this gives an upper threshold of

58.6 μg m−3. The concentrations measured at outliers

(a) and (b) were 75 and 70.8 μg m−3, respectively, both

exceeding the upper threshold. Given that these are

consecutive observations and within the range of thresh-

olds of other periods, it is not clear whether these obser-

vations reflect instrument error.

From Fig. 6, we identify four outliers, labeled (a)–(d).

Three outliers, specifically (a), (c), and (d), are clearly

higher than expected concentration values in any of the

spatio-temporal categories. They are furthermore single

observations. Outlier (b) occurred on February 9 from

23:00 to 0:00 in the temporal class Btransition period.^

In this spatio-temporal class, with (transformed) nc =

4.76 and tc = 1.36, the upper threshold is approximately

(4.76 + 2.97 × 1.36)2 − (1 − 0.0244) = 76.5 μg m3. The

concentration measured at (b) is 81.8 μg m−3, exceeding

the upper threshold. However, during the daytime, such

a concentration value would have been within expected

concentration values.

There was seasonal deviation in the number of out-

liers: a higher number of outliers was detected in spring

(0.37%) compared to the mean percentage of outliers of

the entire year (0.22%). In summer, the number of

outliers was relatively low (0.09%).

Table 2 shows no difference in the percentage of

outliers between urban traffic locations and urban back-

ground locations. Some individual airboxes however

show more outliers than others. Most airboxes have 0–

0.1% outliers for a year of data, whereas a few airboxes

have a larger percentage of outliers for some spatio-

temporal classes, up to a maximum of 2.5% for one

airbox for one spatio-temporal class. The highest per-

centages of outliers are found in airboxes with the

highest mean concentration values. The percentage of

outliers of an airbox varies between spatio-temporal

classes.

Similar results were found using hourly NO2 obser-

vations of 2016 from the two conventional monitors.

The total number of outliers detected was 0.3% of the

dataset, which varied from 0 to 0.7% depending on the

temporal class. In Fig. 7, we observe a different pattern

in the spatio-temporal thresholds compared to the

threshold pattern of the airboxes (Figs. 5 and 6). Note

Table 1 Upper thresholds for hourly average NO2 concentrations (μg m−3) above which considered outliers, per spatio-temporal class,

using z = 2.97

Urban traffic Urban background

Week Weekend Week Weekend

Rush hours 96.6 (n = 17,761) 78.4 (n = 7,127) 81.0 (n = 17,660) 62.3 (n = 6,983)

Off-peak hours 87.3 (n = 22,768) 76.7 (n = 9,153) 72.9 (n = 22,554) 61.3 (n = 8,961)

Night hours 63.2 (n = 10,161) 63.6 (n = 4,123) 58.6 (n = 9,983) 57.3 (n = 3,995)

Transition hours 76.5 (n = 10,195) 67.1 (n = 4,129) 67.9 (n = 10,031) 56.4 (n = 3,983)

Between brackets, n shows the number of hourly concentration values in this class

Table 2 Percentage outliers per spatio-temporal NO2 concentra-

tion class for hourly values in 2016, using z = 2.97

Urban traffic Urban background

Week Weekend Week Weekend

Rush hours 0.2% 0.2% 0.2% 0.2%

Off-peak hours 0.2% 0.2% 0.2% 0.2%

Night hours 0.2% 0.5% 0.1% 0.5%

Transition hours 0.3% 0.3% 0.3% 0.3%
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that for the conventional monitors, we also observe

positive lower threshold values, though close to zero.

In Fig. 7, we identify one outlier, which occurred in the

off-peak hour period after the evening rush hour. This

period after the evening rush hour is the period in which

most outliers occurred for the conventional monitors.

We compared the outliers in the traffic airboxeswith

the NO2 concentrations measured with the conven-

tionalmonitors at the same time.A scatterplot is shown

in Fig. 8. The plot shows many observations down-

right in the plot that have similarly high concentrations

measured by the airbox and the conventional monitor,

though at different locations. Someoutliers occurred in

multiple airboxes at the same time. This may be an

indication of a pollution event that has an effect on the

entire city. Down-left in the plot, we find observations

that are considered outliers by the airboxes, but are

within normal range of concentrations according to the

conventional monitors. These could be errors or very

local air pollution events. In the upper part of the plot,

we find very high concentrations measured by the

airbox which are higher than any value measured by

the conventional monitor in the entire year. These are

most likely errors.
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5 Discussion

The results show that the spatio-temporal classification

of NO2 concentration values in an urban sensor network

is a simple outlier detection method in an area with high

spatial and temporal variability of air pollutant concen-

trations. The number of outliers detected using the clas-

sification (0.1–0.5% for the airboxes and 0–0.7% for the

conventional monitors) matches expectation when using

z = 2.97 as a threshold for the number of standard devi-

ations, including 99.7% of the observations under the

assumption of a normal distribution. The value of z can

be tuned depending on the application. A lower value of

z will result in more concentration values to be consid-

ered outliers. Brown and Brown (2012) suggest that the

choice of the threshold value should be a trade-off

between the extra work associated with investigating

false positives, i.e., observations falsely detected as
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outliers, and the likelihood of false negatives, i.e., true

outliers that are not detected.

We aimed to compare the above procedure with

kriging-based outlier detection (Zhang et al. 2012). We

found that the NO2 concentrations vary over shorter

distances than the distances between measurement loca-

tions, resulting in a pure noise variogram. Sampling

NO2 over shorter distances, e.g., within a few meters,

might make it possible to apply kriging-based outlier

detectionmethods, especially when including covariates

such as road distance and wind direction into the model.

Air pollutant concentrations are generally considered

lognormally distributed (Ott 1990). Applying the pro-

posed outlier detection method on log-transformed NO2

concentrations would however result in an implausible

number of outliers detected on the left side on the

distribution (99.5%) compared to the right side of the

distribution (0.5%). Instead, we are mostly interested in

high peaks in the data, which can be used to detect air

pollution events and errors. Therefore, we used a square

root transformation of the NO2 concentration data.

The temporal classification used in this analysis is

mostly based on expected traffic during certain hours of

the day. Other factors that may influence the temporal

variability in NO2 concentrations are meteorological fac-

tors such as wind speed, wind direction, air pressure,

temperature, and solar radiation. An analysis of seasonal

and diurnal variation at a UK city is presented byBigi and

Harrison (2010). NO2 concentrations in Europe tend to be

higher in the winter than in the summer season. Hence,

observations in the summer season had a lower chance to

be detected as outliers by our method. Our method can be

expanded by defining more classes, for example, taking

into account season and meteorological factors, or by

taking into account temporal autocorrelation. For simplic-

ity reasons, we used full year data for the current paper.

Public holidays occurring on a weekday are classified

as weekdays, although the concentrations are likely

lower, and therefore more similar to weekend concen-

trations. A visual analysis of the data showed that there

was no increase in low-peak outliers during such holi-

days. High-peak outliers occurred and were also detect-

ed during the weekday holidays.

In this study, we aggregated the NO2 concentrations

to hourly values. Using 10-min data, the outlier detection

method would give more detailed instances of outliers

compared to using hourly data. The results of 10-min

outlier detection should be interpreted differently from

the results of hourly outlier detection. In hourly outlier

detection, peaks occurring as a result of a strongly emit-

ting vehicle passing by are more likely to be averaged

out as they may occur every hour. In 10-min data, such

peaks are more likely to be considered outliers. Hourly

outliers give a better overview of hours in which there is

an abnormal number of peaks rather than showing indi-

vidual peaks, as in the case of 10-min outlier detection.

For the conventional monitors, the largest number of

outliers was found during the off-peak period after the

evening rush hours. Comparing the daily threshold pat-

tern of the airbox to that of the conventional monitor on

a weekday (Fig. 9), both at an urban traffic location, we

see that the upper threshold of the airbox in off-peak

periods (87.3 μg m−3) lays between the upper threshold

of rush hours (96.6 μg m−3) and the upper threshold of

transition periods (76.5 μg m−3). For the conventional

monitor, the upper threshold for off-peak periods

(86.4 μg m−3) is below the threshold for both rush hours

(106μgm−3) and transition periods (101.6μgm−3). The

threshold for off-peak periods is calculated using the

observations between morning rush hour and evening

rush hour (9:01–16:00 UTC time) combined with the

observations after evening rush hour (20:01–22:00 UTC

time). For the airboxes, this is alright because the con-

centrations are within a similar range. The authorative

monitors, however, still measure high concentrations for

2 h after the evening rush hour. This leads to underesti-

mation of the threshold after evening rush hour. The
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cause of this difference is unclear, but most likely it is

caused by differences between the sensor system of the

airbox and the conventional monitor, and could be

solved by defining different temporal classes depending

upon the measurement instrument used.

The spatial classification method has been applied to

the city of Eindhoven, the Netherlands. The spatio-

temporal variability of NO2 concentrations in this city

is determined mainly by road traffic, like in many Eu-

ropean cities (Cyrys 2012). The spatial classification

used in this analysis, distinguishing between urban

background locations and urban traffic locations, is

based upon this spatial variability. In Asian cities where,

for example, industry plays a major role in the spatio-

temporal variability of NO2 concentrations (Cui 2016),

other classifications may be more relevant.

The proposed method for outlier detection using a

spatio-temporal classification of the NO2 variability was

found useful for distinguishing outliers in an area with

high spatial and temporal variability of air pollutant

concentrations. This provides a basis for future work

on distinguishing between types of outliers, e.g., errors

and events. Air pollution events are often characterized

by lasting for a period of time, which would lead to a

number of outliers in a row for the same sensor. Such

events can also be characterized by covering a large area

in space. The occurrence of outliers at multiple locations

at the same moment may indicate such an event.

The method provides a useful outlier detection meth-

od for those involved in urban air quality sensor net-

works. Its use in other fields of environmental variables

with a high spatial and temporal variability is to be

further investigated and will largely depend on the abil-

ity to classify the observations in various spatial and

temporal categories.

Future research is needed in order to deal with the

application of this method for (near) real-time outlier

detection, in which each new observation can be com-

pared to previous observations in the same spatio-

temporal class. By using a moving average over the last

hour, applied every 10 min, the method can be applied

to (near) real-time data. Its applicability is currently

mostly limited by the computation time, which is too

long for real-time outlier detection. This may in the

future be improved by using higher computation power

or smaller datasets, or a combination of these two.

6 Conclusions

We presented a novel method for outlier detection in

urban air quality sensor networks, based on dividing
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the observations in two spatial and eight temporal

classes. Each of the 16 resulting spatio-temporal

classes represents a range of typical air pollutant

concentrations for this class. By finding outliers in

each class separately, the spatio-temporal variability

in concentrations is maintained. In doing so, this

work addressed an important challenge in outlier

detection in urban areas.

In our analysis using hourly NO2 data from an air

quality sensor network in Eindhoven, the Nether-

lands, we detected 0.1–0.5% of outliers using a

99.7% confidence interval. The size of the confi-

dence interval can be changed depending on the

application. The non-normality of air pollutant con-

centrations is taken into account by using a truncat-

ed normal distribution of square-root-transformed

concentrations. The method is easy to implement

and simple to adjust to other cities and pollutants

by choosing spatio-temporal classes based on the

sources of the air pollutants.

This research is a first step in outlier detection of NO2

concentrations in urban areas. The detected outliers are

unusually high concentrations, which can be either er-

rors or events. Expert knowledge is however required to

evaluate each outlier and decide on its treatment. Further

research is needed with a focus on automatically

distinguishing errors from events and (near) real-time

outlier detection.
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