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1 Introduction 

Outlier detection has become an integral part of statistical data analysis. In the time series literature, 

outlier detection plays an important role in modeling, inference, and even data processing because 

outliers can lead to model misspecification, biased parameter estimation, and poor forecasts. As a 

specific example, outlier detection has become a key feature in recent advance in seasonal adjustment 

and in automatic time-series model identification; see the new adjustment procedure X-12 ARlMA of 

Findley, et al (1998), which is used by the U.S. Government, and the SEATS and TRAMO programs 

of Gomez and Maravall (1994a, b), which was recently adopted by the European Union. Following 

the work of Fox (1972), four types of outlier have been proposed for univariate time series analysis 

and several methods are available to detect these outliers. The outliers are classified as (a) additive 

outlier (AO), (b) innovational outlier (10), (c) level shift (LS), and temporary change (TC). These 

four types of outlier affect an observed time series and its residual process differently. For example, 

an AO affects a single observation, but several residuals, depending on the underlying model. See 

Chang, Tiao and Chen (1988), Chen and Liu (1993), and Tsay (1988) and the references therein. For 

outlier detection, both Bayesian and non-Bayesian methods have been proposed. See Justel, Pefia 

and Tsay (1998) and the references therein for Bayesian methods and Chen and Liu (1993) and the 

references therein for non-Bayesian methods. 

However, most outlier studies in time series analysis focus on a single series. A commonpractice for 

handling outliers in a multivariate process is to apply univariate techniques to the component series 
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to remove outlier effects, then treat the adjusted series as outlier free and model them jointly. This 

procedure encounters several difficulties. First, in a multivariate process, an outlier of a component 

may be due to an outlier in the other components. Overlooking such a possibility can easily lead 

to overspecification of the number of outliers. Second, an outlier of moderate size affecting all the 

components maybe unnoticed in the univariate analyses because univariate methods fail to combine 

information about the outlier among the component series. This outlier will be more easily detected 

in multivariate analysis. Third, univariate detection procedures often use inferior estimation, because 

the joint dynamics of the series are not properly taken into account. 

Pankratz (1993) considers AO and 10 in a dynamic regression model with a single input and a 

single output. He classifies outliers in the input series as passed and non-passed outliers and uses a 

weighted average of least squares estimators to estimate non-passed outliers. The approach becomes 

complicated when there are multiple input or multiple output series. 

The main objective of this paper is to study outliers directly under a multivariate framework. 

As such, the proposed method of outlier detection can overcome the aforementioned difficulties. 

Furthermore, by comparing and contrasting results of univariate and multivariate detection methods, 

one can gain insight into the characteristics of an outlier. For example, consider a transfer function 

model consisting of a single input series and a single output series. Assume that the delay from the 

input 'series to the output series is one time period. Then, a single innovational outlier of the input 

series at time t will show its effect on the output series at time t + 1. In this case, if one applies a 

univariate outlier detection method separately to the two component series, one would identify an 

10 for the input series at time t and another outlier for the output series at time t + 1. On the other 

hand, if one uses the proposed multivariate detection method, he would only identify an 10 at time 

t, because the effects of the outlier on the output series at time t + 1 are taken care of automatically 

under a multivariate framework. We shall demonstrate this situation later by a real example. 

The paper is organized as follows. We generalize the four types of outlier to the multivariate case 

in Section 2. In Section 3, we consider estimation of outlier parameters, assuming that the time 

series model is known. Two test statistics are considered for each type of outliers using the estimates 

of outlier parameters. The first test statistic is a joint statistic that combines information across 

components and the second test statistic is marginal and uses information contained in an individual 

component. An iterative procedure is then proposed in Section 4 for practical outlier detection. 

Section 5 contains two real examples. 

2 Outliers in a Vector Time Series 

Let Xt = (Xlt" .. ,Xkt)' be a k -<:iimensional time series that follows a vector autoregressive integrated 

moving-average (ARIMA) model 

(1) 

where <p(B) = I -<PIB-·· ,-<ppBP and 8(B) = I -8 1B-·· ·-8qBQ are kxk matrix polynomials 

of finite degrees p and q, B is the backshift operator such that BXt = Xt-b C is a k-dimensional 

constant vector, and {Et = (flt"", fkt)'} is a sequence of independent and identically distributed 

Gaussian random vectors with mean zero and positive-definite covariance matrix E. We assume that 

<p(B) and 8(B) are left coprime and all of the zeros of the determinants 1<p(B)1 and 18(B)1 are on or 

outside the unit circle. In addition, if 1<P(1)1 = 0, we assume that the series Xt starts at a fixed time 

point to with fixed initial values and initial innovations. The series Xt is (asymptotically) stationary 

if 1<p(1)1 i- 0 and is ~nit-root nonstationary, otherwise. Similarly, Xt is invertible if 19(1)1 i- 0 and 
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is non-invertible, otherwise. See Li and Tsay (1998) for further information. 

For the vector ARIMA model in (1), define the autoregressive representation as 

(2) 

where Co = [S(1)t1c if Xt is invertible and it is a function of t, C, Si, initial values and initial 

innovations if Xt is non-invertible, II(B) = I - L~l IIiBi = [S(B)tl~(B) and it is understood 

that Yt = 0 if t < to, and the moving-average representation as 

(3) 

where w(B) = I + L~l Wi€t-i = [S(B)tl~(B), and c. = [~(1)tlc = E(Xt) if Xt is stationary 

and it is a function of t, C, ~i, initial values and initial innovations if Xt is unit-root nonstationary. 

Obviously, we have [II(B)tlW(B) = [W(B)tlII(B) = I, II(1)c. = Co and w(1)co = c •. 

Let dh
) be the indicator variable for time index h, Le. dh

) = 1 and e~h) = 0 if t # h. Denote the 

observed time series by Yt = (Ylt,···, Ykt)', and let W = (Wl,"', Wk)' be the size of the initial impact 

of an outlier on the series Xt. Following the univariate case, we consider four types of outlier for Xt. 

1. Innovational outlier (10): An 10 represents an unexpected change in the innovations that drive 

the vector time series. For instance, suppose that the noise in a bivariate series consisting of 

oven temperature and a chemical concentration reading is mainly due to the random variability 

of the feed rate. Then a sudden change in the feed rate that happens at just a particular time 

point, due to some exogenous effect, will produce an 10 in the series. The model for an 10 at 

time h is 
(h) (h) 

Yt = Xt + w{B)wet = c* + 'l1{B){€t + Wet ). 

2. Additive outlier (AO): An AO represents an unexpected change in one of the observations. It 

can appear because of a recording or measurement error or other single effect. For instance, a 

short strike in a production process may introduce an AO in a multivariate output series. The 

model for an AO at time h is 
(h) 

Yt = Wet + Xt· 

3. Level shift (L8): A L8 represents an unexpected shift in all the values of the observed time 

series after some time point. Level shifts affecting all the components of a vector time series are 

sometimes called structural breaks, because they produce a permanent effect on the vector se

ries. For instance, a currency devaluation may affect exports and imports of a country. A policy 

change or a change in definition may produce a permanent shifts in quarterly unemployment 

rate and claims of unemployment benefits. The model for a LS at time h is 

1 (h) 
Yt = Xt + W 1 _ Bet . 

4. Temporary change (TC): A TC represents an unexpected change on the values of a time series 

that disappears after a short period of time. For instance, the effect of a. price promotion on 

sales of a product may disappear over time. The model for a temporary change at time h is 

1 (h) 
Yt=Xt+ W

1
_ oB et , 
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where w is the initial change in the level and this change decays exponentially over time at the 

rate 6, where 0 < 6 < 1. Notice that if 6 is close to zero then a TC is very similar to an AO, 

whereas if 6 is close to unity, then a TC is similar to a LS. Consequently, to avoid ambiguity 

in outlier classification, we use 6 = 0.7 in this paper, which allows approximately ten periods 

of decreasing effects because O. 710 ~ .028 .. 

Note that if some components of ware zero, then the outlier does not occur in the corresponding 

component of Yt. Also, in some applications w may have restrictions. For instance, suppose that 

the components of the vector time series represent market shares. Then, an increase in level of one 

component is equal to the total decrease in level of other components. Here the linear constraint 

Ei Wi = 0 applies, where Wi is the i-th element of w. This type of restrictions can be incorporated 

easily into the multivariate framework, even though we do not specifically discuss it in this paper. 

In practice, disturbances to a vector time series may not follow one of the four categories discussed. 

But as shown by the univariate analysis, these four types of outlier and their linear combinations are 

capable of providing good approximations to describe most disturbances commonly encountered in 

time-series applications. 

2.1 Implications to marginal models 

From the definitions, an AO, LS, or TC in a multivariate time series implies an AO, LS, or TC for the 

marginal models of individual components. However, an 10 in a multivariate model may introduce a 

patch of outliers for the marginal models. To see this, let us consider the simplest case of a bivariate 

MA(1) model with an 10 at time index h: 

[ ~:: 1 ~ [ 1 ~~::~: 1 ~~::~ 1 ([ ::: 1 + [ : 1 {lh») . (4) 

For this particular instance, the marginal model for Xlt is a univariate MA(1) model, say Xlt = 

(1- OB)elt, where {elt} is a white noise sequence with mean zero and variance O'~ and the parameters 

o and O'~ are determined by the relationships 

(1 + 8idO'l1 + 8i20'22 + 28 11 8 120'12 = (1 + 0 2
)0';, -811 0'11 - 8120'12 = -00';, 

where O'ij is the (i,j)-th element of cov(Ed. The marginal model for the observed series Ylt is then 

(5) 

Because the quantity W2 in the last term of the right side of equation (5) does not appear in the 

second term, we can choose W2 so that the outlier effect on Ylt cannot be written as (1 - OB)Wl~~h). 
This shows that the outlier at the time index h is no longer a simple 10 for Ylt. Consequently, we 

have two consecutive outliers at time indexes hand h + 1 for the marginal model of Ylt. This result 

can easily be extended to the general vector ARIMA models. It says that an 10 of a multivariate 

model may introduce a patch of outliers in the marginal models of the components. The length 

of the outlier patch depends on the order of the model for Zt. This result can help explain the 

empirical finding that univariate outlier detection often identifies consecutive outliers. See Example 

1 of Section 5. 
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2.2 Effects of outliers 

Similar to the univariate case, an outlier can introduce biases in parameter estimation and misspeci

fication in model identification. It pays to understand the effects of an outlier on the observed series 

and on residuals. In fact, most outlier detection methods make use of the behavior of residuals 

implied by an outlier. Assume that the model of Xt is known. Define a filtered series {at} by 

p q 

at = Yt - L q,iYt-i - C + L 0jat-j, t = to, to + 1,··· (6) 
i=1 j=1 

where Yt = Xt and at = Et for t < to. That is, Yt and Xt have the same initial values and initial 

innovations. In terms of AR representation, we have II{B)Yt = Co + at. By definition, if there exist 

no outliers, then at = Et. In the presence of outliers, at '# Et for some time points. The number of 

at affected by an outlier depends on the dynamic of Xt as well as the type of the outlier. Details are 

given below. 

1. 10 case: Applying II(B) to the series Yt, we have 

t{h) 
at = w<"t + Et· 

Therefore, an 10 only affects a single filtered value at the time of occurrence. 

2. AO case: Multiplying II{B) from left to the model and subtracting Co from both sides of the 

equation, we have 

(7) 

Consequently, when II(B) '# I, an AO at time h affects multiple filtered values of at at t = 

h, h + 1,···. For a vector AR(P) model, it will affect at for t = h, h + 1,··· ,h + p. 

3. LS case: Using the same technique as the AO case, we have 

(8) 

where II*(B) = II(B)j(1 - B). Here it is clear that a LS at time h affects all filtered values 

at for t ~ h. 

4. TC case: Similarly, we have 

(9) 

where IIO(B) = II(B)j(1 - oB). Because 0 < 1, it is seen that a TC at time h affects all at 

for t ~ h, but the effects decay exponentially as t - h increases. 

The above results are generalizations of those of the univariate case. However, what is buried 

under the formulas is the outlier impact induced by the dynamic relation among the components of 

Xt. An outlier of the component Yit at time index h mayor may not affect the filtered components 

ajt for j '# i andt ~ h. Furthermore, when there is cross-dependence among components of Xt, ait 

of the filtered series contains information about outliers of component Yjt. Consequently, a vector 

series when considered jointly contains more information about an outlier than does a univariate 

. series. Consider the case of a bivariate system (XIL. X2t) in which Xlt is the input and X2t the output. 

Suppose that an AO is detected at time h in the univariate analysis of the input series. We cannot 
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tell from the analysis whether the outlier was due to (a) a recording or measurement error or (b) an 

intervention that really changed the value of the series at time index h. However, if the multivariate 

analysis also shows significant outlier effects in the output series at the same time index, then it is 

more likely that the Aa is due to an intervention that affects both series. On the other hand, if the 

multivariate analysis fails to show any significant outlier effects in the output series at time index h, 

then the chance of a recording error increases because the analysis shows that the output series is 

consistent with the outlier-adjusted input series. See Example 2 of Section 5 for an illustration. 

3 Outlier Estimation and Testing 

The filtered series at of the previous subsection provides a natural way to estimate outlier parameter 

w. Assuming that model (1) of Xt is known so that at is available, we shall use multiple linear 

regression to estimate the size w of a single outlier. In practice, the parameters of model (1) need to 

be estimated and at becomes the residuals of a fitted model. We then use an iterative procedure in 

oUtlier detection to overcome the difficulty of assuming that II(B) and ~ are known. 

Consider the case of an 10 at time index h. All information about the outlier is contained in ah. 

Therefore, we estimate the outlier using W [,h = ah, where the subscript I indicates 10, and derive 

test statistics based on the estimate. Two test statistics are considered. The first one is a joint test 

that treats W [,h as a multivariate quantity and the other test is based on component statistics that 

treats each component of W[,h separately. These two test statistics represent the two extreme cases 

in making use of the available information. The basic framework for outlier detection is to consider 

the null hypothesis Ho: w = 0 versus the alternative hypothesis Ha: w=/;O for a given time index 

h. For the joint test that considers all elements of w simultaneously, we use the test statistic 

(10) 

where J stands for a "joint statistic." Under the assumption of knowing the model in (1) and the 

null hypothesis of no 10, h,h has a chi-square distribution with k degrees of freedom for a given h. 

The second statistic is based on the belief that an 10 may occur only in some component of Xt. 

In this case, the joint statistic in (10) may not be powerful in detecting outliers, and we use the test 

statistic 

(11) 

where "c" stands for "component statistic," ai,h is the i-th component of ah and O"ii is the (i, i)-th 

element of the ~ matrix. This test statistic is the maximum of individual t-ratios, in absolute value, 

of the components of ah. 

For the other types of outlier, a multiple linear regression is needed. Let ~1/2 be the square 

root of the covariance matrix ::E. Define et = ::E-1
/
2

Et. Then, et is a sequence of independent and 

identically distributed Gaussian random vectors with mean zero and covariance matrix I, the identify 

matrix. Because the same idea applies to Aa, LS, and TC, we shall give details for the Aa case 

only. Multiplying equation (7) from left by ::E- 1
/

2 and noticing that the Aa at time index h only 

affects at for t ~ h, we have 

bt = A(B)w~~h) + et, t = h, h + 1, ... ,n (12) 

where bt = ::E-1
/
2at and A(B) = Ao - L~l AjBj = :E-1

/
2II(B). It is understood that in (12) t is 

from h to h + P if Xt follows a pure AR model. Because et has no serial correlations and cov(et) = 
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I, the univariate sequence {el,h,'" ,ek,h, el,h+1,"', ek,h+1, el,h+2,"'} is a sequence of independent 

and identically distributed standard Gaussian random variates. Consequently, equation (12) can be 

used to form a multiple linear regression for the unknown parameter w. The regressors are columns 

of the coefficient matrices of A{B), the dependent variable consists of elements of bt • Each equation 

in (12) contributes k data points so that the number of data points for the multiple linear regression 

is k{n - h + 1), where k is the dimension of Zt. More specifically, we have 

bh = Aow + eh 

bh+1 - -AIW + eh+1 

= 

where each equation contributes k data points to the multiple linear regression. Denote the ordinary 

least squares estimate of w by W A,h, where the subscript A indicates additive outlier. The covariance 

matrix of W A,h is simply the usual X' X -matrix because the variance of the error term of the multiple 

linear regression is unity. For ease in reference, we denote the covariance matrix of WA,h by lJA,h. 

To test the significance of the AO at time index h, we consider the null hypothesis Ho: W = 0 

versus the alternative hypothesis Ha: W i= O. Again, two test statistics are used. The first test 

statistic is 

JA,h = wA,h:EA:;hWA,h, (13) 

that treats components of w jointly. For a fixed h and assuming that the model is known, J A,h is 

distributed as a chi-square random variable with k degrees of freedom under the null hypothesis. 

The second test statistic used is the maximum t-ratio (in absolute value) of components of WA,h' 

That is, 

(14) 

where Wi,A,h and O'i,A,h are the i-th element of WA,h and the (i,i}-th element of lJA,h, respectively. 

Define A *(B) = Aa - Ej;l AjBj = :E-l/2rr*(B). We can apply the same techniques as those 

of the AO case to obtain an estimate of the size of LS at time index h. Denote the estimate and 

its covariance matrix by WL,h and :EL,h, respectively. The significance of this estimate can then be 

tested using the joint statistic 

J 
-, ~-l-

L,h = W L,h '" L,h W L,h (15) 

which, again, under the null hypothesis of no level shift, follows a chi-square distribution with k 

degrees of freedom. The second test statistic for LS is 

(16) 

where Wi,L,h and O'i,L,h are defined in a similar manner as Wi,A,h and O'i,A,h in equation (14). 

Finally, define AO(B) = Ao - Ej;l AjBj = :E-
1
/
2rro(B}. We can obtain an estimate of the size of 

a temporary change at time h and its covariance matrix. Denote them as WT,h and lJT,h, respectively. 

The significance of this TC can be checked by using the joint test statistic 

J -, ~-l-

T,h = wT,h"'T,hwT,h (17) 

which, under proper assumptions, follows a chi-square distribution with k degrees of freedom. The 

second test statistic for TC is 

(18) 

where Wi,T,h and O'i,T,h are the i-th component of WT,h and the {i, i}-th element of lJT,h, respectively. 
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3.1 Outlier detection when time index is unknown 

When the time index h of an outlier is unknown, we check all observations to detect outliers. To 

this end, we make use of the statistics in (1O) to (18) and define the overall test statistics 

Jmax(I,hI) = maxhh' Cmax(I, hi) = max Cl h 
h ' h ' 

Jmax(A, hA) = maxJAh, Cmax(A,hAJ = m;xCA,h (19) 
h ' 

Jmax(L,hL) = maxJLh, Cmax(L,hiJ = m;xCL,h 
h ' 

Jmax(T,hT) = maxJTh, Cmax (T, hi-) = m;x CT,h 
h ' 

where it is understood that hi denotes the time index when the maximum of test statistic Ji,h occurs 

and hi denotes the time index when the maximum of Ci,h occurs, where i = I, A, L, T. Under the 

null hypothesis of no outlier in the sample and assuming that the model of Xt is known, Jmax(I, hI) 

is the maximum of a random sample of size n from a chi-square distribution with k degrees of 

freedom. Thus, the asymptotic distribution of Jmax(I, hI) can be obtained using the extreme value 

distribution. Each of the other three joint test statistics in (19) is the maximum of a dependent 

sample from a chi-square distribution with k degrees of freedom. Their asymptotic distributions are 

therefore more complicated, depending on the serial dependence of {Ji,h}' From the estimation of 

the outlier parameter w, it is seen that the serial correlations of {JL,h}~:::l are stronger than those of 

{Ji,h} for i = I,A,T. This is due to the non decaying weights induced by the operator 1/(1- B) so 

that W L,h contains all of the filtered values at for t ~ h. Consequently, the asymptotic distribution of 

Jmax(L, hL) is more concentrated than those of the other three joint test statistics. Thus, the critical 

values of Jmax (L, hL) are in general smaller than those of the other joint test statistics. In sum, {Ji,h} 

are sequences of chi-square samples with k degrees of freedom, where i = I, A, L, T. The sequence 

{h,h} is serially uncorrelated whereas the sequence {h,h} has the strongest serial correlations. The 

critical values of Jmax(i, hi} for i = A and T should be between those of Jmax(I, hI) and Jmax(L, hL}. 

For the component test statistics Cmax(i, hi), the critical values should be close to those commonly 

used in the univariate outlier detection, because these statistics are based on individual components. 

The only difference in the multivariate case is that the maximization is evaluated across the k com

ponents as well as over the time indices. Similar to the joint test statistics, asymptotic distributions 

of Cmax(i, hi) also depend on the serial correlations of {Ci,h}' In this paper, we use simulation to 

generate finite sample critical values of these test statistics. 

3.2 Simulation 

We employ two vector AR( 1) models in our simulation to obtain empirical quantiles of the test 

statistics in (19) for k = 2, 3 and for sample sizes n = 100, 200, and 400. The two models are in the 

form Xt = ~Xt-l + Et with parameters 

~ = [ 0.2 
-0.6 

0.3] 
1.1 ' 

~ = [ 1.0 
0.2 

0.2] 
1.0 

(20) 

for the bivariate case and 

[ 0.2 
0.3 

0.0 ] [ 1.0 
0.2 

0.2 ] 
~ = -0.6 1.1 0.0 , E =0.2 1.0 0.2 . 

0.2 0.3 0.6 0.2 0.2 1.0 

(21) 
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for the trivariate case. Because of the normalization by the matrix lJl/2, the proposed detection 

statistics in (19) are scale-invariant. Therefore, the two models used in our simulation represent 

general vector AR(l) models whose coefficient matrix ~ has eigenvalue (0.5,0.8) and (0.5,0.6,0.8), 

respectively. 

For a given model and sample size n, we generate 10,000 realizations. For each realization, we 

estimate a VAR(l) model by the ordinary least squares method, obtain the residuals and :E, and 

compute the test statistics in (19) using the estimated parameters. Tables 1 and 2 provide some 

empirical quantiles of the test statistics under the null hypothesis of no outliers in the data. Table 1 

is for the joint statistics whereas Table 2 is for the component statistics. From the tables, we make 

the following observations. First, as expected, empirical quantiles of Jmax(L, hL) are much smaller 

than those of the other three joint test statistics. Second, quantiles of Jmax(i, hi) for i = I, A, T are 

close to each other, implying that a common critical value can be used for these three test statistics. 

Third, empirical quantiles of the component statistics Cmax (i, hi) are more variable when k = 3. 

The quantiles of Cmax(L, hi,) are smaller than those of the other component statistics for k = 2. But 

the difference is relatively small. Our simulation suggests that 3.75 may serve as an approximate 

critical value at the 5% significance level for all sample sizes used in the bivariate study. This 

critical value is larger than 3.0 or 3.5 used in univariate outlier detection. See Chen and Liu (1993) 

arid tIie references therein. For the trivariate case, the difference in the empirical 95-th percentiles 

of Cmax(i, hi) is relatively large, indicating that the critical values of Cmax(i, hi) depend on the 

dimension of Xt and should be adjusted accordingly in practice. 

Next, we use simulation to study the power of the proposed joint test statistics. The model used in 

power study is a bivariate AR(l) model with ~ given in (20). But the innovational covariance matrix 

is modified so that the variance of the individual innovation is unity and the correlations between 

innovations are -0.2. Again, because of the normalization used in defining the test statistics, this 

change should not have any significant impact on the power study. The sample size used is 200. For 

each realization, a single outlier is introduced at the time index t = 100 with outlier parameter w = 

(3.5,3.5)'. For each type of outlier, we use the empirical 5% critical value of Table 1 and tabulate 

the number of realizations that the corresponding test statistic exceeds the critical value. The power 

based on 10,000 realizations are 89.1%, 96.9%, 100% and 92.1%, respectively for 10, AO, LS and 

TC. Therefore, for the simple case of an isolated outlier, the proposed joint test statistics have good 

power in detecting the outlier when the sample size is 200. 

4 A Detection Procedure 

In practice, the number, location, and type of outliers are unknown a priori, and we use an iterative 

procedure similar to that of the univariate case to detect outliers. Assuming no outliers at the 

very beginning, we build a multivariate ARIMA model for the series under study. The model is 

then used to detect outliers. The primary statistics used to detect outliers are the four joint test 

statistics Jmax(i, hd in (19). In the case of multiple significant joint test statistics, we identify the 

outlier type based on the test that has the smallest empirical p-value. For example, if Jmax(A, hA) 
has the smallest p-value at time index ho and the p-value is smaller than 0.05, then we identify an 

additive outlier at time index ho at the 5% significance level. When all of the four joint statistics 

are insignificant at a given level, we use the component statistics Cmax(i, hi) to check for additional 

outliers. This step ensures that no component outliers are overlooked. In some cases, the estimated 

outlier parameter w may also suggest that the identified outlier only affects some of the components. 

Once an outlier is identified, its impact on the underlying time series is removed, using the results 
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of Section 3. The adjusted series is treated as a new data set and the detecting procedure is iterated. 

We terminate the estimation and detection procedure when no significant outliers are detected. 

Some remarks on the procedure are in order. First, the proposed procedure detects a single outlier 

in an iteration. Thus, it may take several iterations to detect multiple outliers. This is a conservative 

procedure primarily to avoid over-specification of the number of outliers. Second, it could happen 

that an outlier affects different components differently in a vector time series. This possibility is 

allowed in the proposed procedure. For instance, a strike can appear as an AO on a production 

series but as a LS on a sales series if it permanently affects the firm's market share. In this case at 

the time point of strike we may detect first an AO that affects primarily the first component. We 

may again identify a LS at the same time point in a subsequent iteration with a significant outlier 

parameter in the second component. Third, when multiple outliers exist, the proposed procedure may 

encounter masking or smearing effects of the outliers. This is a complicated problem that is currently 

under study. Fourth, some refinements of the proposed procedure are possible. For example, under 

the current procedure an identified outlier is assumed to have effects on all components of a time 

series and the estimated outlier effect w is used to remove outlier effects. It might be better to only 

adjust those components which have a significant t-ratio in Wi. We don't adopt such a procedure 

because of simplicity consideration. 

5 Application 

We apply the proposed outlier detection procedure to two real examples. The first example is the 

well-known gas furnace series of Box, Jenkins and Reinsel (1994) and the second example considers 

the quarterly series of U.S. initial jobless claims and unemployment rates. 

Example 1. Figure 1 shows the time plots of input gas rate in cubic feet per minute, Xt, and 

percentage of C02 in outlet gas, yt, both measured in 9 second time intervals. This series is commonly 

used in the literature as an example of transfer function models. There are 296 observations. For 

comparison purposes, we also employ the univariate and transfer function models of Box, Jenkins 

and Reinsel (1994) for the series. Using the joint estimation and detection procedure of Chen and 

Liu (1993) and a critical value 3.5, we obtain the models 

(1 - 2.273B + 1.923B2 - 0.618B3)Xt = -0.002 + alt, 0"1 = 0.129 (22) 

-0.636B3 - 0.264B4 - 0.439B5 1 
yt = 53.08 + 1 _ 0.570B X t + 1 _ 1.511B + 0.579B2 a2t, 0"2 = 0.195 (23) 

where 0"1 and 0"2 are the residual standard error of the input and output series, respectively, after 

outlier adjustment. The detected outliers are given in Table 3. There are 7 and 6 outliers for model 

(22) and (23), respectively. If the critical value of outlier detection is set to 3.0, then there are 17 and 

10 outliers, respectively, for the two models. A critical value of 3.5 corresponds to approximately an 

asymptotic 2.5% significance level. Note that the two TCs at times 113 and 117 in the input series, 

that show opposite effects, may suggest a patch of outHers in the period 113-116. Similarly, there 

maybe a patch of outHers from 265 to 269 in the output series. 

Turn to multivariate modeling. Using the chi-square statistic ofTiao and Box (1981) and the Akaike 

Information Criterion, we employ a bivariate AR(6) model for the series. The first component is 

the gas rate and the second component is the output C02 concentration. Applying the proposed 

detection procedure and using 5% critical values for the test statistics obtained by interpolation from 

Tables 1 and 2, we summarize the detection results in Table 4. The critical values are also given in 
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the table. Eleven outliers are detected by the procedure. Once an outlier was detected, we removed 

its effects on the data and re-estimated the bivariate AR(6) model. The estimated outlier parameters 

W = (Wl,W2)' of the 11 outliers are given in Table 5 along with t-ratios of the estimates. Note that 

the detected TCs at t = 43 and 55 introduce large Jmax(A, hA) statistics at t = 42 and 54. This is 

understandable because for' a vector AR( 6) model, the test statistic J A,h involves filtered values at 

for t = h, h + 1,···, h + 6. 
It is interesting to compare the detection results between univariate and multivariate methods. 

First, as shown by Tiao and Box (1981), the marginal models of the bivariate AR(6) model employed 

are close to those of equations (22) and (23). Therefore, the comparison of detection results can be 

made fairly. Second, the multivariate method detects fewer outliers than the univariate methods 

even though the former allows for a larger type-I error. In addition, the outliers detected by the 

multivariate method are not a subset of those detected by univariate methods. For example, the 

level shifts at t = 287 and 288 are not detected by the univariate methods. This demonstrates that 

multivariate joint detection could be more powerful than univariate methods. Third, the detected 10 

at t = 265 clearly highlights the discussion of Subsection 2.1. Specifically, we observe the following; 

• The t-ratios of estimated outlier parameters in Table 5 show that the outlier occurred simul

taneously to both components. 

• As expected, this multivariate 10 introduces a patch of outliers in the marginal model of the 

output SHies at time indexes 266-269. 

• The estimated outlier effect is negative in the input series and the transfer function model shows 

a negative relationship between the input and output series with a delay of 3 time periods. 

Consequently, the outlier effects at time indexes 266 and 267 of the output series are positive. 

• As expected, the patch of outlier disappears under the multivariate framework. 

Fourth, highly significant outliers detected by the univariate methods are also detected by the multi

variate method. See outliers at t = 43, 55, 113, and 265. Fifth, the classification of outliers is rather 

consistent between univariate and multivariate methods. Sixth, some minor time differences may 

occur between univariate and multivariate methods. For example, the univariate outlier at t = 236 is 

shown as an outlier at t = 235 in the multivariate case. Finally, the fact that no outliers occurred in 

the output series at t = 43 and 55 where the input series has significant temporary changes suggests 

that these outlier effects are carried over from the input series to the output series. In practice, this 

means that the residuals of the output series does not contain additional information of these two 

outlying observations in the input series. 

Example 2. In this example, we consider the U.S. quarterly seasonally adjusted initial jobless 

claims and unemployment rate from 1948 to 1993. The initial jobless claims were divided by 100 as 

in Montgomery et al. (1998). There are 184 observations. Figure 2 shows the time plots of the data. 

Using the same models as in Montgomery et al. (1998) and the joint estimation-detection procedure 

of Chen and Liu (1993), we obtain the univariate models 

(1 - 0.30B)(1 - 0.36B4)(1 - B)Ylt = (1 - 0.75B4)alt' 0"1 = 0.222, 

{1- 0.66B)(1 - 0.27B4)(l - B)Y2t = {1- 0.81B4
)a2t, 0"2 = 0.271 

(24) 

(25) 

where Ylt and Y2t are the initial claims and unemployment rate, respectively. The seasonal parameters 

. in both models are highly significant, even though the data were seasonally adjusted. The detected 

outliers of the two models are given in Table 6. There are 4 and 2 outliers for Ylt and Y2t, respectively. 
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Turn to multivariate detection. We employ a bivariate ARlMA model in the form 

(1 - ~lB - if?2B2)(1 - if?4B4)Yt = c + (1 - 94B4)Et (26) 

for the data. The detection results are summarized in Table 7 when the 5% empirical critical values 

in Table 1 with sample size 200 are used. Only three outliers are detected. The estimated outlier 

parameters are 

[1.249(6.16),0.334(1.84)], [1.080(4.35),0.563(2.22)], [0.968(4.14),0.653(2.62)] 

for the outliers at t = 130, 108, 136, respectively, where the numbers in parentheses are t-ratios 

of the estimates. An examination of residual cross-correlation matrices indicates that some minor 

significant correlations at lag 8. But these serial correlations disappear when the moving-average 

part is modified to (1 - 94B4 - 9 sBS)Et. The parameter estimates of model (26) before and after 

outlier adjustment are shown in Table 8. The three detected outliers have markedly effects on the 

seasonal parameters and the residual covariance matrix. 

Again, it is interesting to compare the detection results of univariate and multivariate models. 

First, the multivariate model only identifies three outliers whereas the univariate models detect six 

outliers. In this particular instance, the multivariate outliers form a subset of those identified by 

univariate methods. Second, the innovational outlier in the unemployment rate at time t = 109 is 

caused by the innovational outlier in the initial jobless claims at t = 108, because there exists no 

outlier at t = 109 in the multivariate case. This example clearly demonstrates that (a) an outlier in a 

component series may be induced by that of another component, and (b) detecting outliers separately 

for each individual component using a marginal model may result in over-specification of the number 

of outliers. Third, the significance of the outlier parameters in both components at t = 108 and 136 

indicates that some external disturbances occurred in the V.S. economy at these two time points that 

affected both the initial jobless claims and unemployment rate. In other words, the impact of these 

disturbances on the unemployment rate cannot be fully accounted for by that on the initial claims. 

These two time points were the 4-th quarter of 1974 and 1981, respectively, in which the V.S. economy 

was in recession as classified by the National Bureau of Economic Research. Thus, the significance of 

the positive estimates w at these two periods shows that the economical slowdowns in 1974 and 1981 

caused both the initial jobless claims and unemployment rate to rise. In addition, the estimated effect 

on unemployment rate, W2, represents the additional effect of economical slowdown on unemployment 

rate beyond that induced by the impact on initial jobless claims. Such information is not evident 

if one only uses univariate outlier detection. Finally, the significance of both components of w at 

t = 108 and 136 also indicates a possible joint structural break of the series at these two points. 

Consequently, multivariate outlier detection can be used to study common structural breaks in a 

vector time series. 
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Table 1: Empirical quantiles of the Jmax(i, hi) statistics in (19) based on 10,000 realizations. The 

models used are in (20) and (21). 

Sample Test Probability 

Size 50% 90% 95% 97.5% 99% 

(a) Bivariate case (k = 2) 

100 Jmax(I, hI) 9.74 13.03 14.35 15.60 17.34 

Jmax(A, hA) 9.70 13.07 14.32 15.57 16.96 

Jmax(L,hL) 7.61 11.13 12.37 13.50 14.82 

Jmax(T,hr) 9.58 12.95 14.27 15.43 17.05 

200 Jmax{I,hI) 11.20 14.66 16.01 17.47 19.06 

Jmax(A,hA) 11.13 14.66 15.95 17.37 19.18 

Jmax(L, hL) 8.37 12.18 13.49 14.81 16.40 

Jmax(T,hr) 11.04 14.55 15.87 17.19 18.67 

400 Jmax(I,hI) 12.60 16.19 17.63 19.06 20.81 

Jmax(A,hA) 12.56 16.21 17.64 18.86 20.81 

Jmax(L,hL) 9.62 13.48 14.88 16.20 18.05 

Jmax(T,hr) 12.57 16.13 17.53 18.96 20.83 

(b) Trivariate case (k = 3) 

100 Jmax{I, hI) 15.55 25.00 29.56 34.23 41.43 

Jmax(A, hA) 15.50 25.08 29.49 34.00 41.81 

Jmax(L, hL) 10.64 18.09 21.56 25.46 32.06 

Jmax(T,hr) 15.48 25.14 30.05 34.81 42.18 

200 Jmax(I, hI) 19.20 28.45 32.10 36.72 42.10 

Jmax(A, hA) 19.10 28.90 33.04 37.28 43.02 

Jmax(L,hL) 12.12 19.99 23.24 26.43 31.51 

Jmax(T,hr) 19.12 28.86 32.85 37.18 43.29 

400 Jmax{I, hI) 22.86 32.24 36.12 40.04 45.09 

Jmax(A, hA) 22.96 32.66 36.49 40.32 45.77 

Jmax(L, hL) 14.50 22.89 26.39 30.27 34.56 

Jmax(T,hr) 23.10 32.79 36.67 40.67 45.47 
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Table 2: Empirical quantiles ofthe statistics Gmax(i, hi) in (19) based on 10,000 realizations. The 

models used are in (20) and (21). 

Sample Test Probability 

Size 50% 90% 95% 97.5% 99% 

(a) Bivariate case (k = 2) 

100 Gmax(I, hi) 2.89 3.39 3.58 3.74 3.96 

Gmax (A,h:4) 2.89 3.39 3.57 3.73 3.94 

Gmax{L,hiJ 2.61 3.18 3.35 3.52 3.71 

Gmax{T,hT) 2.87 3.37 3.55 3.74 3.95 

200 Gmax(I, hi) 3.11 3.60 3.78 3.95 4.15 

Gmax {A,h:4) 3.11 3.60 3.78 3.93 4.15 

Gmax{L,hiJ 2.74 3.33 3.50 3.68 3.88 

Gmax(T,hT) 3.09 3.58 3.76 3.93 4.11 

400 Gmax(I, hi) 3.32 3.80 3.96 4.13 4.35 

Gmax{A,h:4) 3.31 3.80 3.97 4.12 4.32 

Gmax{L,hiJ 2.94 3.51 3.69 3.86 4.06 

Gmax(T,hT) 3.31 3.78 3.95 4.12 4.34 

(b) Trivariate case (k = 3) 

100 Gmax(I, hj) 3.01 3.48 3.64 3.79 3.96 

Gmax (A,h:4) 3.24 3.93 4.18 4.44 4.74 

Gmax{L,hiJ 2.77 3.54 3.83 4.11 4.52 

Gmax{T,hT) 3.23 3.94 4.18 4.45 4.78 

200 Gmax(I, hj) 3.22 3.69 3.85 4.02 4.20 

Gmax (A,h:4) 3.56 4.24 4.50 4.72 4.97 

Gmax{L,hiJ 2.90 3.67 3.93 4.18 4.49 

Gmax{T,hT) 3.55 4.28 4.52 4.77 5.06 

400 Gmax(I, hi) 3.43 3.90 4.07 4.21 4.38 

Gmax(A, hA) 3.86 4.56 4.80 5.03 5.34 

Gmax{L,hiJ 3.08 3.84 4.13 4.39 4.67 

Gmax(T,hT) 3.87 4.64 4.89 5.12 5.41 
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Table 3: Outliers detected for the Gas-Furnace Series using a univariate method with critical value 

3.5, where 10, AO, LS, and TC stand for innovational outlier, additive outlier, level shift and 

temporary change, respectively. 

(a) Input series: gas rate (b) Transfer function for CO2 

Time Size t-ratio Type Time Size t-ratio Type 

43 0.770 12.20 TC 199 0.915 6.08 LS 

55 -0.718 -11.38 TC 236 -0.863 -4.42 10 
91 0.286 4.53 TC 265 1.481 7.59 10 

113 -0.479 -7.59 TC 266 0.729 3.74 10 
117 0.248 3.92 TC 267 0.454 4.23 AO 

198 -0.534 -4.15 10 269 -1.296 -6.33 10 
262 0.607 4.72 10 

Table 4: Results of multivariate outlier detection for the Gas-Furnace Series using a bivariate AR(6) 

model and 5% critical values. The number in parentheses for joint tests is the corresponding time 

index whereas those for component tests are time index and component index. 

Itera- (a) Joint Test Statistics Outlier 

tions Jmax(I, hI) Jmax(A,hA) Jmax(L,hd Jmax(T,hT} Time Type 

1 39.23(265) 35.70(42) 27.84(199) 41.05(43) 43 TC 

2 38.54(265) 43.90(54) 26.22(199) 46.15(55) 55 TC 

3 39.29(265} 27.15(264) 24.46(199) 28.09(264) 265 10 
4 16.94(199) 26.27(113) 24.29(199) 26.70(113) 199 LS 

5 16.01(269) 25.85(113) 16.56(113) 26.24(113) 113 TC 

6 16.34(262) 16.71(235) 14.49(288) 14.44(261} .288 LS 

7 16.29(262) 17.56(235) < 14.10 14.55(91) 235 AO 

8 16.57(269) < 14.10 15.32(287) 14.77(91) 287 LS 

9 < 14.10 14.32(91) < 14.10 15.44(91) 

Crit. 16.82 16.80 14.19 16.70 

Itera- (b) Component Test Statistics Outlier 

tions Cmax(I,hj) Cmax(A,hA} Cmax(L,hL) Cmax(T, hT) Time Type 

9 < 3.60 3.77{91,1) < 3.60 3.90(91,1) 91 TC 

10 4.09(262,1) 3.84(197,1} < 3.60 3.88(197,1) 262 10 
11 3.74(198,1) 3.92(197,1} < 3.60 3.92{197,1) 197 TC 

12 < 3.60 < 3.60 < 3.60 < 3.60 
Crit. 3.87 3.88 3.60 3.86 
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Table 5: Estimates of outlier parameters for the Gas-Furnace series using a multivariate model, 

where 10, AO, LS and TC are defined as before in Table 3. 

Time time Wl (t-ratio) w2(t-ratio) Time time Wl ( t-ratio) W2 (t-ratio) 

43 TC 0.683(6.41) -0.019{-0.11} 55 TC -0.613{-6.79} 0.049{0.27) 

265 10 -0.362{ -3.40} 1.396{5.86} 199 LS -0.098{ -1.51) .866{4.93) 

113 TC -0.376{ -5.12) -0.067{ -0.42} 288 LS 0.154{2.04) 0.587{3.23} 

235 AO -0.023{-0.54} 0.437{ 4.13} 287 LS 0.136{1.84} 0.587{3.44} 

91 TC 0.248{3.90} 262 10 0.559 (4.09) 

197 TC 0.149{3.92} 

Table 6: Outliers detected for initial jobless claims and unemployment rates using univariate method 

with critical value 3.5, where 10, AO, LS, and TC stand for innovational outlier, additive outlier, 

level shift and temporary change, respectively. 

(a) Initial jobless claims (b) Unemployment rates 

Time Size t-ratio Type Time Size t-ratio Type 

108 1.137 5.13 10 109 1.097 4.04 10 

130 1.493 9.08 TC 140 0.417 4.30 AO 

136 0.999 5.43 LS 

141 -0.971 -5.25 LS 

Table 7: Results of multivariate outlier detection for the initial jobless claim and unemployment 

series using a bivariate seasonal ARIMA model and 5% critical values. The number in parentheses 

for joint tests is the corresponding time index whereas those for component tests are time index and 

component index. 

Itera- (a) Joint Test Statistics Outlier 

tions Jmax(I, hI) Jmax(A, hA) Jmax(L,hL) Jmax{T,hT} Time Type 

1 31.66(130) 36.45(130) < 13.50 40.33(130) 130 TC 

2 20.08(108) < 13.50 < 13.50 16.65(141} 108 10 

3 17.25{136} < 13.50 < 13.50 < 13.50 1~6 10 

4 15.53(25) < 13.50 < 13.50 14.05(141) 

Crit. 16.01 15.95 13.49 15.87 

Itera- (b) Component Test Statistics Outlier 

tions Gmax(I, hi} Cmax(A, hA) Gmax(L,hiJ Cmax{T,hT) Time Type 

4 3.59(25,2) < 3.50 < 3.50 3.61{141,1} 

Crit. 3.78 3.78 3.50 3.76 
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Table 8: Parameter estimates of model (26) before and after multivariate outlier detection. The 

values in parentheses are standard errors. 

C' q;1 q;2 q;4 94 :E 

(a) Before outlier adjustment 

.139 1.31 -.17 -.25 .11 .13 -.19 .02 .17 .081 .056 

(.089) (.10) (.09) (.11) (.07) (.18) (.08) (.22) (.15) 

.054 .59 1.16 -.31 -.36 .06 -.08 -.07 -.09 .056 .073 

(.086) (.09) (.09) (.11) (.09) (.13) (.21) (.17) (.23) 

(b) After outlier adjustment 

.322 1.37 -.22 -.33 .15 -.21 -.12 -.55 .18 . .049 .036 

(.13) (.09) (.07) (.11) (.06) (.16) (.07) (.17) (.12) 

.142 .66 1.12 -.35 -.33 -.06 -.28 -.22 -.13 .036 .060 

(.13) (.10) (.08) (.12) (.08) (.15) (.17) (.18) (.20) 
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Figure 1: Time plots of Input Gas Rate and Percentage of CO2 in Output 
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Figure 2: Time plots of V.S. quarterly initial jobless claims (divided by 100) and unemployment 

rate: 1948-1993. The data were seasonally adjusted. 
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