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Abstract— Principal Component Analysis plays a central role
in statistics, engineering and science. Because of the pedence
of corrupted data in real-world applications, much researd has
focused on developing robust algorithms. Perhaps surprisgly,
these algorithms are unequipped — indeed, unable — to dea
with outliers in the high dimensional settingrhere the number of
observations is of the same magnitude as the number ofariables
of each observation, and the data set contains some (arbitrity)
corrupted observations. We propose a High-dimensional Ralst
Principal Component Analysis (HR-PCA) algorithm that is
efficient, robust to contaminated points, and easily kernétable.
In particular, our algorithm achieves maximal robustness —it
has a breakdown point of 50% (the best possible) while all
existing algorithms have a breakdown point ofzero. Moreover,
our algorithm recovers the optimal solution exactlyin the case
where the number of corrupted points grows sub linearly in the
dimension.

Index Terms— Statistical Learning, Dimension Reduction,
Principal Component Analysis, Robustness, Outlier

I. INTRODUCTION

er and Shie MannorSenior Member

formulating fresh data-analysis techniques able to copk wi
such a “dimensionality explosion.”
Principal Component Analysis (PCA) is perhaps one of
| the most widely used statistical techniques for dimensityna
reduction. Work on PCA dates back to the beginning of the
20'" century [4], and has become one of the most important
techniques for data compression and feature extractios. It
widely used in statistical data analysis, communicaticot,
pattern recognition, image processing and far beyond [B& T
standard PCA algorithm constructs the optimal (in a least-
square sense) subspace approximation to observationsiy co
puting the eigenvectors or Principal Components (PCs) ®f th
sample covariance or correlation matrix. Its broad appboa
can be attributed to primarily two features: its successhan t
classical regime for recovering a low-dimensional subspac
even in the presence of noise, and also the existence oteffici
algorithms for computation. Indeed, PCA is nominally a non-
convex problem, which we can, nevertheless, solve, thamks t
the magic of the SVD which allows us taaximizea convex
function. It is well-known, however, that precisely becawsd

The analysis of very high dimensional data — data setse quadratic error criterion, standard PCA is exceptignal
where the dimensionality of each observation is comparaliiggile, and the quality of its output can suffer dramatical

to or even larger than the number of observations — hasthe face of only a few (even a vanishingly small fraction)
drawn increasing attention in the last few decades [1], [Zrossly corrupted points. Such non-probabilistic erroay e
Individual observations can be curves, spectra, imagesigsio present due to data corruption stemming from sensor faijure
behavioral characteristics or preferences, or even a genommalicious tampering, or other reasons. Attempts to userothe
a single observation’s dimensionality can be astronomicatror functions growing more slowly than the quadratic that
and, critically, it can equal or even outnumber the numbeiight be more robust to outliers, result in non-convex (and
of samples available. Practical high dimensional data exaftractable) optimization problems.

ples include DNA Microarray data, financial data, climate In this paper, we consider a high-dimensional counterpart
data, web search engine, and consumer data. In additignPrincipal Component Analysis (PCA) that is robust to the
the nowadays standard “Kernel Trick” [3], a pre-processingkistence ofarbitrarily corrupted or contaminated data. We
routine which non-linearly maps the observations into as{postart with the standard statistical setup: a low dimensiona
sibly infinite dimensional) Hilbert space, transforms wally signal is (linearly) mapped to a very high dimensional space
every data set to a high dimensional one. Efforts to exteagter which point high-dimensional Gaussian noise is added

traditional statistical tools (designed for the low dimiensl

to produce points that no longer lie on a low dimensional

case) into this high-dimensional regime are often (if n&lubspace. At this point, we deviate from the standard sgittin

generally) unsuccessful. This fact has stimulated rekeanc
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two important ways: (1p constant fraction of the points are
arbitrarily corrupted in a perhaps non-probabilistic manner.
We emphasize that these “outliers” can be entirely arbyjitrar
rather than from the tails of any particular distributiorg.ethe
noise distribution; we call the remaining points “authehti

(2) the number of data points is of the same order as (or
perhaps considerably smaller than) the dimensionalitywAs
discuss below, these two points confound (to the best of our
knowledge) all tractable existing Robust PCA algorithms.

A fundamental feature of the high dimensionality is that the
noise is large in some direction, with very high probability
and therefore definitions of “outliers” from classical s&hts
are of limited use in this setting. Another important praper
of this setup is that the signal-to-noise ratio (SNR) cana@o t



zero, as the, norm of the high-dimensional Gaussian noisstandard asymptotic notationg-), O(-), ©(-),w(-) and ()
scales as the square root of the dimensionality. In the atandare used to lighten notations. Throughout the paper, “wih h
(i.e., low-dimensional case), a low SNR generally impliggtt probability” means with probability (jointly on samplinghéd
the signal cannot be recovered, even without any corruptie randomness of the algorithm) at least Cn—1° for some
points. absolute constar. Indeed that the exponentl 0 is arbitrary,
and can readily changed to any fixed integer with all the tesul

The Main Result still hold.

Existing algorithms fail spectacularly in this regime: teet
best of our knowledge, there is no algorithm that can provide [I. RELATION TO PAST WORK

any nontrivial bounds on the quality of the solution in the | ..c section, we discuss past work and the reasons that

presence of even a va_nlshmg fra_ct|on of corrupted poimts. élassical robust PCA algorithms fail to extend to the high
this paper we do just this. We provide a novel robust PCA alg imensional regime

rithm we call High Dimensional PCA (HR-PCA). HR-PCA is

- . Much previous robust PCA work focuses on the traditional
efficient (performing at most, the number of samples, round

Yobustness measurement known as the “breakdown point” [6]:
the percentage of corrupted points that can make the output o

tbhoutlwfds \t'Y'th up tcu_pht_o 50% arbltranlly corruptflq pomttﬁlf the algorithmarbitrarily bad. To the best of our knowledge,
at fraction is vanishing (e.gn samples,/n outliers), then no other algorithm can handéy constant fraction of outliers

HR-PCA guarantees perfect recovery of the Iow-dimensior‘ﬂth a lower bound on the error in the high-dimensional

supstpac'\(/la providing opt:mal_ﬂ?pp_roximqfiorll of tlhe ;‘IUthiﬂﬁlggime. That is, the best-known breakdown point for this
points. Moreover, our aigorihm IS €aslly kemelizable.Is problem is zero. As discussed above, we show that the

‘? t?e first fatl)gorigzjm of its. ktind: tragta}ble, m::;ximally trc?u I?Igorithm we provide has breakdown point &%, which
(in terms of breakdown point — see below) and asympto ICaY the best possible for any algorithm. In addition to thig w

optimal when the number of authentic points scales fasear thfocus on providing explicit bounds on the performance, fbr a

tht_a”l]"numkr)er of %orrlrptfi?hfnomtsr.f m PCA and a rand %c])rruption levels up to the breakdown point.
€ proposec aigo performs a and a random, , o jow-dimensional regime where the observations sig-

removal alternately. Therefore, in each iteration a caateid nificantly outhumber the variables of each observationgisdv

subspace is found. The random removal process guarantre%% .
e . . . obust PCA algorithms have been proposed (e.g., [7]-[16]).
that with high probability, one of candidate solutions fduyy These algorithr%]s can be roughly di\?ide% into t(\NongESLQ[S: gl)

o ooy o vang " lgorihs hat b ot simate of e cousaa
robust variance estimator leads to a “sufficiently good'poitit maFrlx and thfen per_form standard.PCA.. Th_e robust estimate is
Alternatively, our algorithm can be shown to be a randomizé&plcal.ly ob_tameq either by an outlier rejection proceeiuaub-

. o Sampling (including “leave-one-out” and related appre&syh
algorithm giving a constant factor approximation to the non b bust estimation procedure of each element of the
convex projection pursuit algorithm. or by a 1o g P L . .

covariance matrix; (ii) So-calledrojection pursuitalgorithms

that seek to find directionswy, ..., w4} maximizing a robust
Organization and Notation variance estimate of the points projected to thédenensions.

The paper is organized as follows: In Section Il we discugnth approaches encounter serious difficulties when agpdie
past work and the reasons that classical robust PCA algusithhigh-dimensional data-sets, as we explain.
fail to extend to the high dimensional regime. In Sectiorwd One of the fundamental challenges tied to the high-
present the setup of the problem, and the HR-PCA algorithdimensional regime relates to the relative magnitude of the
We also provide finite sample and asymptotic performansgnal component and the noise component of even the au-
guarantees. Section IV is devoted to the kernelization of HEhentic samples. In the classical regime, most of the atithen
PCA. We provide some numerical experiment results in Sgueints must have a larger projection along the true (or ogl)im
tion V. The performance guarantees are proved in Section rincipal components than in other directions. That is, the
Some technical details in the derivation of the performanc®ise component must be smaller than the signal component,
guarantees are postponed to the appendix. for many of the authentic points. In the high dimensional

Capital letters and boldface letters are used to dendtetting entirely the opposite may happen. As a consequence,
matrices and vectors, respectively. Ax k identity matrix and in stark deviation from our intuition from the classical
is denoted byI,. For ¢ € R, [c]T £ max(0,c). We let setting, in the high dimensional setting, all the autheptimts
By & {w € R|w|. < 1}, and S, be its boundary. We may be far from the origin, far from each other, and nearly
use a subscripf-) to represent order statistics of a randorperpendicular to all the principal components. To expléais t

variable. For example, lety,...,v, € R, and f : R — better, consider a simple generative model for guthentic
R. Thenv(yy,...,v) is a permutation ofvy,...,v,, and points y; = Ax;+v;, 7 =1,...,n whereA is ap x d matrix,
FWay, ..., f(v)n) is a permutation off(vi),..., f(v,), x is drawn from a zero mean symmetric random variable,

both in non-decreasing order. The operatorand A are andv ~ N(0,I,). Let us suppose that for the number
used to represent the maximal and the minimal value of toé points, p the ambient dimension, angly = o,.x(A) the
operands, respectively. For exampley y = max(z,y). The largest singular value ofd, we havein ~ p > o4 and



also much bigger tha, the number of principal components. The discussion above lies at the core of the failure of many
Then, standard calculation shows thg@f (|| Ax|3) < v/doa, popular algorithms. Indeed, in [17], several classicalacbv
while \/E(||v||3) ~ /p, and in fact there is sharp concenance estimators including M-estimator [20], Convex Peglin
tration of the Gaussian about this value. Thus we may haj#l], [22], Ellipsoidal Peeling [23], [24], Classical Oigt
VE(|[V]3) = b > Vdoa > /E(|Ax|]3): the magnitude Rejection [25], [26], Iterative Deletion [27] and lIteragiv
of the noise may be vastly larger than the magnitude of tAHeimming [28], [29] are all shown to have breakdown points
signal. upper-bounded by the inverse of the dimensionality, hete n
While this observation is simple, it has severe consequencgseful in the regime of interest.
First, Robust PCA techniques based on some form of outlierNext, we turn to Algorithmic Tractability. Projection puris
rejection or anomaly detection, are destined to fail. Tlasoa algorithms seek to find a direction (or set of directions) tha
is that in the ambient (high dimensional) space, since tligenomaximizes some robust measure of variance in this low-
is the dominant component of even the authentic points,dimensional setting. A common example (and one which we
is essentially impossible to distinguish a corrupted from autilize in the sequel) is the so-called trimmed variance in a
authentic point. particular directionw. This projects all points ontev, and
Two criteria are often used for to determine a point beingpmputes the average squared distance from the origin for
an outlier, namely, points with large Mahalanobis distandbe (1 — n)-fraction of the points for some < (0,1). As
or points with large Stahel-Donoho outlyingness. The Maha- byproduct of our analysis, we show that this procedure

lanobis distance of a point is defined as has excellent robustness properties; in particular, oatyais
implies that this has breakdown poifd% if n is set as
Dy(y) = \/(y -¥)TS Y (y-y), 0.5. However, it is easy to see that this procedure requires

. ) . the solution of a non-convex optimization problem. To the
wherey is the sample mean anfl is the sample covariancepegt of our knowledge, there is no tractable algorithm that
matrix. Stahel-Donoho outlyingness is defined as: can do this. (As part of our work, we implicitly provide

w2 sup iwTy; — med;(wy;)| ' ? ratESjomizE:j algolritr:rr:w wilth gualrantg_ed approxhtna"iir:)nt rt:;]lte
i o nede|w Tyr — med, (w ' y,)| or this pro e_m). n the classical setting, we note that the
situation is different. In [30], the authors propose a fast
Both the Mahalanobis distance and the Stahel-Donoho @sproximate Projection-Pursuit algorithm, avoiding thenn
D) outlyingness are extensively used in existing robust PCnvex optimization problem of finding the optimal directjo
algorithms. For example, Classical Outlier Rejectionidtizee by only examining the directions defined by sample. In the
Deletion and various alternatives of Iterative Trimmindls aclassical regime, in most samples the signal component is
use the Mahalanobis distance to identify possible outlielarger than the noise component, and hence many samples
Depth Trimming [17] weights the contribution of observaso make an acute angle with the principal components to be
based on their S-D outlyingness. More recently, the ROBPGaAcovered. In contrast, in the high-dimensional settinig th
algorithm proposed in [18] selects a subset of observatioalgorithm fails, since as discussed above, the direction of
with least S-D outlyingness to compute tldedimensional each sample is almost orthogonal to the direction of true
signal space. Indeed, considet corrupted points of magni- principal components. Such an approach would thereforg onl
tude some (large) constant multiple @f;, all aligned. Using be examining candidate directions nearly orthogonal to the
matrix concentration arguments (we develop these argusmeintie maximizing
in detail in the sequel) it is easy to see that the output of Finally, we discuss works addressing robust PCA utimg
PCA can be strongly manipulated; on the other hand, sin@nk techniques and matrix decompositi@tarting with the
the noise magnitude ig/p ~ \/n in a direction perpendicular work in [31], [32] and [33], recent focus has turned to the
to the principal components, the Mahalanobis distance pfoblem of recovering a low-rank matrix from corruption.eTh
each corrupted point will be very small. Similarly, the Swork in [31], [32] consider matrix completion — recovering
D outlyingness of the corrupted points in this example & low-rank matrix from an overwhelming number of erasures.
smaller than that of the authentic points, again due to thi&e work initiated in [33], and subsequently continued and
overwhelming magnitude of the noise component of ea@xtended inP], [34] focuses on recovering a low-rank matrix
authentic point. from erasures and possibly grobat sparsecorruptions. In
Subsampling and leave-one-out attempts at outlier rejectithe noiseless case, stacking all our samples as columns of
also fail to work, this time because of the large number @p x n matrix, we indeed obtain a corrupted low rank
constant fraction) of outliers. Other algorithms desigfeedo- matrix. But the corruption is not sparse; rather, the caromp
bust estimation of the covariance matrix fail because thege is column-sparsewith the corrupted columns corresponding
not enough observations compared to the dimensionality. Ko the corrupted points. in addition to this, the matrix has
instance, the widely used Minimum Volume Ellipsoid (MVE)Gaussian noise. It is easy to check via simple simulation,
estimator [19] finds the minimum volume ellipsoid that caverand not at all surprising, that the sparse-plus-low-rankima
half the points, and uses it to define a robust covariancexnatdecomposition approaches fail to recover a low-rank matrix
Finding such an ellipsoid is typically hard (combinatayial corrupted by a column-sparse matrix.
Yet beyond this issue, in the high dimensional regime, the When this manuscript was under review, a subset of us,
minimum volume ellipsoid problem is fundamentally ill pdse together with co-authors, developed a low-rank matrix de-




composition technique to handle outliers (i.e., columsewni Setup 1:In the deterministic setup, we make no assump-
corruption) [35], [36], see also [37] for a similar studytions whatsoever on the authentic points, and thus there is
performed independently. In [35], [36], we give conditionsio implicit assumption that there is a good low-dimensional
that guarantee the exact recovery of the principal compsneapproximation of these points. The results are necessarily
and the identity of the outliers in the noiseless case, up tdiaite-sample, and their quality is a function of all the aaritic
(small) constant fraction of outliers depending on the nembpoints.

of principal components. We provide parallel approximate Setup 2:The stochastic setup is the familiar one: the au-
results in the presence of Frobenius-bounded noise. Qutsidentic samples are generated by

the realm where the guarantees hold, the performance of
matrix decomposition approach is unknown. In particular,
its breakdown point depends inversely on the number plre, x; ¢ R¢ (the “signal’) are i.i.d. samples of a random
principal components, and the dependence of noise is seVgigiablex ~ u, andv, (the “noise”) are independent real-
Specifically, the level of noise considered here would tgsul jzations of v ~ N(0,1,). The matrixA € RP*¢ maps the
only trivial bounds. In short, we do not know of performancgyy-dimensional signak to R?. We note that the intrinsic
guarantees for the matrix decomposition approach that @figensiond, and the distribution ofx (denoted byy) are
comparable to the results presented here (although itaslgle ynknown. We assumg is spherically symmetric with mean

zZ;, = AXi + v;.

a topic of interest). zero and variancé;. We denote its one-dimensional marginal
by 7z. We assumez({0}) < 0.5 and it is sub-exponential,
1. HR-PCA: SETUR, ALGORITHM AND GUARANTEES i.e., there existgr > 0 such that ((—oo, —z] [z, +00)) <

In this section we describe the precise setting, then peoviekp(1 — ax) for all z > 0.1
the HR-PCA algorithm, and finally state the main theorems of Remark 1:We briefly explain some of the assumptions

the paper, providing the performance guarantees. made in Setup 2. While we assume the noise to be Gaussian,
similar results still hold for sub-Gaussian noise. The agsu
A. Problem Setup tion thaty has a unit co-variance matrix is made without loss

This paper is about the following problem: Given a mi)?fgenerallty, due to the fact that we can normalize the naga

of authenticand corruptedpoints, our goal is to find a low- of 1 by p|cl_<|ng an appro_pnate@. we assumer to be zero- .
. ) . mean as this can be achieved by subtracting from every point
dimensional subspace that captures as much variahtiee

. . . . : the mean of the true samples. Notice that unlike robust PCA,
authentic points The corrupted points are arbitrary in every L o

: e - Tobustly estimating the mean of true samples under outikers
way except their number, which is controlled. We consider

two settings for the authentic points: deterministic (i) a well-studied problem [6], and effective methods are figadi

model, and then a stochastic model. In the determinis@c\:/a"able' The spherical symmetry assumptionofs non-

setting, we assume nothing about the authentic points;&n tr|V|aI: without it, the results appear to be somewhat weake

stochastic setting, we assume the standard generativel,motlrjzleépendlng on the skew of the distribution. We demonstrate

namely, that authentic points are generated according o Ow our results are translated to this setting in Remark 2

- . elow.
Ax; +v;, as we explain below. In either case, we measure the . . s
Xi Vi b The goal of this paper is to computerincipal components,

quality of our solution (i.e., of the low-dimensional subsp) __ % - that approximate the authentic points in the least
by comparing to how much variance of the authentic points web o Wd pp P

capture, compared to the maximum possible. The guarantggéare(ih;r%eser;ze'thr‘: :SWSH;IE?;’;Z’;:;SIAE e?g.'\e/?tlggt to
for the deterministic setting are, necessarily, preserited 9 y cap ProJ

reference to the optimal solution which is a function of aﬁl.Uthem'C points, (i.e., they maximize the average squared

the points. The stochastic setting allows more interptetatﬁjIStance from the origin of the authentic points projectatbo

results, since the optimal solution is defined by the matrix

We now turn to the basic definitions.

o Let n denote the total number of samples, gndhe
ambient dimension, so that; € R?, i = 1,...,n. Let
A denote the fraction of corrupted points; thus, there a
t = (1 — Mn “authentic samplesZ,...,z; € RP. We
assume) < 0.5. Hence we havé.bn <t < n, i.e., ¢
andn are of the same order.

he span of thdw, }). We compare the output of our algorithm

to the best possible variance captured by the optimal grahci

d componentswi,...,w%. Note that in Setup 1 there is no

intrinsic dimensiond deﬁned. In Setup 2 the numbet, of

columns of A is a natural candidate. However, this may not

B2 known, or, one may seek an approximation to a subspace of

lower-yet dimension. Naturally, the results are most egéng

for small values ofi.

. . . High Dimensional Setting and Asymptotic Scalingthile

« The remaining\n points are outliers (the corrupted t.iataQNe provide results for the deterministicpsetting (SetuphB) t
and are denoted;,...,0,—: € R” and as emph""s'Z‘Edprimary focus of this paper is the stochastic case. Even our

222;’6’ they are arbitrary (perhaps even maliciously Ch1"i’r'1ite sample results are best understood in the contexteof th

« We only observe the contaminated data set 1As we discuss below] can go infinity. In such a statistical setup, instead of
N requiring thed-dimensional distribution to satisfy some properties sagkub-
y= {}’1 cee ,yn} = {Z1, . ,Zt} U{O1, ce ,Onft]ﬂ exponentiality (which is void ag can go infinity), the standard approach (e.g.,
[38]) is to require that the 1-d marginal of the distributiprust satisfy these
An element of) is called a “point”. properties.



asymptotic results we provide. To this end, we must disduss (RVE V;(w;) is performed over the original data-sEt This
asymptotic scaling regime in force throughout. We focus ds to ensure that each candidate direction is measuredctigrre
the high dimensional statistical case where: p > d, andn, even if some authentic points get removed in the process of
p, d can go infinity simultaneously. Moreover, we require thahe algorithm. R
trace(AT A) > d or equivalentlys Z;l:l(a;f)Q > 1 where _ There are three parameters for HR-PCA, namgly and
or is the j' singular vector of4, i.e., the signal strength 7', which we explain below.
scales to infinity. However, its rate can be arbitrary, and in e The parameterl’ does not affect the performance as
particular, the signal strength can scale much more sldva t long as it is large enough, namely, one can tdke=
the scaling ofn andp. n — 1. Interestingly, the algorithm is indeed an “any-time
We are particularly interested in the asymptotic perforogan algorithm?”, i.e., one can stop the algorithm at any time,
of HR-PCA whenthe dimension and the number of obser- and the algorithm reports the best solution so far.
vations grow togethetto infinity, faster thand and much « As mentioned above(n — ) is an upper bound on the

faster than the signal strength. Precisely, our asympgetiing number of corrupted points, thus any valtte (1/2,1]
is as follows. Suppose there exists a sequence of sample yields nontrivial guarantees. However, these guarantees
sets {V(j)} = {Y(1),Y(2),...}, where for Y(j), n(j), improve the smaller we makg& — ¢), which is to say

p(7), A(j), d(j), etc., denote the corresponding values of the that a better knowledge of how many corrupted points to
guantities defined above. Then the following must hold for expect, results in improved solutions. We note that tuning

some positive constants, cs: t is computationally simple, as it is possible to generate
. . the solutions for multiple values dfin a single run of
I r(j) _ n(j) _ : , :
imsup —= < +00; , =—— To00; n(j) T 4o0; the algorithm.
j=oe 1J) d(y)[log” d(j)] « Tuning the parametet is inherent to any PCA approach,
trace(A(5) " A(5)) t oo lims d(y) with outliers or otherwise. Sometimes the choice of
d(j) ’ 1;2121’ () < +eo parameterd is known, where as others we may need to
(1) estimate, or search for it, thresholding the incremental
change in variance captured. As we see from the per-
B. Key Idea and Main Algorithm formance guarantees of the algorithm, the success of the

algorithm is not affected even if is not perfectly tuned.
The key idea of our algorithm is remarkably simple. It d P y

focuses on simultaneously discovering structure and " Intuition on Why The Algorithm WorksOn any given

outusotsentialstl:orliu ted USOBi/mS'S Tr:/e \I/vgrks- thj)rsl(Je of the“ﬁ;ﬁteration, we select candidate directions based on stdndar
P . P P C . PCA - thus directions chosen are those with largest empirica

PCA algorithm we present below is a tool from classical rébus

statistics: a robust variance estimator capable of estigéte variance. Now, given candidate directions, ..., wg, our
. " . . -ap . 9 robust variance estimator measures the variance afithe )-
variance in the classical (low-dimensional, with many more

samples than dimensions) setting, even in the presence O?mallest points projected in those directions. If this igéa
P . . 9, . P C€ 9f Reans that many of the points have a large variance in this
constant fraction of arbitrary outliers. While we cannotiop di

o o . . rection — the points contributing to the robust variansg-e
mize it directly as it is nonconvéxwe provide a randomized P g

algorithm that does so. We use the so-catlimed variance mator, and the points that led to this direction being setict
as our Robust Variance Estimator (RVE), defined as follovéﬁ:y PCA. If the robust variance estimator is small, it is likel

) . ) iat a number of the largest variance points are corruptetl, a
Forw &, we define the Robust Variance Estimator (RV us removing one of them randomly, in proportion to their

as i distance in the directiongry, ..., w, results in the removal
Vi(w) 2 lz |wTy|%), of a corrupted point.
L= ' Thus in summary, the algorithm works for the following

. o intuitive reason. If the corrupted points have a very high
wheret = (1 — M)n is anylower boundon the number of \grance along a direction with large angle from the span
authentic points. If we know = (1—X)n exactly, we také = f the principal components, then with some probability; ou
t. The RVE above computes the following statistics: prOJe%qgorithm removes them. If they have a high variance in a
yi onto the directionw, remove the furthe.s_t (fromloriginal) direction “close to” the span of the principal componertisyt
n—t samples, and then compute the empirical variance of thgs can only help in finding the principal components. HAipal
remaining ones. Intuitively, the RVE provides an approX@na;s ine corrupted points do not have a large variance, they

measure of the variance (of authentic samples) captured bbhéy well survive the random removal process, but then the

candidate_directic_)n. ) ) distortion they can cause in the output of PCA is necessarily
The main algorithm of HR-PCA is as given below. Note thaimited.

as input it takes an upper bound on the number of corruptedrhe remainder of the paper makes this intuition precise,
points. providing lower bounds on the probability of removing cor-
We remark that while computing the covariance matrix d§Pted points, and subsequently upper bounds on the maximum

well as removing points are performed oV computing distortion the corrupted points can cause.
Before finishing this subsection, we remark that an equally

2Recall that maximizing this directly is the idea behind paion pursuit. appealing idea would be to remove the largest point along



Algorithm 1 HR-PCA

Input: Contaminated sample-sgt= {y1,...,y.} C RP, d, T, i
Output: wy,...,w,.
Algorithm:
1) Lety, :=y; fori=1,...n; Y= {¥1,""+,¥n}; s:=0; Opt := 0.
2) While s <T, do
a) Compute the empirical variance matrix

b) Perform PCA ors. Letw,. .., w, be thed principal components of.
c) If Y°0_, Vi(w;) > Opt, then letOpt := 37, V;(w;) and letw,; :=w; for j =1, d.
d) Randomly remove a point frofy; }~° accordlng to

d
Pr(y; is removed from)) o Z w/yi)%

j=1
e) Denote the remaining points Ky, }"—* %
f) s:=s+1.

3) Outputwy,...,w,;. End.

the project direction. However, this method may break undér< ¢, w € R? with ||w]|s = 1,
adversarial outliers in the sense that even the directiando

~
~

in an iteration is completely wrong, the adversary can $elec ~(t'/t) Z Z(WTZ )2

corrupted points so that the algorithm still removes an emth = = @

tic sample. Examples illustrating this are not hard to desig t
<t /D> (wha)?

1=1

Here, the middle term is the empirical variance of the srstlle
- . t' projections of the authentic points in the directi@n Then,
C. Performance Guarantees: Fixed Design for any x > 0, with high probability,

We consider first the setting where the authentic points are _ (t - So(f%)) _ (f A ) zt:zd:(WTz)Q
arbitrary. The performance measure, as always, is thenagia ¥ t J
captured by the principal components we output. The perfor- P
mance is judged compared to the optimal output. As discussed n i\ < o
above, in the fixed design setting, this optimal performadace < (L +r)p (_) Z Z(W'
a function of all the points. In particular, we want to give
lower bounds on the quantityy ! . Zgi [(%Iz)2. To do where there exists a universal constahsuch that

2 = g )

this, we also require a measure of the concentration of the (1+r)A  C(l+k)logn

authentic points, which essentially determines somethkig so(k)/t < k(1= N\ K2n
to identifiability. Consider, for instance, the setting wall C(1+ /{)3/2(10g n)1/2
but a few of the authentic points are at the origin. Then the fe 321/

remaining authentic points may indeed have a large variantiee parameter. is introduced in the proof and it is implicitly
along some direction; however, given the nature of our casptimized by the algorithm. It controls the tradeoff betwéee
ruption, this direction is unidentifiable as the authentiings fraction of the total variance in a particular direction tapd
contributing to this variance are essentially indistirsipaible by the authentic vs. the corrupted points, and the protgbili
from the corrupted points. The theorem below gives guaesntehat a corrupted point is removed in the random removal (Step
that are a function of just such a notion of concentration (@rd.) of the algorithm.

spread) of the authentic points. This is given by the fumgio

¢" andy™ defined in the theorem. D. Performance Guarantees: Stochastic Design

Theorem 1 (Fixed Design)L.et wi,...,w; denote the |n the stochastic design setup, it is possible to further
output of the HR-PCA algorithm, and denote the optindal simplify terms in Theorem 1, and in particular functiops(-)
Principal Components ofy, ..., z; aswj, .. Wd Leto~(-) andpt(-). This leads to the main contribution of this paper:

and¢™(-) be any functions that satisfy the following: for anyperformance guarantees of the stochastic design, which we



discuss in detail in this subsection. In the stochasticgesi Theorem 2 (Finite Sample Performanceéds we have done
case, we can compare any solution to the ideal solutiaahove, letwy,...,w; denote the output of HR-PCA, and
namely, the top/ singular vectors of the matrid. Note that wi,...,w’ denote the topd singular vectors ofA. Let
while we allowd > d, the most interesting case #< d. r £ yax(p/n,1). Then, there exist absolute constantand

Thus, we seek a collection of orthogonal vecters ..., w;, | such that with high probability, the following holds foryan
that maximize the performance metric called tBepressed -

Variance

~ V(i) v (1- )
d _ _ — r(1—
— A ijleTAAij EV (W1, , W) > -
d(wla 7wd) - d T ) (1 + Ii)V (f)
Y Wil AATw )
wherew;,. .., w* are thed leading principal components of 10 cdr
A, equivalently, the topl leading eigenvectors of AT .3 Note V(0.5) Zgi 1w T A2
. . . . . . J=1 W] 2
that unlike the fixed design setting, the quality of any dolut L s . . 5 )
is judged in terms of the ideal solution, and is not a function _ C{a2d:(log? n)n" 1 V o[(1 + K)/k]? (log> n)n_i}.
of the actual realization of the authentic points. V(0.5)
The Expressed Variance represents the portion of signal ] ] I )
Ax being expressed by, ..., w . compared to the optimal AS 1N the fixed design case, the parameteis implicitly
’ ) d .. . ) .
solution. The EV is always less than one, with equalit9pt'm'zed by the algorithm; here as well, it controls thel&a
achieved when the vectoss; w; have the span of the off between the fraction of the total variance in a particula
true principal componentss, ..., w*. Notice that when] > direction captured by the authentic vs. the corrupted gpint

and the probability that a corrupted point is removed in the

d, the denominator equatsace(AA"). dom removal (Step 2 d.) of the algorithm.

If Expressed Variance equals 1, this represents perfé%

recovery. Expressed variance bounded away from zero in- emark 2:We briefly explain how variations of the

dicates a solution has a non-trivial performance bound. V@gecn‘lcs in Setup 2 may affect the results promised in Theo-

show below that HR-PCA produces a solution with expresscrae 2. The following results can be obtained essentially by a

variance bounded away from zero for all values)otip to Similar argument as that presented in the proof of Theorem 2.
50% (i.e., up to 50% corrupted points) and has expressed® 'h€ assumption that the noise follows a Gaussian
variance equal to one, i.e., perfect recovery, when the ramb distribution can be relaxed; if the noise is sub-Gaussian,
of corrupted points scales more slowly than the number of Theorem 2 St_'” holds, with the only difference be_mg the
points. In contrast, we do not know of any other algorithnttha ~ constant, which then depends on the sub-Gaussian norm
can guarantee a positive expressed varianceifiyr positive of the noise. , )

value of \. o The log terms in the last term of Equation 2 can be

The performance of HR-PCA directly depends anthe improved if7z is assumed to be sub-Gaussian.
fraction of corrupted points. In addition, it depends on the * AS mentioned above, the assumption of spherical symme-

distribution 1. of x (more preciselyzz, as we allowd itself try of y is non-trivial. In the absence of spherical sym-
to go infinity). If 7 has longer tails, outliers that affect the ~ Metry. the theorem holds with some modifications. When
variance (and hence are far from the origin) and authentic # 'S not spherically symmetric, we may have different
samples in the tail of the distribution, become more difficul  t@il-weight functions in different directions. Thus, ugin
to distinguish. To quantify this effect, we need the follogi fiy to denote the 1-d marginal along directione Sy,
“tail weight” function. let Vy(-) de_note the co;respondmg “tail weight” funciuon

Definition 1: For any v € [0,1], let 6, £ min{d > of 7i,. Define VT(y) = supyes, Vo(v) and V= (7) =
07([—5,6]) > 7}, v~ 2 (55, 6,)). Then the “tail weight” glfvesd Vv (7). Then, W|th_essent|ally gnchanged algo-
function: [0, 1] — [0, 1] is defined as follows rithm anq proof, we obtain the following for the non-
symmetric case:

6y—€
V(7) £ lim g EIEQﬁ(dﬂf) +(y—77)8. V- (; . ﬁ) V- (1 . _f{l(irjy))
In words, V() represeﬁts the contribution to its variance by EVg2 1 Vi (i
the smallesty fraction of the distribution. Hencé — V() (1+x) (f)
represents how the tail @f contributes to its variance. Notice . 3
that V(0) = 0, and V(1) = 1. FurthermoreV’(0.5) > 0 since _ 10 cdr
7({0}) < 0.5. At a high level, controlling this is similar to V=(05) \ s~ wrT A2
the role of they functions in the deterministic setting. L ;:1 ’ 5 5 L
We now provide bounds on the performance of HR-PCA _ Clazdi(login)n7 v a[(1 + k)/k]2 (log> n)n"2}

for both the finite-sample and asymptotic case. Both bounds iall gi V .5I)| tthe ab H
are functions of\ and the function(-). As an essentially immediate corollary of the above theorem,

we can obtain asymptotic guarantees for the performance of
3In cased > d, wi,. .. ,w’ are be thel Principal Components ofl, and HR-PCA, in the scaling regime defined above. In particular,
any d — d orthnormal unit vectors. if we have r, x and i fixed, then the right-hand-side of



Equation (2) is non-trivial as long @?:1 Hw;.‘TAH%/J — oo measures the fraction of outliers required to make the autpu
andn/(dlog® d) — oco. In this case, the last two terms go teorthogonal to the desired subspace, or equivalently to make
zero asn goes to infinity, producing the following asymptoticthe expressed variance of the output zero. The next coyollar
performance guarantees. shows that the expressed variance of HR-PCA stays strictly
Theorem 3 (Asymptotic Performancejonsider a positive as long as\ < 0.5. Therefore, the breakdown point
sequence of{)(j)}, where the asymptotic scaling inof HR-PCA converges t60%, and hence HR-PCA achieves
Expression (1) holds,\* £ limsup\(j), and again, the maximal possible break-down point (a breakdown point
Wi,...,w; are the output of HR-PCA. Then the followinggreater thars0% is never possible.)
holds in probability whery 1 co (i.e., whenn, p 1 o), Corollary 2: Supposer({0}) = 0. Then, under the same
Lo . . assumptions as the above theorem, as long'as 0.5, the se-
hmH}f EVi{w1(7), - W4())} quence of outputs of HR-PCA, denoté®(j),...,w;(j)},

N (145 i . satisfy the following in probability:
4 (1 B (15»>Z) 4 (% B 1)\>\*) 3

2 max T+r) ) (i : liminf EV {1 (j), ..., W (j)} > 0.

n J
The graphs in Figure 1 illustrate the lower-bounds of

t
Remark 3: The bounds in the two bracketed terms in the ) ) X -
ymptotic performance when the 1-dimensional marginal of

asymptotic bound may be, roughly, explained as follows. THE : Tee W i '
first term is due to the fact that the removal procedure may S the Gaussian distribution (Figure (a)) or the Uniform
well not remove all large-magnitude corrupted points, whildistribution (Figure (b)).
at the same time, some authentic points may be removed ot o o e e
The second term accounts for the fact that not all the ostlier ' .
may have large magnitude. These will likely not be removed 0s
and will have some (controlled) effect on the principal com- v v
ponent directions reported in the output. Another intémgst > > 05
interpretation of this is as follows: the second term is the " "
performance bound for the (non-convex) projection pursuit , 02
algorithm using trimmed variance (our RVE), while the first o ot
bound can be regarded as the approximation factor incurre . O
by our randomized algorithm. - _ (a) Gaussian distribution (b) Uniform distribution
We have made two claims in particular about the perfor- L .
. . . . ig. 1. This figure shows the lower bounds on the asymptotitopeance
mance of HR'PCA- It is asymptotlcally 0pt|.m<’.:1| When thef HR-PCA, under Gaussian and Uniform distribution far
number of outliers scales sublinearly, and it is maximally
robust with a breakdown point 050%, the best possible
for any algorithm. These results are implied by the next two
corollaries. IV. KERNELIZATION
For small A\, we can make use of the light tail condition
on 1, to establish the following bound that simplifies (3). Th?
. . e
proof is deferred to Appendix D.
Corollary 1: Under the settings of the above theorem, t
following holds in probability whenj 1 co (i.e., whenn,p 1
00),

We consider kernelizing HR-PCA in this section: given a
ature mappindgY'(-) : R? — H equipped with a kernel
hfémction k(-,-), i.e., (Y(a), T(b)) = k(a,b) holds for all
a,b € RP, we perform the dimensionality reduction in the
feature spacé{ without knowing the explicit form of('(-).

We assume thafY(y1),---,Y(y»)} is centered at origin
liminf EV ;{w1(j),...,w;(j)} without loss of generality, since we can center any) with

! the following feature mapping

S max |1 — x — Car*log?(1/1*)

> ma V(05) T 2 T — LS 1y,
. C’\/Wlog(l/)\*) ( ) (x) TL; (yi),
- V(0.5) '

Remark 4: Thus indeed, ifn — t) = o(n), i.e., the number Whose kernel function is

n

of outliers scales sub linearly and hence\fj) | 0 then . 1

Corollary 1 shows that the expressed variance converges 62:P) = k(a,b) -~ > ka,y;))

1, i.e., HR-PCA is asymptotically optimal. This is in contras J=1 ,

to PCA, where the existence efien a singleorrupted point 1 & 1 o=

is sufficient to bound the outpurbitrarily away from the n Zk(y""b) Tz sz(y’"yf)'
optimum. =t =15=1

Next we show that that HR-PCA has a breakdown point Notice that HR-PCA involves finding a set of PCs
of 50%. Recall that the Break-down point is defined as the,...,wq € H, and evaluatingw,, Y(-)) (Note that RVE
fraction of (malicious) outliers required to change thepotit is a function of(w,, YT(y;)), and random removal depends
of a statistical algorithm arbitrarily. In the context of RCit  on (w,, Y(y;))). The former can be kernelized by applying



Kernel PCA introduced by [39], where each of the output PG3nally, and perhaps most importantly, the performancemf P
admits a representation and ROBPCA degrades as the dimensionality increases, which
s makes them essentially not suitable for the high-dimeradion
wo =Y (@) Y(F;). regime we consider here. This is more explicitly shown in
= Figure 3 where the performance of different algorithms wers
. ) dimensionality is reported. We notice that the performaufce
Thus, (w,, T(+)) is easily evaluated by ROBPCA (and similarly other algorithms based on Stahel-
n—s Donoho outlyingness) has a sharp decrease at a certain
(wg, T(v)) = Z aj(Qk(yj,v); VveR? threshold that corresponds to the dimensionality where S-D
j=1 outlyingness becomes invalid in identifying outliers.
Figure 4 shows that the performance of MVT depends on
e dimensionalityn. Indeed, the breakdown property of MVT
is roughly1/p as predicted by the theoretical analysis, which
makes MVT less attractive in the high-dimensional regime.

Therefore, HR-PCA is kernelizable since both steps aréyeasﬂq
kernelized and we have the following Kernel HR-PCA.
Here, the kernelized RVE is defined as

i [ nes 2 A similar numerical study ford = 3 is also performed,
Via) £ 12 ‘<Z aj"f(yj),“f(y»‘(i) where the outliers are generated ®mrandom chosen lines.
t i J=1 The results are reported in Figure 5. The same trends as in
o 2 the d = 1 case are observed, although the performance gap
Iem | == between different strategies are smaller, because thet effe
. | Z O‘jk(yﬂ’y)‘(t) outliers are decreased since they are3atirections.
==t While this paper was under review, two new robust PCA

methods based on the decomposition of a matrix into the sum
V. NUMERICAL [LLUSTRATIONS of a low-rank matrix (via nuclear norm) and an “error” matrix
In this section we illustrate the performance of HR-PCAave been proposed. In particular, in [40] the authors mego
via numerical results on synthetic data. The main purpoee RPCAmethod in which the error is modeled as a sparse
is twofold: to show that the performance of HR-PCA is amatrix, and in [36] the authors proposed the so-caledlier
claimed in the theorems and corollaries above, and to canp®&ursuit method in which the error is modeled as a column-
its performance with standard PCA, and several popularstobgparse matrix. The first method (RPCA) is not designed to deal
PCA algorithms, namely, Multi-Variate iterative Trimmingwith the kind of corruption we have here, but rather consider
(MVT), ROBPCA proposed in [18], and the (approximatejhe setting where each point is corrupted in a few coordmate
Project-Pursuit (PP) algorithm proposed in [30]. Our nuoar Nevertheless, we compare its performance empirically.
examples illustrate, in particular, how the properties lné t  Under the same setup as Figure 4, we compare the proposed
high-dimensional regime discussed in Section Il can degra#nethod with these two methods. In addition, to demonstrate
or even completely destroy, the performance of availabieat HRPCA is resilient to the parameter selection, we also
robust PCA algorithms. report the performance of HRPCA whefrés fixed to be0.5n
We report thel = 1 case first. We randomly generatpal regardless of the fraction of the outliers (labeled HRPCB)0
matrix and scale it so that its leading eigenvalue has maggit in the figure). Figure 6 and 7 report the simulation results
equal to a giverwr. A ) fraction of outliers are generated on dor d = 1 and d = 3 respectively. We make the fol-
line with a uniform distribution ovef—o-mag, o-mag]. Thus, lowing three observations: (i) The performance of HRPCA
mag represents the ratio between the magnitude of the outliersd HRPCA(0.5) is essentially the same, demonstrating that
and that of the signallx;. For each parameter setup, we repoHlRPCA is resilient to parameter selection; (i) RPCA and
the average result &0 tests (and th€0% confidence interval Outlier Pursuit perform well for small, but break down when
of the mean) . The MVT algorithm breaks down in the= A becomes larger. This is well expected, and has been observed
p case since it involves taking the inverse of the covariangeprevious studies [36], [40]; (iii) The performance of RRC
matrix which is ill-conditioned. Hence we do not report MvTand Outlier Pursuit degrades significantly whenbecomes
results in any of the experiments with = p, as shown in small (equivalently, when the noise becomes large). This is
Figure 2 and perform a separate test for MVT, HR-PCA arbt surprising — as we discussed in Section Il, one drawback
PCA under the case that< n reported in Figure 4. of these methods is that their performance scales unfalyorab
We make the following three observations from Figure 2vith the magnitude of the noise.
First, PP and ROBPCA can break down wheis large, while
on the other hand, the performance of HR-PCA is rather robust VI. PROOF OF THEMAIN RESULT
even when)\ is as large ast0%. Second, the performance In this section we provide the main steps of the proof of the
of PP and ROBPCA depends strongly eni.e., the signal finite-sample and asymptotic performance bounds, inctudin
magnitude (and hence the magnitude of the corrupted pointsle precise statements and the key ideas in the proof, but
Indeed, wherv is very large, ROBPCA achieves effectivelydeferring some of the more standard or tedious elements to
optimal recovery of thel subspace. However, the performancthe appendix. The proof consists of four main steps.
of both algorithms is not satisfactory whenis small, and 1) We begin with the fixed-design setup, i.e., no assump-
sometimes even worse than the performance of standard PCA. tions on the authentic pointsz;} are made. The first
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Algorithm 2 Kernel HR-PCA

Input: Contaminated sample-sgt= {y1,.-.,yn} CRP, d, T, .
Output: @(1),...,a@(d).
Algorithm:
1) Lety;, :=y;fori=1,...n; s:=0; Opt := 0.
2) While s < T, do
a) Compute the Gram matrix dfy; }:
b) Lets?,---,62 andéa(l),--- ,é(cZ) be thed largest eigenvalues and the corresponding eigenvectaks. of
C) Normalize:aflq) = &(q) /64, so that{w,, w,) = 1.
d) If Z‘qizl V:(a(q)) > Opt, then letOpt := 22:1 Vi(a(q)) and leta(q) :== a(q) for g =1,--- ,d.
e) Randomly remove a point frody;};~;° according to
J n—s
Pr(y; is removed oc > (Y a;()k(3;.5:)%
q=1 j=1
f) Denote the remaining points bly; ;L:‘f“l;
g) s:=s+1.
3) Outputa(1),...,a(d). End.

step shows that with high probability, the algorithm findé&\.. Step 1
a “good” solution within a bounded number of steps.

In particular, this involves showing that if in a given The first step shows that the algorithm finds a good solution
step the algorithm has not found a good solution, in tha a small number of steps. Proving this involves showing tha
sense that the variance along a principal componentaggany given step, either the algorithm finds a good solution,
not mainly due to the authentic points, then the randost the random removal eliminates one of the corrupted points
removal scheme removes a corrupted point with probaith a guaranteed probability (i.e., probability boundedhg
bility bounded away from zero. We then use martingalgom zero). The intuition then, is that there cannot be tomyna
arguments to show that as a consequence of this, theteps without finding a good solution, since too many of the
cannot be many steps with the algorithm finding atorrupted points will have been removed. This section makes
least one “good” solution, since in the absence of goatis intuition precise.

solutions, most of the corrupted points are removed by | ot us fix ax > 0. Let Z(s) and O(s) be the set of re-

the algorithm. _ .__maining authentic samples and the set of remaining coriupte
2) The previous step shows the existence of a "googdoinis after thes” stage, respectively. Then with this notation,

solution. The second step shows two things: first, thglas set of remaining points &(s) = Z(s)|J O(s). Observe
this good solution has performance that is close to thﬁi{at V(s)| = n — s. Let7(s) = V(s — 1)\)(s), the point

of the optimal solution, and second, that the final outpyt,oved at stage. Letwy (s), ..., w.(s) be thed PCs found

of the algorithm is close to that of the "good” solution;, he stk stage — these points are the output of standard PCA
Combining them together, we derive a perfotrmanc&n V(s —1). These points are a good solution if the variance
guarantee for the fixed design case, i.e., for fmy}_i. of the points projected onto their span is mainly due to the
3) From the third step onwards, we turn to the stochastig,ihentic samples rather than the corrupted points. Weteleno

design case. Whefiz;};_, are generated according toys sgood output event at stegs by &(s), defined as follows:
Setup 2, we can derive more interpretable results than

the fixed design case. In order to achieve that, we prove

in this step that RVE is a valid variance estimator witf (s) =

high probability. d 14

4) We then combine results from previous steps, and sif> ~ Y~ (w;(s)z)? > =Y Y (w;(s) 0:)*}.
plify the expressions, to derive the finite-sample bound =1 ,,cz(s—1) ) 0,€0(s—1)

We show in the next theorem that with high probabil&ys)
is true for at least one “smalls, by showing that at every

In what follows, letters:, C' and their variants are reservegvhere it is not true, the random removal procedure removes a

for absolute constants, whose value may change from lineG@Tupted point with probability at least/ (1 + «).
line. Theorem 4:With high probability event,.(s) is true for
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somel < s < so(k), where k)3logn/(k3n) > 1, thensy(k) < n < 2t implies so(x)/t <
X (14 m)\n C'(1+ k)3/2(logn)'/? /[k3/*n1/?], thus we have
ol e {(1 o } ’ wyt < QRN L) (o) 2
0 >
(1+k)logn (1+k)logn (1= A) K3/2nt/2
e=C X 4+ X . ot (1 + H))\
KAN KAN def T, (4)
In this step, thes is fixed, hence we will simply write, and K(1—=A)
&(s) to lighten the notation. _ The right hand side of Equation (4) converges (tb +
Remark 5:Divide s by ¢ leads to (noticen > ¢ = (1 — )\ /k(1 — A) for any fixed x (indeed, for any sequence of
A)n > 0.5n, and henceé andn are of same order) %, such thats, ~ w(logn/n)l/d). Therefore,s, < t if
1+r)A  CA+k)2logn (I+r)A<k(l—X) andn is Iarge._ .
so(k)/t < (1= o Whens, = n, Theorem 4 holds trivially. Hence we focus on

the case wherey < n. En route to proving this theorem, we
first prove that wher€(s) is not true, our procedure removes
a corrupted point with high probability. To this end, &t

Notice that when(1 + x)3logn/(k3n) < 1, then the second be the filtration generated by the set of events until stage
term is dominated by the third term; on the other hand] # Observe thaD(s), Z(s), Y(s) € F,. Furthermore, since given

C(1+ k)32 (logn)'/?
+ 13/2p,1/2 :
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Y(s), performing a PCA is deterministi€,(s + 1) € F;. Proof Sketch: Note that

Theorem 5:1f £¢(s) is true, then
K <n 5 ) Pr T > S())

Pr({7(s) € O(s — 1)}|Fs—1) > T r
Proof: If £¢(s) is true, then <Pr (X >

(®)

KRSQ

T /@> =Pr (X5, > (1 +¢€)In),

d 14 where the inequality is due t06O(s)| being non-negative.
Z Y. wils)Tz)? <= > (wi(s)"0)’,  Recall thatX, = An. Thus th?(pr)gbability that no good
j=lzi€Z(s—1) j=lo,€0(s—1) events occur before stem, is at most the probability that

a supermartingale with bounded incremements increases in
value by a constant factor ¢f +¢), from An to (1+¢€)An. An
appeal to Azuma’s inequality shows that this is expondutial

which is equivalent to

d
Z Z(Wj(S)TZi)Q + Z Z w;(s)"0;) unlikely. The details are left to the appendix. [ |
z,€Z(s—1) j=1 0,€0(s—1) j=1 B. Step 2
< 1tk Z Z w;(s)T0:)2. Theorem 6 (Fixed Design)The following three statements

hold for the fixed design case:

0;€0(s—1) j=1 . .
1) For anyx > 0 such thatsg(k) < n, with high

Note that probability there exists < sq(x), such that
Pr({7(s) € O(s — 1)}| Fs-1) d t—so(r) i ¢
_ wiz| < (w;(s)z)?.
= 3 Pr(R(s) = 0ilFen) | o ;; ’
0,€0(s—1) (6)
d - 2) For anys < n,
> (wjls) T0r)? t

B 0,€0(s—1) j=1 d t-% , P o
N d d Z Z [w;(s |(i) SZZ|WJ' z|(y.  (7)
Yooy (wils)Tz)2+ > Y (wj(s)To;)? j=1 =1 j=1i=1

z%f_f(s_l)j:l 0Ol It 3) Let o (-) and () satisfy for anyt’ < ¢, w € R?
> . i _
T n with ||lw|l2 =1,
t
Here, the second equality follows from the definition of the ~(t'/t) Z z;)? <Z (w22
algorithm, and in particular, that in stage we remove a = -

point y with probability proportional toZ?:l(wj(s)Ty)Q, t
and independent to other events. n e /1) (wlz)?,
As a consequence of this theorem, we can now prove i=1

Theorem 4. The intuition is rather straightforward: if the then with high probability,
events were independent from one step to the next, then since . ¢ d
“the expected number of corrupted points removed” is at o~ (M) 7<f _ L) ZZ(W*TZ.)2

_ t t 1—\ ‘
leastx/(1 + k), then aftersy = (1 + €)(1 + k)An/x steps,

i=1 j=1

with exponentially high probability all the outliers woulze ’

removed, and hence we would have a good event with high <(1+K)p ( )ZZ W

probability, for somes < sq. Since subsequent steps are not

independent, we have to rely on martingale arguments. Proof: Part 1: With h|gh probability, there exists <

LetT = min{s|E(s) is true}. Note that sinc€(s) € Fs_1, so(x) such thatf,(s) is true. Then we have
we have{T > s} € Fs_,. Define the following random ;

d
i 1
variable Z Z(Wj(5>TZi)2 > - Z Z w;(s) o;)
|O( _ 1)| + H(T 1)7 if T < s z,€Z(s—1)j=1 0,€0(s—1)j=1
X =13 100s) s T s Recall thay(s—1) = Z(s—1)J O(s—1), and thatZ (s — 1)
andO(s — 1) are disjoint. We thus have
Lemma 1:{X,, F,} is a supermartingale. 1
Proof Sketch: The proof essentially follows from the T+ r Z Z w;(s)'yi)
definition of X, and the fact that i€ (s) is true, thenO(s)| F yiev-1) =1 ®)
decreases by one with probability (1 + «). The full details
are deferred to the appendix. ] < Z Z wi(s) " z)

From here, the proof of Theorem 4 follows fairly quickly. 7, €Z(s—1) j=1
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Sincew,(s),...,w;(s) are the solution of the’" stage, the  Substitute this into Equation (11), we have

following holds by definition of the algorithm i i
DD W) Aty <303 WAl (12)
j=11i=1

d
Yo YWy Y ng Ty)2 (9) = 5

yi€V(s—1) =1 yi€V(s—1)s=1 Part 3: By definition of ¢ (-) and ¢~ (-), Equation (10)
Further note that byZ(s—1) C Y(s—1) andZ(s—1) C 2, leadsto
we have —s0

d ¢t d t
d @7(%) ZZ(W;TZZ-)Q < >
Z Z(W;Tzi)2 § Z Z W yZ ) j=11=1 J=

2
_ |W;TZ|(i)

1 =1

z,€Z(s—1) j=1 yi€YV(s—1) j=1 t
<(1+=k w .
and 2;(

Jj=li=

d d Similarly, Equation (12) leads to

> 2wz Y (wils) ' z)? ) ;

z;€Z(s—1) j=1 z,€2 j=1 _t A T .9
t == IS

Jj=11i=1

- 12 )
=1 j=
<> (w;(s) "2l

Substituting them into (8) and (9) we have
d t
Z Yo Wiz <)Y (wils) m)
] 12,€2(s—1) J=1i=1 j=1i=1 j=1i=1

Note that| Z(s — 1) > ¢ — (s — 1) > ¢ — so(x), hence for al Combining these together, we have that

j:]-a"'vdi t—S( ? t d
- oﬁ)) _(ﬁ_ A) T, N2
N £ IR o )7 & 1= 2;(% i)
* * 2 =1)=
SINEEED ST SRt o
i=1 i=1 z,€Z(s—1) —
. < (4Rt (1) DDz
which in turn implies i=1 j=1
1 d t—so(r) d t u
1+k Z Z |WJ*Z ) < Z Z(WJ(S)TZL)Q (10)
j=1 =1 j=1i=1 C. Step 3
Part 2: The definition of algorithm implies that From this step on we focus on the stochastic design case.
Recall that in this case, the authentic samples}!_, are
a. d_ generated according o = Ax; + v; for i.i.d. x; € R, and
D Vilwi(s) <> Vi(w)). Gaussian noise; € R?. Our main goal is this step is to show
=t =t that for anyw, ..., w; andt’ <t, YD \sz\ is a
Recall thatV;(w) = + 377, lwTyl?,), hence we have good indicator ofzjz1 [w; Al|3. Thus, combining W|th the

result in Step 2 establishes Theorem 2. En route to this, we
d_ i d i require following lemmas about the properties)of-). The
w1 2
Z Z| Y|(z) = Z Z W, Y|(i)~ (11) proofs are deferred to Appendix B.
j=1i=l1 j=li=1 Lemma 2 (Monotonicity oP): Given 0 < a7 < ay <
Further notice that for any unlt-nonw € RP, sincez c Yy as <1, we have

and|V\Z| = An = At/(1 — \), we have V(az) — V(a1) - V(az) — V(az)
foAt G — ay T az—ay
Z | 2 Zl 2 o Zl 2 Lemma 3: 1) For anya € [0, 1], we have
w'z Wy W z|j;
gt (1) (4) (i) V(a) < a.
Here, the first inequality holds because for @anglements in  2) For any0 < a; < az < 1, we have
), at leasti — \t/(1 — \) belongs toZ; the second inequality as — ay
holds because any subset®fwith £ elements, is also a subset V(az) = V(ar) < 1—a

~ 1
of Y with ¢ elements, thus the inequality follows from the Lemma 4:For anye > 0 andx € [e, 1], we haveV (k) —
definition of order statistics (i.e., the smallest elempnts ~ V(k — €) < Caelog?(1/e).
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The rest of the this section depends the following concewhere (a) holds due to the fact thatw " Ax,,| are non-

tration condition. decreasing. We now bound three terms separately:
Condition 1: (1)

t' t/ T
wes, Ui 1 T A2 T a2l ‘ w A )2
i= I. - w Ax|7 = ||w A5 X
n 7 2w Aty = W AT 2 [
=1 i=1
1 o d10g3n I TAH2 1 zt’:| T |2
Tx.)2? def <||w sup — x|7
sup |— q x;)° =1 < Cay| = g9. = 2 sup a X
qesd‘ Lz;( ) ‘ n 0 qesa t i—1
_ T 2 ! / .
(1) Supposes, < 1. For allq € S; and? < ¢, <|lw A2V /t) + e (t'/1));
t
7 2
t T T
1 II. —Z|W Ax;||w ' v
- Z V(i/t) t
= t t
1 1
< Ct(1 +€;))\/td10gn/n Catd (logn)in— <2 ;Z'WTAX”Q ZZ|wTvi|2
- =1 1=1
= /). L
Theorem 7:Condition 1 holds with high probability. <2|w' A, sup Z lqTxi|2, | = Z lwT v |2
The proof of Theorem 7 is lengthy, and hence deferred to q€Sallall=1 't t =
ﬁ;;l)sp(;?:;x C. We are now ready to show the main result of 2||WTAH§m\/E'

Theorem 8:Suppose Condition 1 holds. Then for &l €
S,, andt’ < ¢, the following holds:

lw T AIBV(E /1) — e1(t'/8)] = 2l w " All2/(1 + eo)er

tl
1
7 § ’ |sz|@) We thus have

1
IIT. ?ZW vi)? <er.

IN

w135 + 21 (5] + 20w AT T 200 e

tl
1
n Z |WTZ|<2i)

Proof: Recall thatzz = Ax; + v;. Fix an arbitraryw €

S,. Let {m}t_1 and{7;}!_, be permutations dfi, ..., ¢] such <HWTAH V(' /t) +e1(t'/8)] + 2|w T Alla/(1 + 0 )er + cr.
that bothjw "z, | and|wTAxm| are non- decreasmg Thus we
have
tl
_Z|W Z|(z Z|W 7,2 < Z|WTZ7’U|2' Similarly, we have
i=1
Expandmg the r|ght-hand—S|de yields
t/ 1 tl l
LY T LS Tl = £ A T
i=1 i=1 i=1

/

t
1
3w 4w v Do A 2 =2 3w T

i=1 =1 =1

v
| =
S

t/

t t t
1 1
ST 2 AT 423w Axs [lwTva, 270 22 W AxlEy) =23 e Axiljw i
=1 =1 i=1 =1
t T A2 / ’ T
> A t/t) — t/t) —2 A 1 .
+Z(WT%)Q} >||lw T AIBV(E /) = 1 (¢ /4)] = 2w All2/(L+ 2g)er
=1
@1 t t -
S0 WA +2)  w ! Ax|lw v
L i=1 The following corollary immediately follows from the fadtat

t d ~ d
+Z(WTVZ-)2 | > lagl <4/d 325, a5 holds for anya;.
Corollary 3: Suppose Condition 1 holds. Then for all



W1, .. Wci € S, andt’ <t, the following holds:

Z iwf 413 (5) —= ()

d
-2 J[Z HWIAH%} (14+¢ep)er

j=1
1 d
<D Iwlaly
j=1i=1
d ¢ t’
<D 1WAV (S) +a1(7))

1

J

d
+2 J[ Z HW;FAH%} (14 ¢eo)er + cdr.

J=1
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Herec and C are absolute constants.

Proof: Recall that with high probability Condition 1 and
Ui“z(f) . (s) are both true. So we restrict our attention to this
case. Further notice that we can asswpe< 1, e,(/t) <
V (£/t = \/(1 = ))) and cdr/H* < 1, since otherwise the
theorem holds trivially as the right-hand-side of Equa{ib8)
is negative.

Since Uz‘):(f) E.(s) is true, there exists & < sy such

that £.(s) is true. To simplify notation, denote H, £

>%_, [w;i(s)TAlj3. Theorem 6 leads to

Using Corollary 3 to lower bound the left-hand-side, and
Corollary 4 to upper bound the right-hand-side, we have

In the special case wheré = ¢, we can indeed sharpen the

result of Theorem 8, since in this case

t

~| =

V(t'/t)

i=1 i=1

This leads to the following corollary.

t
= %Zv X;) —1|§50.

SN B Y

[

T+ n ))H -2 (1+80)CdH*T:|

S (1 + 8())HS + 2\/ (1 + 6())C(jHS’T + CJT
<(Q+e0)Hs +2¢/(1+ Eo)CCZH*T + cdr,

Corollary 4: Suppose Condition 1 holds. Then for all

wi,...,W; € S, the following holds:

ZHWTAH [1—eo] —2 dZuwTAH (1+eo)c

j=1 j=1

t
> D Iwjml’

1:=1

Mm

1
< =
-t

.
Il

lw; AJI3][1 + eo]

™=~

<

J

d
+2 [d[ Y w] A3 (1 + eo)er + cdr.

j=1

D. Step 4

theorem.

Finally, based on all previous results, we prove the mai 7 A 7 A
Pl - 1250 -~ 125 .

Theorem 2: Let the algorithm output bév,,...,w
and denote the optimal Principal Components ofd as

wi,..., w3 Denoter £ max(p/n, 1) and

d d
H* &) |wiTAl3;  H2) WAl
j=1

j=1

J
With high probability, the following holds for any,

ARIESIT

H* = (1+K)V (;) V(0.5)

_ C{atdi(log® n)n~% Vo[(1 + k)/k)% (log? n)n" 3}

V(0.5)

where the last inequality holds because for aZmHS < H*.
By re-organization, we have

>

(V(ﬂ)_a( ))H — (26 + 0/ (1 + o)edHr

— (1 +&)edr < (1+ &)(1 + o) H,.
(13)

On the other hand, Theorem 6 also gives

L1t
d t—1==x

i i
> Z wis)Talty <D0 W] alf),
j=1i=1

j=1 i=1

which by applying Corollary 3 and 4 implies

- 1 IrH,
Y P (14 eo)cdrH.
t t\]— g

< |:V (E) +é1 (E)]H+2 (1+€())Cd7'H+Cd7'.

Notice thats, (-) is non-decreasing, anfl,, H < H*, we can
simplify the equation to the following one:

A )1/2 _ {V <tm> - <t>} " (14)

{V (%) +é&1 (;)] H+4/(1+ EO)CJTH* + cdr.

Combining Equation (13) and (14), and notice thatf/t) <
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V(t/t — \/(1 = X)), we have Substitute into Equation (16) leads to
7 V(- 2n) @] (5 - a)] [V (E=25) —=@/m)] [V (52) — (@)
T e v (8) + a0 (L4 2o)(1+5) [V (£) +ea(i/e)]
(26 + 4) [V (; - ﬁ) - el(f/t)} (1+ eo)edr ZV(% -2V - 15) 3a(d) reot Qa(log n)en
{ A +e0)1+m) [V (§) + )] (1 +m(4) v (i)

(17)

N A1+ K)(1 +20)y/ (1 + o)edr } g+ -1/2  To bound the second term, we have
(1+¢0)(1+ ) [V (i) + 51(t/t)} (2 + 4) [v (g - ﬁ) - sl(f/t)} (1+ eo)edr

) { V(i-25) - sl(f/t? +1+ 0| cd}} . (o)1 +m) [V (1) +eii/)]
(1+c0)(1+ ) [V (1) +ealiy)]

(15) . 414 K)(1 +e0)y/ (1 + o) edr
Finally, we simplify the right hand side of Equation (L5), (+e0)(1+n) |V (§) + (/)
by bounding the three terms separately: (45 + 4) {V G)} VITeo+4(1+ k)1 +e0)vVITeo
N <
v (§ - 25) —alin] v (52) — =) - (1+20)(1+ ) (£)
(1+20)(1+ k) {V (%) + El(f/t)} i (%) 4(1 + €9) 8 o .
e e ] (e ER T G I (B O B O BT O M
B (1+e0)(1+ k) {V (%) + 61(5/75)} To bound the third term, we have
@ Y (F-25)v (=) 2a(i/1) [V (E-25) —aali/t)] + L+
C(1+e)1+k) |V %) + sl(f/t)} % (i) (1420)(1+ k) [v (;) + gl(f/t)}
w1V (E-25)V(52) 2eu(i/1) v(i-25) o 2
Carap(@ratn] v EEIOEREIORIO
VY (% - ﬁ) v (t_%) B 251(£/t) + €0 Combining Equation (17), (18) and (19), we have
(1+r) {V (%) +e1 f/t)] 1% (%) 7 v (% _ ﬁ) v (1 (1(41“@?))
w(i-2)vE () -a0)] w@®ie B OO 1+ (1)
B (1+rK)V? (%) 1% (%) B 3e1(t/t) + g9 + Ca(log® n)e,
©Y (£-25) v (52) Bailf/t) feo. v (i)
a+ v (7) v(H L\/ZC_ cir 2 _cir
oo Vi Ve e
o e e e B0 ()
1/(a+€) > (a—e)/aZ; (e) holds because(i/t—\/(1- X)) < - a+nv (1) JOR
V(t/t). Further recall from Equation (4) that ) dr Cleo v e (i ) v aflog? n)e]
so(k)/t < I(:(;LKL); + &ns 7@ <H_> : V(05)
which by Lemma 4 leads to S v G B IAA) v (1 f(ﬁl(Jlm)A)) 10 (Cd_T>é
(1+ k)X t— N (1+k () - V(05) \ H*
v (1 Tk K)\)) -V ( tso) < Coeglog'(l/er) Cleo v e1(i/t) V allog? n)e.]
< Cag,log®n. B V(0.5) ’
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where in the last two inequalities we use the fact that> 0.5 The proof of the above theorem depends on first showing that
andcdr < H*. We can further simplify the last term by the random variableXy, is a supermartingale.
- Lemma 1:{X,, Fs} is a supermartingale.
log® ;
Cleo Ver(t/t) V aflog” n)ey] Proof: Observe thatX, € F,. We next show that

. 3V(0'5)1 L . ) E(Xs|Fs—1) < Xs—1 by enumerating the following three
Cadz(logzn)n"2  CaZzdi(log? n)n” % cases ofF,_; (recall {T > s}, {T = s},{T < s} € Fs_1):
- V(0.5) V(0.5) Case 1,I" > s: Thus we have“(s) is true. By Theorem 5,
Cal(1 + m)/m]%(log% n)n=3%] under this situation,
V(0.5) E(X, — Xo 1| Fs 1)
< Clozdi(logh mn74 v of(1 + n)/w]2 (log? nn 2] = I (0<s> —O(s — 1)+ \&_1)
- V(0.5) 1+k
where the last inequality holds since when = 1 E _Pr(F(s) € O(s — 1)| Fe-1)
o 2qM /4 (log™* n)n~/4 < 1 (otherwise the theorem R
holds trivially), we have ad/2(log®?n)n=1/2 < = —Pr(7(s) € O(s — 1))
1/2 g1/4(1065/4 1))y —1/4 1+k
at/=d % (log” " n)n . [ | < 0.
VII. CONCLUDING REMARKS Case 2T = s: By definition of X, we haveX, = O(s —

In this paper, we investigated the dimensionality-redarcti 1) + (s = /(1 + k) = X1 .
problem in the case where the number and the dimensionalitf°2S€ 31 < s: Since both” and s are integer, we have
of samples are of the same magnitude, and a constant fractloir s —1- Thus, X1 = O(T 1) +#(T - 1)/(1+“) = Xs.
of the points are arbitrarily corrupted (perhaps malicipss). ~ 1hese three cases enumerate all possible,. Hence
We proposed a High-dimensional Robust Principal Comp69Mbining them together shows tha{X;|F;—1) < X1,
nent Analysis algorithm that is tractable, robust to coredp Which proves the lemma. =
points, easily kernelizable and asymptotically optimaheT N€Xt, we prove Theorem 4.
algorithm iteratively finds a set of PCs using standard PCA Proof: Note that
and subsequently remove a point randomly with a probability 50
proportional to its expressed variance. We provided both  Pr <ﬂ 5(8)C> =Pr (T > s9)
theoretical guarantees and favorable simulation resbitsita s=1
the performance of the proposed algorithm. KSo

ch) the best of our kr?owpl)edge, p?evious efforts to extend <Pr <XS“ & 1+ m) = Pr(Xs, 2 (1+€)An),

existing robust PCA algorithms into the high-dimensiorade where the inequality is due t@(s)| being non-negative.
remain unsuccessful. Such algorithms are designed for IOWLety> A X._ X._,, where recall thafy — An. Consider
dimensional data sets where the observations significangly. follgwingssequ:anc,e:

outnumber the variables of each dimension. When applied to
high-dimensional data sets, they either lose statistioabis- vh 2 ys — E(yslyr, - 5 ys—1)-
tency due to lack of sufficient observations, or become lighl o . .
intractable. This motivates our work of proposing a new mbUObserve that{y,} is a martingale difference process w.rt

PCA algorithm that takes into account the inherent diff'yault{}—s}' Since{X.}isa supermartingal@(yswl, o Yse1) <
in analyzing high-dimensional data. 0 a.s. Therefore, the following holds a.s.,

(20)

APPENDIX Xe=Xo=Y 4= yi+Y EWilyr, -~ vi1) <Y v
A. Proof of Theorem 4 and Lemma 1 =t =t A e
Recall the statement of Theorem 4: By definition, |ys| < 1, and hencely’,| < 2. Now apply
Theorem 4With high probability( JI? ; £, (s) is true. Here Azuma’s inequality,
1 A
so(r) 2 (1 4+ 9 LEDA, Pri 2 (g
s0
{ (1+k)logn (1+ k) logn} < Pr((z yi) = exn)
e=C + . i=1
KAN KAN

< exp(—(eAn)? /8s0)

As k is fixed, we will simply write€(s) and s, in the proof. (exn)?k
Recall t'hat we defined the random vqriaﬂf@ as follows: Let = exp ( 81+ o)1+ K))\n>
T = min{s|€(s) is true}. Note that sincef(s) € Fom1, WE (exn)2s
have{T > s},{T = s}, {T < s} € Fs_1. Then define: < exp (8(1 0T K))\ﬂ)
X, = O(T - 1)| + H(1T+_nl)v it T <s; e nk EANK
’ 0(s)] + 1%, if 7> s. < max (eXp (_16(1+/{)) P P (_16(1+n)))'



Substitutinge with C' large enough (e.g.C' = 160), we
have that the right hand side is upper boundechby’. This
establishes the theorem. [ ]

B. Proof of Lemma 2 to 4
Lemma 2: Given0 < aq < as < ag < 1, we have
V(az) = V(a1) _ V(az) — V(az)

a2 —ax az — az

Proof: By definition, V(a) = ffy”((;)) 2?2 u(dr), and

notice thatv(-) is increasing, we have that

V(ag)—V(al):/ xzﬁ(dx)—f—/

—v(az) +v(ar)

—v(a1) +v(az)
< vas)?| / A(dz) + / i(dz))

—v(az) +v(a1)

+v(az)
o? i(d)

—v(a1)

= (az — a1)v(az)?.

On the other hand, by a similar argument, we have
V(az) — V(as) > (az — az)v(as)?.

The lemma thus follows. [ |
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some\ < 0.5. Then, there exist a universal constansuch
that with high probability,

1 : T 2 <
vfggp ;(w vi)* < ecr.

Proof: Theorem I1.13 in [41] established that suppadse
is anp x t matrix, whose entries are all i.i. (0, 1) Gaussian
variables, then the largest singular value Igf denoted by
s1(T), satisfies

Pr(s1(I) > /p+ Vt+/pVie) < exp(—(pVt)e*/2).
Our result now follows, sinceup,cs +> i (w'vi)? is
the largest eigenvalue o = (1/t)I'/ Ty, whereT; is a
p x ¢t matrix whose entries are all i.i.dV(0,1) Gaussian
variables. Hence the largest eigenvalue 16t is given by
Aw = [s1(I'1)]?/t. Thus we have

7(2n 4 ne? + 2n + 4v/n2e)
(1—=X)n )
p+t+(pVit)ed+2ypt+2(/p+ \/E)\/(p\/t)e)
t

PI‘()\W >

SPI‘()\W >

Lemma 2 immediately implies the Lemma 3. We next prov?Pr(Sl(F) >Vt Vit Vpv t)e)

Lemma 4.
Lemma 4: For anye > 0 andx € [e, 1], we haveV (k) —
V(k — €) < Caelog?(1/e).

<exp(—(pV1)e*/2)
<exp(—(1 — A\)n7e?/2).

Proof: By monotonicity, it suffices to prove the resultLet ¢ = ,/40(logn)/n, and notice that\ < 1/2 andr >

for k = 1. Notice that forK > 2q,

V(1) —=V(1 —e)
< eK?+ Epzi(2® - 1(z > K))

oo

:6K2+/ Pr (2% > 2)dz
K2 TR
oo

< eK? +/ exp(l — v2z/a)dz
K2

=eK?+ eo/ exp(—2v/z) dz
K2 /4a2

(a)
< eK? + 2eg exp(—y/z) K /4

=eK? +exp(l+1n2 — K/2a),

where (a) holds because when> 1, we haveexp(—/z) <
H H ; d(2exp(—=+vz

1/+/z, which impliesexp(—2+/z) < w =

2alog(1/e), we have that

V(1) = V(1 - ¢) < Caelog®(1/e).

C. Proof of Theorem 7

1, then the right hand side is smaller tharm'®. Thus we
conclude that with high probability

t

1 T2
sup — w v;)° < cT.
wES), t ;( Z>

[ |
Notice that whenv; are sub-Gaussian, the theorem still holds,
with ¢ possibly depends on the sub-Gaussian moment [38].
Theorem 10:There exists an absolute constéaht- 0, such
that with high probability

¢ / 3

1 T 2 dlog”n

sup |— E q'x)" =1 <Ca :
qesd‘t i:1( ? ‘ n

Proof: The proof of Theorem 10 depends on the the
following Lemma (adapted from Thm 5.41 of [38]).

Lemma 5:Let A be aN x M matrix whose rows4; are
independent isotropic random vectors . Let m be a
number such thafA; |2 < /m for all 7. Then for every3 > 0,
one has

\/N - ﬁm S Urnin(A) S Umax(A) S \/N + 6\/%7

This section is devoted to prove Theorem 7, i.e., to show
Condition 1 holds with high probability. We establish eachith probability at leastl — 2M exp(—c/3?), wherec > 0 is
claims of Condition 1 separately. an absolute constant.

Theorem 9:Let 7 = max(p/n,1). Recall v; are iid. Consider matrixX where thei'" row is x/. To apply
random variables followingV'(0,1,,), and¢ = (1 — A\)n for Lemma 5, we need to bound the range of each row. For any
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K > 0: Notice that

Pr ( max |[|x;[|2 > K) Fleald = E[goTX]Ql([qTX]Q e
=5 _ To12 T
< tPr(||x1H2 > K) = /0 Pr([q'x]*1(l]q'x| <e) > z) dz
82
< tZPr(L’El |>K/\/_) = / Pr([q"x]* > z)dz
0
2
() K ‘
< exp (1 =+ logt + 1ogd> . = /0 1 - Eg. q(x)dz.
a

Here, z1(j) stands for the j-th component of;. Inequality Similarly, replacing ;1 with the empirical distribution of

(a) holds because by sub-exponential property, we have X1, Xy, We have
t 2 t
¢ 1
Pr(jz1(j)] > K/Vd) < exp(l — i) Zfe,q(xi) = / 1-< Zgz,q(xi) dz
a\/E i=1 0 i=1

Due to Equation (22), we thus have with high probability, the
following holds uniformly overe > 0, andq € R?, ||q| = 1,

< 20y dl‘;g”. (23)

Under this event, applying Lemma 5 on, we have that In the rest of the proof, we suppose Equation (22) and (23)
hold, and the condition of Theorem 10 holds. Notice this

Let the right-hand-side be~'°, we have that with high
probability, for a universal constaut,

max, |1Z|| < CalognVad.

1
n Z fea(xi) = Efeq(x)
i=1

t
Pr | sup |l Z(qTXi)Q —1| < pCalognyd requirement is satisfied with high probability.
A - Vit We then have for any < ¢ andq € Sy,
= Pr (\/1_5 — pCa 1ogn\/a < Omin(X) 1 t
= la"x]g) — V()
§ Umax(X) § \/E+ ﬁcalogn\/a) ¢ i=1
> 1 —2dexp(—cf?). 1< -
§|¥ Zfe(t),q( ) Efe(t)q )‘ + ‘Efe(f),q(x) _V(t/t)‘
Let the right hand side bd — n~'° we haves = i=1
C'(logn)'/?. Thus, with high probability, dlogn _
s ) <ediC + B .q(x) — V()]
1o Ca(logn)3/2\Vd 24
a€Sa ¥ 5 In the first inequality, for simplicity we assume that x; #

- q'x; for i # j. Such assumption can be relaxed, by consid-

Theorem 11:With high probability, the following holds €"Ng instéad:(t) — ¢ and lete — 0. Since} is continuous
uniformly over < ¢ andq € Sy, due to Lemma 4, our claim is still valid.

To bound the second term, notice that by Equation (22),

i
1 (1+€0)\/d10gn/n o 1<
72 la X[t = v/ - i/t =T(emed)] = 13D e.a(:) ~ Egory o ()]
i=1 i=1
Proof: Consider two class of function¥ = {f.q : dlogn
R? — Rle € RT,q € R} andG = {geq : RY = Rle € < Oy —

R*, q € R}, as . .
which is equivalent to

feq(x) = [qTX]21(|qTX| <e); _ [dlogn _ - [dlogn
ge’q(x) _ 1(|qTX| <e). v(t/t—C " ) <e(t) <v(E/t+C o ).

Notice that the VC-dimension &f is at most2d+3, due to the This implies

fact that everyy, - is the indicator function of the intersection [Ef. ) 4(x) — V(E/D)|
of two half spaces ifR¢. Standard VC theory leads to that «().q
with high probability (i.e., at least — n—19), { (t/t+ C\/dlogn/n) V(t/t) }
- - 25
L Jloan v v -v (it - c/diogn/n)} - @
sup ? Z ge,q Xz Ege,q(x) <Oy ——.
e>0,qeR, ||ql|=1 | ¥ {5 n tC\/dlogn/n

(22) = t—1
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where the last inequality follows from Lemma 3. To completerhere (a) holds because whety, = O(1), the first term is
the proof, we bound(z). Notice that when Theorem 10 holdsdominated by the second term. Furthermore,
we have

1 t
=) e(i)? <1+eo, _
I i) -1y
t/t) — — q X[
which combined with the fact that(1) < e(2) < --- < e(t) tis
leads to 0 1 i[ T
_ t(1 < V(t/t) — - q x|
e()? < % (26) b Y

to

T,12 ¥
Substitute Equation (26) and (25) into Equation (24) leadss |7 24 Xty = V(to/t)| + [V(te/t) = V(I/1)|

i=1

to
. < Cla%d%(log n)in_% + Cha 0 log?(t/(t — to))
7
% Z T V| < Ct(l + E())\/dlogn/n < Catd} (logn)in~
t—t

i=1

[ |

One disadvantage of Theorem 11 is that the right-hand-sifiis implies forz > ¢y, we also have
depends ont/(t — t). However, this dependency can be
removed, with a price of having a slower convergence rate,
as the following corollary shows.

Corollary 5: Suppose, < C' for a universal constarnt’.
Then with high probability, the following holds uniformlyer
t<tandqc Sy,

< Ca1/2d1/4(10gn)5/4 71/4

t
1
=1

1< B

; Z t/t) < Ca1/2d1/4(logn)5/4 1/4 -
Proof. With high probability, Theorem 10 and 11 hold.

Under the condition of Theorem 10 and 11, defing & [1 : ¢]

to satisfy

to = [1 —O(a~Y2d 4 1og 34 n) | t.
D. Proof of Corollary 1 and 2

If £ <ty, then Theorem 11 leads to

; Corollary 1: Given a sequence d¢f/(j)}, if the asymptotic
Z V1) < Call2dV/*(log n)>/ 401/, scaling in Expression (1) holds, and denate2 lim sup A(5),

then the following holds in probability whent oo (i.e., when
n)p T OO)’

| =

i=1

If £ > tg, then we have the following

1< liminf BV {w,(5), ..., %(j
>l v VAU W)
=1 * 2 *
1 > max 17117—00»\ ]120(%8/)\)
— K K .
< Yl -V —
i=1 11— Cvai*log(1/\%)
14 S ~ - V(0.5) ’
< ;Z[q x| — 1 +|1_V(t/t)‘
=1
t—1o., o
< Ciéo + C’gaT log™(t/(t — to)) .
) Lo 5 Proof: Whenx > 1 the corollary holds trivially. Hence,
< Ciadi(logn)?n~? 4+ Chazdin™i(logn)? fix k< 1.
(a)

< Cazdi(logn)in~ 7. We bound the right-hand-side of Equation (3) to establish



the corollary. Notice that

25

On the other hand, take* = 1/4, we thus have
v (1 L AT(4RT )) v ((1—A*)K*—*A*£1+K*))

r A (14k i *
V(l—ﬁ) ) V(%—lf ) xm ) _ (17,\1),{
1+ ) (;) (1+#%) L+ 5
L ¢ v ((1—2>\*)n*—>\*) V) ®
r A (145) (1=2*)k (1=A")K* (a)
(a) V( ) Ca I )k IOg (,\*(1+;<;)) - 1+ 1 - 1+ 1 =
= (1+x) ! !
L Here (a) follows fromd = 1 — 2\* andx* = 1/¥; (b) holds
[y (%) _ Ca% log? (1@*) sinceV(c) > 0 for any positivec. Thus, by Theorem 3, we
X . have
I3
L v (t) lim 1nf EV{w(j W 4(
® 1 Ca\* o ((1— )\*)ﬁ)]
A" (1+n) 7 A
- [1+/@ (I =) ()\*(1+Ii) - V(lf jp )\*)n % 14*)
M Ca-X—1op2 (1= = max (14 k) i
<y ATx 108 Tx t
V (i) V(1 (14K ) f
L t - (1 A+ )n Z - 1—/\*
© 2CaN* 1 - 3
= [1/{ Ca log? <V)] (1+5%) V(%)
_ > 0.
2Carlog” (5-) This establishes the coroll
X|l—-—=" .
v (0'5> IS establishes the coroliary. |
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