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Outlier-Robust PCA: The High Dimensional Case
Huan Xu, Constantine Caramanis,Member, and Shie Mannor,Senior Member

Abstract— Principal Component Analysis plays a central role
in statistics, engineering and science. Because of the prevalence
of corrupted data in real-world applications, much research has
focused on developing robust algorithms. Perhaps surprisingly,
these algorithms are unequipped – indeed, unable – to deal
with outliers in the high dimensional settingwhere the number of
observations is of the same magnitude as the number ofvariables
of each observation, and the data set contains some (arbitrarily)
corrupted observations. We propose a High-dimensional Robust
Principal Component Analysis (HR-PCA) algorithm that is
efficient, robust to contaminated points, and easily kernelizable.
In particular, our algorithm achieves maximal robustness – it
has a breakdown point of 50% (the best possible) while all
existing algorithms have a breakdown point ofzero. Moreover,
our algorithm recovers the optimal solution exactly in the case
where the number of corrupted points grows sub linearly in the
dimension.

Index Terms— Statistical Learning, Dimension Reduction,
Principal Component Analysis, Robustness, Outlier

I. I NTRODUCTION

The analysis of very high dimensional data – data sets
where the dimensionality of each observation is comparable
to or even larger than the number of observations – has
drawn increasing attention in the last few decades [1], [2].
Individual observations can be curves, spectra, images, movies,
behavioral characteristics or preferences, or even a genome;
a single observation’s dimensionality can be astronomical,
and, critically, it can equal or even outnumber the number
of samples available. Practical high dimensional data exam-
ples include DNA Microarray data, financial data, climate
data, web search engine, and consumer data. In addition,
the nowadays standard “Kernel Trick” [3], a pre-processing
routine which non-linearly maps the observations into a (pos-
sibly infinite dimensional) Hilbert space, transforms virtually
every data set to a high dimensional one. Efforts to extend
traditional statistical tools (designed for the low dimensional
case) into this high-dimensional regime are often (if not
generally) unsuccessful. This fact has stimulated research on
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formulating fresh data-analysis techniques able to cope with
such a “dimensionality explosion.”

Principal Component Analysis (PCA) is perhaps one of
the most widely used statistical techniques for dimensionality
reduction. Work on PCA dates back to the beginning of the
20th century [4], and has become one of the most important
techniques for data compression and feature extraction. Itis
widely used in statistical data analysis, communication theory,
pattern recognition, image processing and far beyond [5]. The
standard PCA algorithm constructs the optimal (in a least-
square sense) subspace approximation to observations by com-
puting the eigenvectors or Principal Components (PCs) of the
sample covariance or correlation matrix. Its broad application
can be attributed to primarily two features: its success in the
classical regime for recovering a low-dimensional subspace
even in the presence of noise, and also the existence of efficient
algorithms for computation. Indeed, PCA is nominally a non-
convex problem, which we can, nevertheless, solve, thanks to
the magic of the SVD which allows us tomaximizea convex
function. It is well-known, however, that precisely because of
the quadratic error criterion, standard PCA is exceptionally
fragile, and the quality of its output can suffer dramatically
in the face of only a few (even a vanishingly small fraction)
grossly corrupted points. Such non-probabilistic errors may be
present due to data corruption stemming from sensor failures,
malicious tampering, or other reasons. Attempts to use other
error functions growing more slowly than the quadratic that
might be more robust to outliers, result in non-convex (and
intractable) optimization problems.

In this paper, we consider a high-dimensional counterpart
of Principal Component Analysis (PCA) that is robust to the
existence ofarbitrarily corrupted or contaminated data. We
start with the standard statistical setup: a low dimensional
signal is (linearly) mapped to a very high dimensional space,
after which point high-dimensional Gaussian noise is added,
to produce points that no longer lie on a low dimensional
subspace. At this point, we deviate from the standard setting in
two important ways: (1)a constant fraction of the points are
arbitrarily corrupted in a perhaps non-probabilistic manner.
We emphasize that these “outliers” can be entirely arbitrary,
rather than from the tails of any particular distribution, e.g., the
noise distribution; we call the remaining points “authentic”;
(2) the number of data points is of the same order as (or
perhaps considerably smaller than) the dimensionality. Aswe
discuss below, these two points confound (to the best of our
knowledge) all tractable existing Robust PCA algorithms.

A fundamental feature of the high dimensionality is that the
noise is large in some direction, with very high probability,
and therefore definitions of “outliers” from classical statistics
are of limited use in this setting. Another important property
of this setup is that the signal-to-noise ratio (SNR) can go to
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zero, as theℓ2 norm of the high-dimensional Gaussian noise
scales as the square root of the dimensionality. In the standard
(i.e., low-dimensional case), a low SNR generally implies that
the signal cannot be recovered, even without any corrupted
points.

The Main Result

Existing algorithms fail spectacularly in this regime: to the
best of our knowledge, there is no algorithm that can provide
any nontrivial bounds on the quality of the solution in the
presence of even a vanishing fraction of corrupted points. In
this paper we do just this. We provide a novel robust PCA algo-
rithm we call High Dimensional PCA (HR-PCA). HR-PCA is
efficient (performing at mostn, the number of samples, rounds
of PCA), and robust with provable nontrivial performance
bounds with up toup to 50% arbitrarily corrupted points. If
that fraction is vanishing (e.g.,n samples,

√
n outliers), then

HR-PCA guarantees perfect recovery of the low-dimensional
subspace providing optimal approximation of the authentic
points. Moreover, our algorithm is easily kernelizable. This
is the first algorithm of its kind: tractable, maximally robust
(in terms of breakdown point – see below) and asymptotically
optimal when the number of authentic points scales faster than
the number of corrupted points.

The proposed algorithm performs a PCA and a random
removal alternately. Therefore, in each iteration a candidate
subspace is found. The random removal process guarantees
that with high probability, one of candidate solutions found by
the algorithm is “close” to the optimal one. Thus, comparing
all solutions using a (computational efficient) one-dimensional
robust variance estimator leads to a “sufficiently good” output.
Alternatively, our algorithm can be shown to be a randomized
algorithm giving a constant factor approximation to the non
convex projection pursuit algorithm.

Organization and Notation

The paper is organized as follows: In Section II we discuss
past work and the reasons that classical robust PCA algorithms
fail to extend to the high dimensional regime. In Section IIIwe
present the setup of the problem, and the HR-PCA algorithm.
We also provide finite sample and asymptotic performance
guarantees. Section IV is devoted to the kernelization of HR-
PCA. We provide some numerical experiment results in Sec-
tion V. The performance guarantees are proved in Section VI.
Some technical details in the derivation of the performance
guarantees are postponed to the appendix.

Capital letters and boldface letters are used to denote
matrices and vectors, respectively. Ak × k identity matrix
is denoted byIk. For c ∈ R, [c]+ , max(0, c). We let
Bd , {w ∈ R

d|‖w‖2 ≤ 1}, and Sd be its boundary. We
use a subscript(·) to represent order statistics of a random
variable. For example, letv1, . . . , vn ∈ R, and f : R 7→
R. Then v(1), . . . , v(n) is a permutation ofv1, . . . , vn, and
f(v)(1), . . . , f(v)(n) is a permutation off(v1), . . . , f(vn),
both in non-decreasing order. The operator∨ and ∧ are
used to represent the maximal and the minimal value of the
operands, respectively. For example,x ∨ y = max(x, y). The

standard asymptotic notationso(·), O(·),Θ(·), ω(·) and Ω(·)
are used to lighten notations. Throughout the paper, “with high
probability” means with probability (jointly on sampling and
the randomness of the algorithm) at least1−Cn−10 for some
absolute constantC. Indeed that the exponent−10 is arbitrary,
and can readily changed to any fixed integer with all the results
still hold.

II. RELATION TO PAST WORK

In this section, we discuss past work and the reasons that
classical robust PCA algorithms fail to extend to the high
dimensional regime.

Much previous robust PCA work focuses on the traditional
robustness measurement known as the “breakdown point” [6]:
the percentage of corrupted points that can make the output of
the algorithmarbitrarily bad. To the best of our knowledge,
no other algorithm can handleany constant fraction of outliers
with a lower bound on the error in the high-dimensional
regime. That is, the best-known breakdown point for this
problem is zero. As discussed above, we show that the
algorithm we provide has breakdown point of50%, which
is the best possible for any algorithm. In addition to this, we
focus on providing explicit bounds on the performance, for all
corruption levels up to the breakdown point.

In the low-dimensional regime where the observations sig-
nificantly outnumber the variables of each observation, several
robust PCA algorithms have been proposed (e.g., [7]–[16]).
These algorithms can be roughly divided into two classes: (i)
The algorithms that obtain a robust estimate of the covariance
matrix and then perform standard PCA. The robust estimate is
typically obtained either by an outlier rejection procedure, sub-
sampling (including “leave-one-out” and related approaches)
or by a robust estimation procedure of each element of the
covariance matrix; (ii) So-calledprojection pursuitalgorithms
that seek to find directions{w1, . . . ,wd} maximizing a robust
variance estimate of the points projected to thesed dimensions.
Both approaches encounter serious difficulties when applied to
high-dimensional data-sets, as we explain.

One of the fundamental challenges tied to the high-
dimensional regime relates to the relative magnitude of the
signal component and the noise component of even the au-
thentic samples. In the classical regime, most of the authentic
points must have a larger projection along the true (or optimal)
principal components than in other directions. That is, the
noise component must be smaller than the signal component,
for many of the authentic points. In the high dimensional
setting entirely the opposite may happen. As a consequence,
and in stark deviation from our intuition from the classical
setting, in the high dimensional setting, all the authenticpoints
may be far from the origin, far from each other, and nearly
perpendicular to all the principal components. To explain this
better, consider a simple generative model for theauthentic
points: yi = Axi+vi, i = 1, . . . , n whereA is ap×d matrix,
x is drawn from a zero mean symmetric random variable,
and v ∼ N (0, Ip). Let us suppose that forn the number
of points,p the ambient dimension, andσA = σmax(A) the
largest singular value ofA, we have:n ≈ p ≫ σA and
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also much bigger thand, the number of principal components.
Then, standard calculation shows that

√

E(‖Ax‖22) ≤
√
dσA,

while
√

E(‖v‖22) ≈ √
p, and in fact there is sharp concen-

tration of the Gaussian about this value. Thus we may have
√

E(‖v‖22) ≈ √
p ≫

√
dσA ≥

√

E(‖Ax‖22): the magnitude
of the noise may be vastly larger than the magnitude of the
signal.

While this observation is simple, it has severe consequences.
First, Robust PCA techniques based on some form of outlier
rejection or anomaly detection, are destined to fail. The reason
is that in the ambient (high dimensional) space, since the noise
is the dominant component of even the authentic points, it
is essentially impossible to distinguish a corrupted from an
authentic point.

Two criteria are often used for to determine a point being
an outlier, namely, points with large Mahalanobis distance
or points with large Stahel-Donoho outlyingness. The Maha-
lanobis distance of a pointy is defined as

DM (y) =
√

(y − y)⊤S−1(y − y),

wherey is the sample mean andS is the sample covariance
matrix. Stahel-Donoho outlyingness is defined as:

ui , sup
‖w‖=1

|w⊤yi −medj(w
⊤yj)|

medk|w⊤yk −medj(w⊤yj)|
.

Both the Mahalanobis distance and the Stahel-Donoho (S-
D) outlyingness are extensively used in existing robust PCA
algorithms. For example, Classical Outlier Rejection, Iterative
Deletion and various alternatives of Iterative Trimmings all
use the Mahalanobis distance to identify possible outliers.
Depth Trimming [17] weights the contribution of observations
based on their S-D outlyingness. More recently, the ROBPCA
algorithm proposed in [18] selects a subset of observations
with least S-D outlyingness to compute thed-dimensional
signal space. Indeed, considerλn corrupted points of magni-
tude some (large) constant multiple ofσA, all aligned. Using
matrix concentration arguments (we develop these arguments
in detail in the sequel) it is easy to see that the output of
PCA can be strongly manipulated; on the other hand, since
the noise magnitude is

√
p ≈ √

n in a direction perpendicular
to the principal components, the Mahalanobis distance of
each corrupted point will be very small. Similarly, the S-
D outlyingness of the corrupted points in this example is
smaller than that of the authentic points, again due to the
overwhelming magnitude of the noise component of each
authentic point.

Subsampling and leave-one-out attempts at outlier rejection
also fail to work, this time because of the large number (a
constant fraction) of outliers. Other algorithms designedfor ro-
bust estimation of the covariance matrix fail because thereare
not enough observations compared to the dimensionality. For
instance, the widely used Minimum Volume Ellipsoid (MVE)
estimator [19] finds the minimum volume ellipsoid that covers
half the points, and uses it to define a robust covariance matrix.
Finding such an ellipsoid is typically hard (combinatorial).
Yet beyond this issue, in the high dimensional regime, the
minimum volume ellipsoid problem is fundamentally ill posed.

The discussion above lies at the core of the failure of many
popular algorithms. Indeed, in [17], several classical covari-
ance estimators including M-estimator [20], Convex Peeling
[21], [22], Ellipsoidal Peeling [23], [24], Classical Outlier
Rejection [25], [26], Iterative Deletion [27] and Iterative
Trimming [28], [29] are all shown to have breakdown points
upper-bounded by the inverse of the dimensionality, hence not
useful in the regime of interest.

Next, we turn to Algorithmic Tractability. Projection pursuit
algorithms seek to find a direction (or set of directions) that
maximizes some robust measure of variance in this low-
dimensional setting. A common example (and one which we
utilize in the sequel) is the so-called trimmed variance in a
particular direction,w. This projects all points ontow, and
computes the average squared distance from the origin for
the (1 − η)-fraction of the points for someη ∈ (0, 1). As
a byproduct of our analysis, we show that this procedure
has excellent robustness properties; in particular, our analysis
implies that this has breakdown point50% if η is set as
0.5. However, it is easy to see that this procedure requires
the solution of a non-convex optimization problem. To the
best of our knowledge, there is no tractable algorithm that
can do this. (As part of our work, we implicitly provide
a randomized algorithm with guaranteed approximation rate
for this problem). In the classical setting, we note that the
situation is different. In [30], the authors propose a fast
approximate Projection-Pursuit algorithm, avoiding the non-
convex optimization problem of finding the optimal direction,
by only examining the directions defined by sample. In the
classical regime, in most samples the signal component is
larger than the noise component, and hence many samples
make an acute angle with the principal components to be
recovered. In contrast, in the high-dimensional setting this
algorithm fails, since as discussed above, the direction of
each sample is almost orthogonal to the direction of true
principal components. Such an approach would therefore only
be examining candidate directions nearly orthogonal to the
true maximizing

Finally, we discuss works addressing robust PCA usinglow-
rank techniques and matrix decomposition. Starting with the
work in [31], [32] and [33], recent focus has turned to the
problem of recovering a low-rank matrix from corruption. The
work in [31], [32] consider matrix completion — recovering
a low-rank matrix from an overwhelming number of erasures.
The work initiated in [33], and subsequently continued and
extended in [?], [34] focuses on recovering a low-rank matrix
from erasures and possibly grossbut sparsecorruptions. In
the noiseless case, stacking all our samples as columns of
a p × n matrix, we indeed obtain a corrupted low rank
matrix. But the corruption is not sparse; rather, the corruption
is column-sparse, with the corrupted columns corresponding
to the corrupted points. in addition to this, the matrix has
Gaussian noise. It is easy to check via simple simulation,
and not at all surprising, that the sparse-plus-low-rank matrix
decomposition approaches fail to recover a low-rank matrix
corrupted by a column-sparse matrix.

When this manuscript was under review, a subset of us,
together with co-authors, developed a low-rank matrix de-
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composition technique to handle outliers (i.e., column-wise
corruption) [35], [36], see also [37] for a similar study
performed independently. In [35], [36], we give conditions
that guarantee the exact recovery of the principal components
and the identity of the outliers in the noiseless case, up to a
(small) constant fraction of outliers depending on the number
of principal components. We provide parallel approximate
results in the presence of Frobenius-bounded noise. Outside
the realm where the guarantees hold, the performance of
matrix decomposition approach is unknown. In particular,
its breakdown point depends inversely on the number of
principal components, and the dependence of noise is severe.
Specifically, the level of noise considered here would result in
only trivial bounds. In short, we do not know of performance
guarantees for the matrix decomposition approach that are
comparable to the results presented here (although it is clearly
a topic of interest).

III. HR-PCA: SETUP, ALGORITHM AND GUARANTEES

In this section we describe the precise setting, then provide
the HR-PCA algorithm, and finally state the main theorems of
the paper, providing the performance guarantees.

A. Problem Setup

This paper is about the following problem: Given a mix
of authenticand corruptedpoints, our goal is to find a low-
dimensional subspace that captures as much varianceof the
authentic points. The corrupted points are arbitrary in every
way except their number, which is controlled. We consider
two settings for the authentic points: deterministic (arbitrary)
model, and then a stochastic model. In the deterministic
setting, we assume nothing about the authentic points; in the
stochastic setting, we assume the standard generative model,
namely, that authentic points are generated according tozi =
Axi+vi, as we explain below. In either case, we measure the
quality of our solution (i.e., of the low-dimensional subspace)
by comparing to how much variance of the authentic points we
capture, compared to the maximum possible. The guarantees
for the deterministic setting are, necessarily, presentedin
reference to the optimal solution which is a function of all
the points. The stochastic setting allows more interpretable
results, since the optimal solution is defined by the matrixA.

We now turn to the basic definitions.
• Let n denote the total number of samples, andp the

ambient dimension, so thatyi ∈ R
p, i = 1, . . . , n. Let

λ denote the fraction of corrupted points; thus, there are
t = (1 − λ)n “authentic samples”z1, . . . , zt ∈ R

p. We
assumeλ < 0.5. Hence we have0.5n ≤ t ≤ n, i.e., t
andn are of the same order.

• The remainingλn points are outliers (the corrupted data)
and are denotedo1, . . . ,on−t ∈ R

p and as emphasized
above, they are arbitrary (perhaps even maliciously cho-
sen).

• We only observe the contaminated data set

Y , {y1 . . . ,yn} = {z1, . . . , zt}
⋃

{o1, . . . ,on−t}.
An element ofY is called a “point”.

Setup 1: In the deterministic setup, we make no assump-
tions whatsoever on the authentic points, and thus there is
no implicit assumption that there is a good low-dimensional
approximation of these points. The results are necessarily
finite-sample, and their quality is a function of all the authentic
points.

Setup 2:The stochastic setup is the familiar one: the au-
thentic samples are generated by

zi = Axi + vi.

Here,xi ∈ R
d (the “signal”) are i.i.d. samples of a random

variablex ∼ µ, and vi (the “noise”) are independent real-
izations ofv ∼ N (0, Ip). The matrixA ∈ R

p×d maps the
low-dimensional signalx to R

p. We note that the intrinsic
dimensiond, and the distribution ofx (denoted byµ) are
unknown. We assumeµ is spherically symmetric with mean
zero and varianceId. We denote its one-dimensional marginal
by µ. We assumeµ({0}) < 0.5 and it is sub-exponential,
i.e., there existsα > 0 such thatµ ((−∞,−x]

⋃

[x,+∞)) ≤
exp(1− αx) for all x > 0.1

Remark 1:We briefly explain some of the assumptions
made in Setup 2. While we assume the noise to be Gaussian,
similar results still hold for sub-Gaussian noise. The assump-
tion thatµ has a unit co-variance matrix is made without loss
of generality, due to the fact that we can normalize the variance
of µ by picking an appropriateA. We assumeµ to be zero-
mean as this can be achieved by subtracting from every point
the mean of the true samples. Notice that unlike robust PCA,
robustly estimating the mean of true samples under outliersis
a well-studied problem [6], and effective methods are readily
available. The spherical symmetry assumption onµ is non-
trivial: without it, the results appear to be somewhat weaker,
depending on the skew of the distribution. We demonstrate
how our results are translated to this setting in Remark 2
below.

The goal of this paper is to computêd principal components,
w1, . . . ,wd̂ that approximate the authentic points in the least
squared error sense. As is well-known, this is equivalent to
asking that they capture as muchvariance of the projected
authentic points, (i.e., they maximize the average squared
distance from the origin of the authentic points projected onto
the span of the{wi}). We compare the output of our algorithm
to the best possible variance captured by the optimal principal
d̂ componentsw∗

1 , . . . ,w
∗
d̂
. Note that in Setup 1 there is no

intrinsic dimensiond defined. In Setup 2 the number,d, of
columns ofA is a natural candidate. However, this may not
be known, or, one may seek an approximation to a subspace of
lower-yet dimension. Naturally, the results are most interesting
for small values ofd̂.

High Dimensional Setting and Asymptotic Scaling:While
we provide results for the deterministic setting (Setup 1) the
primary focus of this paper is the stochastic case. Even our
finite sample results are best understood in the context of the

1As we discuss below,d can go infinity. In such a statistical setup, instead of
requiring thed-dimensional distribution to satisfy some properties suchas sub-
exponentiality (which is void asd can go infinity), the standard approach (e.g.,
[38]) is to require that the 1-d marginal of the distributionmust satisfy these
properties.
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asymptotic results we provide. To this end, we must discuss the
asymptotic scaling regime in force throughout. We focus on
the high dimensional statistical case wheren ≈ p ≫ d, andn,
p, d can go infinity simultaneously. Moreover, we require that
trace(A⊤A) ≫ d or equivalently 1

d

∑d
j=1(σ

∗
j )

2 ≫ 1 where
σ∗
j is the jth singular vector ofA, i.e., the signal strength

scales to infinity. However, its rate can be arbitrary, and in
particular, the signal strength can scale much more slowly than
the scaling ofn andp.

We are particularly interested in the asymptotic performance
of HR-PCA whenthe dimension and the number of obser-
vations grow togetherto infinity, faster thand and much
faster than the signal strength. Precisely, our asymptoticsetting
is as follows. Suppose there exists a sequence of sample
sets {Y(j)} = {Y(1),Y(2), . . . }, where for Y(j), n(j),
p(j), A(j), d(j), etc., denote the corresponding values of the
quantities defined above. Then the following must hold for
some positive constantsc1, c2:

lim sup
j→∞

p(j)

n(j)
< +∞;

n(j)

d(j)[log5 d(j)]
↑ ∞; n(j) ↑ +∞;

trace(A(j)⊤A(j))

d(j)
↑ +∞; lim sup

j→∞

d̂(j)

d(j)
< +∞.

(1)

B. Key Idea and Main Algorithm

The key idea of our algorithm is remarkably simple. It
focuses on simultaneously discovering structure and casting
out potential corrupted points. The work-horse of the HR-
PCA algorithm we present below is a tool from classical robust
statistics: a robust variance estimator capable of estimating the
variance in the classical (low-dimensional, with many more
samples than dimensions) setting, even in the presence of a
constant fraction of arbitrary outliers. While we cannot opti-
mize it directly as it is nonconvex2 we provide a randomized
algorithm that does so. We use the so-calledtrimmed variance
as our Robust Variance Estimator (RVE), defined as follows:
For w ∈ Sp, we define the Robust Variance Estimator (RVE)
as

V t̂(w) ,
1

t̂

t̂
∑

i=1

|w⊤y|2(i),

where t̂ = (1 − λ̂)n is any lower boundon the number of
authentic points. If we knowt = (1−λ)n exactly, we takêt =
t. The RVE above computes the following statistics: project
yi onto the directionw, remove the furthest (from original)
n− t̂ samples, and then compute the empirical variance of the
remaining ones. Intuitively, the RVE provides an approximate
measure of the variance (of authentic samples) captured by a
candidate direction.

The main algorithm of HR-PCA is as given below. Note that
as input it takes an upper bound on the number of corrupted
points.

We remark that while computing the covariance matrix as
well as removing points are performed overŶ, computing

2Recall that maximizing this directly is the idea behind projection pursuit.

RVE V t̂(wj) is performed over the original data-setY. This
is to ensure that each candidate direction is measured correctly,
even if some authentic points get removed in the process of
the algorithm.

There are three parameters for HR-PCA, namelyd̂, t̂ and
T , which we explain below.

• The parameterT does not affect the performance as
long as it is large enough, namely, one can takeT =
n− 1. Interestingly, the algorithm is indeed an “any-time
algorithm”, i.e., one can stop the algorithm at any time,
and the algorithm reports the best solution so far.

• As mentioned above,(n − t̂) is an upper bound on the
number of corrupted points, thus any valuet̂ ∈ (1/2, t]
yields nontrivial guarantees. However, these guarantees
improve the smaller we make(t − t̂), which is to say
that a better knowledge of how many corrupted points to
expect, results in improved solutions. We note that tuning
t̂ is computationally simple, as it is possible to generate
the solutions for multiple values of̂t in a single run of
the algorithm.

• Tuning the parameter̂d is inherent to any PCA approach,
with outliers or otherwise. Sometimes the choice of
parameterd̂ is known, where as others we may need to
estimate, or search for it, thresholding the incremental
change in variance captured. As we see from the per-
formance guarantees of the algorithm, the success of the
algorithm is not affected even if̂d is not perfectly tuned.

Intuition on Why The Algorithm Works:On any given
iteration, we select candidate directions based on standard
PCA – thus directions chosen are those with largest empirical
variance. Now, given candidate directionsw1, . . . ,wd̂, our
robust variance estimator measures the variance of the(n− t̂)-
smallest points projected in those directions. If this is large,
it means that many of the points have a large variance in this
direction – the points contributing to the robust variance esti-
mator, and the points that led to this direction being selected
by PCA. If the robust variance estimator is small, it is likely
that a number of the largest variance points are corrupted, and
thus removing one of them randomly, in proportion to their
distance in the directionsw1, . . . ,wd̂, results in the removal
of a corrupted point.

Thus in summary, the algorithm works for the following
intuitive reason. If the corrupted points have a very high
variance along a direction with large angle from the span
of the principal components, then with some probability, our
algorithm removes them. If they have a high variance in a
direction “close to” the span of the principal components, then
this can only help in finding the principal components. Finally,
if the corrupted points do not have a large variance, they
may well survive the random removal process, but then the
distortion they can cause in the output of PCA is necessarily
limited.

The remainder of the paper makes this intuition precise,
providing lower bounds on the probability of removing cor-
rupted points, and subsequently upper bounds on the maximum
distortion the corrupted points can cause.

Before finishing this subsection, we remark that an equally
appealing idea would be to remove the largest point along
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Algorithm 1 HR-PCA

Input: Contaminated sample-setY = {y1, . . . ,yn} ⊂ R
p, d̂, T , t̂.

Output: w1, . . . ,wd̂.
Algorithm:

1) Let ŷi := yi for i = 1, . . . n; Ŷ := {ŷ1, · · · , ŷn}; s := 0; Opt := 0.
2) While s ≤ T , do

a) Compute the empirical variance matrix

Σ̂ :=
1

n− s

n−s
∑

i=1

ŷiŷ
⊤
i .

b) Perform PCA on̂Σ. Let w1, . . . ,wd̂ be thed̂ principal components of̂Σ.

c) If
∑d̂

j=1 V t̂(wj) > Opt, then letOpt :=
∑d̂

j=1 V t̂(wj) and letwj := wj for j = 1, · · · , d̂.
d) Randomly remove a point from{ŷi}n−s

i=1 according to

Pr(ŷi is removed fromŶ) ∝
d̂
∑

j=1

(w⊤
j ŷi)

2;

e) Denote the remaining points by{ŷi}n−s−1
i=1 ;

f) s := s+ 1.

3) Outputw1, . . . ,wd̂. End.

the project direction. However, this method may break under
adversarial outliers in the sense that even the direction found
in an iteration is completely wrong, the adversary can select
corrupted points so that the algorithm still removes an authen-
tic sample. Examples illustrating this are not hard to design.

C. Performance Guarantees: Fixed Design

We consider first the setting where the authentic points are
arbitrary. The performance measure, as always, is the variance
captured by the principal components we output. The perfor-
mance is judged compared to the optimal output. As discussed
above, in the fixed design setting, this optimal performanceis
a function of all the points. In particular, we want to give

lower bounds on the quantity:
∑t

i=1

∑d̂
j=1(w

⊤
j zi)

2. To do
this, we also require a measure of the concentration of the
authentic points, which essentially determines somethingakin
to identifiability. Consider, for instance, the setting where all
but a few of the authentic points are at the origin. Then the few
remaining authentic points may indeed have a large variance
along some direction; however, given the nature of our cor-
ruption, this direction is unidentifiable as the authentic points
contributing to this variance are essentially indistinguishable
from the corrupted points. The theorem below gives guarantees
that are a function of just such a notion of concentration (or
spread) of the authentic points. This is given by the functions
ϕ+ andϕ− defined in the theorem.

Theorem 1 (Fixed Design):Let w1, . . . ,wd̂ denote the
output of the HR-PCA algorithm, and denote the optimald̂
Principal Components ofz1, . . . , zt asw∗

1 , . . . ,w
∗
d̂
. Letϕ−(·)

andϕ+(·) be any functions that satisfy the following: for any

t′ ≤ t, w ∈ R
p with ‖w‖2 = 1,

ϕ−(t′/t)
t
∑

i=1

(w⊤zi)
2 ≤

t′
∑

i=1

(w⊤z(i))
2

≤ ϕ+(t′/t)
t
∑

i=1

(w⊤zi)
2.

Here, the middle term is the empirical variance of the smallest
t′ projections of the authentic points in the directionw. Then,
for anyκ > 0, with high probability,

ϕ−
( t− s0(κ)

t

)

ϕ−
( t̂

t
− λ

1− λ

)

t
∑

i=1

d̂
∑

j=1

(w⊤
j zi)

2

≤ (1 + κ)ϕ+
( t̂

t

)

t
∑

i=1

d̂
∑

j=1

(w∗⊤
j zi)

2,

where there exists a universal constantC such that

s0(κ)/t ≤ (1 + κ)λ

κ(1− λ)
+

C(1 + κ)2 logn

κ2n

+
C(1 + κ)3/2(logn)1/2

κ3/2n1/2
.

The parameterκ is introduced in the proof, and it is implicitly
optimized by the algorithm. It controls the tradeoff between the
fraction of the total variance in a particular direction captured
by the authentic vs. the corrupted points, and the probability
that a corrupted point is removed in the random removal (Step
2 d.) of the algorithm.

D. Performance Guarantees: Stochastic Design

In the stochastic design setup, it is possible to further
simplify terms in Theorem 1, and in particular functionsϕ−(·)
andϕ+(·). This leads to the main contribution of this paper:
performance guarantees of the stochastic design, which we
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discuss in detail in this subsection. In the stochastic design
case, we can compare any solution to the ideal solution,
namely, the topd̂ singular vectors of the matrixA. Note that
while we allow d̂ ≥ d, the most interesting case iŝd ≤ d.
Thus, we seek a collection of orthogonal vectorsw1, . . . ,wd̂,
that maximize the performance metric called theExpressed
Variance:

EVd̂(w1, · · · ,wd̂) ,

∑d̂
j=1 w

⊤
j AA

⊤wj

∑d̂
j=1 w

∗⊤
j AA⊤w∗

j

,

wherew∗
1, . . . ,w

∗
d̂

are thed̂ leading principal components of

A, equivalently, the top̂d leading eigenvectors ofAA⊤.3 Note
that unlike the fixed design setting, the quality of any solution
is judged in terms of the ideal solution, and is not a function
of the actual realization of the authentic points.

The Expressed Variance represents the portion of signal
Ax being expressed byw1, . . . ,wd̂ compared to the optimal
solution. The EV is always less than one, with equality
achieved when the vectorsw1, . . . ,wd̂ have the span of the
true principal componentsw∗

1, . . . ,w
∗
d̂
. Notice that when̂d ≥

d, the denominator equalstrace(AA⊤).
If Expressed Variance equals 1, this represents perfect

recovery. Expressed variance bounded away from zero in-
dicates a solution has a non-trivial performance bound. We
show below that HR-PCA produces a solution with expressed
variance bounded away from zero for all values ofλ up to
50% (i.e., up to 50% corrupted points) and has expressed
variance equal to one, i.e., perfect recovery, when the number
of corrupted points scales more slowly than the number of
points. In contrast, we do not know of any other algorithm that
can guarantee a positive expressed variance forany positive
value ofλ.

The performance of HR-PCA directly depends onλ, the
fraction of corrupted points. In addition, it depends on the
distribution µ of x (more precisely,µ, as we allowd itself
to go infinity). If µ has longer tails, outliers that affect the
variance (and hence are far from the origin) and authentic
samples in the tail of the distribution, become more difficult
to distinguish. To quantify this effect, we need the following
“tail weight” function.

Definition 1: For any γ ∈ [0, 1], let δγ , min{δ ≥
0|µ([−δ, δ]) ≥ γ}, γ− , µ((−δγ , δγ)). Then the “tail weight”
functionV : [0, 1] → [0, 1] is defined as follows

V(γ) , lim
ǫ↓0

∫ δγ−ǫ

−δγ+ǫ

x2µ(dx) + (γ − γ−)δ2γ .

In words,V(·) represents the contribution to its variance by
the smallestγ fraction of the distribution. Hence1 − V(·)
represents how the tail ofµ contributes to its variance. Notice
that V(0) = 0, andV(1) = 1. FurthermoreV(0.5) > 0 since
µ({0}) < 0.5. At a high level, controlling this is similar to
the role of theϕ functions in the deterministic setting.

We now provide bounds on the performance of HR-PCA
for both the finite-sample and asymptotic case. Both bounds
are functions ofλ and the functionV(·).

3In cased̂ > d, w∗

1
, . . . ,w∗

d̂
are be thed Principal Components ofA, and

any d̂− d orthnormal unit vectors.

Theorem 2 (Finite Sample Performance):As we have done
above, letw1, . . . ,wd̂ denote the output of HR-PCA, and
w∗

1, . . . ,w
∗
d̂

denote the topd̂ singular vectors ofA. Let
τ , max(p/n, 1). Then, there exist absolute constantsc and
C, such that with high probability, the following holds for any
κ:

EVd̂(w1, · · · ,wd̂) ≥
V
(

t̂
t − λ

1−λ

)

V
(

1− (1+κ)λ
κ(1−λ)

)

(1 + κ)V
(

t̂
t

)

− 10

V (0.5)





cd̂τ
∑d̂

j=1 ‖w∗⊤
j A‖22





1

2

− C{α 1

2 d
1

4 (log
5

4 n)n− 1

4 ∨ α[(1 + κ)/κ]
3

2 (log
5

2 n)n− 1

2 }
V(0.5) .

(2)
As in the fixed design case, the parameterκ is implicitly
optimized by the algorithm; here as well, it controls the trade-
off between the fraction of the total variance in a particular
direction captured by the authentic vs. the corrupted points,
and the probability that a corrupted point is removed in the
random removal (Step 2 d.) of the algorithm.

Remark 2:We briefly explain how variations of the
specifics in Setup 2 may affect the results promised in Theo-
rem 2. The following results can be obtained essentially by a
similar argument as that presented in the proof of Theorem 2.

• The assumption that the noisevi follows a Gaussian
distribution can be relaxed; if the noise is sub-Gaussian,
Theorem 2 still holds, with the only difference being the
constantc, which then depends on the sub-Gaussian norm
of the noise.

• The log terms in the last term of Equation 2 can be
improved if µ is assumed to be sub-Gaussian.

• As mentioned above, the assumption of spherical symme-
try of µ is non-trivial. In the absence of spherical sym-
metry, the theorem holds with some modifications. When
µ is not spherically symmetric, we may have different
tail-weight functions in different directions. Thus, using
µ
v

to denote the 1-d marginal along directionv ∈ Sd,
let Vv(·) denote the corresponding “tail weight” function
of µ

v
. Define V+(γ) , sup

v∈Sd
Vv(γ) and V−(γ) ,

infv∈Sd
Vv(γ). Then, with essentially unchanged algo-

rithm and proof, we obtain the following for the non-
symmetric case:

EVd̂ ≥
V−
(

t̂
t − λ

1−λ

)

V−
(

1− (1+κ)λ
κ(1−λ)

)

(1 + κ)V+
(

t̂
t

)

− 10

V− (0.5)





cd̂τ
∑d̂

j=1 ‖w∗⊤
j A‖22





1

2

− C{α 1

2 d
1

4 (log
5

4 n)n− 1

4 ∨ α[(1 + κ)/κ]
3

2 (log
5

2 n)n− 1

2 }
V−(0.5)

.

As an essentially immediate corollary of the above theorem,
we can obtain asymptotic guarantees for the performance of
HR-PCA, in the scaling regime defined above. In particular,
if we have τ , κ and µ fixed, then the right-hand-side of
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Equation (2) is non-trivial as long as
∑d̂

j=1 ‖w∗⊤
j A‖22/d̂ → ∞

andn/(d log5 d) → ∞. In this case, the last two terms go to
zero asn goes to infinity, producing the following asymptotic
performance guarantees.

Theorem 3 (Asymptotic Performance):Consider a
sequence of {Y(j)}, where the asymptotic scaling in
Expression (1) holds,λ∗ , lim supλ(j), and again,
w1, . . . ,wd̂ are the output of HR-PCA. Then the following
holds in probability whenj ↑ ∞ (i.e., whenn, p ↑ ∞),

lim inf
j

EVd̂{w1(j), . . . ,wd̂(j)}

≥ max
κ





V
(

1− λ∗(1+κ)
(1−λ∗)κ

)

(1 + κ)



×





V
(

t̂
t − λ∗

1−λ∗

)

V
(

t̂
t

)



 .
(3)

Remark 3:The bounds in the two bracketed terms in the
asymptotic bound may be, roughly, explained as follows. The
first term is due to the fact that the removal procedure may
well not remove all large-magnitude corrupted points, while
at the same time, some authentic points may be removed.
The second term accounts for the fact that not all the outliers
may have large magnitude. These will likely not be removed,
and will have some (controlled) effect on the principal com-
ponent directions reported in the output. Another interesting
interpretation of this is as follows: the second term is the
performance bound for the (non-convex) projection pursuit
algorithm using trimmed variance (our RVE), while the first
bound can be regarded as the approximation factor incurred
by our randomized algorithm.

We have made two claims in particular about the perfor-
mance of HR-PCA: It is asymptotically optimal when the
number of outliers scales sublinearly, and it is maximally
robust with a breakdown point of50%, the best possible
for any algorithm. These results are implied by the next two
corollaries.

For smallλ, we can make use of the light tail condition
on µ, to establish the following bound that simplifies (3). The
proof is deferred to Appendix D.

Corollary 1: Under the settings of the above theorem, the
following holds in probability whenj ↑ ∞ (i.e., whenn, p ↑
∞),

lim inf
j

EVd̂{w1(j), . . . ,wd̂(j)}

≥ max
κ

[

1− κ− Cαλ∗ log2(1/λ∗)

κV(0.5)

]

≥ 1− C′√αλ∗ log(1/λ∗)

V(0.5) .

Remark 4:Thus indeed, if(n− t) = o(n), i.e., the number
of outliers scales sub linearly and hence fλ(j) ↓ 0 then
Corollary 1 shows that the expressed variance converges to
1, i.e., HR-PCA is asymptotically optimal. This is in contrast
to PCA, where the existence ofeven a singlecorrupted point
is sufficient to bound the outputarbitrarily away from the
optimum.

Next we show that that HR-PCA has a breakdown point
of 50%. Recall that the Break-down point is defined as the
fraction of (malicious) outliers required to change the output
of a statistical algorithm arbitrarily. In the context of PCA, it

measures the fraction of outliers required to make the output
orthogonal to the desired subspace, or equivalently to make
the expressed variance of the output zero. The next corollary
shows that the expressed variance of HR-PCA stays strictly
positive as long asλ < 0.5. Therefore, the breakdown point
of HR-PCA converges to50%, and hence HR-PCA achieves
the maximal possible break-down point (a breakdown point
greater than50% is never possible.)

Corollary 2: Supposeµ({0}) = 0. Then, under the same
assumptions as the above theorem, as long asλ∗ < 0.5, the se-
quence of outputs of HR-PCA, denotes{w1(j), . . . ,wd̂(j)},
satisfy the following in probability:

lim inf
j

EVd̂{w1(j), . . . ,wd̂(j)} > 0.

The graphs in Figure 1 illustrate the lower-bounds of
asymptotic performance when the 1-dimensional marginal of
µ is the Gaussian distribution (Figure (a)) or the Uniform
distribution (Figure (b)).
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(a) Gaussian distribution (b) Uniform distribution

Fig. 1. This figure shows the lower bounds on the asymptotic performance
of HR-PCA, under Gaussian and Uniform distribution forx.

IV. K ERNELIZATION

We consider kernelizing HR-PCA in this section: given a
feature mappingΥ(·) : R

p → H equipped with a kernel
function k(·, ·), i.e., 〈Υ(a), Υ(b)〉 = k(a,b) holds for all
a,b ∈ R

p, we perform the dimensionality reduction in the
feature spaceH without knowing the explicit form ofΥ(·).

We assume that{Υ(y1), · · · ,Υ(yn)} is centered at origin
without loss of generality, since we can center anyΥ(·) with
the following feature mapping

Υ̂(x) , Υ(x)− 1

n

n
∑

i=1

Υ(yi),

whose kernel function is

k̂(a,b) = k(a,b)− 1

n

n
∑

j=1

k(a,yj)

− 1

n

n
∑

i=1

k(yi,b) +
1

n2

n
∑

i=1

n
∑

j=1

k(yi,yj).

Notice that HR-PCA involves finding a set of PCs
w1, . . . ,wd ∈ H, and evaluating〈wq, Υ(·)〉 (Note that RVE
is a function of〈wq, Υ(yi)〉, and random removal depends
on 〈wq, Υ(ŷi)〉). The former can be kernelized by applying



9

Kernel PCA introduced by [39], where each of the output PCs
admits a representation

wq =

n−s
∑

j=1

αj(q)Υ(ŷj).

Thus,〈wq, Υ(·)〉 is easily evaluated by

〈wq, Υ(v)〉 =
n−s
∑

j=1

αj(q)k(ŷj ,v); ∀v ∈ R
p

Therefore, HR-PCA is kernelizable since both steps are easily
kernelized and we have the following Kernel HR-PCA.

Here, the kernelized RVE is defined as

V t̂(α) ,
1

t̂

t̂
∑

i=1





∣

∣〈
n−s
∑

j=1

αjΥ(ŷj),Υ(y)〉
∣

∣

(i)





2

=
1

t̂

n̂
∑

i=1





∣

∣

n−s
∑

j=1

αjk(ŷj ,y)
∣

∣

(i)





2

.

V. NUMERICAL ILLUSTRATIONS

In this section we illustrate the performance of HR-PCA
via numerical results on synthetic data. The main purpose
is twofold: to show that the performance of HR-PCA is as
claimed in the theorems and corollaries above, and to compare
its performance with standard PCA, and several popular robust
PCA algorithms, namely, Multi-Variate iterative Trimming
(MVT), ROBPCA proposed in [18], and the (approximate)
Project-Pursuit (PP) algorithm proposed in [30]. Our numerical
examples illustrate, in particular, how the properties of the
high-dimensional regime discussed in Section II can degrade,
or even completely destroy, the performance of available
robust PCA algorithms.

We report thed = 1 case first. We randomly generate ap×1
matrix and scale it so that its leading eigenvalue has magnitude
equal to a givenσ. A λ fraction of outliers are generated on a
line with a uniform distribution over[−σ ·mag, σ ·mag]. Thus,
mag represents the ratio between the magnitude of the outliers
and that of the signalAxi. For each parameter setup, we report
the average result of20 tests (and the90% confidence interval
of the mean) . The MVT algorithm breaks down in then =
p case since it involves taking the inverse of the covariance
matrix which is ill-conditioned. Hence we do not report MVT
results in any of the experiments withn = p, as shown in
Figure 2 and perform a separate test for MVT, HR-PCA and
PCA under the case thatp ≪ n reported in Figure 4.

We make the following three observations from Figure 2.
First, PP and ROBPCA can break down whenλ is large, while
on the other hand, the performance of HR-PCA is rather robust
even whenλ is as large as40%. Second, the performance
of PP and ROBPCA depends strongly onσ, i.e., the signal
magnitude (and hence the magnitude of the corrupted points).
Indeed, whenσ is very large, ROBPCA achieves effectively
optimal recovery of theA subspace. However, the performance
of both algorithms is not satisfactory whenσ is small, and
sometimes even worse than the performance of standard PCA.

Finally, and perhaps most importantly, the performance of PP
and ROBPCA degrades as the dimensionality increases, which
makes them essentially not suitable for the high-dimensional
regime we consider here. This is more explicitly shown in
Figure 3 where the performance of different algorithms versus
dimensionality is reported. We notice that the performanceof
ROBPCA (and similarly other algorithms based on Stahel-
Donoho outlyingness) has a sharp decrease at a certain
threshold that corresponds to the dimensionality where S-D
outlyingness becomes invalid in identifying outliers.

Figure 4 shows that the performance of MVT depends on
the dimensionalitym. Indeed, the breakdown property of MVT
is roughly1/p as predicted by the theoretical analysis, which
makes MVT less attractive in the high-dimensional regime.

A similar numerical study ford = 3 is also performed,
where the outliers are generated on3 random chosen lines.
The results are reported in Figure 5. The same trends as in
the d = 1 case are observed, although the performance gap
between different strategies are smaller, because the effect of
outliers are decreased since they are on3 directions.

While this paper was under review, two new robust PCA
methods based on the decomposition of a matrix into the sum
of a low-rank matrix (via nuclear norm) and an “error” matrix
have been proposed. In particular, in [40] the authors proposed
the RPCAmethod in which the error is modeled as a sparse
matrix, and in [36] the authors proposed the so-calledOutlier
Pursuit method in which the error is modeled as a column-
sparse matrix. The first method (RPCA) is not designed to deal
with the kind of corruption we have here, but rather considers
the setting where each point is corrupted in a few coordinates.
Nevertheless, we compare its performance empirically.

Under the same setup as Figure 4, we compare the proposed
method with these two methods. In addition, to demonstrate
that HRPCA is resilient to the parameter selection, we also
report the performance of HRPCA wheret̂ is fixed to be0.5n
regardless of the fraction of the outliers (labeled HRPCA(0.5)
in the figure). Figure 6 and 7 report the simulation results
for d = 1 and d = 3 respectively. We make the fol-
lowing three observations: (i) The performance of HRPCA
and HRPCA(0.5) is essentially the same, demonstrating that
HRPCA is resilient to parameter selection; (ii) RPCA and
Outlier Pursuit perform well for smallλ, but break down when
λ becomes larger. This is well expected, and has been observed
in previous studies [36], [40]; (iii) The performance of RPCA
and Outlier Pursuit degrades significantly whenσ becomes
small (equivalently, when the noise becomes large). This is
not surprising – as we discussed in Section II, one drawback
of these methods is that their performance scales unfavorably
with the magnitude of the noise.

VI. PROOF OF THEMAIN RESULT

In this section we provide the main steps of the proof of the
finite-sample and asymptotic performance bounds, including
the precise statements and the key ideas in the proof, but
deferring some of the more standard or tedious elements to
the appendix. The proof consists of four main steps.

1) We begin with the fixed-design setup, i.e., no assump-
tions on the authentic points{zi} are made. The first
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Algorithm 2 Kernel HR-PCA

Input: Contaminated sample-setY = {y1, . . . ,yn} ⊂ R
p, d̂, T , n̂.

Output: α(1), . . . ,α(d̂).
Algorithm:

1) Let ŷi := yi for i = 1, . . . n; s := 0; Opt := 0.
2) While s ≤ T , do

a) Compute the Gram matrix of{ŷi}:

Kij := k(ŷi, ŷj); i, j = 1, · · · , n− s.

b) Let σ̂2
1 , · · · , σ̂2

d̂
and α̂(1), · · · , α̂(d̂) be thed̂ largest eigenvalues and the corresponding eigenvectors ofK.

c) Normalize:α(q) := α̂(q)/σ̂q , so that〈wq, wq〉 = 1.

d) If
∑d̂

q=1 V t̂(α(q)) > Opt, then letOpt :=
∑d̂

q=1 V t̂(α(q)) and letα(q) := α(q) for q = 1, · · · , d̂.
e) Randomly remove a point from{ŷi}n−s

i=1 according to

Pr(ŷi is removed) ∝
d̂
∑

q=1

(

n−s
∑

j=1

αj(q)k(ŷj , ŷi))
2;

f) Denote the remaining points by{ŷi}n−s−1
i=1 ;

g) s := s+ 1.

3) Outputα(1), . . . ,α(d̂). End.

step shows that with high probability, the algorithm finds
a “good” solution within a bounded number of steps.
In particular, this involves showing that if in a given
step the algorithm has not found a good solution, in the
sense that the variance along a principal component is
not mainly due to the authentic points, then the random
removal scheme removes a corrupted point with proba-
bility bounded away from zero. We then use martingale
arguments to show that as a consequence of this, there
cannot be many steps with the algorithm finding at
least one “good” solution, since in the absence of good
solutions, most of the corrupted points are removed by
the algorithm.

2) The previous step shows the existence of a “good”
solution. The second step shows two things: first, that
this good solution has performance that is close to that
of the optimal solution, and second, that the final output
of the algorithm is close to that of the “good” solution.
Combining them together, we derive a performance
guarantee for the fixed design case, i.e., for any{zi}ti=1.

3) From the third step onwards, we turn to the stochastic
design case. When{zi}ti=1 are generated according to
Setup 2, we can derive more interpretable results than
the fixed design case. In order to achieve that, we prove
in this step that RVE is a valid variance estimator with
high probability.

4) We then combine results from previous steps, and sim-
plify the expressions, to derive the finite-sample bound.

In what follows, lettersc, C and their variants are reserved
for absolute constants, whose value may change from line to
line.

A. Step 1

The first step shows that the algorithm finds a good solution
in a small number of steps. Proving this involves showing that
at any given step, either the algorithm finds a good solution,
or the random removal eliminates one of the corrupted points
with a guaranteed probability (i.e., probability bounded away
from zero). The intuition then, is that there cannot be too many
steps without finding a good solution, since too many of the
corrupted points will have been removed. This section makes
this intuition precise.

Let us fix aκ > 0. Let Z(s) andO(s) be the set of re-
maining authentic samples and the set of remaining corrupted
points after thesth stage, respectively. Then with this notation,
the set of remaining points isY(s) = Z(s)

⋃O(s). Observe
that |Y(s)| = n − s. Let r(s) = Y(s − 1)\Y(s), the point
removed at stages. Let w1(s), . . . ,wd̂(s) be thed̂ PCs found
in thesth stage — these points are the output of standard PCA
on Y(s− 1). These points are a good solution if the variance
of the points projected onto their span is mainly due to the
authentic samples rather than the corrupted points. We denote
this “good output event at steps” by E(s), defined as follows:

E(s) =

{
d̂
∑

j=1

∑

zi∈Z(s−1)

(wj(s)
⊤zi)

2 ≥ 1

κ

d̂
∑

j=1

∑

oi∈O(s−1)

(wj(s)
⊤oi)

2}.

We show in the next theorem that with high probability,E(s)
is true for at least one “small”s, by showing that at everys
where it is not true, the random removal procedure removes a
corrupted point with probability at leastκ/(1 + κ).

Theorem 4:With high probability eventEκ(s) is true for
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Fig. 2. Performance of HR-PCA vs ROBPCA, PP, PCA (d = 1).



12

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensionality p

E
xp

re
ss

ed
 V

ar
ia

nc
e

σ=5, mag=10, λ=0.15

 

 

HR−PCA
ROBPCA
PCA
PP

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensionality p

E
xp

re
ss

ed
 V

ar
ia

nc
e

σ=5, mag=10, λ=0.2

 

 

HR−PCA
ROBPCA
PCA
PP

(a) λ = 0.15 (b) λ = 0.2

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensionality p

E
xp

re
ss

ed
 V

ar
ia

nc
e

σ=5, mag=10, λ=0.25

 

 

HR−PCA
ROBPCA
PCA
PP

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensionality p

E
xp

re
ss

ed
 V

ar
ia

nc
e

σ=5, mag=10, λ=0.3

 

 

HR−PCA
ROBPCA
PCA
PP

(c) λ = 0.25 (d) λ = 0.3

Fig. 3. Performance vs dimensionality.
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Fig. 4. Performance of HR-PCA vs MVT forp ≪ n.

some1 ≤ s ≤ s0(κ), where

s0(κ) , n ∧
{

(1 + ǫ)
(1 + κ)λn

κ

}

;

ǫ = C

{

(1 + κ) logn

κλn
+

√

(1 + κ) logn

κλn

}

.

In this step, theκ is fixed, hence we will simply writes0 and
E(s) to lighten the notation.

Remark 5:Divide s0 by t leads to (noticen ≥ t = (1 −
λ)n ≥ 0.5n, and hencet andn are of same order)

s0(κ)/t ≤ (1 + κ)λ

κ(1− λ)
+

C(1 + κ)2 logn

κ2n

+
C(1 + κ)3/2(log n)1/2

κ3/2n1/2
.

Notice that when(1 + κ)3 logn/(κ3n) < 1, then the second
term is dominated by the third term; on the other hand, if(1+

κ)3 logn/(κ3n) ≥ 1, thens0(κ) ≤ n ≤ 2t implies s0(κ)/t ≤
C′(1 + κ)3/2(logn)1/2/[κ3/2n1/2], thus we have

s0(κ)/t ≤ (1 + κ)λ

κ(1− λ)
+

C′(1 + κ)3/2(logn)1/2

κ3/2n1/2

def
=

(1 + κ)λ

κ(1− λ)
+ εκ. (4)

The right hand side of Equation (4) converges to(1 +
κ)λ/κ(1 − λ) for any fixedκ (indeed, for any sequence of
κn such thatκn ∼ ω(logn/n)1/3). Therefore,s0 ≤ t if
(1 + κ)λ < κ(1− λ) andn is large.

Whens0 = n, Theorem 4 holds trivially. Hence we focus on
the case wheres0 < n. En route to proving this theorem, we
first prove that whenE(s) is not true, our procedure removes
a corrupted point with high probability. To this end, letFs

be the filtration generated by the set of events until stages.
Observe thatO(s),Z(s),Y(s) ∈ Fs. Furthermore, since given
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Fig. 5. Performance of HR-PCA vs ROBPCA, PP, PCA (d = 3).
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(a) n = p = 100 (b) n = p = 1000

Fig. 6. Performance of HR-PCA vs HR-PCA(0.5), RPCA, OutlierPursuit (d = 1).
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Fig. 7. Performance of HR-PCA vs HR-PCA(0.5), RPCA, OutlierPursuit (d = 1).
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Y(s), performing a PCA is deterministic,E(s+ 1) ∈ Fs.
Theorem 5:If Ec(s) is true, then

Pr({r(s) ∈ O(s− 1)}|Fs−1) >
κ

1 + κ
.

Proof: If Ec(s) is true, then

d̂
∑

j=1

∑

zi∈Z(s−1)

(wj(s)
⊤zi)

2 <
1

κ

d̂
∑

j=1

∑

oi∈O(s−1)

(wj(s)
⊤oi)

2,

which is equivalent to

∑

zi∈Z(s−1)

d̂
∑

j=1

(wj(s)
⊤zi)

2 +
∑

oi∈O(s−1)

d̂
∑

j=1

(wj(s)
⊤oi)

2

<
1 + κ

κ

∑

oi∈O(s−1)

d̂
∑

j=1

(wj(s)
⊤oi)

2.

Note that

Pr({r(s) ∈ O(s− 1)}|Fs−1)

=
∑

oi∈O(s−1)

Pr(r(s) = oi|Fs−1)

=

∑

oi∈O(s−1)

d̂
∑

j=1

(wj(s)
⊤oi)

2

∑

zi∈Z(s−1)

d̂
∑

j=1

(wj(s)⊤zi)2 +
∑

oi∈O(s−1)

d̂
∑

j=1

(wj(s)⊤oi)2

>
κ

1 + κ
.

Here, the second equality follows from the definition of the
algorithm, and in particular, that in stages, we remove a
point y with probability proportional to

∑d̂
j=1(wj(s)

⊤y)2,
and independent to other events.

As a consequence of this theorem, we can now prove
Theorem 4. The intuition is rather straightforward: if the
events were independent from one step to the next, then since
“the expected number of corrupted points removed” is at
leastκ/(1 + κ), then afters0 = (1 + ǫ)(1 + κ)λn/κ steps,
with exponentially high probability all the outliers wouldbe
removed, and hence we would have a good event with high
probability, for somes ≤ s0. Since subsequent steps are not
independent, we have to rely on martingale arguments.

Let T = min{s|E(s) is true}. Note that sinceE(s) ∈ Fs−1,
we have{T > s} ∈ Fs−1. Define the following random
variable

Xs =

{

|O(T − 1)|+ κ(T−1)
1+κ , if T ≤ s;

|O(s)|+ κs
1+κ , if T > s.

Lemma 1:{Xs,Fs} is a supermartingale.
Proof Sketch: The proof essentially follows from the

definition ofXs, and the fact that ifE(s) is true, then|O(s)|
decreases by one with probabilityκ/(1 + κ). The full details
are deferred to the appendix.

From here, the proof of Theorem 4 follows fairly quickly.

Proof Sketch: Note that

Pr

(

s0
⋂

s=1

E(s)c
)

= Pr (T > s0)

≤Pr

(

Xs0 ≥ κs0
1 + κ

)

= Pr (Xs0 ≥ (1 + ǫ)λn) ,

(5)

where the inequality is due to|O(s)| being non-negative.
Recall thatX0 = λn. Thus the probability that no good
events occur before steps0 is at most the probability that
a supermartingale with bounded incremements increases in
value by a constant factor of(1+ǫ), from λn to (1+ǫ)λn. An
appeal to Azuma’s inequality shows that this is exponentially
unlikely. The details are left to the appendix.

B. Step 2

Theorem 6 (Fixed Design):The following three statements
hold for the fixed design case:

1) For any κ > 0 such that s0(κ) < n, with high
probability there existss ≤ s0(κ), such that

1

1 + κ

d̂
∑

j=1

t−s0(κ)
∑

i=1

∣

∣w∗
jz
∣

∣

2

(i)
≤

d̂
∑

j=1

t
∑

i=1

(wj(s)
⊤zi)

2.

(6)
2) For anys ≤ n,

d̂
∑

j=1

t̂− λt
1−λ
∑

i=1

|wj(s)
⊤z|2(i) ≤

d̂
∑

j=1

t̂
∑

i=1

|w⊤
j z|2(i). (7)

3) Let ϕ−(·) and ϕ+(·) satisfy for anyt′ ≤ t, w ∈ R
p

with ‖w‖2 = 1,

ϕ−(t′/t)
t
∑

i=1

(w⊤zi)
2 ≤

t′
∑

i=1

|w⊤zi|2

≤ ϕ+(t′/t)
t
∑

i=1

(w⊤zi)
2,

then with high probability,

ϕ−
( t− s0(κ)

t

)

ϕ−
( t̂

t
− λ

1− λ

)

t
∑

i=1

d̂
∑

j=1

(w∗⊤
j zi)

2

≤(1 + κ)ϕ+
( t̂

t

)

t
∑

i=1

d̂
∑

j=1

(w⊤
j zi)

2.

Proof: Part 1: With high probability, there existss ≤
s0(κ) such thatEκ(s) is true. Then we have

∑

zi∈Z(s−1)

d̂
∑

j=1

(wj(s)
⊤zi)

2 ≥ 1

κ

∑

oi∈O(s−1)

d̂
∑

j=1

(wj(s)
⊤oi)

2.

Recall thatY(s−1) = Z(s−1)
⋃O(s−1), and thatZ(s−1)

andO(s− 1) are disjoint. We thus have

1

1 + κ

∑

yi∈Y(s−1)

d̂
∑

j=1

(wj(s)
⊤yi)

2

≤
∑

zi∈Z(s−1)

d̂
∑

j=1

(wj(s)
⊤zi)

2.

(8)
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Sincew1(s), . . . ,wd̂(s) are the solution of thesth stage, the
following holds by definition of the algorithm

∑

yi∈Y(s−1)

d̂
∑

j=1

(w∗⊤
j yi)

2 ≤
∑

yi∈Y(s−1)

d̂
∑

j=1

(wj(s)
⊤yi)

2. (9)

Further note that byZ(s− 1) ⊆ Y(s− 1) andZ(s− 1) ⊆ Z,
we have

∑

zi∈Z(s−1)

d̂
∑

j=1

(w∗⊤
j zi)

2 ≤
∑

yi∈Y(s−1)

d̂
∑

j=1

(w∗⊤
j yi)

2,

and

∑

zi∈Z(s−1)

d̂
∑

j=1

(wj(s)
⊤zi)

2 ≤
∑

zi∈Z

d̂
∑

j=1

(wj(s)
⊤zi)

2

=

t
∑

i=1

d̂
∑

j=1

(wj(s)
⊤zi)

2.

Substituting them into (8) and (9) we have

1

1 + κ

d̂
∑

j=1

∑

zi∈Z(s−1)

(w∗⊤
j zi)

2 ≤
d̂
∑

j=1

t
∑

i=1

(wj(s)
⊤zi)

2.

Note that|Z(s− 1)| ≥ t− (s− 1) ≥ t− s0(κ), hence for all
j = 1, · · · , d,

t−s0
∑

i=1

∣

∣w∗
jz
∣

∣

2

(i)
≤

|Z(s−1)|
∑

i=1

∣

∣w∗
jz
∣

∣

2

(i)
≤

∑

zi∈Z(s−1)

(w∗
jzi)

2,

which in turn implies

1

1 + κ

d̂
∑

j=1

t−s0(κ)
∑

i=1

∣

∣w∗
jz
∣

∣

2

(i)
≤

d̂
∑

j=1

t
∑

i=1

(wj(s)
⊤zi)

2. (10)

Part 2: The definition of algorithm implies that

d̂
∑

j=1

V t̂(wj(s)) ≤
d̂
∑

j=1

V t̂(wj).

Recall thatV t̂(w) = 1
t̂

∑t̂
i=1 |w⊤y|2(i), hence we have

d̂
∑

j=1

t̂
∑

i=1

|wj(s)
⊤y|2(i) ≤

d̂
∑

j=1

t̂
∑

i=1

|w⊤
j y|2(i). (11)

Further notice that for any unit-normw ∈ R
p, sinceZ ⊂ Y

and |Y\Z| = λn = λt/(1− λ), we have

t̂− λt
1−λ
∑

i=1

|w⊤z|2(i) ≤
t̂
∑

i=1

|w⊤y|2(i) ≤
t̂
∑

i=1

|w⊤z|2(i).

Here, the first inequality holds because for anyt̂ elements in
Y, at least̂t−λt/(1−λ) belongs toZ; the second inequality
holds because any subset ofZ with t̂ elements, is also a subset
of Y with t̂ elements, thus the inequality follows from the
definition of order statistics (i.e., the smallest elements).

Substitute this into Equation (11), we have

d̂
∑

j=1

t̂− λt
1−λ
∑

i=1

|wj(s)
⊤z|2(i) ≤

d̂
∑

j=1

t̂
∑

i=1

|w⊤
j z|2(i). (12)

Part 3: By definition of ϕ+(·) andϕ−(·), Equation (10)
leads to

ϕ−( t− s0
t

)

d̂
∑

j=1

t
∑

i=1

(w∗⊤
j zi)

2 ≤
d̂
∑

j=1

t−s0
∑

i=1

∣

∣w∗⊤
j z

∣

∣

2

(i)

≤(1 + κ)

d̂
∑

j=1

t
∑

i=1

(wj(s)
⊤zi)

2.

Similarly, Equation (12) leads to

ϕ−( t̂

t
− λ

1− λ

)

d̂
∑

j=1

t
∑

i=1

(wj(s)
⊤zi)

2

≤
d̂
∑

j=1

t̂− λt
1−λ
∑

i=1

|wj(s)
⊤z|2(i)

≤
d̂
∑

j=1

t̂
∑

i=1

|w⊤
j z|2(i) ≤ ϕ+

( t̂

t

)

d̂
∑

j=1

t
∑

i=1

(w⊤
j zi)

2.

Combining these together, we have that

ϕ−
( t− s0(κ)

t

)

ϕ−
( t̂

t
− λ

1− λ

)

t
∑

i=1

d̂
∑

j=1

(w∗⊤
j zi)

2

≤ (1 + κ)ϕ+
( t̂

t

)

t
∑

i=1

d̂
∑

j=1

(w⊤
j zi)

2.

C. Step 3

From this step on we focus on the stochastic design case.
Recall that in this case, the authentic samples{zi}ti=1 are
generated according tozi = Axi + vi for i.i.d. xi ∈ R

d, and
Gaussian noisevi ∈ R

p. Our main goal is this step is to show
that for anyw1, . . . ,wd̂ andt′ ≤ t,

∑d̂
j=1

∑t′

i=1

∣

∣wjz
∣

∣

2

(i)
is a

good indicator of
∑d̂

j=1 ‖w⊤
j A‖22. Thus, combining with the

result in Step 2 establishes Theorem 2. En route to this, we
require following lemmas about the properties ofV(·). The
proofs are deferred to Appendix B.

Lemma 2 (Monotonicity ofV): Given 0 ≤ a1 < a2 <
a3 ≤ 1, we have

V(a2)− V(a1)
a2 − a1

≤ V(a3)− V(a2)
a3 − a2

.

Lemma 3: 1) For anya ∈ [0, 1], we have

V(a) ≤ a.

2) For any0 ≤ a1 < a2 ≤ 1, we have

V(a2)− V(a1) ≤
a2 − a1
1− a1

.

Lemma 4:For anyǫ > 0 andκ ∈ [ǫ, 1], we haveV(κ) −
V(κ− ǫ) ≤ Cαǫ log2(1/ǫ).
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The rest of the this section depends the following concen-
tration condition.

Condition 1: (I)

sup
w∈Sp

1

t

t
∑

i=1

(w⊤vi)
2 ≤ cτ.

(II)

sup
q∈Sd

∣

∣

1

t

t
∑

i=1

(q⊤xi)
2 − 1

∣

∣ ≤ Cα

√

d log3 n

n

def
= ε0.

(III) Supposeε0 ≤ 1. For all q ∈ Sd and t ≤ t,
∣

∣

∣

∣

∣

∣

1

t

t
∑

i=1

[q⊤x]2(i) − V(t/t)

∣

∣

∣

∣

∣

∣

≤ Ct(1 + ε0)
√

d logn/n

t− t
∧ Cα

1

2 d
1

4 (log n)
5

4n− 1

4

def
= ε1(t/t).

Theorem 7:Condition 1 holds with high probability.
The proof of Theorem 7 is lengthy, and hence deferred to
Appendix C. We are now ready to show the main result of
this step.

Theorem 8:Suppose Condition 1 holds. Then for allw ∈
Sp, andt′ ≤ t, the following holds:

‖w⊤A‖22[V(t′/t)− ε1(t
′/t)]− 2‖w⊤A‖2

√

(1 + ε0)cτ

≤ 1

t

t′
∑

i=1

|w⊤z|2(i)

≤ ‖w⊤A‖22[V
(t′

t

)

+ ε1
( t′

t

)

] + 2‖w⊤A‖2
√

(1 + ε0)cτ + cτ.

Proof: Recall thatzi = Axi + vi. Fix an arbitraryw ∈
Sp. Let {π̂i}ti=1 and{π̄i}ti=1 be permutations of[1, . . . , t] such
that both|w⊤zπ̂i

| and|w⊤Axπ̄i
| are non-decreasing. Thus we

have

1

t

t′
∑

i=1

|w⊤z|2(i) =
1

t

t′
∑

i=1

|w⊤zπ̂i
|2 ≤ 1

t

t′
∑

i=1

|w⊤zπ̄i
|2.

Expanding the right-hand-side yields

1

t

t′
∑

i=1

|w⊤zπ̄i
|2

=
1

t

t′
∑

i=1

|w⊤Axπ̄i
+w⊤vπ̄i

|2

≤1

t







t′
∑

i=1

(w⊤Axπ̄i
)2 + 2

t
∑

i=1

|w⊤Axπ̄i
||w⊤vπ̄i

|

+
t
∑

i=1

(w⊤vπ̄i
)2

}

(a)
=

1

t







t′
∑

i=1

|w⊤Ax|2(i) + 2

t
∑

i=1

|w⊤Axi||w⊤vi|

+

t
∑

i=1

(w⊤vi)
2

}

,

where (a) holds due to the fact that|w⊤Axπ̄i
| are non-

decreasing. We now bound three terms separately:

I.
1

t

t′
∑

i=1

|w⊤Ax|2(i) = ‖w⊤A‖22
1

t

t′
∑

i=1

∣

∣

∣

w⊤A

‖w⊤A‖2
x

∣

∣

∣

2

(i)

≤ ‖w⊤A‖22 sup
q∈Sd

1

t

t′
∑

i=1

|q⊤x|2(i)

≤ ‖w⊤A‖22[V(t′/t) + ε1(t
′/t)];

II.
2

t

t
∑

i=1

|w⊤Axi||w⊤vi|

≤ 2

√

√

√

√

1

t

t
∑

i=1

|w⊤Axi|2
√

√

√

√

1

t

t
∑

i=1

|w⊤vi|2

≤ 2‖w⊤A‖2

√

√

√

√ sup
q∈Sd,‖q‖2=1

1

t

t
∑

i=1

|q⊤xi|2
√

√

√

√

1

t

t
∑

i=1

|w⊤vi|2

≤ 2‖w⊤A‖22
√
1 + ε0

√
cτ ;

III.
1

t

t
∑

i=1

(w⊤vi)
2 ≤ cτ.

We thus have

1

t

t′
∑

i=1

|w⊤z|2(i)

≤‖w⊤A‖22[V(t′/t) + ε1(t
′/t)] + 2‖w⊤A‖2

√

(1 + ε0)cτ + cτ.

Similarly, we have

1

t

t′
∑

i=1

|w⊤z|2(i) =
1

t

t′
∑

i=1

|w⊤Axπ̂i
+w⊤vĵi

|2

≥1

t







t′
∑

i=1

(w⊤Axπ̂i
)2 − 2

t
∑

i=1

|w⊤Axi||w⊤vi|







≥1

t







t′
∑

i=1

|w⊤Ax|2(i) − 2

t
∑

i=1

|w⊤Axi||w⊤vi|







≥‖w⊤A‖22[V(t′/t)− ε1(t
′/t)]− 2‖w⊤A‖2

√

(1 + ε0)cτ .

The following corollary immediately follows from the fact that
∑d̂

j=1 |aj | ≤
√

d̂
∑d̂

j=1 a
2
j holds for anyaj .

Corollary 3: Suppose Condition 1 holds. Then for all
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w1, . . . ,wd̂ ∈ Sp, andt′ ≤ t, the following holds:

[

d̂
∑

j=1

‖w⊤
j A‖22

]

[V
( t′

t

)

− ε1
( t′

t
)]

− 2

√

√

√

√

√d̂
[

d̂
∑

j=1

‖w⊤
j A‖22

]

(1 + ε0)cτ

≤ 1

t

d̂
∑

j=1

t′
∑

i=1

|w⊤
j z|2(i)

≤
[

d̂
∑

j=1

‖w⊤
j A‖22

]

[V
(t′

t

)

+ ε1
( t′

t

)

]

+ 2

√

√

√

√

√d̂
[

d̂
∑

j=1

‖w⊤
j A‖22

]

(1 + ε0)cτ + cd̂τ.

In the special case wheret′ = t, we can indeed sharpen the
result of Theorem 8, since in this case
∣

∣

∣

∣

∣

∣

1

t

t′
∑

i=1

[q⊤x]2(i) − V(t′/t)

∣

∣

∣

∣

∣

∣

=
∣

∣

1

t

t
∑

i=1

(v⊤xi)
2 − 1

∣

∣ ≤ ε0.

This leads to the following corollary.
Corollary 4: Suppose Condition 1 holds. Then for all

w1, . . . ,wd̂ ∈ Sp, the following holds:

[

d̂
∑

j=1

‖w⊤
j A‖22

]

[1− ε0]− 2

√

√

√

√

√d̂
[

d̂
∑

j=1

‖w⊤
j A‖22

]

(1 + ε0)cτ

≤ 1

t

d̂
∑

j=1

t
∑

i=1

|w⊤
j zi|2

≤
[

d̂
∑

j=1

‖w⊤
j A‖22

]

[1 + ε0]

+ 2

√

√

√

√

√d̂
[

d̂
∑

j=1

‖w⊤
j A‖22

]

(1 + ε0)cτ + cd̂τ.

D. Step 4

Finally, based on all previous results, we prove the main
theorem.

Theorem 2: Let the algorithm output bew1, . . . ,wd̂,
and denote the optimal̂d Principal Components ofA as
w∗

1, . . . ,w
∗
d̂
. Denoteτ , max(p/n, 1) and

H∗ ,

d̂
∑

j=1

‖w∗⊤
j A‖22; H ,

d̂
∑

j=1

‖w⊤
j A‖22.

With high probability, the following holds for anyκ,

H

H∗ ≥
V
(

t̂
t − λ

1−λ

)

V
(

1− (1+κ)λ
κ(1−λ)

)

(1 + κ)V
(

t̂
t

) − 10

V (0.5)

(

cd̂τ

H∗

)1/2

− C{α 1

2 d
1

4 (log
5

4 n)n− 1

4 ∨ α[(1 + κ)/κ]
3

2 (log
5

2 n)n− 1

2 }
V(0.5) .

Herec andC are absolute constants.
Proof: Recall that with high probability Condition 1 and

⋃s0(κ)
s=1 Eκ(s) are both true. So we restrict our attention to this

case. Further notice that we can assumeε0 ≤ 1, ε1(t̂/t) ≤
V
(

t̂/t− λ/(1− λ)
)

and cd̂τ/H∗ < 1, since otherwise the
theorem holds trivially as the right-hand-side of Equation(13)
is negative.

Since
⋃s0(κ)

s=1 Eκ(s) is true, there exists as ≤ s0 such
that Eκ(s) is true. To simplify notation, denote Hs ,
∑d̂

j=1 ‖wj(s)
⊤A‖22. Theorem 6 leads to

1

1 + κ

d̂
∑

j=1

t−s0(κ)
∑

i=1

∣

∣w∗
jz
∣

∣

2

(i)
≤

d̂
∑

j=1

t
∑

i=1

(wj(s)
⊤zi)

2.

Using Corollary 3 to lower bound the left-hand-side, and
Corollary 4 to upper bound the right-hand-side, we have

1

1 + κ

[

(

V
( t− s0(κ)

t

)

− ε1
( t̂

t

)

)

H∗ − 2

√

(1 + ε0)cd̂H∗τ

]

≤ (1 + ε0)Hs + 2

√

(1 + ε0)cd̂Hsτ + cd̂τ

≤ (1 + ε0)Hs + 2

√

(1 + ε0)cd̂H∗τ + cd̂τ,

where the last inequality holds because for anyd̂, Hs ≤ H∗.
By re-organization, we have

(

V
( t− s0(κ)

t

)

− ε1
( t̂

t

)

)

H∗ − (2κ+ 4)

√

(1 + ε0)cd̂H∗τ

− (1 + κ)cd̂τ ≤ (1 + κ)(1 + ε0)Hs.
(13)

On the other hand, Theorem 6 also gives

d̂
∑

j=1

t̂− λt
1−λ
∑

i=1

|wj(s)
⊤z|2(i) ≤

d̂
∑

j=1

t̂
∑

i=1

|w⊤
j z|2(i),

which by applying Corollary 3 and 4 implies

[

V
( t̂

t
− λ

1− λ

)

− ε1
( t̂

t
− λ

1− λ

)

]

Hs − 2

√

(1 + ε0)cd̂τHs

≤
[

V
(

t̂

t

)

+ ε1

(

t̂

t

)]

H + 2

√

(1 + ε0)cd̂τH + cd̂τ.

Notice thatε1(·) is non-decreasing, andHs, H ≤ H∗, we can
simplify the equation to the following one:

[

V
(

t̂

t
− λ

1− λ

)

− ε1

(

t̂

t

)]

Hs

≤
[

V
(

t̂

t

)

+ ε1

(

t̂

t

)]

H + 4

√

(1 + ε0)cd̂τH∗ + cd̂τ.

(14)

Combining Equation (13) and (14), and notice thatε1(t̂/t) ≤
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V(t̂/t− λ/(1− λ)), we have

H

H∗ ≥

[

V
(

t̂
t − λ

1−λ

)

− ε1(t̂/t)
]

[

V
(

t−s0
t

)

− ε1(t̂/t)
]

(1 + ε0)(1 + κ)
[

V
(

t̂
t

)

+ ε1(t̂/t)
]

−











(2κ+ 4)
[

V
(

t̂
t − λ

1−λ

)

− ε1(t̂/t)
]

√

(1 + ε0)cd̂τ

(1 + ε0)(1 + κ)
[

V
(

t̂
t

)

+ ε1(t̂/t)
]

+
4(1 + κ)(1 + ε0)

√

(1 + ε0)cd̂τ

(1 + ε0)(1 + κ)
[

V
(

t̂
t

)

+ ε1(t̂/t)
]







(H∗)−1/2

−







[

V
(

t̂
t − λ

1−λ

)

− ε1(t̂/t) + 1 + ε0

]

cd̂τ

(1 + ε0)(1 + κ)
[

V
(

t̂
t

)

+ ε1(t̂/t)
]







(H∗)−1.

(15)

Finally, we simplify the right hand side of Equation (15),
by bounding the three terms separately:
[

V
(

t̂
t − λ

1−λ

)

− ε1(t̂/t)
]

[

V
(

t−s0
t

)

− ε1(t̂/t)
]

(1 + ε0)(1 + κ)
[

V
(

t̂
t

)

+ ε1(t̂/t)
]

≥
V
(

t̂
t − λ

1−λ

)

V
(

t−s0
t

)

− ε1
(

t̂
t

)

[

V
(

t̂
t − λ

1−λ

)

+ V
(

t−s0
t

)

]

(1 + ε0)(1 + κ)
[

V
(

t̂
t

)

+ ε1(t̂/t)
]

(a)

≥
V
(

t̂
t − λ

1−λ

)

V
(

t−s0
t

)

(1 + ε0)(1 + κ)
[

V
(

t̂
t

)

+ ε1(t̂/t)
] − 2ε1(t̂/t)

V
(

t̂
t

)

(b)

≥
(1− ε0)V

(

t̂
t − λ

1−λ

)

V
(

t−s0
t

)

(1 + κ)
[

V
(

t̂
t

)

+ ε1(t̂/t)
] − 2ε1(t̂/t)

V
(

t̂
t

)

(c)

≥
V
(

t̂
t − λ

1−λ

)

V
(

t−s0
t

)

(1 + κ)
[

V
(

t̂
t

)

+ ε1(t̂/t)
] − 2ε1(t̂/t) + ε0

V
(

t̂
t

)

(d)

≥
V
(

t̂
t − λ

1−λ

)

V
(

t−s0
t

)

[

V
(

t̂
t

)

− ε1
(

t̂
t

)

]

(1 + κ)V2
(

t̂
t

) − 2ε1
(

t̂
t

)

+ ε0

V
(

t̂
t

)

(e)

≥
V
(

t̂
t − λ

1−λ

)

V
(

t−s0
t

)

(1 + κ)V
(

t̂
t

) − 3ε1(t̂/t) + ε0

V
(

t̂
t

) ;

(16)

where (a) and (c) holds becauseV(·) is upper bounded by
1; (b) and (d) follows from the fact that for any0 ≤ ǫ < a,
1/(a+ǫ) ≥ (a−ǫ)/a2; (e) holds becauseV(t̂/t−λ/(1−λ)) ≤
V(t̂/t). Further recall from Equation (4) that

s0(κ)/t ≤
(1 + κ)λ

κ(1− λ)
+ εκ,

which by Lemma 4 leads to

V
(

1− (1 + κ)λ

κ(1− λ)

)

− V
(

t− s0
t

)

≤ Cαεκ log
2(1/εκ)

≤ Cαεκ log
2 n.

Substitute into Equation (16) leads to
[

V
(

t̂
t − λ

1−λ

)

− ε1(t̂/t)
]

[

V
(

t−s0
t

)

− ε1(t̂/t)
]

(1 + ε0)(1 + κ)
[

V
(

t̂
t

)

+ ε1(t̂/t)
]

≥
V
(

t̂
t − λ

1−λ

)

V
(

1− (1+κ)λ
κ(1−λ)

)

(1 + κ)V
(

t̂
t

) − 3ε1
(

t̂
t

)

+ ε0 + Cα(log2 n)εκ

V
(

t̂
t

) .

(17)

To bound the second term, we have

(2κ+ 4)
[

V
(

t̂
t − λ

1−λ

)

− ε1(t̂/t)
]

√

(1 + ε0)cd̂τ

(1 + ε0)(1 + κ)
[

V
(

t̂
t

)

+ ε1(t̂/t)
]

+
4(1 + κ)(1 + ε0)

√

(1 + ε0)cd̂τ

(1 + ε0)(1 + κ)
[

V
(

t̂
t

)

+ ε1(t̂/t)
]

≤
(4κ+ 4)

[

V
(

t̂
t

)]√
1 + ε0 + 4(1 + κ)(1 + ε0)

√
1 + ε0

(1 + ε0)(1 + κ)V
(

t̂
t

)

≤
4V
(

t̂
t

)

V
(

t̂
t

) +
4(1 + ε0)

V
(

t̂
t

) ≤ 8

V
(

t̂
t

) + C
ε0

V
(

t̂
t

) ; (18)

To bound the third term, we have
[

V
(

t̂
t − λ

1−λ

)

− ε1(t̂/t)
]

+ [1 + ε0]

(1 + ε0)(1 + κ)
[

V
(

t̂
t

)

+ ε1(t̂/t)
]

≤
V
(

t̂
t − λ

1−λ

)

V
(

t̂
t

) +
1

V
(

t̂
t

) ≤ 2

V
(

t̂
t

) . (19)

Combining Equation (17), (18) and (19), we have

H

H∗ ≥
V
(

t̂
t − λ

1−λ

)

V
(

1− (1+κ)λ
κ(1−λ)

)

(1 + κ)V
(

t̂
t

)

−3ε1(t̂/t) + ε0 + Cα(log2 n)εκ

V
(

t̂
t

)

− 8

V
(

t̂
t

)

√

cd̂τ

H∗ − Cε0

V
(

t̂
t

)

√

cd̂τ

H∗ − 2

V
(

t̂
t

)

cd̂τ

H∗

≥
V
(

t̂
t − λ

1−λ

)

V
(

1− (1+κ)λ
κ(1−λ)

)

(1 + κ)V
(

t̂
t

) − 8

V
(

t̂
t

)

(

cd̂τ

H∗

)
1

2

− 2

V
(

t̂
t

)

(

cd̂τ

H∗

)

− C[ε0 ∨ ε1
(

t̂
t

)

∨ α(log2 n)εκ]

V(0.5)

≥
V
(

t̂
t − λ

1−λ

)

V
(

1− (1+κ)λ
κ(1−λ)

)

(1 + κ)V
(

t̂
t

) − 10

V (0.5)

(

cd̂τ

H∗

)
1

2

−C[ε0 ∨ ε1(t̂/t) ∨ α(log2 n)εκ]

V(0.5) ,
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where in the last two inequalities we use the fact thatt̂/t ≥ 0.5
andcd̂τ ≤ H∗. We can further simplify the last term by

C[ε0 ∨ ε1(t̂/t) ∨ α(log2 n)εκ]

V(0.5)

≤ Cαd
1

2 (log
3

2 n)n− 1

2

V(0.5) ∨ Cα
1

2 d
1

4 (log
5

4 n)n− 1

4

V(0.5)

∨Cα[(1 + κ)/κ]
3

2 (log
5

2 n)n− 1

2 ]

V(0.5)

≤ C[α
1

2 d
1

4 (log
5

4 n)n− 1

4 ∨ α[(1 + κ)/κ]
3

2 (log
5

2 n)n− 1

2 ]

V(0.5) ,

where the last inequality holds since when
α1/2d1/4(log5/4 n)n−1/4 ≤ 1 (otherwise the theorem
holds trivially), we have αd1/2(log3/2 n)n−1/2 ≤
α1/2d1/4(log5/4 n)n−1/4.

VII. C ONCLUDING REMARKS

In this paper, we investigated the dimensionality-reduction
problem in the case where the number and the dimensionality
of samples are of the same magnitude, and a constant fraction
of the points are arbitrarily corrupted (perhaps maliciously so).
We proposed a High-dimensional Robust Principal Compo-
nent Analysis algorithm that is tractable, robust to corrupted
points, easily kernelizable and asymptotically optimal. The
algorithm iteratively finds a set of PCs using standard PCA
and subsequently remove a point randomly with a probability
proportional to its expressed variance. We provided both
theoretical guarantees and favorable simulation results about
the performance of the proposed algorithm.

To the best of our knowledge, previous efforts to extend
existing robust PCA algorithms into the high-dimensional case
remain unsuccessful. Such algorithms are designed for low
dimensional data sets where the observations significantly
outnumber the variables of each dimension. When applied to
high-dimensional data sets, they either lose statistical consis-
tency due to lack of sufficient observations, or become highly
intractable. This motivates our work of proposing a new robust
PCA algorithm that takes into account the inherent difficulty
in analyzing high-dimensional data.

APPENDIX

A. Proof of Theorem 4 and Lemma 1

Recall the statement of Theorem 4:
Theorem 4:With high probability

⋃s0
s=1 Eκ(s) is true. Here

s0(κ) , (1 + ǫ)
(1 + κ)λn

κ
;

ǫ = C

{

(1 + κ) logn

κλn
+

√

(1 + κ) logn

κλn

}

.

As κ is fixed, we will simply writeE(s) ands0 in the proof.
Recall that we defined the random variableXs as follows: Let
T = min{s|E(s) is true}. Note that sinceE(s) ∈ Fs−1, we
have{T > s}, {T = s}, {T < s} ∈ Fs−1. Then define:

Xs =

{

|O(T − 1)|+ κ(T−1)
1+κ , if T ≤ s;

|O(s)|+ κs
1+κ , if T > s.

The proof of the above theorem depends on first showing that
the random variable,Xs, is a supermartingale.

Lemma 1:{Xs,Fs} is a supermartingale.
Proof: Observe thatXs ∈ Fs. We next show that

E(Xs|Fs−1) ≤ Xs−1 by enumerating the following three
cases ofFs−1 (recall {T > s}, {T = s}, {T < s} ∈ Fs−1):

Case 1,T > s: Thus we haveEc(s) is true. By Theorem 5,
under this situation,

E(Xs −Xs−1|Fs−1)

= E

(

O(s)−O(s− 1) +
κ

1 + κ

∣

∣

∣Fs−1

)

=
κ

1 + κ
− Pr

(

r(s) ∈ O(s− 1)
∣

∣Fs−1

)

=
κ

1 + κ
− Pr (r(s) ∈ O(s − 1))

< 0.

Case 2,T = s: By definition ofXs we haveXs = O(s−
1) + κ(s− 1)/(1 + κ) = Xs−1.

Case 3,T < s: Since bothT and s are integer, we have
T ≤ s−1. Thus,Xs−1 = O(T −1)+κ(T −1)/(1+κ) = Xs.

These three cases enumerate all possibleFs−1. Hence
combining them together shows thatE(Xs|Fs−1) ≤ Xs−1,
which proves the lemma.

Next, we prove Theorem 4.
Proof: Note that

Pr

(

s0
⋂

s=1

E(s)c
)

= Pr (T > s0)

≤Pr

(

Xs0 ≥ κs0
1 + κ

)

= Pr (Xs0 ≥ (1 + ǫ)λn) ,

(20)

where the inequality is due to|O(s)| being non-negative.
Let ys , Xs −Xs−1, where recall thatX0 = λn. Consider

the following sequence:

y′s , ys − E(ys|y1, · · · , ys−1).

Observe that{y′s} is a martingale difference process w.r.t.
{Fs}. Since{Xs} is a supermartingale,E(ys|y1, · · · , ys−1) ≤
0 a.s. Therefore, the following holds a.s.,

Xs−X0 =
s
∑

i=1

yi =
s
∑

i=1

y′i+
s
∑

i=1

E(yi|y1, · · · , yi−1) ≤
s
∑

i=1

y′i.

(21)
By definition, |ys| ≤ 1, and hence|y′s| ≤ 2. Now apply
Azuma’s inequality,

Pr(Xs0 ≥ (1 + ǫ)λn)

≤ Pr((

s0
∑

i=1

y′i) ≥ ǫλn)

≤ exp(−(ǫλn)2/8s0)

= exp

(

− (ǫλn)2κ

8(1 + ǫ)(1 + κ)λn

)

≤ exp

(

− (ǫλn)2κ

8(1 + ǫ)(1 + κ)λn

)

≤ max

(

exp

(

− ǫ2λnκ

16(1 + κ)

)

, exp

(

− ǫλnκ

16(1 + κ)

))

.
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Substituting ǫ with C large enough (e.g.,C = 160), we
have that the right hand side is upper bounded byn−10. This
establishes the theorem.

B. Proof of Lemma 2 to 4

Lemma 2: Given 0 ≤ a1 < a2 < a3 ≤ 1, we have

V(a2)− V(a1)
a2 − a1

≤ V(a3)− V(a2)
a3 − a2

.

Proof: By definition, V(a) =
∫ +ν(a)

−ν(a) x
2 µ(dx), and

notice thatν(·) is increasing, we have that

V(a2)− V(a1) =
∫ −ν(a1)

−ν(a2)

x2 µ(dx) +

∫ +ν(a2)

+ν(a1)

x2 µ(dx)

≤ ν(a2)
2[

∫ −ν(a1)

−ν(a2)

µ(dx) +

∫ +ν(a2)

+ν(a1)

µ(dx)]

= (a2 − a1)ν(a2)
2.

On the other hand, by a similar argument, we have

V(a3)− V(a2) ≥ (a3 − a2)ν(a2)
2.

The lemma thus follows.
Lemma 2 immediately implies the Lemma 3. We next prove

Lemma 4.
Lemma 4: For anyǫ > 0 andκ ∈ [ǫ, 1], we haveV(κ)−

V(κ− ǫ) ≤ Cαǫ log2(1/ǫ).
Proof: By monotonicity, it suffices to prove the result

for κ = 1. Notice that forK ≥ 2α,

V(1)− V(1− ǫ)

≤ ǫK2 + Ex∼µ

(

x2 · 1(x > K)
)

= ǫK2 +

∫ ∞

K2

Pr
x∼µ

(x2 > z) dz

≤ ǫK2 +

∫ ∞

K2

exp(1−√
z/α) dz

= ǫK2 + e0

∫ ∞

K2/4α2

exp(−2
√
z) dz

(a)

≤ ǫK2 + 2e0 exp(−
√
z)|K2/4α2

∞
= ǫK2 + exp(1 + ln 2−K/2α),

where (a) holds because whenz ≥ 1, we haveexp(−√
z) ≤

1/
√
z, which impliesexp(−2

√
z) ≤ d(2 exp(−√

z))
dz . PickK =

2α log(1/ǫ), we have that

V(1)− V(1− c) ≤ Cαǫ log2(1/ǫ).

C. Proof of Theorem 7

This section is devoted to prove Theorem 7, i.e., to show
Condition 1 holds with high probability. We establish each
claims of Condition 1 separately.

Theorem 9:Let τ = max(p/n, 1). Recall vi are i.i.d.
random variables followingN (0, Ip), and t = (1 − λ)n for

someλ < 0.5. Then, there exist a universal constantc such
that with high probability,

sup
w∈Sp

1

t

t
∑

i=1

(w⊤vi)
2 ≤ cτ.

Proof: Theorem II.13 in [41] established that supposeΓ
is anp×t matrix, whose entries are all i.i.d.N (0, 1) Gaussian
variables, then the largest singular value ofΓ, denoted by
s1(Γ), satisfies

Pr
(

s1(Γ) >
√
p+

√
t+

√
p ∨ tǫ

)

≤ exp(−(p ∨ t)ǫ2/2).

Our result now follows, sincesup
w∈Sp

1
t

∑t
i=1(w

⊤vi)
2 is

the largest eigenvalue ofW = (1/t)Γ⊤
1 Γ1, whereΓ1 is a

p × t matrix whose entries are all i.i.d.N (0, 1) Gaussian
variables. Hence the largest eigenvalue ofW is given by
λW = [s1(Γ1)]

2/t. Thus we have

Pr
(

λW >
τ(2n+ nǫ2 + 2n+ 4

√
n2ǫ)

(1− λ)n

)

≤Pr
(

λW >
p+ t+ (p ∨ t)ǫ2 + 2

√
pt+ 2(

√
p+

√
t)
√

(p ∨ t)ǫ

t

)

=Pr
(

s1(Γ) >
√
p+

√
t+

√

(p ∨ t)ǫ
)

≤ exp(−(p ∨ t)ǫ2/2)

≤ exp(−(1− λ)nτǫ2/2).

Let ǫ =
√

40(logn)/n, and notice thatλ < 1/2 and τ ≥
1, then the right hand side is smaller thann−10. Thus we
conclude that with high probability

sup
w∈Sp

1

t

t
∑

i=1

(w⊤vi)
2 ≤ cτ.

Notice that whenvi are sub-Gaussian, the theorem still holds,
with c possibly depends on the sub-Gaussian moment [38].

Theorem 10:There exists an absolute constantC > 0, such
that with high probability

sup
q∈Sd

∣

∣

1

t

t
∑

i=1

(q⊤xi)
2 − 1

∣

∣ ≤ Cα

√

d log3 n

n
.

Proof: The proof of Theorem 10 depends on the the
following Lemma (adapted from Thm 5.41 of [38]).

Lemma 5:Let A be aN ×M matrix whose rowsAi are
independent isotropic random vectors inRM . Let m be a
number such that‖Ai‖2 ≤

√
m for all i. Then for everyβ ≥ 0,

one has

√
N − β

√
m ≤ σmin(A) ≤ σmax(A) ≤

√
N + β

√
m,

with probability at least1 − 2M exp(−cβ2), wherec > 0 is
an absolute constant.
Consider matrixX where the ith row is x⊤

i . To apply
Lemma 5, we need to bound the range of each row. For any
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K > 0:

Pr

(

max
i=1,··· ,t

‖xi‖2 ≥ K

)

≤ tPr (‖x1‖2 ≥ K)

≤ t

d
∑

j=1

Pr
(

|x1(j)| ≥ K/
√
d
)

(a)

≤ exp

(

1− K

α
√
d
+ log t+ log d

)

.

Here,x1(j) stands for the j-th component ofx1. Inequality
(a) holds because by sub-exponential property, we have

Pr(|x1(j)| ≥ K/
√
d) ≤ exp(1− K

α
√
d
)

Let the right-hand-side ben−10, we have that with high
probability, for a universal constantC,

max
i=1,··· ,t

‖Zi‖ ≤ Cα logn
√
d.

Under this event, applying Lemma 5 onX , we have that

Pr

(

sup
q∈Sd

∣

∣

1

t

t
∑

i=1

(q⊤xi)
2 − 1

∣

∣ ≤ βCα logn
√
d√

t

)

= Pr
(√

t− βCα log n
√
d ≤ σmin(X)

≤ σmax(X) ≤
√
t+ βCα logn

√
d
)

≥ 1− 2d exp(−cβ2).

Let the right hand side be1 − n−10, we have β =
C′(logn)1/2. Thus, with high probability,

sup
q∈Sd

∣

∣

1

t

t
∑

i=1

(q⊤xi)
2 − 1

∣

∣ ≤ Cα(log n)3/2
√
d√

n
.

Theorem 11:With high probability, the following holds
uniformly overt < t andq ∈ Sd,

∣

∣

∣

∣

∣

∣

1

t

t
∑

i=1

[q⊤x]2(i) − V(t/t)

∣

∣

∣

∣

∣

∣

≤ Ct(1 + ε0)
√

d logn/n

t− t
.

Proof: Consider two class of functionsF = {fe,q :
R

d 7→ R|e ∈ R
+,q ∈ R

d} and G = {ge,q : Rd 7→ R|e ∈
R

+,q ∈ R
d}, as

fe,q(x) = [q⊤x]21(|q⊤x| ≤ e);

ge,q(x) = 1(|q⊤x| ≤ e).

Notice that the VC-dimension ofG is at most2d+3, due to the
fact that everyge,v is the indicator function of the intersection
of two half spaces inRd. Standard VC theory leads to that
with high probability (i.e., at least1− n−10),

sup
e≥0,q∈Rd,‖q‖=1

∣

∣

∣

∣

∣

1

t

t
∑

i=1

[ge,q(xi)]− Ege,q(x)

∣

∣

∣

∣

∣

≤ C

√

d logn

n
.

(22)

Notice that

Efe,q(x) = E[q⊤x]21([q⊤x]2 ≤ e)

=

∫ ∞

0

Pr
(

[q⊤x]21(|q⊤x| ≤ e) > z
)

dz

=

∫ e2

0

Pr
(

[q⊤x]2 > z
)

dz

=

∫ e2

0

1− Egz,q(x) dz.

Similarly, replacing µ with the empirical distribution of
x1, . . . ,xt, we have

t
∑

i=1

fe,q(xi) =

∫ e2

0

1− 1

t

t
∑

i=1

gz,q(xi) dz.

Due to Equation (22), we thus have with high probability, the
following holds uniformly overe > 0, andq ∈ R

d, ‖q‖ = 1,
∣

∣

∣

∣

∣

1

t

t
∑

i=1

fe,q(xi)− Efe,q(x)

∣

∣

∣

∣

∣

≤ e2C

√

d logn

n
. (23)

In the rest of the proof, we suppose Equation (22) and (23)
hold, and the condition of Theorem 10 holds. Notice this
requirement is satisfied with high probability.

We then have for anyt < t andq ∈ Sd,
∣

∣

∣

∣

∣

∣

1

t

t
∑

i=1

[q⊤x]2(i) − V(t/t)

∣

∣

∣

∣

∣

∣

≤
∣

∣

1

t

t
∑

i=1

fe(t),q(xi)− Efe(t),q(x)
∣

∣ +
∣

∣Efe(t),q(x)− V(t/t)
∣

∣

≤e(t)2C

√

d logn

n
+
∣

∣Efe(t),q(x) − V(t/t)
∣

∣.

(24)

In the first inequality, for simplicity we assume thatq⊤xi 6=
q⊤xj for i 6= j. Such assumption can be relaxed, by consid-
ering insteade(t) − ǫ and let ǫ → 0. SinceV is continuous
due to Lemma 4, our claim is still valid.

To bound the second term, notice that by Equation (22),

∣

∣t/t− µ([−et, et])
∣

∣ =
∣

∣

1

t

t
∑

i=1

ge(t),q(xi)− Ege(t),q(x)
∣

∣

≤ C

√

d logn

n
,

which is equivalent to

ν(t/t− C

√

d logn

n
) ≤ e(t) ≤ ν(t/t+ C

√

d log n

n
).

This implies
∣

∣Efe(t),q(x)− V(t/t)
∣

∣

≤
{

V
(

t/t+ C
√

d logn/n
)

− V(t/t)
}

∨
{

V(t/t)− V
(

t/t− C
√

d log n/n
)}

≤ tC
√

d logn/n

t− t
.

(25)
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where the last inequality follows from Lemma 3. To complete
the proof, we bounde(t). Notice that when Theorem 10 holds,
we have

1

t

t
∑

i=1

e(i)2 ≤ 1 + ε0,

which combined with the fact thate(1) ≤ e(2) ≤ · · · ≤ e(t)
leads to

e(t)2 ≤ t(1 + ε0)

t− t
. (26)

Substitute Equation (26) and (25) into Equation (24) leads
to

∣

∣

∣

∣

∣

∣

1

t

t
∑

i=1

[q⊤x]2(i) − V(t/t)

∣

∣

∣

∣

∣

∣

≤ Ct(1 + ε0)
√

d logn/n

t− t
.

One disadvantage of Theorem 11 is that the right-hand-side
depends ont/(t − t̂). However, this dependency can be
removed, with a price of having a slower convergence rate,
as the following corollary shows.

Corollary 5: Supposeε0 ≤ C′ for a universal constantC′.
Then with high probability, the following holds uniformly over
t < t andq ∈ Sd,

∣

∣

∣

∣

∣

∣

1

t

t
∑

i=1

[q⊤x]2(i) − V(t/t)

∣

∣

∣

∣

∣

∣

≤ Cα1/2d1/4(log n)5/4n−1/4.

Proof: With high probability, Theorem 10 and 11 hold.
Under the condition of Theorem 10 and 11, define at0 ∈ [1 : t]
to satisfy

t0 =
[

1−Θ(α−1/2d1/4n−1/4 log−3/4 n)
]

t.

If t ≤ t0, then Theorem 11 leads to
∣

∣

∣

∣

∣

∣

1

t

t
∑

i=1

[q⊤x]2(i) − V(t/t)

∣

∣

∣

∣

∣

∣

≤ Cα1/2d1/4(log n)5/4n−1/4.

If t > t0, then we have the following

1

t

t
∑

i=1

[q⊤x]2(i) − V(t/t)

≤ 1

t

t
∑

i=1

[q⊤x]2(i) − V(t/t)

≤
∣

∣

∣

∣

∣

1

t

t
∑

i=1

[q⊤x]2(i) − 1

∣

∣

∣

∣

∣

+
∣

∣1− V(t/t)
∣

∣

≤ C1ξ0 + C2α
t− t0

t
log2(t/(t− t0))

≤ C1αd
1

2 (log n)
3

2n− 1

2 + C2α
1

2 d
1

4n− 1

4 (logn)
5

4

(a)

≤ Cα
1

2 d
1

4 (log n)
5

4n− 1

4 .

where (a) holds because whenε0 = O(1), the first term is
dominated by the second term. Furthermore,

V(t/t)− 1

t

t
∑

i=1

[q⊤x]2(i)

≤ V(t/t)− 1

t

t0
∑

i=1

[q⊤x]2(i)

≤
∣

∣

∣

∣

∣

1

t

t0
∑

i=1

[q⊤x]2(i) − V(t0/t)
∣

∣

∣

∣

∣

+
∣

∣V(t0/t)− V(t/t)
∣

∣

≤ C1α
1

2 d
1

4 (log n)
5

4n− 1

4 + C2α
t− t0

t
log2(t/(t− t0))

≤ Cα
1

2 d
1

4 (logn)
5

4n− 1

4 .

This implies fort > t0, we also have

∣

∣

∣

∣

∣

∣

1

t

t
∑

i=1

[q⊤x]2(i) − V(t/t)

∣

∣

∣

∣

∣

∣

≤ Cα1/2d1/4(logn)5/4n−1/4.

D. Proof of Corollary 1 and 2

Corollary 1: Given a sequence of{Y(j)}, if the asymptotic
scaling in Expression (1) holds, and denoteλ∗ , lim supλ(j),
then the following holds in probability whenj ↑ ∞ (i.e., when
n, p ↑ ∞),

lim inf
j

EVd̂{w1(j), . . . ,wd̂(j)}

≥ max
κ

[

1− κ− Cαλ∗ log2(1/λ∗)

κV(0.5)

]

≥ 1− C
√
αλ∗ log(1/λ∗)

V(0.5) .

Proof: Whenκ ≥ 1 the corollary holds trivially. Hence,
fix κ < 1.

We bound the right-hand-side of Equation (3) to establish
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the corollary. Notice that




V
(

1− λ∗(1+κ)
(1−λ∗)κ

)

(1 + κ)



×





V
(

t̂
t − λ∗

1−λ∗

)

V
(

t̂
t

)





(a)

≥





V(1)− Cαλ∗(1+κ)
(1−λ∗)κ log2

(

(1−λ∗)κ
λ∗(1+κ)

)

(1 + κ)





×





V
(

t̂
t

)

− Cα λ∗

1−λ∗
log2

(

1−λ∗

λ∗

)

V
(

t̂
t

)





(b)

≥
[

1

1 + κ
− Cαλ∗

(1− λ∗)κ
log2

(

(1− λ∗)κ

λ∗(1 + κ)

)]

×



1−
Cα λ∗

1−λ∗
log2

(

1−λ∗

λ∗

)

V
(

t̂
t

)





(c)

≥
[

1− κ− 2Cαλ∗

κ
log2

(

1

λ∗

)]

×
[

1− 2Cαλ∗ log2
(

1
λ∗

)

V (0.5)

]

≥ 1− κ− C′αλ∗

κ
log2

(

1

λ∗

)

− C′αλ∗ log2
(

1
λ∗

)

V (0.5)
(d)

≥ 1− κ− 2C′αλ∗

κV (0.5)
log2

(

1

λ∗

)

.

Here, (a) is due to Lemma 4; (b) is due toV(1) = 1; (c) holds
because 1

1+κ ≥ 1 − κ, 1 − λ∗ ≥ 1/2, andV(t̂/t) ≥ V(0.5);
(d) holds becauseκ andV(0.5) are both smaller than or equal
to 1.

Taking κ =
√
αλ∗ log(1/λ∗) establishes that

1− κ− Cαλ∗ log2 (1/λ∗)

κV (0.5)
≥ 1− C′√αλ∗ log (1/λ∗)

V(0.5) .

Corollary 2: Supposeµ({0}) = 0. Given a sequence of
{Y(j)}, if the asymptotic scaling in Expression (1) holds, and
denoteλ∗ , lim supλ(j), which satisfiesλ∗ < 0.5, then
the following holds in probability whenj ↑ ∞ (i.e., when
n,m ↑ ∞),

lim inf
j

EVd̂{w1(j), . . . ,wd̂(j)} > 0.

Proof: We prove the corollary by bounding the right hand
side of Equation (3). To simplify notation, denoteϑ , 1 −
2λ∗ > 0. We have the following

V
(

t̂
t − λ∗

1−λ∗

)

V
(

t̂
t

) ≥ V
(

t̂

t
− λ∗

1− λ∗

)

≥ V
(

0.5n− λ∗n

(1− λ∗)n

)

= V
(

ϑ

2(1− λ∗)

)

≥ V(0.5ϑ) > 0.

Here the last inequality holds becauseϑ > 0, and the fact that
µ({0}) = 0 impliesV(c) > 0 for any positivec.

On the other hand, takeκ∗ = 1/ϑ, we thus have

V
(

1− λ∗(1+κ∗)
(1−λ∗)κ∗

)

(1 + κ∗)
=

V
(

(1−λ∗)κ∗−λ∗(1+κ∗)
(1−λ∗)κ∗

)

1 + 1
ϑ

=
V
(

(1−2λ∗)κ∗−λ∗

(1−λ∗)κ∗

)

1 + 1
ϑ

(a)
=

V(ϑ)
1 + 1

ϑ

(b)
> 0.

Here (a) follows fromϑ = 1 − 2λ∗ andκ∗ = 1/ϑ; (b) holds
sinceV(c) > 0 for any positivec. Thus, by Theorem 3, we
have

lim inf
j
EV{w1(j), . . . ,wd̂(j)}

≥ max
κ





V
(

1− λ∗(1+κ)
(1−λ∗)κ

)

(1 + κ)



×





V
(

t̂
t − λ∗

1−λ∗

)

V
(

t̂
t

)





≥





V
(

1− λ∗(1+κ∗)
(1−λ∗)κ∗

)

(1 + κ∗)



×





V
(

t̂
t − λ∗

1−λ∗

)

V
(

t̂
t

)





> 0.

This establishes the corollary.
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