
Outlier Resistant Unsupervised Deep Architectures for
Attributed Network Embedding

Sambaran Bandyopadhyay∗

IBM Research

sambband@in.ibm.com

Lokesh N2

Indian Institute of Science, Bangalore

lokeshn@iisc.ac.in

Saley Vishal Vivek2

Indian Institute of Science, Bangalore

vishalsaley@iisc.ac.in

M. N. Murty
Indian Institute of Science, Bangalore

mnm@iisc.ac.in

ABSTRACT

Attributed network embedding is the task to learn a lower dimen-

sional vector representation of the nodes of an attributed network,

which can be used further for downstream network mining tasks.

Nodes in a network exhibit community structure and most of the

network embedding algorithms work well when the nodes, along

with their attributes, adhere to the community structure of the net-

work. But real life networks come with community outlier nodes,

which deviate significantly in terms of their link structure or at-

tribute similarities from the other nodes of the community they

belong to. These outlier nodes, if not processed carefully, can even

affect the embeddings of the other nodes in the network. Thus, a

node embedding framework for dealing with both the link struc-

ture and attributes in the presence of outliers in an unsupervised

setting is practically important. In this work, we propose a deep

unsupervised autoencoders based solution which minimizes the

effect of outlier nodes while generating the network embedding.We

use both stochastic gradient descent and closed form updates for

faster optimization of the network parameters. We further explore

the role of adversarial learning for this task, and propose a sec-

ond unsupervised deep model which learns by discriminating the

structure and the attribute based embeddings of the network and

minimizes the effect of outliers in a coupled way. Our experiments

show the merit of these deep models to detect outliers and also

the superiority of the generated network embeddings for different

downstream mining tasks. To the best of our knowledge, these are

the first unsupervised non linear approaches that reduce the effect

of the outlier nodes while generating Network Embedding.

∗S.B. is also affiliated to Indian Institute of Science, Bangalore.
2L.N and S.V.V. contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WSDM ’20, February 3ś7, 2020, Houston, TX, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00
https://doi.org/10.1145/3336191.3371788

KEYWORDS

network representation learning, community outliers, adversarial

learning, deep autoencoder, graph mining, social networks

ACM Reference Format:

Sambaran Bandyopadhyay, Lokesh N, Saley Vishal Vivek, and M. N. Murty.

2020. Outlier Resistant Unsupervised Deep Architectures for Attributed

Network Embedding. In The Thirteenth ACM International Conference onWeb

Search and Data Mining (WSDM ’20), February 3ś7, 2020, Houston, TX, USA.

ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3336191.3371788

1 INTRODUCTION

Network representation learning or network embedding [8, 23] is

the task of mapping the nodes of a network (or graph) to a lower

dimensional vector space. As different properties of the network are

captured in the resulting space, downstreammachine learning tasks

perform better when these are used as feature vectors. An attributed

network comes with additional attribute information present in

each node. Multiple algorithms have been proposed in the literature

to embed attributed networks [12, 32]. These embedding algorithms

typically exploit the fact that attribute values of the nodes are highly

correlated with the link structure of the network [20] and hence

provide complementary information for network representation.

Nodes in an information network exhibit community structure

[16]. Existing network embedding algorithms perform well when

the nodes of the networks are well-connected in their respective

communities and attributes are coherent with the link structure.

But real-life networks come with nodes which violate the property

of the community they belong to. Such a node can have edges with

the nodes randomly from different communities or their attributes

are similar to attributes of the nodes from other communities. These

nodes are called community outliers [9]. We use the words outlier

and the community outlier interchangeably in this work. For exam-

ple, in social networks there are users who are randomly connected

to other users. In a citation network, there can be research papers

which cite other papers with highly varying levels of similarity.

In these cases, homophily property [20] does not necessarily hold

between the connected nodes. Moreover, a community outlier node

might be a member of a community structurally, but its attribute

values can be very different from the other members of the com-

munity and vice-versa. Real world attributed networks do have

unlabelled outliers, as pointed out in [5, 17].

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

25

https://doi.org/10.1145/3336191.3371788
https://doi.org/10.1145/3336191.3371788

(a) Synthetic Network (b) N2V embeddings of (a) (c) With Seeded Outliers (in red) (d) N2V embeddings of (c)

Figure 1: Adverse effect of community outliers on the embedding of the regular nodes: (a) We use a small synthetic network

with 3 communities and a total of 60 nodes (see Sec. 5.2). (b) We run node2vec on this synthetic graph with embedding dimen-

sion = 2 and plot the embeddings. It performs well by separating the communities far apart in the plot. (c) Then we insert only

6 community outlier nodes (in red) in the same network. These outliers have edges to all the three communities randomly. So

they do not satisfy the community structure of the synthetic network. (d) Again we show embedding visualization of node2vec

algorithm on the seeded synthetic dataset. Clearly, the seeded outliers pull the embeddings from different communities to-

gether, as compared to Sub-figure (b). As the original dataset is very well-structured, nodes can still be classified in the seeded

version. But the distortion shows the adverse effect of the outliers on the embeddings of the regular nodes. Interestingly, (d)

also shows that outliers get mixed up with the regular nodes, and thus mere post processing cannot detect them.

Most of the existing network embedding algorithms do not han-

dle these community outlier nodes explicitly while generating the

node embeddings. As a result of that, outliers can heavily affect

the embedding of the regular nodes in the network. This can be

seen in Fig 1, where only few manually seeded outliers in a syn-

thetic network distort the communities in the node2vec embedding

space by pulling them together. This deterioration happens because

the outlier nodes drive the random walks across communities and

hence homophily property is violated in the resulting embeddings.

Adverse effect of outliers on real world datasets are experimentally

demonstrated in Section 5.6 as well. To overcome this problem, the

effect of outlier nodes in the overall embedding objective needs

to be minimized while generating the embeddings of the nodes.

Thus, it is important to propose an integrated solution for node

embedding and outlier detection for (attributed) network.

Recently, researchers have considered outliers while generating

network embedding. A semi-supervised algorithm is proposed to

detect outliers while generating the network embedding in [18]. But

often it is difficult and expensive to get labelled data for the nodes of

a network. [2] proposes an unsupervised algorithm which reduces

the effect of outliers in network embedding. But this approach

has two limitations. First, real world complex networks exhibit

highly nonlinear behavior, which is difficult to capture using matrix

factorization. Second, matrix factorization techniques do not scale

for larger networks. To address these research gaps, we propose two

unsupervised deep models. We call them as DONE (Deep Outlier

aware attributed Network Embedding) and AdONE (Adversarial

ONE) respectively. Following are the contributions we make:

• We propose an autoencoder based deep architecture (DONE)

to minimize the effect of outliers for network embedding, in

an unsupervised way. We use SGD, along with the derived

closed form update rules for faster optimization of the pa-

rameters of the network. To the best of our knowledge, this

is the first unsupervised deep architecture for outlier aware

attributed network embedding.

• Wepropose another unsupervised deep architecture (AdONE)

by exploiting the idea of adversarial learning for outlier

aware network embedding. To the best of our knowledge,

this is the first work to use adversarial training for this task.

• To show the superiority of the proposed algorithms, we

conduct thorough experiments on both original and seeded

versions of four publicly available datasets for three down-

stream network mining tasks. The source code of the pro-

posed algorithms and additional materials are available at

https://bit.ly/35A2xHs.

2 RELATEDWORK

A comprehensive survey on network embedding can be found in

[12, 30]. For the sake of completeness, we only cite some impor-

tant literature related to our work. DeepWalk [23], LINE [25] and

node2vec [8] are some of the first few popular node embedding algo-

rithms, which preserve network node proximities in the embedding

space by direct optimization or via random walks inspired by the

skip-gram models [21] proposed in the natural language processing

literature. Different matrix factorization based techniques for node

embedding in attributed networks are proposed in [1, 13, 32]. The

concept of generative adversarial learning has also been used in

the context of node embedding in [29]. Recently, deep learning

techniques gain much popularity for network embedding. A deep

autoencoder for graph embedding is proposed in [3]. SDNE [28]

proposes another autoencoder based approach to preserve different

types of proximities in a network. The idea of using convolutional

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

26

https://bit.ly/35A2xHs

neural networks (GCN) for graph embedding by repeatedly aggre-

gating attribute values from neighbors has been proposed in [15, 22].

An extension of GCN with different types of node information ag-

gregation methods (GraphSage) is developed in [11]. Another deep

learning architecture for attributed network embedding is proposed

in [6]. Attention mechanism for graph embedding is introduced in

[26]. A GCN based approach by maximizing mutual information

between patch representations and high-level summaries of a graph

is proposed in DGI [27].

The above approaches do not process the outlier nodes explic-

itly and hence are prone to be affected by them. Recently, a semi-

supervised approach SEANO [18] and an unsupervised matrix fac-

torization based approach ONE [2] have been proposed for outlier

detection and network embedding for attributed networks. But

these approaches have their own limitations as discussed in Section

1. There are also recent works on detecting outliers (or anomalies)

in attributed networks by analyzing the residual or reconstruction

loss of the network via latent space [17] or deep models [5]. But

they do not minimize the effect of outliers in the node embeddings,

thus cannot prevent the deterioration of the embedding quality

because of the outliers. We precisely address these research gaps in

this paper, and propose scalable deep unsupervised solutions.

3 PROBLEM STATEMENT

An attributed information network is typically represented by a

graph as G = (V , E,C), where V = {v1,v2, · · · ,vN } is the set

of nodes (a.k.a. vertices). E ⊂ {(vi ,vj)|vi ,vj ∈ V } is the set of

edges between the vertexes. First order neighborhood of a node

i is denoted as N(vi) = {vj ∈ V |(vi ,vj) ∈ E}. The network can

be directed or undirected, and weighted or unweighted. Let, A is

the N × N dimensional adjacency matrix of the graph G. For a

large network, the matrix A is highly sparse in nature. Let C be a

N ×D matrix with ci as rows, where ci ∈ R
D is the attribute vector

associated with node vi ∈ V . Cid is the value of the attribute d for

node vi . For example, if there is only textual content in each node,

ci can be the tf-idf vector for the content of the node vi .

Next, we discuss the set of outliers that we aim to detect in this

paper. The anomalous behavior of the nodes can be captured by

their link structure, attributes or by the combination of both. More

formally, there are three types of community outliers [2] in an at-

tributed network as shown in Figure 2: (a) Structural Outlier: The

node is structurally connected to nodes from different communi-

ties, i.e., its structural neighborhood is inconsistent. (b) Attribute

Outlier: The attributes of the node are similar to that of nodes

from different communities, i.e., its attribute neighborhood is in-

consistent. (c) Combined Outlier: Node belongs to a community

structurally but it belongs to a different community in terms of at-

tribute similarity. For a given network G, our goal is to learn a node

embedding function f : vi 7→ hi ∈ R
K , that maps every vertex to a

K dimensional vector, where K < min(N ,D). The representations

should preserve the underlying semantics of the network. Hence

the nodes which are close to each other in topographical distance

or similarity in attributes should have similar representations. As

mentioned in Sec. 1, we also need to reduce the effect of outliers

and aim to detect them in the process of network embedding, so

that the embeddings of the other nodes in the network are robust.

(a) (b) (c)

Figure 2: Different types of outliers [2] present in an attrib-

uted network: (a) Structural Outlier, (b) Attribute Outlier

and (c) Combined Outlier. Nodes (or attributes) having same

color belong to the same community in terms of structure

or attribute similarity.

4 SOLUTION APPROACHES: DEEP MODELS

This section discusses the proposed deep architectures to solve

the problem of outlier aware network representation. We do the

following preprocessing of the input network first.

4.1 Network Preprocessing

Real life networks are highly sparse and come with missing con-

nections between nodes. The rows of an adjacency matrix can only

capture the observed links as they are. Motivated by the concept of

page rank, we use randomwalk with restart [3, 24] to obtain a richer

context and consequently preserve the higher order proximities in

our proposed solution. Given the adjacency matrixA of the network

G (Sec. 3), the transition matrix can be obtained as D−1A, where D

is a diagonal matrix with Dii =
N
∑

j=1
ai j . Suppose, P

t ∈ RN×N repre-

sents the probability matrix where (P ti)j represent the probability

of going to node j after t steps by a random walk starting from the

node i , t = 0, 1, · · · ,T . T is the maximum length of the truncated

random walk. Clearly, P0i (ith row of the matrix P0) has (P0i)i = 1

and all the other elements as 0. So, P ti = rP
t−1
i [D−1A] + (1 − r)P0i .

Where 0 ≤ r ≤ 1 with (1−r) being the restart probability of the ran-

dom walk from the starting node at any step. We take the average

of all the matrices P1, · · · PT to capture the higher order proximities

between the nodes. For the experiments, we set r = 0.3 and T = 3.

Thus we use the rows of the following matrix X ∈ RN×N as the

input to our proposed architectures: X = 1
T

T
∑

t=1
P t .

4.2 Solution Approach: DONE

This is the first solution approach where we use two parallel autoen-

coders for link structure and attributes of the nodes respectively. As

shown in Figure 3, let us refer the first autoencoder corresponding

to the structure of the network as Encs and that corresponding to

the attributes as Enca . Henceforward, we always use superscript s

for structure and superscript a for the attributes for all the functions

if not mentioned otherwise. The input to the first autoencoder is

xi (i
th row of the matrix X in Sec. 4.1) and that to the second au-

toencoder is ci (i
th row of the attribute matrix C in Sec 3) for node

i . There are L layers in each of the encoders and decoders. We have

used Leaky ReLU nonlinearity function with negative input slope

α = 0.2 in both the autoencoders. The embeddings of node i with

respect to the structure and attributes are hsi and h
a
i , obtained from

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

27

the hidden (code) layers of Encs and Enca respectively, hsi , h
a
i ∈ RK .

The reconstructed outputs of the autoencoders for node i are x̂i
and ĉi respectively. Let us also call the set of all the parameters (all

W’s and b’s) of the autoencoders as Θ.

We also introduce outlier scores (∈ R) for each node correspond-

ing to the three types of outliers as shown in Fig. 2. We denote

them as osi , o
a
i and ocomi corresponding to structural, attribute and

combined outliers respectively for node i , i = 1, · · · ,N . The set of

all the outlier scores is denoted byO . For the sake of interpretability

of outlierness, we assume:

N
∑

i=1

osi = 1,

N
∑

i=1

oai = 1,

N
∑

i=1

ocomi = 1, osi ,o
a
i ,o

com
i > 0 (1)

It is important to note that, if the outlier scores are not upper

bounded, then they will all be assigned to +∞ by the optimization

in Eq. 7 or in Eq. 13 (as discussed later). Intuitively, we assume that

total outlier score for each type of outlier is constant in the network.

For a perfect network where there is no outlier present (for e.g., a

graph with modular communities and no inter-community edges,

where attributes are consistent and perfectly coherent with the

link structure), outlier scores of all the nodes are equal to each

other, osi = oai = ocomi =
1
N , ∀i . Outlier scores of each type also

form a discrete probability distribution. For example, osi denotes

the probability of the node vi to be a structural outlier.

Let us formulate the loss functions for this approach. Like most

of the embedding algorithms, we also want to preserve different

orders of proximities in the network. As the input to the structural

autoencoder captures the local neighborhood of a node (Section

4.1), by minimizing this reconstruction loss
N
∑

i=1
| |xi − x̂i | |

2
2 , one can

preserve the higher order proximity in the network. But the pres-

ence of outliers can adversely affect the learning of the parameters

of the network. So it is important to minimize their contribution in

the learning process. Hence we reformulate the proximity loss as:

LProx
str =

1

N

N
∑

i=1

loд(
1

osi
)| |xi − x̂i | |

2
2 (2)

Clearly larger the outlier score osi for some node i , smaller would be

the value of loд(1
os
i

), and so the contribution to loss from this node

would be less. The next component of the loss function is used to

preserve homophily [20] in networks. Nodes which are connected

by edges tend to have similar behavior and they should be close

in the embedding space as well. Again, as structural outliers have

connections to nodes from multiple communities randomly, their

contribution to homophily loss should be less.

LHom
str =

1

N

N
∑

i=1

loд(
1

osi
)

1

|N(i)|

∑

j ∈N(i)

| |hsi − h
s
j | |

2
2 (3)

We divide the total loss over the neighbors by the degree of the node

vi so that a node does not contribute significantly more because of

its degree. With a similar motivation, for the attribute autoencoder,

the following two losses can be formulated.

LProx
attr =

1

N

N
∑

i=1

loд(
1

oai
)| |ci − ĉi | |

2
2 (4)

Figure 3: DONE and AdONE Architectures: The architec-

ture within the blue boundary (2 autoencoders, connected

via LCom) is DONE. The architecture within the dotted red

boundary (2 autoencoders, connected via LDisc) is AdONE

LHom
attr =

1

N

N
∑

i=1

loд(
1

oai
)

1

|N(i)|

∑

j ∈N(i)

| |hai − h
a
j | |

2
2 (5)

Please note that, we have used attribute outlier score oai for each

node while formulating the loss for the attribute autoencoder. Next,

from the homophily property [20], the link structure and node

attributes of a node in a network are highly correlated. Hence it

is important to use one as complimenting the other. Though we

are getting embeddings corresponding to structure and attributes

in the network, it is important to regularize them for each node.

Hence we formulate the last component (combining structure and

attributes) of the loss function as:

LCom
=

1

N

N
∑

i=1

loд(
1

ocomi

)| |hsi − h
a
i | |

2
2 (6)

Again as explained in Figure 2, combined outliers are different in

the link structure and attribute behaviors. So we minimize their

contribution in the loss. So the total loss that we want to minimize

with respect to the constraints on outlier scores in Eq. 1 is (α ’s

being the positive weight factors):

min
Θ,O

LDONE (7)

= α1L
Prox
str + α2L

Hom
str + α3L

Prox
attr + α4L

Hom
attr + α5L

Com

4.2.1 Optimization and Training for DONE. The set of param-

eters Θ of the autoencoders and the outlier scores O of the nodes

need to be learnt by minimizing the loss in Eq. 7 with the constrains

in Eq. 1. We use ADAM (with default hyper-parameter setting) opti-

mization technique [14] to learn the parameters of the autoencoders.

Calculation of the exact homophily losses (in Eq. 3 and 5) are expen-

sive, specially for the nodes with high degrees. So for each iterative

update, we randomly sub-sample 2 nodes from the neighborhood

of each node and take their average to approximate the complete

average over the neighborhood. This also performs good experi-

mentally. Unfortunately, the same gradient based optimization to

learn the outlier scores turns out to be extremely slow. Hence we

derive closed form update rules for them as follows.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

28

It can be seen that the loss LDONE is convex in each of the

outlier scores of a node when all other variables are fixed. Hence

we use alternating minimization technique to update each variable.

We derive the update rule for the set of osi , ∀i first. The Lagrangian

of Eq. 7 with respect to the constraint
N
∑

i=1
osi = 1 can be written as

(ignoring the terms which do not involve osi):

L =λ
(
N
∑

i=1

osi − 1
)

+ α1

(1

N

N
∑

i=1

loд(
1

osi
)| |xi − x̂i | |

2
2

)

+

α2

(1

N

N
∑

i=1

loд(
1

osi
)

1

|N(i)|

∑

j ∈N(i)

| |hsi − h
s
j | |

2
2

)

λ ∈ R is the Lagrangian constant. Equating the partial derivative

of the above w.r.t. osi to 0, we obtain:

osi =
α1 | |xi − x̂i | |

2
2 + α2

1
|N(i) |

∑

j ∈N(i) | |h
s
i − h

s
j | |

2
2

Nλ

Using the fact,
N
∑

i=1
osi = 1, we get:

osi =
α1 | |xi − x̂i | |

2
2 + α2

1
|N(i) |

∑

j ∈N(i) | |h
s
i − h

s
j | |

2
2

N
∑

i=1

(

α1 | |xi − x̂i | |
2
2 + α2

1
|N(i) |

∑

j ∈N(i) | |h
s
i − h

s
j | |

2
2

)

(8)

Interestingly, the update rule for osi turns out to be very intuitive.

At each iteration, it is proportional to the weighted sum of the

reconstruction loss of xi (refer Eq. 2) and the average structural

homophily loss over the neighborhood of the ith node. Similarly,

for attribute and combined outliers:

oai =
α3 | |ci − ĉi | |

2
2 + α4

1
|N(i) |

∑

j ∈N(i) | |h
a
i − h

a
j | |

2
2

N
∑

i=1

(

α3 | |ci − ĉi | |
2
2 + α4

1
|N(i) |

∑

j ∈N(i) | |h
a
i − h

a
j | |

2
2

)

(9)

ocomi =

| |hsi − h
a
i | |

2
2

N
∑

i=1
| |hsi − h

a
i | |

2
2

(10)

In eq. 8 and 9, the respective second terms in both numerator and

denominator involve sum over the neighborhood. Similar to the

calculation of homophily loss, we again use neighborhood sub-

sampling to approximate the complete average over the neighbor-

hood. Please note that, each denominator of the eq. 8, 9 and 10

involves a summation over all the nodes. But this sum is exactly

same for all the nodes, and hence needs to be computed only once

for a full iteration. For training, we first pretrain the autoencoders

without the outlier scores. Then we alternately update the out-

liers scores in their respective closed form rules, and then update

the parameters of the autoencoders using ADAM till the conver-

gence. Final embedding of a node i is obtained by concatenating

the embeddings for structure and attributes as hi = h
s
i | |h

a
i .

Time Complexity: Assuming, the number of layers in the au-

toencoders as constant, updating the parameters of the autoen-

coders take O(NK) time, due to the neighborhood sub-sampling.

For updating the outlier scores in closed form solution, compu-

tation of the denominator for each type of outliers needs O(NK)

time (again due to the sub-sampling strategy) and computation of

each outlier score for a node takes O(K) time. Hence total time to

update all the outlier scores take O(NK) time. Thus each iteration

of DONE takes O(NK) time. It also converges fast on all the real

life datasets we use in Section 5.

4.3 Solution Approach: AdONE

In this section, we propose an adversarial learning [7] based solu-

tion for outlier resistant network embedding. Adversarial training

has recently been used for different machine learning applications

such as active learning based sequence generation and labeling [4].

It has also been applied for network embedding on general graphs

(without outliers) [29]. In an attributed network, it is important to

align the embeddings corresponding to the link structure and node

attributes so that they can complement each other. In DONE, we

use weighted L2 norm (Eq. 6) to regularize the embedding from the

structure and the attributes. But sometimes, a direct minimization

of L2 norm can be too restrictive because L2 regularization brings

the structure and attribute embeddings of a node to be very close

with respect to the Euclidean Distance metric. This is not appre-

ciable especially when the link structure and the attributes are not

completely coherent with each other for a significant number of

nodes in the network. Hence, we propose AdONE which uses a

more flexible approach to address the alignment problem.

The key idea behind AdONE is the use of a discriminator for

aligning the embeddings got from the structure and the attributes

from the respective autoencoders. As shown in Figure 3, AdONE

also employs two parallel autoencoders with the same configura-

tions as that in DONE (Section 4.2). The embedding layers of both

the autoencoders are connected with the discriminator. The task of

the discriminator is to discriminate the embeddings coming from

the first autoencoder Encs (corresponding to the link structure) and

that coming from the second autoencoder Enca (corresponding to

the attribute space). When the two autoencoders are pre-trained

independently, the discriminator would be able to classify them

easily after some training. Next, the extra task of the autoencoders

would be updating themselves to fool the discriminator, so that

it cannot distinguish the embeddings coming from two different

sources. Thus there is a min-max game between the two encoders

and the discriminator. The equilibrium of this game is attained

when the Discriminator outputs equal probability for the structure

and attribute embedding classes. At the end of this game, the struc-

tural and attribute embeddings hsi and h
a
i may still not be very close

to each other in the Euclidean space. But, they would be aligned

in the sense that the structure and attribute embeddings are very

close to the decision boundary of the discriminator at equilibrium.

More formally, we use a two-layer neural network (dimension

of the hidden layer being 16) as the discriminator. Let us denote the

set of parameters for the discriminator as ΘD . We sample from the

embedding space of the first autoencoder (hsi ∼ Es) and send them

as the positive example for the discriminator, and corresponding

sample of that from the second autoencoder (hai ∼ Ea) as the

negative example. Following are the cost functions we propose to

learn the parameters of discriminator and the autoencoders. First

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

29

one is the discriminator function that it aims to maximize:

LDisc (ΘD) =
1

N

N
∑

i=1

(

loд(D(hsi)) + loд(1 − D(hai))
)

(11)

Clearly, the discriminator wants the probability output close to

1 for the samples from the first autoencoder, and close to 0 for

the second one. But, the encoders Es and Ea would try to fool the

discriminator by minimizing the same function (along with Eq. 2

to 5), but weighted with the outlier scores to reduce their effects,

defined as the alignment loss below:

LAlд
=

1

N

N
∑

i=1

loд(
1

ocomi

)
(

loд(D(hsi)) + loд(1 − D(hai))
)

(12)

Decreasing the contributions of the combined outliers is important.

They have highly inconsistent link structure and attribute similar-

ity as compared to the rest of the network. Hence, discriminator

would be easily able to classify them and the alignment loss for

the combined outliers would be very high. The gradient flow from

these combined outliers (to the parameters of the autoencoders), if

not controlled, could potentially affect not only the embeddings of

the outliers but also the embedings of other regular nodes in the

network. In AdONE, we minimize the effect of combined outliers

using the term log(1
ocom
i

) in the alignment loss LAlд , Eq.12. The

Structural and Attribute outliers would be managed by the terms
1
os
i

and 1
oa
i

terms in the structure and attribute autoencoder respec-

tively, as in DONE. Hence the total loss for AdONE (β ’s being the

weight factors) w.r.t. the constraints in Eq. 1 is :

min
Θ,O

LAdONE (13)

= β1L
Prox
str + β2L

Hom
str + β3L

Prox
attr + β4L

Hom
attr + β5L

Alд

Similar to DONE, we obtain the final embeddings in AdONE

for a node i by concatenating the embeddings for structure and

attributes as hi = h
s
i | |h

a
i . Importance of the adversarial training for

AdONE is experimentally shown in Section 5.7.

4.3.1 Optimization and Training for AdONE. Againwe useADAM

with default hyper parameter setting to update the set of parame-

ters of the discriminator neural network (Eq. 11), and that of the

autoencoders. Similar to the case of DONE, we derive closed form

update rule for updating the outlier scores to make the process

computationally efficient. We skip the details as the derivation is

similar to that of DONE. For training AdONE, first we pretrain

the autoencoders independently. Next for the adversarial learning,

we run multiple updates of the discriminator to improve itself by

maximizing LAlд . Then we update each autoencoder once based

on minimizing the total loss in Eq. 13. We repeat this process till the

discriminator outputs almost equal probability for all the sample

embeddings. Time complexity of one full iteration AdONE is same

as DONE, which is O(NK).

5 EXPERIMENTAL EVALUATION

We conduct detailed experimentation in this section.

Table 1: Summary of the datasets used in this paper. Un-

seeded refers to the publicly available datasets. Seeded refers

to the publicly available datasets with manually planted

community outliers as discussed in Section. 5.1

Dataset #Nodes #Edges #Labels #Attributes

Unseeded Seeded Unseeded Seeded

WebKB 877 919 1434 1662 5 1703

Cora 2708 2843 5429 6269 7 1433

Citeseer 3312 3477 4598 5319 6 3703

Pubmed 19717 20701 44325 49523 3 500

Figure 4: Change of (normalized between 0 to 1) loss compo-

nents of AdONE over iterations on Cora Dataset

5.1 Datasets Used and Seeding Outliers

There is no publicly available attributed network dataset with

ground truth outliers. So we manually planted a total of 5% outliers

(with equal numbers for each type as shown in Figure 2) in pub-

licly available attributed network datasets (https://linqs.soe.ucsc.

edu/data). We follow the strategy used in [2] to ensure that seeded

outliers are close to real outliers. The seeding process involves: (1)

computing the probability distribution of number of nodes in each

class, (2) selecting a class using these probabilities. For a structural

outlier: (3) plant an outlier node in the selected class such that the

node has (m + /−10%) of edges connecting nodes from the remain-

ing (unselected) classes wherem is the average degree of a node

in the selected class and (4) the attributes of the structural outlier

node are made semantically consistent with the keywords sampled

from the selected class. A similar approach is employed for seeding

the attribute outliers (sampling attributes randomly from different

classes) and combined outliers (sampling edges and attributes from

two different classes respectively). These outlier nodes have char-

acteristics similar to the normal nodes in terms of degree, number

of nonzero attributes, so that they cannot be detected trivially. The

statistics of the datasets are given in Table 1.

5.2 Baseline Algorithms and Setup

We use node2vec [8], Line [25], SDNE [28], GraphSage [11] (un-

supervised version), DGI [27], SEANO [18] (with 20% of labelled

data), ONE [2] and Dominant [5] as the baseline algorithms to be

compared with. Dominant is a very recent GCN based autoencoder

approach to detect outliers from the attributed networks, but it

does not minimize the effect of outliers on the node embeddings.

We use the default parameter settings in the publicly available im-

plementations of the respective baseline algorithms. To make a fair

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

30

https://linqs.soe.ucsc.edu/data
https://linqs.soe.ucsc.edu/data

(a) Without Outliers (b) With Outliers

Figure 5: It shows the average of the three outlier scores, gen-

erated byDONE, of the nodes in the synthetic network in Fig.

1. In particular, (a) represents the outlier scores for 60 nodes

in Fig. 1(a) and (b) represents the outlier scores for 66 nodes

in Fig. 1(b). Clearly, the variation of outlier scores is high in

(b) as the outlier scores for themanually inserted outliers in

Fig. 1(b) are significantly more than the regular nodes.

comparison, we have not included baseline algorithms which are

semi-supervised in nature (except for SEANOwhich is explicitly de-

signed for outlier detection). We also consider only those baselines

for which the source code is available in public.

We set the embedding dimension (K) to be 32 for all algorithms.

For both DONE and AdONE, the encoders and the decoders both

have 2 layers for the first three datasets and 3 layers for the Pubmed

dataset as it is relatively larger. We found that giving equal impor-

tance to all the components of DONE and AdONE leads to smooth

convergence and good performance. So we always set the values of

all the hyper-parameters in Eq. 7 and 13 to 1.Fig. 4 shows the faster

convergence of loss for AdONE and its different components. The

same can be observed for DONE as well. This is because we adopt

a mixed update strategy by using ADAM for the neural network

parameters and closed form update rules for the outliers. We train

the models once and fix the embeddings for all the downstream

tasks for DONE and AdONE. All downstream algorithms are run 5

times for each experiment and the average performance is reported.

To give more insights, we run DONE on the synthetic network

shown in Fig. 1. The unseeded network is generated using Stochas-

tic Block Model approach [10] and we manually insert 6 community

outliers into the seeded version. We run DONE on both the un-

seeded and seeded versions (we pass the adjacency matrix as input

for the attribute encoder also). From the plots of the outlier scores

(oi =
os
i
+oa

i
+ocom

i

3) in Fig. 5, it is clear that our approach is able to

learn the outliers successfully in both the cases.

5.3 Outlier Detection

Outlier detection in attributed network is extremely important.

Both DONE and AdONE produce outlier scores along with the node

embeddings. We take a weighted average of the three outlier scores

to generate a ranked list L of the nodes. Larger the score, the larger

is the outlierness of a node. Among the baselines, only ONE, SEANO

and Dominant produce direct outlier scores. Following the strategy

of [18], for other baselines, we use isolation forest algorithm [19]

on the generated embeddings to get outlier scores of the nodes.

We only consider seeded datasets for this experiment as unseeded

versions do not have the labelled ground truth outliers. Each seeded

dataset has 5% outliers. So we plot the outlier recall from the top 5%

to 25% of the nodes in the ranked list (L) with respect to the seeded

outliers. Figure 6 shows that DONE and AdONE are the highest

performers on WebKB and Pubmed, whereas Dominant performs

best for Cora and Citeseer in detecting outliers. Dominant, though

performs well for outlier detection as it employs a powerful GCN

encoder, fails on the embedding based tasks (in Section 5.4 and

5.5) because it does not reduce the effect of outliers on the node

embeddings. Most of the standard graph embedding algorithms

like node2vec and DGI suffer as they do not process outliers while

generating the embeddings. AdONE is able to outperform DONE in

most of the cases because link structure is often not fully coherent

with the node attributes of the networks. So the direct minimization

of L2 norm suffers more compared to the adversarial learning.

5.4 Community Detection

Community detection or node clustering is another popular task

in information network analysis. We give the node embeddings as

input to KMeans++ algorithm to cluster the nodes. To judge the

quality of clustering, we use unsupervised clustering accuracy [2,

31]. For the unseeded datasets in Fig.7(a), Node2Vec, SEANO, DONE,

AdONE are the good performers. For Seeded datasets in Fig.7(b),

AdONE turns out to be the best performing algorithm (except for

the Pubmed where ONE outperforms AdONE marginally). Even

though some algorithms outperform DONE and AdONE in some

unseeded datasets, presence of just 5% outliers completely affect the

embedding quality. This is primarily because the injected outliers

hinder the community structure in the dataset. Our approaches on

the other hand are outlier resistant and hence the outliers don’t

influence the embeddings of the other good nodes substantially.

5.5 Node Classification

The next task we consider here is node classification. We vary

the training size from 10% to 50%. We train a logistic regression

classifier on the training set of embeddings (along with the class

labels) and check the performance on the test set by using Micro F1

scores. Figure 8 shows the performance of node classification on

the seeded datasets. Again AdONE and DONE perform the best on

all the datasets (AdONE is better on Pubmed). Among the baselines,

SEANO performs better on Cora and Citeseer while ONE performs

better on WebKB and Pubmed. As expected, other baselines mostly

fail for this task as well because of the effect of outliers.

5.6 Adverse Effect of Community Outliers

This section provides results on the real world datasets to show the

adverse effect of outliers on the embedding of the regular nodes via

downstream mining tasks. Here we compare the performance of an

algorithm on unseeded vs. the corresponding seeded dataset. Figure

7 already shows that the presence of community outliers deterio-

rates the clustering accuracy. Table 2 further shows the adverse

effect on the node classification results. For example, node2vec is

one of the best performing algorithm on the unseeded Pubmed for

node-classification. But the presence of only 5% outliers deteriorates

its performance by more than 46% on the seeded Pubmed.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

31

Figure 6: Recall at top L% from the ranked list of outliers by different Embedding algorithms.

(a) Without Outliers (b) With Outliers

Figure 7: Unsupervised clustering accuracy of KMeans++ on

the node embeddings generated by different algorithms

Figure 8: Accuracy of node classificationwith logistic regres-

sion on the seeded datasets

5.7 Experimental Insight for AdONE

As we have seen, in AdONE, to fool the discriminator both structure

and attribute embeddings of a node should be close to the decision

Table 2: Adverse effect of community outliers by comparing

theMicro-F1 scores for node classificationwith 50% training

size for different embedding algorithms on seeded (S) and

unseeded (Un-S) datasets. Overall, DONE and AdONE per-

form the best and the performance deterioration due to out-

liers is also less (in the higher performance zone) for them.

Algo-

rithm

Data-

set
WebKB Cora Citeseer Pubmed

Un-S S Un-S S Un-S S Un-S S

Node2Vec 0.47 0.42 0.63 0.29 0.54 0.21 0.80 0.43

LINE 0.48 0.47 0.32 0.30 0.24 0.20 0.53 0.40

SDNE 0.51 0.45 0.57 0.29 0.39 0.20 0.63 0.41

GraphSage 0.48 0.51 0.32 0.30 0.24 0.22 0.42 0.56

DGI 0.49 0.46 0.54 0.30 0.67 0.22 0.79 0.49

SEANO 0.48 0.55 0.59 0.50 0.64 0.47 0.60 0.55

ONE 0.72 0.65 0.43 0.31 0.53 0.45 0.75 0.72

Dominant 0.63 0.59 0.38 0.32 0.71 0.46 0.78 0.54

DONE 0.80 0.73 0.74 0.62 0.71 0.62 0.79 0.74

AdONE 0.77 0.75 0.67 0.63 0.68 0.63 0.80 0.76

boundary of the discriminator (to align them). To understand the

merit of adversarial learning in AdONE, we conduct a small ex-

periment. On Cora dataset, we learn the node embeddings using

AdONE with the discriminator disabled by equating β5 = 0 in

AdONE objective in Eq. 13. Then, with the obtained embeddings

we perform classification task and compare the results with that

of the regular AdONE (i.e. with the discriminator). We show the

micro-F1 classification score for the both the cases, along with the

performance gain due to the use of the discriminator in Table 3. In

particular, the gain is more significant when the training size is less.

So it is evident that having a discriminator to do the adversarial

training helps improve the embedding quality for AdONE.

Table 3:Micro-F1 scores for node classification onCora (with

outlier seeded) for different training sizes with and without

adversarial learning for AdONE.

Method Training Size %

10 20 30 40 50

AdONE without Discriminator 0.49 0.55 0.58 0.59 0.61

AdONE with Discriminator 0.58 0.61 0.62 0.62 0.63

% Performance Gain 18.37 10.9 6.9 5.08 3.28

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

32

5.8 Parameter Sensitivity Analysis

We check the sensitivity of the proposed algorithms with respect

to embedding dimension K . We run DONE and AdONE on Cora

dataset for K = {8, 16, 32, 64, 128} and test the performance for

node classification task. Because we concatenate the structure and

attribute embeddings (hi = h
s
i | |h

a
i), embedding layer has K

2 dimen-

sions in each autoencoder. The results are reported in the Figure 9.

We can observe that K = 32 is good enough for Cora Dataset for

both DONE and AdONE.

Figure 9: Parameter Sensitivity Analysis of the embedding

dimensionK onCora (seeded) dataset forDONE andAdONE.

6 CONCLUSION

In this work, we propose two unsupervised deep neural network

based architectures for detecting and minimizing the effect of com-

munity outliers while generating node embeddings in attributed

networks. Outliers can be there in all the real world networks and

experimentally we have shown their adverse effect on all the stan-

dard embedding algorithms. Our algorithms are computationally

faster and scalable and can deal with larger datasets. In future, we

would like to extend these algorithms to dynamic and multiplex

networks which are popular in many real world applications.

REFERENCES
[1] Sambaran Bandyopadhyay, Harsh Kara, Aswin Kannan, and M Narasimha Murty.

2018. FSCNMF: Fusing Structure and Content via Non-negative Matrix Factor-
ization for Embedding Information Networks. arXiv preprint arXiv:1804.05313
(2018).

[2] Sambaran Bandyopadhyay, N Lokesh, and M Narasimha Murty. 2019. Outlier
Aware Network Embedding for Attributed Networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33. 12ś19.

[3] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep neural networks for learn-
ing graph representations. In Thirtieth AAAI Conference on Artificial Intelligence.

[4] Yue Deng, KaWai Chen, Yilin Shen, and Hongxia Jin. 2018. Adversarial Active
Learning for Sequences Labeling and Generation.. In IJCAI. 4012ś4018.

[5] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. 2019. Deep Anomaly
Detection on Attributed Networks. In Proceedings of the 2019 SIAM International
Conference on Data Mining. SIAM, 594ś602.

[6] Hongchang Gao and Heng Huang. 2018. Deep Attributed Network Embedding..
In IJCAI. 3364ś3370.

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672ś2680.

[8] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855ś864.

[9] Manish Gupta, Jing Gao, Yizhou Sun, and Jiawei Han. 2012. Integrating commu-
nity matching and outlier detection for mining evolutionary community outliers.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 859ś867.

[10] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring Network Struc-
ture, Dynamics, and Function Using NetworkX. Proceedings of the 7th Python in
Science Conference.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1025ś1035.

[12] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning
on Graphs: Methods and Applications. arXiv preprint arXiv:1709.05584 (2017).

[13] Xiao Huang, Jundong Li, and Xia Hu. 2017. Accelerated attributed network
embedding. In Proceedings of the 2017 SIAM International Conference on Data
Mining. SIAM, 633ś641.

[14] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[15] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[16] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.
Community structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters. Internet Mathematics 6, 1 (2009), 29ś123.

[17] Jundong Li, Harsh Dani, Xia Hu, and Huan Liu. 2017. Radar: Residual Analysis
for Anomaly Detection in Attributed Networks.. In IJCAI. 2152ś2158.

[18] Jiongqian Liang, Peter Jacobs, Jiankai Sun, and Srinivasan Parthasarathy. 2018.
Semi-supervised embedding in attributed networks with outliers. In Proceedings
of the 2018 SIAM International Conference on Data Mining. SIAM, 153ś161.

[19] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
Eighth IEEE International Conference on Data Mining. IEEE, 413ś422.

[20] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:
Homophily in social networks. Annual review of sociology 27, 1 (2001), 415ś444.

[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[22] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In International conference on machine
learning. 2014ś2023.

[23] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701ś710.

[24] Daniel A Spielman and Shang-Hua Teng. 2004. Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems. In Proceedings
of the STOC, Vol. 4.

[25] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1067ś1077.

[26] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=rJXMpikCZ

[27] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep graph infomax. In International Conference on
Learning Representations. https://openreview.net/forum?id=rklz9iAcKQ

[28] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 1225ś1234.

[29] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng
Zhang, Xing Xie, and Minyi Guo. 2018. GraphGAN: Graph Representation
Learning With Generative Adversarial Nets. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, February
2-7, 2018. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16611

[30] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S Yu. 2019. A comprehensive survey on graph neural networks. arXiv
preprint arXiv:1901.00596 (2019).

[31] Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016. Unsupervised deep embedding
for clustering analysis. In International conference on machine learning. 478ś487.

[32] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. 2015.
Network Representation Learning with Rich Text Information.. In IJCAI. 2111ś
2117.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

33

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rklz9iAcKQ
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16611

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Solution Approaches: Deep Models
	4.1 Network Preprocessing
	4.2 Solution Approach: DONE
	4.3 Solution Approach: AdONE

	5 Experimental Evaluation
	5.1 Datasets Used and Seeding Outliers
	5.2 Baseline Algorithms and Setup
	5.3 Outlier Detection
	5.4 Community Detection
	5.5 Node Classification
	5.6 Adverse Effect of Community Outliers
	5.7 Experimental Insight for AdONE
	5.8 Parameter Sensitivity Analysis

	6 Conclusion
	References

