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Abstract—We address the question of how to characterize the outliers that may appear when matching two views of the same scene.

The match is performed by comparing the difference of the two views at a pixel level aiming at a better registration of the images. When

using digital photographs as input, we notice that an outlier is often a region that has been occluded, an object that suddenly appears in

one of the images, or a region that undergoes an unexpected motion. By assuming that the error in pixel intensity generated by the

outlier is similar to an error generated by comparing two random regions in the scene, we can build a model for the outliers based on

the content of the two views. We illustrate our model by solving a pose estimation problem: the goal is to compute the camera motion

between two views. The matching is expressed as a mixture of inliers versus outliers, and defines a function to minimize for improving

the pose estimation. Our model has two benefits: First, it delivers a probability for each pixel to belong to the outliers. Second, our tests

show that the method is substantially more robust than traditional robust estimators (M-estimators) used in image stitching

applications, with only a slightly higher computational complexity.

Index Terms—Outlier model, outlier rejection, mixture model, robust pose estimation, M-estimators.

æ

1 INTRODUCTION

IN imagematching, a function finds corresponding pixels in
two images. It enables, for example, to extract some

information from the scene, to construct a 3D model, or to
stitch a panorama. At some level of the computation, the
matching function compares the pixel values of both images
atmatching positions, with the goal of iteratively refining the
estimation. Even if there is a perfect geometrical match
between the images, the pixel values will differ, either
because of noise, or because there is something that violates
the assumption made to do the match; in other words, an
outlier. An outlier in an (photographic) image pair is often a
region that has been occluded, an object that suddenly
appears in one of the images, or a region that undergoes an
unexpected motion. The fundamental problem of outlier
rejection or robust estimation is to distinguish between noise,
slight misregistrations, and outliers. In practice, given a
difference between two pixel values, one should be able to
decide whether, or to which extent, the pixel needs to be
considered or discarded from the computation.

In this paper, we address this problem by extracting as
much information as we can from the images prior to any
matching computation. The key idea of this paper is to
predict the outlier statistical characteristics as follows: We
assume that, by comparing two arbitrary parts of each
image, the resulting error pattern is similar to the one
generated by an outlier. From this assumption, we can
compute the expected error distribution generated by the
outliers, which leads us to the outlier model. This model is

very general and can be applied to any image matching
application. The second part of this paper shows how to
apply the outlier model to a particular case of image
matching, namely, to camera pose estimation.

The outlier model enables us to express a pose estimation
problem as a mixture of inlier versus outliers, and to handle
outlier rejection like a standard mixture problem [1], [2]. The
performance of the model is demonstrated using two
different types of experiments. The first experiment shows
two aligned pictures, one of them containing an outlier. The
proportion of the image covered by the outlier is varied by
framing the images of the pair differently. The goal is to see
when the model breaks down. The second experiment
compares the pose estimator derived from our outlier
model—which is an M-estimator—to a standard robust
M-estimator.

After a brief discussion of the state-of-the-art in Section 2,
the paper starts by presenting the outlier model in Section 3.
In Section 4, we discuss how to apply the model to the pose
estimation problem.We show two types of results. The first is
how to discriminate inliers from outliers given a set of
registered images.The secondaddresses the robustnessof the
pose estimation in the presence of an increasing number of
outliers. In both cases, themodel shows substantial improve-
ment compared to existing techniques. Section 5 briefly
discusses the limitations of the model, followed by the
conclusion in Section 6.

2 STATE-OF-THE-ART

The state-of-the-art can be approached from two different
points of view. On the one hand, there is general literature on
robust estimation and outlier removal from the standpoint of
statistics [3] that will not be further discussed here. On the
other hand, there is the literature on robustmotion estimation,
for which [4, chapter 3] and [5] give an extensive review.

Whenhandling images, outliers aredetectedby specifying
adistribution for the inliersandusinga thresholdscheme ifan
observation diverges too much from the inlier data, as in [6],
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[7], [8], [9]. More sophisticated methods [10], [11], [12] use a
uniform distribution for the outliers and approach the
estimation problem in the context of mixture modeling. In
general, there is very little difference between the general
statistical approach and the solutions that are applied to
images.

Our approach follows a comparable principle than the
work of Olson [14] who works with distances to edges
rather than pixel-to-pixel differences, leading to substan-
tially different results but sharing the same benefits. Gao
and Boult [15] also used a similar approach to subtract the
background in a tracking problem, working at a pixel
intensity level using a sophisticated time varying system.

3 THE OUTLIER MODEL

Considering a photographic image pair, we believe that

outliers generate an error pattern similar to the error
generated by comparing two random regions of the scene.
Thus, we define the outliers as being the result of a random
superposition of the images of a pair. The idea is to then
characterize the outliers by computing their error distribu-
tion, with the result that we are able to handle any estimation

problem as a mixture of inliers and outliers in a statistical
framework.

Let I be the part of the scene that appears as I0 in
image 0 and as I1 in image 1. We then compute the
statistics of a random superposition of I0 and I1. Let us

suppose that images 0 and 1 are the result of warping the
scene I with two independent random variables �0 and
�1 that are used as motion parameters: I0 ¼ Ið�0Þ and
I1 ¼ Ið�1Þ. We are interested in the error distribution
PðrÞ ¼ PrfI0ðpÞ ÿ I1ðp

0Þ ¼ rg, where p and p0 denote the
matching positions in the images. Thus,

PðrÞ ¼
X

8u

PrfI0ðpÞ ¼ u; I1ðp
0Þ ¼ uÿ rg; ð1Þ

where u denotes all possible values contained in the images

and r is the error value. Since �0 and �1 are independent,

so are I0ðpÞ and I1ðp
0Þ, thus

PðrÞ ¼
X

8u

PrfI0ðpÞ ¼ ugPrfI1ðp
0Þ ¼ uÿ rg: ð2Þ

By making some assumptions about the image and the

comparison process (detailed in Appendix A), the intensity

probability distribution of a single pixel in the image is

equal to the image histogram H, normalized such that
P

u HðuÞ ¼ 1. Equation (2) becomes

PðrÞ ¼
X

8u

H0ðuÞH1ðuÿ rÞ: ð3Þ

In other words, the outlier distribution is equal to the cross-
correlation of the two image histograms, computed on the
overlapping portion of the image pair. An experimental
evaluation of (3) is presented in Figs. 1 and 2, verifying the
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Fig. 1. Evaluation of the outlier model. (a) The predicted outlier distribution. (b) The error histogram. (c) Comparison of (a) and (b). The model and
error histogram are superimposed and can hardly be distinguished. Therefore, the model works well in this case. (d) The image superposition used
to generate the data: A white noise image has been compared to a real image (the images are rendered using a transparent blending).



validity of this model. The main assumption behind this
result is that the expectation of the error histogram is equal
to the error histogram delivered by a single image match.
Further details can be found in Appendix A.

Note that this formulation does not take advantage of the
correlation between neighboring pixels and assumes that
the statistics of the part of the image that contains outliers is
equal to the statistics of the whole image.

4 APPLYING THE OUTLIER MODEL TO POSE

ESTIMATION

Robust pose estimation consists in discounting the influence
of the outliers when computing the pose. Standard robust
pose estimation is performed using M-estimators which are
reviewedinSection4.1. Inourmodel,wefirstneedamodel for
the inliers (Section 4.2), to discriminate the outliers from the
inliers. The twomodels are combined in theOutlierMixmodel
inSection4.3. This enablesus to find theproportionofoutliers
(Section 4.4) and to compute for each pixel a probability to
belong to the inliers (Section 4.5). Among existing methods,
the most similar to ours uses a uniform distribution tomodel
outliers and is presented in Section 4.3.1 for comparison
purposes. The performance of the OutlierMix model to
perform outlier detection is shown in Section 4.4.4 and its
performance to estimate the pose of the camera is shown in
Section 4.6.

4.1 A Review of M-ESTIMATORS

To discount the influence of outliers when matching two
views of the same scene,M-estimators are applied alongwith
an iteratively reweighted least squares (IRLS) approach [5]. In
this regression, theM-estimatorweights the influence of each
pixel by a different factor. Formally, this is justified by
assuming that theerrordistributionhasadifferent shape than
the usual normal distribution, like, for example, a Lorentzian
or a Geman-McClur shape [4, chapter 3].

Let P� �ð Þ be the (discrete) assumed error distribution,
which has one parameter: �. The likelihood of parameter � is
defined by

Lð� j P�Þ ¼
Y

r

P�ðrÞ
nðrÞ; ð4Þ

where nðrÞ is the number of occurrences of the error r. The

maximum-likelihood value of � is found by solving

�̂� ¼ argmax
�

Lð� j P�Þ:

Since the logarithm is a monotonic and increasing function,

the maximum likelihood of parameter � can be found by

minimizing the negative log-likelihood

�̂� ¼ argmin
�

X

r

nðrÞ ÿ log P�ðrÞ½ �ð Þ:

We call the negative log-likelihood the objective function ��
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Fig. 2. Evaluation of the outlier modeling. (a) The predicted outlier distribution. (b) The error histogram. (c) Comparison of (a) and (b). We can see

that the model explains the data fairly well. The histograms are computed without taking the sky in one of the pictures into account. (d) The image

superposition used to generate the data (the images are rendered using a transparent blending).



�� rð Þ ¼ ÿ log P�ðrÞ½ � ¼
4
�

r

�

� �

: ð5Þ

To return to the pose estimation problem, finding the

Maximum-Likelihood estimate for the given error distribution

is equivalent to finding theminimumof theobjective function

�̂� ¼ argmin
�

X

M

i¼1

�
ri
�

� �

; ð6Þ

where ri is the error of a pixel-wise comparison of the images,

� is the unknown parameter of the system (often a vector

containing the motion parameters of the camera), M is the

number of pixels being compared, and � is the standard

deviation of the error.
The most frequently used approach consists in assuming

that the error distribution is Gaussian, which leads to the

usual (nonrobust) minimum mean squared error estimate

[13, chapter 11]. In addition to the Gaussian distribution, we

will use two distributions: the Lorentzian and the Geman-

McClur distribution. We choose the former for its precision

of the estimation and the latter for its robustness to outliers,

as we have found in our experimentation. The objective

functions associated to these distributions (their negative

log) is given, for the Gaussian1 (�N ), Lorentzian (�L), and

the Geman-McClur (�G) distributions by

�N
r

�

� �

¼
r2

2�2
; ð7Þ

�L
r

�

� �

¼ log 1þ
r2

2�2

� �

; ð8Þ

�G
r

�

� �

¼
r2=�2

1þ r2=�2
: ð9Þ

The weight W used by the M-estimators in the iteratively

reweighted least-square iteration is given byWðrÞ ¼
_��ðr�Þ

r [16,

Appendix A], that is,

WN rð Þ ¼ const; ð10Þ

WL rð Þ ¼
2

2�2 þ r2
; ð11Þ

WG rð Þ ¼
2�2

�2 þ r2ð Þ2
; ð12Þ

for the Gaussian (WN ), Lorentzian (WL), and Geman-

McClur (WG) distributions, respectively. For an extensive

discussion on standard robust estimation, we refer the

reader to [4, chapter 3] and [5].
Note that, in order to use the Lorentzian or Geman-

McClur estimator, we need to know the error scale �, which

is generally computed using the median of the error.

4.2 The Inlier Model

In an ideal situation, an inlier is an object that appears at the

exact same location in the image pair, and has the exact

same pixel value. In practice, the pixel values may differ

because of acquisition noise, and the image might not be

perfectly registered. Since the registration algorithm works

in iterations, this slight misregistration is perfectly normal

in the context of motion or pose estimation and it is crucial

to consider the slightly displaced objects as inliers. Surely

enough, these misregistered pixels are the ones that help the

motion estimation algorithm achieve a better registration.

This can be explained by the fact that iterative algorithms

work on local relationships in images, and the slight

displaced pixel should cause a decrease of the objective

function if they get aligned in the next iteration.
In order to characterize the inliers, we conduct the

following experiment: We take two images of a scene and

make sure that nothing changes neither in the scene, nor in

the camera pose and settings, and compute the error

histogram—the difference in the two pictures is due solely

to the acquisition noise. Then, we slightly misalign one of

the pictures, and recompute the error histogram. We repeat

the experiment for different misalignment amplitudes and

try to fit a model to the error histogram. The error

histograms of an image pair are shown in Fig. 3, for 0, 5,

and 20 pixels of misalignment, respectively.
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Fig. 3. Measuring inlier distributions. Two images looking like (a) are superimposed. (b) The error histogram for a perfect alignment, an alignment five
pixels apart, and an alignment 20 pixels apart.

1. The N subscript stands for Normal distribution.



Fig. 4 shows a comparison of the inlier histogram with a
zero mean2 Laplacian distribution. The Laplacian distribu-
tion Lð Þ is defined by [17]

Lð0;�ÞðrÞ ¼
1

2�
� eÿ

rj j
� ; ð13Þ

where r is the residual (the registration error) and � is the
standard deviation. Although a generalized Gaussian dis-
tribution [18] would deliver a better fit, we disregarded this
option because of the increased complexity that such a choice
would bring. The generalized Gaussian distribution requires
the estimation of two parameters instead of only one for the
Laplacian. We therefore chose to use the Laplacian distribu-
tion to model the inliers, which requires us to find only its
standard deviation � that will differ with each estimation.

4.3 The OutlierMix Model

By combining the results of the two previous sections, we
can build a new model for matching two images; we call it
the OutlierMix model. This model is a mixture of the outlier
model of Section 3 with the inlier model of Section 4.2.

Given the outlier distribution PO; we can describe the
error generated by matching two images as a mixture of
inliers and outliers:

PðrÞ ¼ �PI ðrÞ þ ð1ÿ �ÞPOðrÞ ð14Þ

Hm ¼ �HI ð�Þ þ ð1ÿ �ÞHO; ð15Þ

where PI stands for the inlier probability density, PO is the
outlier probability density, � is the proportion of inliers,
and r the error value. Equation (15) is equivalent to (14), but
using matrix notation, where Hm denotes the model
histogram, HI ð�Þ the inlier histogram, and HO the outlier
histogram. As discussed in Section 4.2, we assume that the
inlier distribution is a Laplacian distribution with zero
mean: PI � Lð0;�Þ. The model parameters � and � are
computed by fitting the model error distribution PðrÞ to the
error histogram He, according to Section 4.4.

Note that the outlier distribution depends only on the
image histograms and not on the error. In other words, we
can compute the outlier distribution without doing any
image superpositions or any error computation. Never-
theless, to compute the outlier proportion (and the inlier
standard deviation), we need to compute the error by
superimposing the images.

4.3.1 The UniformMix Model

A common practice is to model the outliers with a uniform
distribution [10], [11], [12]. To compare this approach to the
OutlierMix model, we introduce the UniformMix model,
which is a mixture of the inlier model of Section 4.2 with a
uniform distribution.

Given the outlier distribution PO, we can describe the
error generated by matching two images as a mixture of
inliers and outliers:

Hm ¼ �HI ð�Þ þ ð1ÿ �ÞHU ; ð16Þ

HU rð Þ ¼
4 1

N
; 8r; ð17Þ

where Hm denotes the model histogram, HI ð�Þ is the inlier
histogram, HU is the uniform distribution, � is the
proportion of inliers, and N is the number of possible error
values r that an image matching can produce. The model
parameters � and � are computed using the same procedure
than for the OutlierMix model.

Note that this formulation differs from the one proposed
in [12] by setting the inlier proportion � according to the
image content.

4.4 Fitting the Model to the Error Distribution

Given the error distribution, the inlier model, and the
outlier distribution, we can find the inlier scale (�) and the
inlier proportion (�) by fitting the model mixture to the
measurements. The inlier scale is the standard deviation of
the error generated by the inliers and is also called the error
scale. Two methods are proposed: The first method
computes the maximum likely parameters and the second
method minimizes the L2-norm between the OutlierMix
model and the error distribution. This last choice is
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2. If the settings of the camera are varying (even slightly), then the
registration model should compensate for these changes to ensure that the
inliers are zero mean.

Fig. 4. Error distribution versus a Laplacian distribution. (a) Three different Laplacian distributions computed to match the error distribution of Fig. 3b.
(b) Comparison of the Laplacian models in (a) with the error distribution in Fig. 3b (the histogram showing a misalignment of five pixels has been
suppressed for clarity reasons).



motivated by computational complexity. The experiments
are then repeated using the UniformMix model.

4.4.1 Traditional Median Estimator

To compare the OutlierMix model to the standard
M-estimators presented in Section 4.1, we compute the
inlier scale using the median of the error value. The inlier
scale can be derived from the median m by solving
Rm
0
Lð0;�ÞðrÞdr ¼ 1=4, i.e., � ¼ m= ln 2ð Þ.

4.4.2 Maximum-Likelihood Computation

The likelihoodL (defined in (4)) of the inlier scale parameter�
and the inlier proportion � is given by [1, chapter 1]

Lð�; � j POÞ ¼
Y

r

PðrÞnðrÞ;

where PðrÞ is the OutlierMix model distribution given by
(14), PO is the outlier distribution, and nðrÞ is the number of
occurrence of the error r. Using the histogram notation of
Section 4.3, the likelihood can be rewritten as

Lð�; � j POÞ ¼
Y

r

HmðrÞ
HeðrÞ

" #�

;

where HmðrÞ is the component at position r of the model
histogram Hm, He denotes the error histogram and � a
constant factor due to the normalization of He. To find the
maximum-likelihood estimate of the inlier scale � and of
the inlier proportion �, we maximize the log-likelihood
function lð�Þ

lð�; � j POÞ ¼
4
� � log

Y

r

HmðrÞ
HeðrÞ

" #

¼ � �
X

r

HeðrÞ log HmðrÞ½ �;

ð�; �Þ ¼ argmax
X

r

HeðrÞ log HmðrÞ½ �;

ð18Þ

which is equivalent to maximizing the likelihood function.
Equation (18) is solved numerically.

4.4.3 L2-Norm Fit

Another method to find ð�; �Þ is to use the L2-norm, whose
advantage is the low computational complexity. The optimal
parameter in the L2 sense is computed using a simple line
search on the inlier scale parameter �. Unfortunately,
the L2-norm approach does not guarantee that the inlier
proportion � is contained in the ½0; 1� interval, and is not, in
general, a “natural” measurement for distributions.

The optimal parameters in the L2 sense are found by
solving the following equation:

ð�; �Þ ¼ argmin He ÿHmk k2

under the constraint that:

� 2 ½0; 1�:

If the inlier scale parameter � is known, the inlier
proportion � can be found by taking the minimum mean
square solution of the following equation system:

He ¼ � �HI þ ð1ÿ �Þ �HO;

i.e.,

� ¼
HI ÿHOð ÞT He ÿHOð Þ

HI ÿHOk k2
:

In practice, � is found using an exhaustive search given a
maximumapriori value,which in our case is set to 20 percent
of the image’s dynamic range.3

4.4.4 Results

To illustrate the behavior of each fitting method, two
pictures of a pedestrian street are shown. The outliers are
the pedestrians along with their shades and the inliers are
the background regions of the scene. The outlier proportion
is varied by extracting from the image in Figs. 5a and 5b
several subimages, which contain less and less background
information, as illustrated in Figs. 5c, 5d, 5e, and 5f. Table 1
shows the result of fitting the OutlierMix model to the error
histogram. The sensitive parameter is the inlier scale since
the background is similar for every image pair, the inlier
scale value should not change within the table.4 The L2

estimator differs slightly from the maximum likelihood, but
gave also very satisfactory results. Although the relative
differences between the estimates of the inlier scale appears
to be large, its absolute value is very small compared to the
dynamic range of the error ( ÿ1; 1½ �).

The outlier modeling is also compared to the UniformMix
model,which assumes that the outliers can be represented by
auniformdistribution. The results shown inTable 2 are not as
good as the ones using the OutlierMix modeling, but are still
better than the traditional median-based approach.

The modeling fit is shown in Fig. 10 for the OutlierMix
model using the maximum likelihood estimator. The fit is
only shown for the maximum-likelihood estimator because,
graphically, there is hardly adifferencewith theL2 estimator.
Fig. 11 shows the outliermask. The outliermask represents, for
each pixel, the probability to belong to the outliers—defined
by (14)—where the gray scale is linearly related to the
probability to be an outlier (black is used for high probability
of outliers). We can see that the mask is able to discriminate
the inliers from the outliers even in the presence ofmore than
95 percent outliers.

4.5 Motion Model Based on the OutlierMix model

FromtheOutlierMixmodel,wecanderiveanewM-estimator

[5] by associating a weight WðrÞ to the error value r of each
pixel, according to whether the pixel is an outlier or not.
Specifically, we setW ðrÞ equal to its probability to belong to
the inliers:

WðrÞ ¼ Pðinlier j rÞ ¼
PðinlierÞ � Pðr j inlierÞ

PðrÞ

¼
�HI ð�; rÞ

�HI ð�; rÞ þ ð1ÿ �ÞHOðrÞ
:

ð19Þ

In the context of motion estimation, the weight factor is
introduced by the derivative _��ðriÞ

ri
of the objective function

defined in Section 4.1. We set this derivative equal to the
weight of (19):
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3. Special care has to be taken in finding � to avoid possible local minima.
4. Strictly speaking, some little changes could occur since it is not exactly

the same background due to the different framing.



_��ðriÞ

ri
¼ WðrÞ;

and compute an objective function from it:

�ðrÞ ¼

Z r

0

_��ðeÞde

¼

Z r

0

_��ðeÞ

e
� e � de

¼

Z r

0

WðeÞ � e � de:

ð20Þ

The objective function is set to 0 at the origin: �ð0Þ ¼ 0 and
is computed numerically. The motion estimator using the
OutlierMix model minimizes the objective function in (20).
Note that this function is often asymmetric.

4.6 Robustness of the OutlierMix Model

The traditional robustness computation approach evaluates

the robustness of an estimator provided that a certain amount

of samples are replaced by arbitrary values [3]. Unfortu-

nately, it is not possible to characterize the performance of the

OutlierMix model using this approach, because our model

knows a priori all the possible values that the error can take.
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Fig. 5. (a) and (b) Original pictures used to perform outlier detection tests. (c), (d), (e), and (f) Ghost pictures used to perform the outlier tests. The
images are superimposed using transparency; hence, the outliers appear as a ghost image. (c) The whole image, (d) region of picture (c), (e) region
of picture (d), and (f) region of picture (e). The subimages are chosen such that the part of the image covered by the outliers is increasing.



Consequently, it does not fit in the traditional framework of
robustness characterization. Nevertheless, in our context, we
can argue that the model can handle an arbitrary percentage
of outlying data, since the outlier detection is just a matter of
choosing the proportion among two distributions. Hence, we
propose two experiments to measure the performance of the
OutlierMix model.

The first experiment evaluates the robustness of the scale
estimate (�) to outliers. Table 1 shows the estimate of the error
scale for the pictures of Fig. 5. The error scale should remain
approximately constant.We can see that the estimate derived
from the error median—the method generally used by the
standard estimators—is stable for the cases of less than
50percentoutliers.Above50percent, it becomesunstableand
totally fails in presence of 98 percent of outliers. The same
phenomenon is illustrated in Fig. 6, where the weighting
factor of the Lorentzian model, defined in (8) is shown for
every pixel. The figure shows the result obtained considering
Figs. 5e and 5f. The first column of Fig. 6 shows the weight
based on the scale found with the OutlierMix model fit with
the L2-norm and the second column shows the weight based
on the scale computedwith the errormedian.Moredetails are
visible in the outlier of Fig. 6b than in Fig. 6a, thus the
M-estimator gives a variable weighting to the pixels of the
outlier, insteadof rejecting themuniformly, as inFig. 6a.More
striking is the difference between Figs. 6c and 6d, where the
traditional estimator is unable to distinguish the inliers from
the outliers. This shows that the scale estimate using the
OutlierMix model is more robust.

The second experiment compares the performance of a
translation estimation with an M-estimator using a Lor-
entzian and Geman-McClur distribution (see Section 4.1) to

the motion estimator using the OutlierMix and the Uni-
formMix models. The translation is defined as

p0 ¼ pþ �;

where p and p0 are the matching positions in the image pair,
and � is the unknown (two dimensional) translation para-
meter. Two pictures of the same scene are taken in the same
conditions with a fixed camera. One of the pictures has been
corruptedbytakingthe leftpartof thepictureandcopyingit to
the right as illustrated inFig. 8b.Byextractingasubimagepair
from these images, we can control the amount of outliers
present in the pair. Then, for a whole set of image pairs, a
motion estimation is performed,5 starting from a misalign-
ment of 15 pixels in amplitude. The results—shown in
Fig. 7a—are binary: either the algorithm converges and the
error is insignificant or it does not converge and the resulting
error is large. Themisregistration ismeasured as the distance
betweentherealpositionof the image(knownapriori)andthe
onedeliveredbytheposeestimation.Fivetestsareconducted6

and the graph shows the median of the results. The model
using the OutlierMix model clearly outperforms the tradi-
tional ones, and is able to handle 86 percent to 90 percent
outliers in thisparticular example.7For the sameexample, the
Gaussian M-estimator handles up to 32 percent outliers,
the Lorentzian M-estimator handles up to 60 percent
outliers, and the Geman-McClur M-estimator handles up to
64 percent outliers. The UniformMix model handles up to
86 percent outliers and is therefore better than the traditional
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Fig. 6. Comparison of outlier masks for the OutlierMix model in (a) and
(c) and a traditional M-estimator using the median to compute the error
scale in (b) and (d). We can see in (d) that the traditional estimator fails to
distinguish the outliers from the inliers. These masks are computed from
the images in Fig. 5 and are rendered using a 2.2 gamma correction.

TABLE 1
Inlier Scale (�) and Outlier Percentage (1ÿ �) Estimation

The table compares three methods that use the OutlierMix model to
determine the inlier scale and the outlier percentage of the images in
Fig. 5. The inlier scale, which should be approximately constant, is also
compared to a standard method that uses the median estimator. The
two methods deliver similar results and are superior to the median-
based estimator.

TABLE 2
Inlier Scale (�) and Outlier Percentage (1ÿ �) Estimation

The table compares two methods that use the UniformMix model to
determine the inlier scale and the outlier percentage of the images in
Fig. 5. The last line shows that the inlier scale estimate, which should be
approximately constant, is not as robust as in the experiment in Table 1.

5. The estimation is performed with a Gaussian multiresolution pyramid
with four levels.

6. Five different initial conditions are used, each of them with the same
misalignment amplitude.

7. The randomness of the experiment made the estimator fail at 88 percent
four times out of five, but succeeded at 90 percent three times out of five.



M-estimators butworse than theOutlierMixmodel.Wewant

to emphasize that this model is sometimes used without

estimating the outlier proportion (1ÿ �) [12], which is one of

the key elements in the success of this implementation. The

experiment is reproduced for an initial misalignment of

1.5 pixels in amplitude, showing similar results.
In general, the performance of the OutlierMix model

depends on the image content: the more the outlier data

differs from the inlier data, the better the OutlierMix model

performs compared to a traditional approach. Indeed,

having a large discrepancy between the inliers and outliers

facilitates the inliers/outliers mixture problem, but impairs

the median estimator used in traditional techniques. We

found, experimentally, that in the worst case, the outlierMix

model behaves like a heavy tailed M-estimator as the

Geman-McClur reviewed in this paper.

4.7 Computational Complexity and Estimation
Efficiency

The OutlierMix model is approximately as complex, in

terms of computational cost, as the usual M-estimators. In

addition to the computation required by the M-estimators,
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Fig. 7. Comparison of different estimators measured for two initial conditions. In (a), 15 pixels of initial misalignment—median result for five tests. In
(b), 1.5 pixels of initial misalignment. A translation is estimated between two pictures, and the final translation error is shown. The OutlierMix model is
the most robust of the set, handling up to 90 percent outliers in the first case and 98 percent in the second. There is some randomness associated
with the test: for example the outlier-based model is able to handle 90 percent of outliers but fails with 88 percent.

Fig. 8. Images used to measure the robustness to outliers of different estimators shown in Fig. 7. The right part of (b) is corrupted and the outlier

percentage is chosen by extracting a subimage pair and carefully controlling the framing of the extraction.
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Fig. 9. Comparison between the predicted outlier histogram—smooth (blue) curve—and the measured error distribution of the superposition of the
pictures depicted in Fig. 2d. The whole figure is used to compute the histograms. (a) In some locations, the data exhibits peak values that are not
present in the modeling. These peak values are generated by the uniform areas contained in the images. Because of the uniformness of these areas,
the matching does not, in general, lead to the expectation of the matching, thus explaining the divergence of the model from the data. (b) Shows the
average over 10 experiments showing that the error histograms tend toward the outlier model.

Fig. 10. Fitting the OutlierMix model to the error histogram with a maximum-likelihood approach. (a) Shows 27 percent outliers, (b) shows 42 percent
outliers, (c) shows 56 percent outliers, and (d) shows 98 percent outliers. The graphs correspond to the images of Fig. 5 and are shown on a
logarithmic vertical scale to graphically emphasize the error, except for (d). The smooth (blue) curve shows the OutlierMix model.



the OutlierMix model has to compute two image histo-

grams (once), and requires an extensive search on the scale

parameter of the inlier model. Nevertheless, the extensive

search is based on histograms that contain in practice

around 500 samples,8 which is very small in comparison to

the number of pixels in an image. Additionally, a better

estimate of the scale parameter leads to faster convergence;

hence, the algorithm needs fewer steps to converge to the

solution. The UniformMix model has the same complexity

than the OutlierMix model, if we do not take the two initial

image histograms into account.
A nice property of the OutlierMix estimator is its relative

efficiency. The relative efficiency is defined as the ratio

between the lowest achievable variance for the estimated

parameters (i.e., the Cramer-Rao lower Bound) and the

actual variance provided by the given method [4]. In the

absence of outliers, the outlier-based model reduces to a

standard least-square estimation that reaches the Cramer-

Rao lower bound. In other words, the OutlierMix motion

model achieves a relative efficiency of 1 in absence of

outliers. Indeed, the probability to be an inlier becomes 1 in

this case, leading to a weight W rð Þ ¼ 1 in (20) that generates

an objective function �ðrÞ ¼ r2.

5 LIMITATIONS

In the examples shown so far, the outlier model of Section 3
has proven to explain the data quitewell. There is, however, a
particular case where the model does not fit the data very
well, which occurs when the image contains a large uniform
area. For example, in Fig. 2d, more than 1=3 of the image is
covered by auniformblue sky. To get the result of Figs. 2a, 2b,
and 2c, we discounted the influence of the sky. If we take the
sky into account, the error histogram exhibits a peak value
that is not as accentuated in the outliermodel. In this case, the
expectation of the error distribution is not equal to the error
distribution of a single realization of the comparison process.
Indeed, when the areas of the pictures are too uniform, the
error distribution tends to be sensitive to theway the pictures
are compared. Nevertheless, except for the peak values, the
model still fits the data quitewell, as shown in Fig. 9. This also
explainswhy the fit inFig. 1 is better than the fit inFig. 2.Now,
if we conduct several different superpositions with the
images of Fig. 2d and take the average of the resulting error
histograms, then the error histogram tends to approach the
outliermodel, showing that thedivergenceobservedinFig.9a
is indeed due to an expectation problem. Fig. 9b shows the
average of 10 error histograms obtained using 10 indepen-
dent random superpositions.

Fig. 12 shows another example of an image superposition
containing largeuniformareas.The imagesaresuperimposed
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Fig. 11. Outlier masks associated to the images in Fig. 5. The gray scale is proportional to the probability to be an outlier; black indicates a high
probability (a 2.2 gamma correction is used to render the images).

8. On an 8bits/sample image, the error values range from -255 to 255,
making a total of 511 possible error values.



by rotatingoneof the images. Fig. 12 shows the result for three
different angular positions and for the average of the results.
Note that, for each superposition, the outlier model changes
slightly, because the histograms are computed on varying
overlap areas. We want to emphasize that the Fig. 12 shows
results whose performance are below average.

6 CONCLUSIONS

In this paper, we present a new way of calculating outliers
in image pairs. The method differs from the traditional

approach by characterizing the outliers with a distribution
computed from the initial images. This restriction in the
outlier characterization allows the description of a new
motion estimator that treats the pose estimation as a
mixture of inliers versus outliers and is able to handle
outlier percentages that exceed 50 percent of the image. The
model has been tested using two kinds of experiments: The
first experiment tests the ability of the model to discrimi-
nate the outliers from the inliers using two pictures taken
with a fixed camera. The second experiment tests the
performance of the motion estimator derived from the
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Fig. 12. Outlier model—smooth (blue) curve—versus error histogram: variations of the error histogram depending on the geometric configuration.
(c), (d), and (e) are computed using three different angular positions of image. (b) over image (a). Because of the large uniform areas in (a), the error
histogram varies substantially. (f) Shows the average over 12 tests.



OutlierMix model. Both experiments show a substantial

improvement compared to the standard techniques in use.
These results can also serve different purposes: For

segmentation applications, or coding applications, the

OutlierMix model can be used to separate the moving

objects from the background without using arbitrary

thresholds on the error values.

Further research will investigate the extension of this

modeling to color images. An interesting extension would

also be to consider multiresolution to account for local

relationships of pixel values.

APPENDIX A

OUTLIER MODEL COMPUTATIONS

This appendix details the assumptions involved in the

OutlierMix model. As a convention we use capital letters for

random variables (�0) and lowercase letters for the

realizations of these random variables (�0).
Let �0 and �1 be two vectors of independent discrete

random variables. Let I0 and I1 be two injective functions

(I0 and I1 are the images that are compared).
We are interested in the probability of error PðrÞ when

comparing two images:

PðrÞ ¼ Pr I0 �0;pð Þ ÿ I1 �1;pð Þ ¼ rf g;

where p is the position in the image (p is not random), and r

the error (or residual). By assuming thatPðrÞ does not depend

on the position p in the image, the probability of error PðrÞ is

equal (by definition) to the expectation E�ð�Þ of the indicator

function:

PðrÞ ¼
4
E�0;�1

11 I0 �0;pð ÞÿI1 �1;pð Þ¼rf g

� �

8p; ð21Þ

where 11 �f g is the indicator function (11 bf g is equal to 1 if b is

true, 0 otherwise). The histogram H can be written as

H r; �0; �1ð Þ ¼
4 1

M

X

8p

11 I0 �0;pð ÞÿI1 �1;pð Þ¼rf g;

where M is the number of pixels. The expectation of the

error histogram is equal to

E�0;�1
H r;�0;�1ð Þ½ � ¼ E�0;�1

1

M

X

8p

11 I0 �0;pð ÞÿI1 �1;pð Þ¼rf g

" #

:

Note that from (21), the expectation of the error histogram is

equal toPðrÞ. Since the expectation is a linear operator and the

sum is finite, we can switch the expectation and the sum:

E�0;�1
H r;�0;�1ð Þ½ � ¼

1

M

X

8p

E�0;�1
11 I0 �0;pð ÞÿI1 �1;pð Þ¼rf g

� �

:

The expectation can be expressed as

E�0;�1
11 I0 �0;pð ÞÿI1 �1;pð Þ¼rf g

� �

¼
X

8�0

X

8�1

11 I0 �0;pð ÞÿI1 �1;pð Þ¼rf gP �0; �1ð Þ;

but the indicator function of the error can be expressed as a

cross-correlation,

11 I0 �0;pð ÞÿI1 �1;pð Þ¼rf g ¼
X

8u

11 I0 �0;pð Þ¼uf g11 I1 �1;pð Þ¼uÿrf g;

hence, the expectation is expressed as

E�0;�1
11 I0ð�0pÞÿI1ð�1;pÞ¼rf g

� �

¼
X

8�0

X

8�1

Pð�0; �1Þ
X

8u

11 I0ð�0;pÞ¼uf g11 I1ð�1;pÞ¼uÿrf g

¼
X

8u

X

8�0

X

8�1

P �0; �1ð Þ11 I0ð�0;pÞ¼uf g11 I1ð�1;pÞ¼uÿrf g;

by assuming that every sum is finite.
Because �0 and �1 are independent, we can separate the

probabilities of �0 and �1:

P �0; �1ð Þ ¼ P �0ð ÞP �1ð Þ;

thus, the expectation can be expressed as a cross-correlation:

E�0;�1
11 I0 �0;pð ÞÿI1 �1;pð Þ¼rf g

� �

¼
X

8u

X

8�0

P �0ð Þ11 I0 �0;pð Þ¼uf g

X

8�1

P �1ð Þ11 I1 �1;pð Þ¼uÿrf g

" #

;

¼
X

8u

Pr I0 �0;pð Þ ¼ uf g � Pr I1 �1;pð Þ ¼ rÿ uf g½ �:

Finally,

E�0;�1
H r;�0;�1ð Þ½ � ¼

1

M

X

8p

X

8u

Pr I0 �0;pð Þ ¼ uf g � Pr I1 �1;pð Þ ¼ rÿ uf g½ �
:

Now, by assuming that the statistics of the pixel in an

image does not depend on the position (p) where the pixel is

located in the image, the expectation of the error histogram is

equal to the cross-correlation of the pixel value distribution:

E�0;�1
H r;�0;�1ð Þ½ � ¼

X

8u

Pr I0 �0ð Þ ¼ uf g � Pr I1 �1ð Þ ¼ rÿ uf g½ �:

By further assuming that the probability density function of

the pixel is given by the image histogram

1

M

X

8p

11 I0 �0;pð Þ¼uf g ¼ Pr I0 �0ð Þ ¼ uf g;

the expectation of the error histogram (H) is equal to the

cross-correlation of the histograms (H0; H1) of the images:

E�0;�1
H r;�0;�1ð Þ½ � ¼

X

8u

H0 uð Þ �H1 rÿ uð Þ:

Finally, by assuming that the comparison process is

constant (or that the error histogram does not depend on

the image positioning), we get

E�0;�1
H r;�0;�1ð Þ½ � ¼ H r; �0; �1ð Þ; 8�0; �1; ð22Þ

which finally leads to

H r; �0; �1ð Þ ¼
X

8u

H0 uð Þ �H1 rÿ uð Þ:

The error histogram is equal to the cross-correlation of the

image histograms.
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