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OUTLIER ROBUST COINTEGRATION ANALYSIS

BY  P H I L I P  H A N S  FRANSES  A N D  ANDRE  LU C A S

Standard unit root tests and cointegration tests are sensitive to atypical events such as
outliers and structural breaks. This paper uses outlier robust estimation techniques to reduce

the impact of these events on cointegration analysis. As a byproduct of computing the ro-
bust estimator, we obtain weights for all observations in the sample. These weights can be
used to identify the approximate dates of the atypical events. We evaluate our method using
some illustrative simulated data. Furthermore, since our robust approach involves a few addi-
tional decisions on the values of key parameters, we investigate the sensitivity of our method
through extensive Monte-Carlo simulations. Finally, we present an empirical example based

on real-life data to show that OLS-based cointegration tests can spuriously indicate stationarity.

KEYWORDS: Robust estimation, unit roots, cointegration, outliers, structural breaks.

1 . INTRODUCTION

UNIVARIATE AND MULTIVARIATE UNIT ROOT TESTS aresensitivetoirregularob-
servations. Perron  and Vogelsang (1992),  for example, prove that univariate unit
root tests are biased towards nonrejection if there is a level shift in the sample.
Conversely, unit root tests are biased towards rejection if aberrant observations
occur as isolated additive outliers, see Lucas (1995a,b)  and Franses and Haldrup
(1994) for the univariate and multivariate case, respectively.

Irregular data patterns arise quite naturally in empirical modeling exercises.
They are often due to the approximate character of the postulated model. As
reality is more complex than the model put forward by the econometrician, it is
not surprising that certain observations or periods are not captured adequately
by a given model. As such, aberrant observations need not be “bad” observa-
tions. They merely reflect the limitations of the model used for describing the
data. In particular, aberrant observations can reveal useful information about the
working of economic mechanisms and indicate valuable directions for model re-
specification and/or augmentation. If not accounted for in the appropriate way,
however, irregular data patterns may corrupt the results of standard estimation
and test procedures completely, see the references mentioned above. Therefore,
it seems useful to construct statistical procedures for dealing with aberrant ob-
servations in a constructive way. Such procedures must meet two objectives.
First, statistical inference on the parameters of interest, in our case the unit root
parameters, must not be blurred by a few observations that are not fitted by
the model. Second, the statistical procedures must provide a clear signal as to



which observations are not captured by the model. These observations can then
be subjected to a more thorough analysis in a subsequent step of the modeling
process.

One possible solution to the problem of irregular observations is to include
zero-one dummy variables in the regression model used to test for unit roots. In
a univariate context, for example, Perron (1989) includes of a set of deterministic
regressors in order to allow for an alternative hypothesis with a trend break at a
known date. The inclusion of such deterministic regressors changes the asymp-
totic distribution of unit root tests. In a more general set!ting,  the asymptotic
distributions of unit root tests change with the presumed location of the irregular
observations as well as with the model needed to describe these observations. Ad-
ditionally, it is very important whether the location of the aberrant observations
is known from the outset or not, see, e.g., Christian0 (1992).

In principle, it is possible to extend univariate unit root tests to allow for all
possible types of aberrant observations and to develop the relevant asymptotic
theory. For practical purposes, however, one then needs considerable skill to
entertain all the different models and to evaluate the many different test statistics.
Signals as to where the aberrant observations are located can be obtained from
outlier detection methods as proposed in, e.g., Chen and Liu (1993) and Tsay
(1988). So even in the relatively simple univariate case, it is quite complicated to
come up with statistical procedures that statisfy the two objectives formulated
earlier.

For multivariate time series, however, the situation is even worse. Extending
the approach sketched in the previous paragraph may in that case end in a sheer
endless set of decisions to be made by the practitioner. One should decide on the
type of models for generating the aberrant observations, and on whether these
models should be allowed to differ across equations. Furthermore, one should
account for the fact that irregular observations need not occur simultaneously.
All these choices can result in a plethora of distinct asymptotic results for a large
number of test statistics, thus making the whole approach quite unpractical.

The aim of our paper is to overcome the above problem for the case of a
multivariate cointegrated vector autoregressive model. To achieve this, we advo-
cate the use of an estimator that can cope with irregular data. This estimator
automatically assigns less weight to aberrant data points. Consequently, the es-
timator meets the two objectives formulated earlier: aberrant observations have
less impact on parameters of interest, and the estimator clearly signals the posi-
tion of the aberrant observations in the form of small observation weights. These
weights may subsequently be used to suggest possible modifications to the model
in terms of adding variables and/or allowing for time-varying parameters. An
additional advantage of our robust method over the approach based on dummy
variables is that our method requires only a single asymptotic theory.

The outline of our paper is as follows. Section 2 discusses the outlier robust
cointegration tests and shows how weights can be constructed for the individual
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observations. Section 3 illustrates the usefulness of our outlier robust method to
track specific types of model failure. This is done using some simulated example
series. Next, we investigate the sensitivity of our approach to specific values of
key parameters that have to be fixed from the outset. Our Monte-Carlo results
suggest guidelines for a sensible practical application of our method. Section 4
considers an empirical example concerning the Finland/US real exchange rate.
We show that OLS based cointegration tests can be biased towards the alternative
hypothesis if additive outliers are present. Section 5 concludes the paper.

2. OUTLIER ROBUST COINTEGRATION TESTS

We begin this section with a discussion of the vector autoregressive (VAR) model
and the outlier robust cointegration test in Subsection 2.1. Next, we present the
observation weights that follow from robust estimation procedure in Subsection
2.2. These weights can usefully be exploited in a subsequent analysis.

2.1. The model and test statistic

We consider the VAR model of order p,

Ayt  = @%I + W%/t-I  + . . . +  @‘p-iAyt--p+i  + p + Ed, (1)

with yt and st (k  x 1) vector processes, with @i,  . . . , GP-i (Ic  x k)  parameter
matrices, and with Q and p (k  x r) parameter matrices of full column rank,
where 0 5 T 5 k. {Ed}  is assumed to be a white noise process with zero mean and
covariance matrix C.  A denotes the first-difference operator: Ayl = yt -  ytml.
Under suitable regularity conditions on the coefficient matrices, one can show
that T linear combinations of yt are stationary, see Johansen  (1991). These linear
combinations ,O’yt  are called the cointegrating relations, and the columns of /?
are called the cointegrating vectors. Johansen  (1988, 1991) proposes a method
to determine the number of cointegrating relations T. Assuming that &t  in (1)
is normally distributed, he derives the likelihood ratio (LR) test statistic for the
hypothesis H,  : rank(H)  5 T versus the alternative Hk : rank(H)  = k. The
limiting distribution of this test statistic is nonstandard and can be expressed as
a functional of Brownian  motions.

Franses and Haldrup (1994) hs ow that additive outliers can seriously affect
empirical cointegration analysis. In their Table 2 they present the empirical frac-
tiles of the Johansen  cointegration test based on many Monte-Carlo replications
using time series with various sizes of additive outliers. These fractiles markedly
exceed those for the no outlier case. Hence, using the standard critical values in
case of outliers leads to spurious cointegration.

In order to reduce the effect of outliers, Lucas (1997) proposes a Johansen-
type testing procedure based on non-Gaussian pseudo-likelihoods. The particular
implementation of this procedure in the present paper is as follows. We estimate
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the parameters in (1) using the Student t pseudo-likelihood with v degrees of
freedom:

(2)

where 13 denotes the vector of unknown parameters. Note that we use the likeli-
hood in (2) as a pseudo-likelihood in the sense of Gourieroux  et al. (1984). This
means that &t  need not be Student t distributed itself. In fact, the distribution
of &t  only has to satisfy certain weak conditions, e.g., finite variance, see Lucas
(1997). The Student t pseudo-likelihood in (2) is used as a device for mitigating
the effect of aberrant data structures on unit root inference. Hoek et al. (1995)
show in the univariate case that the Student t pseudo-likelihood can be usefully
employed to attain this objective. Lucas (199513,  1997) furthermore shows that
the cointegration test based on (2) has a considerably higher power than the
Gaussian-based test if Et is leptokurtic. We will demonstrate in Sections 3 and
4 by means of simulations and an empirical example that the result of Hoek et
al. (1995) extends to the multivariate case. Moreover, we substantiate the claim
that the cointegration test based on (2) provides useful additional information
over the standard test procedure of Johansen  (1991). Note that if &t  is actually
Student, t distributed and if there are no aberrant data structures, the estima-
tor based on (2),  of course, becomes the maximum likelihood estimator with its
well-known optimality properties.

The cointegration test based on the Student t pseudo-likelihood is constructed
as follows. Let 8 and 6 denote the parameter vectors that maximize (2) with
respect to 8 under the null and alternative hypothesis, respectively. The cointe-
gration test of H, versus Hk is then given by

2 ln(c(@/c(e)). (3)
As (3) is based on a ratio of two pseudo-likelihoods, we call it a pseudo-likelihood
ratio (PLR) test. Note that the test of Johansen  is contained as a special case
if v -+  0~).  The limiting distribution of this statistic is derived in Lucas (1996,
1997). For v -+  00  the distribution collapses to the one derived by Johansen
(1988, 1991).

In order to perform inference with the Student t PLR test, critical values
are needed. Lucas (1996) contains a method for simulating critical values for
LM-type tests, while Lucas (1997) contains a table for our LR test in case the
regression model (2) contains no constant. As we want to allow for a constant in
the regression model and for non-zero drift terms in the data generating process,
we present a new table with critical values in this paper. As in Johansen  (1991,
Theorem 2.1),  the critical values depend on whether the constant p in (3) lies
in the cointegrating space or not, i.e., alp = 0 or not, with cvl the orthogonal
complement of o. For practical purposes, we display critical values for several
values of V. The values are presented in Table I. The columns under the heading
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“with drift” contain the critical values for the case cy’+  # 0. Similarly the critical
values for the case alp = 0 are given under heading “without drift”.

< INSERT TABLE I AROUND HERE >
As an alternative to using the critical values in Table I for inference, one

could use the bootstap  in order to simulate the pvalues of the PLR test. Some
unreported simulation experiments, however, reveal that this approach is still too
time consuming for useful practical purposes.

2.2. The construction of weights

A useful byproduct of robust estimators is that weights are obtained for the
individual observations. This can be illustrated by the simple location model

Yt = P + Et, (4

where Et “e’ (0,l). The Student t pseudo-maximum likelihood (PML) estimator
in this case solves

(Yt  -  PL)~.
1 + (yt -  /J)“/V = OJ (5)

with respect to p.  Let j2 denote the final estimate, then ,~2  can be interpreted as
the arithmetic mean of the reweighted sample wfyt,  with

-1

w; = (1-t (yt  -  ji)“/u)-’
(
T-l &l + (yt  -  j2)“/v)-’

)
. (6)

t=1

This follows from the fact that fi = T-l CF=,  wfyt  is the same as C~=i(w&  -
w,“b)  = 0, which is easily seen to satisfy (5). Note that wi is not bounded from
above by 1, but rather by (V  + 1)/v. Also note that j2 can be interpreted as the
OLS estimator of p in the weighted regression model

WYt  = wp -I-  W&t. (7)

One can interpret wt  as the weight for the observation at time t. A low value
of w1  indicates that the observation does not correspond to the general pattern
in the data. Alternatively, one can interpret wt  as the inverse of the standard
deviation of the error term. In that case, multiplying the observations by wt  and
computing the OLS estimator as in (7) can be seen as a generalized least-squares
(GLS) correction for the possible presence of heteroskedasticity. In this GLS
interpretation, a large value of wtl indicates that the error term at time t has a
high variance and, therefore, has to be downweighted. These two interpretations
can be usefully exploited in practical occasions.

Similar to the Student t PML estimator for (4),  the Student t PML estimator
for (1) can be regarded as the Gaussian PML estimator for a weighted version of



model (l), with the weights given by

Wt  = (u,-&&J1’2.
To see this, note that the first order condition defining the PML estimator is
given by,

5 (u + kh(V h(Q)
tzl u + E,(e)‘v-l&,(O)

. - = ~&(@..&,
al’ t=1

where Et(Q)  = Ayt - ct,O’yt-i  -  <PiAyt-i -  . . . -  @.p-iAyt--p+i  -  p.  In obtaining
(9),  we have assumed for simplicity that 17  is known. If u + DC),  wt  z 1 and
(9) reduces to the first order condition defining the Gaussian PML estimator of
Johansen  (1991). Consequently, the first order condition for the Student t PML
estimator can be interpreted as an observation weighted version of the first order
condition of the Gaussian PML estimator.

Equations (8) and (9) clearly illustrate that the Student t PML estimator
satisfies the two objectives formulated in Section 1. Observations with unusually
large values of Et automatically receive a smaller weight. Furthermore, these
weights are available for inspection after the estimates and test statistics have
been computed. Note that the weighting scheme implied by (8) operates in the
intuitively correct way if the aberrant observation happens to give a clear signal
about the underlying error correction mechanism. To see this, we assume a single
large value for Et at time to. This large innovation induces a large equilibrium
error p’yte,  which, in turn, causes a highly leveraged observation in (2) at time
to + 1.  If &‘t  contains no further abnormal values for t > to,  (8) shows that only one
regression observation receives a smaller weight, as there is only one outlying Et.
The information on the error correction mechanism contained in the subsequent
observations is fully exploited. By contrast, the Gaussian PML estimator also
exploits the information contained in these latter observations, but it fails to
correct for the outlying value of &t  initiating the mechanism.

In order to decide whether an observation of a multivariate process receives
an extraordinarily small weight, we employ the following methodology. Under
the assumption that the Et are standard normally distributed, E:V-‘E~ has a x2
distribution with Ic  degrees of freedom. We choose to assume that &t  is normally
distributed, since this corresponds to the situation in which there are no outliers
or structural breaks. Needless to say that other choices for the distribution of Et
lead to other decision rules. Let ~(0.005) denote the one half per cent critical
value for the x2  distribution with k degrees of freedom. Weights are then found
to be extraordinarily small if wf 5 (y-t  k)/( v+ck  (0.005)). For example, for v = 5
and k = 2, this means that observations with weights smaller than approximately
0.67 deserve a closer inspection. Of course, other quantiles of the x2  distribution
lead again to other decision rules. In the illustration and the application in the
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following sections we evaluate the weights using the estimates under the alter-
native Hk.  Unreported experiments reveal that one can also use the estimates
under the null hypothesis H, in most practical circumstances. Using the esti-
mates under the alternative, however, precludes a bias in the weights due to a
misspecified cointegrating rank T.

3. SIMULATED DATA

In this section we consider the implications of using robust estimation methods
in practice. We do this by means of simulated data. First, we describe the
different patterns in the weights that result from applying the robust estimation
in several settings of practical interest. Second, we describe the sensitivity of the
cointegration and outlier testing procedures to the choice of the tuning constant
u.

3.1. Several simulated illustrative examples

In order to illustrate the effect of different types of data irregularities on the
patterns of the weights, we discuss four examples. The first example concerns an
additive outlier, the second considers a temporary level shift, the third example
deals with a variance shift, and the fourth example illustrates the effect of a
patch of innovative outliers. All examples consider bivariate time series for 100
observations. These time series are generated from the model

(i;;;)=(  -z) Yl$-1
(-0.060, 0.075, 0.018) Y2,t-1

1

where Et is normally distributed with mean zero and covariance matrix

The parameter values in (10) are derived from the estimated parameters in a VAR
model for long-run and short-run interest rates, see Franses and Lucas (1997).

The results of our small simulation experiment for the additive outlier (AO)
case are presented in the two graphs in the first row of Figure 1. Our method is
as follows. First, a realization of (10) is drawn. Next, we replace y2,4s  by y2,4g  -  2.
This creates a series with an additive outlier at t = 49. The two series ylt  and
y2t are presented in the upper-left graph of Figure 1. For these two series, an
unrestricted VAR( 1) model with constant term is estimated using the Student
t PML estimator with Y  = 5. The parameter estimates of this model are used
to construct estimates of the weights in (8). Note that these weights apply to
both time series. The weights, along with a critical value of 0.67, are presented
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in t,he  upper-right panel of Figure 1. It appears that four observations obtain a
weight below the critical threshold. These observations are marked by a circle
in the upper-left panel of Figure 1. Clearly, for observations 49 and 50 the small
weights seem to be due to the additive outlier in the yzt series. Note that the
additive outlier can in this case be viewed as a large, negative innovative outlier
in period 49, followed by a large, positive innovative outlier in period 50, because
we consider a VAR(l) model. This generalizes to VAR models of order p, in
which case a patch of p + 1 low weights can be expected in case of an AO. By
contrast, for innovative outliers one expects that only one observation receives
a smaller weight, see the explanation in Subsection 2.2. Notice that the patch
of outlying (p + l)-tuples (yt,  .  . . , Y+~)  for one A0  may suggest a higher order
for the VAR model in practice. Hence, we may overestimate the proper order
of the VAR model. In this paper we abstain from a discussion of model order
selection in the presence of aberrant observations. Therefore, in our empirical
section below we evaluate the properties of VAR models of various orders.

It is also interesting to look at the effect of the additive outlier on the PLR
test and on the estimates of Q and 0, see (1). For the series without the additive
outlier, the Gaussian PLR test for T < 1 equals 1.57, while the Student t based
PLR test is 1.86. If we add the additive outlier, the Gaussian PLR test is increased
by about 40%,  while the Student t PLR test is inflated by only about 7.5%. This
illustrates the sensitivity of the Gaussian based procedure and the insensitivity
of the Student t approach to isolated aberrant observations.

< INSERT FIGURE 1 AROUND HERE >
The second example considers a temporary level shift. We use the same

series as in the case of the additive outlier. We restore the original series by
removing the A0  at t = 49, and replace ~2~  by 7~2~  + 3 for the observations at
t = 45,. . . ,53. The results are presented in the bottom two graphs of Figure 1.
Looking at the dashed line, the level shift is clearly visible. The weights reveal
that four observations require a closer inspection. Similar to the first example,
the observations at t = 18 and t = 71 seem not very relevant. The temporary
level shift is clearly indicated by the two small weights for period 45 and 54. In
period 45, the ~2~  series has jumped upwards, causing the observation to receive
a small weight. Similarly, in period 54 the series has jumped back to its original
level, resulting in a small weight at t = 54. A temporary level shift is thus only
indicated by the small weights at the starting date and at the ending date of
the shift. Of course, one may now proceed with an application of the techniques
developed in Tsay (1988) to formally distinguish between an A0  and a level shift
model, but this is not pursued here.

Again we also consider the effect of the temporary level shift on the cointe-
gration testing procedure. Without the level shift, the Gaussian test gives the
values 17.31 and 1.57 for the null hypotheses Ho  : T 5  0 and Hi : T 5  1,
respectively. The Student t test gives the values 17.02 and 1.86, respectively. If
we add the level shift, the Gaussian test values increase by 17Y0 and 62Y0  to 20.18
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and 2.55, respectively. The robust test, by contrast, gives the values 17.14 and
0.34. Both these numbers show that the Student t based test is much less biased
to the alternative hypothesis of stationarity than the Gaussian test.

For the third example of a variance shift, a new realization of (10) is drawn
with the modification that from t = 79 onwards, ~2~  is replaced by 3E2t.  The
results are presented in the top graphs of Figure 2. It is clear that at the end of
the sample there are several observations that are not described adequately by
the model. The fact that not all observations from period 79 onwards receive a
small weight is due to the fact that &2tr even when multiplied by a factor three,
can still be quite small. Diagnostic tests for heteroskedasticity may now be useful
in a next step of the empirical analysis.

< INSERT FIGURE 2 AROUND HERE >
The fourth and final example considers a patch of innovative outliers. Again,

a new realization of (10) is drawn with the modification that for t = 79, . . ,99,
~2~  is replaced by &zt  +  St, with (6,);: a set of independently and identically
distributed random variables with P(& = -3) = P(&  = 3) = 0.5. The results
are presented in the bottom graphs of Figure 2. The patch of innovative outliers
clearly emerges from the cloud of circles in the right corner of the lower-left
panel of Figure 2, as well as from the large number of small weights for the last
observations of the sample (see the lower-right panel).

Both the variance shift and the patchy innovative outliers result in aberrant
observations that satisfy the dynamics of the model. Therefore, these types of
aberrant data structures do not result in a large bias for the PLR test, either based
on the Gaussian or on the Student t distribution. If the increase in variance or
the magnitude of the outliers is large enough, it is clear that power can be gained
by concentrating on the low-variance part of the sample. As can be seen from
the weights in Figure 2, this is precisely what the Student t PLR test does.

To summarize the four illustrative examples in this subsection, we conclude
that the Student t test is less biased towards stationarity than the Gaussian PLR
test. Moreover, a plot of the weights implied by the robust estimation method
may provide very useful information about which observations do not seem to fit
into the model. Closer inspection of these observations is then needed, e.g., using
the methods in Tsay (1988),  and this might result in a respecification of the model
or in a re-interpretation of cointegration results. In some circumstances, the
weights can even be used to identify the type of model failure, as in the relatively
simple case of an additive outlier. In other cases, this is much more difficult,
as can be seen from the graphs for variance shifts and patches of innovative
outliers. Balke (1993) shows that with formal tests one can also find difficulties
in distinguishing between the various outlier types.



3.2. The choice of u

Our robust cointegration approach outlined in Section 2 involves two practically
relevant choices for key parameters. The first is the value of the tuning constant
v, which was set to 5 in the illustrative examples in Subsection 3.1. The second
parameter is the critical value of the weights wt. In this subsection we evaluate
the sensitivity of the results from our approach to various choices of u. As a side
result, we establish the sensitivity of the standard Johansen  procedure to aberrant
observations. We design the following simulation experiment. We generate 1,000
replications of 100 observations from the data generating processes (DGPs)

(i) : AYH = ~lt
Ay2t  = E2t  ’

(ii) : Aat = Elt
Am = -0J(Y2,t-1  - Yl,t-1)  +  E2t  ’

(11)

(iii) : Aylt  = -OJYl,t-1  + E1t

Aat = -0.2Y2,t-1  + E2t ’

where the VAR( 1) regression model has two unit roots in case (i) (r = 0), one
unit root and one cointegrating relation in case (ii) (r = l), and no unit roots
(stationarity, T = 2) in case (iii). We contaminate these data with a certain
percentage of additive outliers of a specific size and we test for cointegration in
a VAR(l) model with an unrestricted constant term using our PLR test with
various values of v.

< INSERT TABLE II AROUND HERE >
We present the simulation results and more details of our experiment in Table

II. As expected, the power of the cointegration test is low, since the stationary
relations in our DGPs  have a root of 0.8, see (iii) in (11). The rejection frequencies
in Table II can thus be decomposed in two parts. The first part is due to the
true power of the PLR test. This part is given in the row < = 0, which is the
case without outliers. The second part is due to the bias caused by the additive
outliers. This is given by the difference between the rows for c # 0 and 5 = 0.

Table II clearly illustrates the price one has to pay for using the outlier robust
method. If there are no outliers (5 = 0) the G aussian method selects the correct
model more often than the Student t procedure. This is evident, as the Gaussian
method is optimal in that case. The loss in power does not seem dramatic for all
values of v considered.

If we add outliers to the samples, we note that the size of the Gaussian PLR
test is severely distorted. The test is clearly biased towards stationarity. For
example, for the bivariate random walk case (T  = 0), the actual size of the
Gaussian test (v = x) increases from the nominal level of 5% for < = 0 to 15%
and 58% for 1% and 5% of additive outliers (<  = 7), respectively (sum the entries
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for < = 7, T = 1, v = 00,  and? = 1,2).  Similarly, in the case of one cointegrating
vector (T  = l), the size increases to 10% and 36% for 1% and 5% of additive
outliers, respectively (see the entry for < = 7, T = 1, i = 2, and v = co). In
the stationary case, the bias towards stationarity leads to the correct inference
on the cointegrating rank of the system. The effect of outliers manifests itself
in this case through the lower degree of persistence of the shocks in the system.
Using (iii) from (ll), one can easily show that the roots of the system converge
in probability to 0.8/(1  + 0.018(2)  if the fraction of outliers is 5%. This leads
to biases of 14%,  32%>  and 47% for C = 3,5,7,  respectively. In small samples
as the ones used to construct Table II, the biases with respect to the no-outlier
case < = 0 reduce to S%,  19%,  and 30%,  respectively, which is still considerable.
These findings corroborate the results from the literature, stating that in the
presence of additive outliers the Gaussian-based procedure of Johansen  (1988,
1991) tends to find models that are “too stationary,” see Franses and Haldrup
(1994) and Hoek et al. (1995).

Except for the stationary model, the size distortions of the Student t test are
less than those of the Gaussian test. The effect becomes more pronounced if the
outliers increase in magnitude. So our robust method tends to find less spurious
cointegration. The results further show that the size distortion is increasing in
v. This is intuitively clear, as the Student t distribution starts to resemble the
Gaussian distribution for larger values of v. Stated differently, the weights in
(8) are monotonically increasing in v for large values of Ed, such that for higher
v the observation weights of the Student t procedure approach the unit obser-
vation weights of the Gaussian estimator. For DGP (iii), the robust approach
evidently results in less stationary models than the Gaussian approach. As ex-
plained earlier, however, the correct inference resulting from the Gaussian test
is more a result of the bias in the test than of the power of the test. This is
clearly seen if we look at the roots of the system. For v = 5 and 570  additive
outliers, the simulations used to construct Table II indicate biases with respect
to the no-outlier case < = 0 of 6%,  12%,  and 17% for < = 3,5,7,  respectively.
These biases are considerably smaller than the corresponding biases of the Gaus-
sian estimator. We conclude that the Student t PLR test provides at least some
protection against the distortionary effect of additive outliers.

The extent to which the choice of Y  influences the results in Table II seems
limited. Obviously, v should not be chosen too high if one wants protection to
outliers. Choices in the range v = 3, . . . ,7 all seem acceptable, however. Lower
values of u provide somewhat more protection against aberrant observations, but
at the cost of a somewhat higher loss in power if there are no outliers (c =
0). It should be mentioned here that (unreported) simulation results for other
contamination percentages and for a VAR(2) model instead of a VAR(l) model
yield qualitatively similar results, i.e., our method does not seem particularly
sensitive to the choice for a particular value of v < 10.

< INSERT TABLES III .4ND  I\’  AROUND HERE >
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Similar conclusions can be drawn for the second important step, i.e., the
decision on which observations have weights that differ significantly from one.
The second part of our above simulation experiment involves an investigation
whether our method is able to detect x per cent influential observations when
there are indeed x per cent of such data points.

The relevant results are summarized in Tables III and IV for 1% and 5% AOs,
respectively. The entries in these tables are fairly nonstandard and need some
explanation. For a given DGP and given values of < and v, we have the entry

average percentage of
observations correctly

classified as outlier
average percentage of

observations incorrectly
classified as outlier

average percentage of
observations incorrectly

classified as ‘clean’
average percentage of ’

observations correctly
classified as ‘clean’

So we would like the off diagonal elements of these entries to be as small as
possible. First note that we expect the average number of outliers in our samples
to be 200 . p,,  with p, = l%,  5% the fraction of additive outliers. This was
explained in the previous subsection. Obviously, the weights of the Gaussian
estimator do not detect the aberrant observations, as the weights are identically
equal to unity. Furthermore, as expected, the robust method does a much better
job at detecting the irregular data patterns. The method seems to work better
when the size C of the AOs  is larger. It is important to note that the results in
Tables III and IV again indicate that our empirical findings based on our outlier
robust method are, in turn, robust to the choice of u. The number of correct
classifications made by the Student -L(Y  = 5) estimator, however, seems to be
somewhat higher than for the other choices of v.

In sum, the simulation results in this section suggest that for many practical
purposes, we may consider setting u equal to 5. This gives a test procedure that
provides some protection against the adverse effects of aberrant data structures.
Moreover, the method produces useful diagnostics in the form of observation
weights in order to assess which observations are not described by the model.

4. EMPIRICAL ILLUSTRATION

In this section we illustrate the practical usefulness of our outlier robust cointegra-
tion analysis by analyzing annual observations of the US and Finland Consumer
Price Indices and the US/Finland nominal exchange rate, 1900-1988. All data
are transformed to logs. Perron  and Vogelsang (1992),  Franses and Haldrup
(1994),  and Hoek et al. (1995) also consider these data and in particular the real
exchange rate between Finland and the US. This latter series is depicted in the
left panel of Figure 3. The interesting economic question is whether the real ex-
change rate is stationary or not. We perform two analyses: one with the Gaussian
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based testing procedure of Johansen  (v = oo),  and one with the Student t based
likelihood with five degrees of freedom (v = 5). We compare the empirical results
obtained with the different methods. If the two methods give different results,
closer inspection of the data and the model can be warranted.

< INSERT FIGURE 3 AROUND HERE >
Consider the test results in Table V. The Akaike and the Schwarz criterion

suggest the adequacy of a VAR(2) model for both the robust and nonrobust
method. We also report the results for other VAR orders for completeness, be-
ca.use  it is yet unknown how model selection is affected by outliers and by the use
of robust estimation techniques. For the VAR(2), the nonrobust method indi-
cates that there is one cointegrating relation. This relation can approximately be
identified as the real exchange rate (i.e., cointegrating vector (1, -1, l)), since the
estimated cointegrating vector is (1, -0.87,0.82).  The robust method for u = 5,
by contrast, indicates no significant cointegrating relationships for most values
of p, including the selected value p = 2. It is noticeable, however, that in this
robust case the estimated cointegration vector is (1, -0.88,0.85),  which is again
close to the real exchange rate.

< INSERT TABLE V AROUND HERE >
In order to investigate the cause of the difference between the results of the

Gaussian and the Student t(u = 5) based cointegration tests, the implied weights
of the robust estimator for v = 5 are plotted in the right panel of Figure 3. With
a 0.5% critical value corresponding to a normal distribution of the underlying
errors, we assign significantly less weight to the observations in 1915-1921, 1932,
1945, 1946, 1949, and 1957. During 1915-1925, we have the events of World
War 1: the Finnish independence (1917), and the Finish civil war (1918). This
clearly accounts for the first set of aberrant observations, during which Finland
experienced a floating exchange rate regime. The small weight for 1932 marks
the crisis of the thirties and also indicates the middle of a relatively short floating
exchange rate regime (1931-1933) between the period of the Gold standard (1926-
1931) and the Pound standard (1933-1939). The small weights for 1945 and
1946 probably reflect the impact of World War II. The year 1949 and 1957 both
fall within the Bretton-Woods system. At the start, Finland experienced two
large devaluations of 18% and 44% in July and September 1949, respectively. In
September 1957, there was another large devaluation of 39%. Strangely enough,
the relatively large devaluation of 31% in October 1967 does not show up in the
results. This holds both for our robust detection method and for the detection
method of Cheng and Liu (1993) as employed in Franses and Haldrup (1994).

It should perhaps be mentioned that we also experimented with different
critical values for the weights. For example, if the error process is assumed to
be Student t(5) instead of Gaussian, we obtain significant weights for 1917-1921,
1932, 1945, 1946, 1949, and 1957. Hence, our decision on which data are aberrant
does not seem to be influenced much by our cut-off measure. Finally, notice that
our finding that the US/Finland real exchange rate is nonstationary once we have
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taken care of outliers, clearly matches the findings in Franses and Haldrup (1994)
and Hoek et al. (1995), where a less sophisticated route is followed.

In sum, our analysis illustrates that outlier robust procedures provide useful
additional information for validating the results obtained with a traditional non-
robust analysis. In our empirical example, cointegration found between consumer
price indices of Finland and the US and the nominal exchange rate between these
countries, hinges on the presence of only a few outliers.

5 . CONCLUDING REMARKS

Standard unit root and cointegration tests are sensitive to outliers and structural
changes in the data. Additionally, one may expect tests for stationarity, such
as those proposed in, e.g., Leybourne and McCabe (1994),  to suffer from the
same problems. Although it is true that such standard tests are not designed
for nonstandard cases, it is our experience that aberrant data frequently occur
in practice, and hence that our outlier robust procedures can be used to validate
the results of a traditional analysis. Using both synthetic and empirical data,
we showed that our outlier robust method is more resistant to aberrant data
structures than the Gaussian based method of Johansen  (1991). Moreover, the
robust approach produces a valuable diagnostic tool in the form of observation
weights. A graph of these weights provides useful additional information and
we recommend its use in practice. Knowledge about which observations are not
well described by the model clearly helps the practitioner in choosing alternative
model specifications and/or including additional variables.

One can argue that the outlier robust method is approximately equal to tra-
ditional Gaussian based (OLS) analysis with some dummy variables. The imple-
mentation of outlier detection methods as in Tsay (1988) in a multivariate context
with possible integrated series, however, is far from trivial. As yet, there seems to
be no practical way of taking the decisions on the type, magnitude, and dynamic
patterns of various outliers simultaneously in this multivariate context. Com-
pared to the traditional approach augmented with dummies, the outlier robust
method has two main advantages. First, the outlier robust procedure automat-
ically incorporates the identification and handling of different types of outliers
into the estimation stage. Therefore, the applied econometrician does not have to
run many regressions with many different variations of dummies in order to check
the sensitivity of the obtained results. Moreover, the complications in limiting
distributions of unit root tests arising from the fact that dummies are constructed
on the basis of in-sample information (see Christian0  (1992)) are avoided. The
second advantage of the outlier robust procedure over the OLS with dummies
approach is that additional information can be obtained by inspecting the obser-
vation weights produced by the robust estimator. Both these advantages seem to
advocate the use of outlier robust unit root and cointegration tests in empirical
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studies.
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Figure l.- Weights (wt)  of the Student t Pseudo Maximum Likelihood Estimator
for an Additive Outlier and a Temporary Level Shift corresponding to a Bivariate
Time Series ( ylt,  ~2~)
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Figure 2.-  Weights (wt)  of the Student t Pseudo Maximum Likelihood Estimator
for a Variance Change and a Patch of Innovative Outliers corresponding to a
Bivariate Time Series (ylt,  ~2~)
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Figure 3.-  Weights obtained with u = 5 and the Finland/US Real Exchange
Rate (CPI Deflated)
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TABLE I
QUANTILES  OF THE STUDENT  t BASED

PSEUDO L IKELIHOOD RATIO TEST

k-r v wit,h  drift without drift
0.80 0.90 0.95 0.99 0.80 0.90 0.95 0.99

co 1.7 2 .9 4 .1 7 .1 4.9 6.4 7.8 11.2
10 1 .8 3.0 4.3 6.6 5.0 6.5 8.0 11.3

1 7 1.8 3.1 4.4 7.1 5.0 6.5 8.1 11.7
5 1.9 3 .2 4.4 6.8 5.1 6.6 8.5 11.7
3 2.0 3.4 5.0 7.5 5.1 7.1 9.0 12.1

00 11.5 13.6 15.7 20.6 13.6 15.6 18.2 21.8
10 11.9 14.1 16.3 22.1 13.8 16.6 18.6 23.1

2 7 11.8 14.3 16.5 23.2 14.0 16.9 19.1 23.7
5 12.1 14.6 17.2 23.5 14.2 17.2 19.8 24.1
3 12.8 15.6 18.3 24.3 15.0 18.0 20.6 25.7

cm 23.9 27.3 30.1 35.5 26.1 29.2 32.6 37.3
10 24.9 28.1 30.7 36.9 26.4 29.9 33.1 38.4

3 7 25.2 28.8 31.2 37.6 26.8 30.3 33.7 39.6
5 25.5 29.6 31.7 38.6 27.5 30.9 34.3 41.0
3 26.5 30.7 33.5 40.8 28.6 32.2 35.9 43.2

The table contains the quantiles of the PLR test based on the Student t pseudo
likelihood. v denotes the degrees of freedom parameter of the pseudo likelihood.
The entries are based on 1,000 Monte-Carlo simulations. In each simulation, a
k - T  dimensional Gaussian random walk is generated, possibly with nonzero  drift.
Next, the PLR test of the hypothesis of zero versus k - r cointegrating relations
was computed, using model (1). The constant in (1) enters unrestrictedly in the
regression model. The left set of quantiles is based on a data generating proces
with a drift term equal to the standard deviation of the innovations. The second
set of quantiles is based on a data generating process with zero drift. Therefore,
the quantiles in the present table can be compared to the quantiles in Tables Al
and A2 of Johansen  and Juselius (1990),  respectively.
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TABLE II
REJECTION FREQUENCIES OF THE PLR TEST WITH ADDITIVE OUTLIERS

7 . c f
v=CX Y  = 10 v=7 v=5 v=3

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

1% additive outliers
0 0 95 4 1 95 5 1 95 5 1 95 5 1 95 5 0
0 3 94 5 1 94 5 1 95 5 1 94 5 1 94 5 1
0 5 91 8 1 93 6 1 94 6 1 94 5 1 94 5 1
0 7 85 13 2 92 7 1 94 6 1 94 6 1 94 5 1

1 0 58 37 5 59 36 5 61 34 5 61 34 4 64 33 3
1 3 50 44 6 54 40 6 56 38 6 57 38 5 59 37 4
1 5 40 54 7 49 44 7 53 41 6 54 40 6 58 37 5
1 7 31 58 10 46 47 7 50 43 7 53 42 6 58 38 5

2 0 6 21 72 8 23 69 9 25 65 11 29 60 15 35 50
2 3 4 18 78 6 22 73 7 23 70 9 26 65 13 32 55
2 5 3 16 81 5 21 75 6 22 72 8 25 67 12 31 57
2 7 3 15 82 4 20 76 6 22 72 7 25 67 11 32 57

5% additive outliers
0 0 96 4 0 96 4 0 96 4 0 96 4 C l 96 4 0
0 3 88 11 1 90 9 1 91 8 1 9 1 9 1 92 8 0
0 5 67 29 4 80 1 8 2 83 1 5 2 86 1 3 1 89 1 0 1
0 7 42 47 1 1 7 2 25 4 78 1 9 3 83 1 5 2 88 1 1 1

1 0 60 36 4 61 36 3 63 33 3 64 33 3 67 30 3
1 3 30 61 9 38 53 8 41 52 7 44 50 7 48 46 6
1 5 10 70 20 20 66 14 26 63 11 32 58 10 42 51 7
1 7 3 61 36 14 67 20 20 65 15 26 62 12 39 53 8

2 0 7 24 69 8 26 66 10 28 62 11 30 59 15 36 48
2 3 1 9 90 1 13 86 2 16 82 3 20 78 5 28 67
2 5 0 4 96 1 8 92 1 10 89 1 14 84 3 22 74
2 7 0 3 97 0 5 94 0 8 92 1 11 88 3 21 76
NOTE: The table contains the percentage of times in 1,000 Monte-Carlo replications that a cointegrating rank of
i is found based on the Student t density. v denotes the degrees of freedom parameter in the Student t pseudo-
likelihood. r denotes the true cointegrating rank. For T  = 1, the roots of the system are 1 and 0.8, respectively. For
r =  2, both roots are 0.8. The original series are contaminated in the following way. For given IJ~,  it  is replaced by
yt +  ( ut with probability p, where ZL~ denotes a drawing from an i.i.d. process that is uniformly distributed over
the unit circle. Otherwise, rot  is left unchanged. The table contains results for p = 0.01 and p =  0.05, respectively.
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TABLE III
OUTLIER DETECTION USING THE  STUDENT t WEIGHTS

UNDER 1% ADDITIVE OUTLIER CONTAMINATION

7. c u
cc 10 7 5 3
012 Ill Ill Ill l/l

0 2
t0 98
0 2
+0 98
0 2
t0 98

0 2
+0 98
0 2

t 0 98
0 2
t0 98

1 1
t1 97
2 0

t 1 97
2 0

t 1 97

1 1
t1 97
1 1

t 1 97
2 0
t1 97

1 1
t1 97
2 0

t 1 97
2 0

t 1 97

1 1-I---1 97
2 0

t 1 97
2 0
-I-1 97

--q-B
2 0
t1 97
2 0

t 1 97

1 1
t2 96
2 0

t 2 96
2 0

t 2 96

.-qT%
2 0
t2 96
2 0
t2 96

1 1
t3 95
2 0
t3 95
2 0

t 3 95

2 0
t2 96
2 0

t 2 96

2 0
t3 95
2 0

t 3 95
NOTE: The table contains the average (over the Monte-Carlo replications) of
the percentage of outliers that are (not) detected. A ‘cell’ in the table consists
of four numbers, indicating

average percentage of average percentage of
observations correctlv observations incorrectly

classified as outlier classified as ‘clean’
average percentage of 1 average percentage of

observations incorrectly observations correctly
classified as outlier classified as ‘clean’

The simulation setup is described in the note to Table II. The percentage of
additive outliers is 1.
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TABLE IV
OUTLIER DETECTION USING THE STUDENT t WEIGHTS

UNDER 5% ADDITIVE OUTLIER CONTAMINATION

7. c u
o”p10 10 7 5 3

317 3 1 7 415 5 1 5
Tpi

0’ 10
+0 90

0 10
+0 90

,-qm
8 2
+0 90

J-4 --j-4  Gj-4
0 10

---I--0 90

O 10-I-0 90

0 10
+0 90

0 10
- t0 90

O 10
- - - I -0 90

6 4
+0 90

8 2
+0 90

6 4
- t0 90

7 3
----I-0 90

7 3---I-0 90
9 1
i-0 90

3 7--I-1 90

7 3
+0 90

.--ipz

4 6
+1 89

8 2
-t0 90

9 1
+0 90

8 2
- I - -0 90

9 1
+1 89
10 0-I---1 89

5 5
+1 89

8 2
--I-1 89

9 1
+1 89

4 6
+2 88

9 1

+1 89

NOTE: The table contains the average (over the Monte-Carlo replications) of
the percentage of outliers that are (not) detected. A ‘cell’ in the table consists
of four numbers, indicating

The simulation setup is described in the note to Table II. The percentage of
additive outliers is 5.
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TABLE V
COINTEGRATION TESTS  FOR THE  FINNISH/US

EXCHANGE  RATE  DATA
Y=CC II=5

P k - r P k - r
3 2 1 3 2 1

1 92.7”’ 5.8 0.2 1 64.6*** 10.5 1.6
2 a,s 69.1”’ 6.1 0.0 2”,” 19.2 2.2 0.3
3 51.1*** 11.3 0.4 3 23.5 6.0 0.2
4 33.4” 12.0 0.0 4 22.2 8.0 0.0
5 29.9’ 7 .6 0.0 5 18.9 5.7 0.1
6 34.8” 9.1 0.5 6 28.2’ 7.2 0.4
7 34.8.’ 9.0 0.2 7 31.7 4.5 0.2

The table contains the PLR (trace) tests for the hypothesis Ho : r 5  0, H I :
T < 1, and HZ  : r 5 2 , versus the alternative H3 : r =  3. Here, r denotes the
number of cointegrating relations. p denotes the order of the VAR model that
is used for computing the test. v denotes the degrees of freedom parameter
that is used in the pseudo likelihood. *,  **,  and l ** denote significance at the
10, 5, and 1 per cent level, respectively. The critical values are taken from
Table I for the case with drift, o>p  # 0. The superscripts D and s refer to the
order of the model of the model that corresponds to the maximum value of the
Akaike and the Schwarz  information criterion, respectively.
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