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Outline for a Theory of Intelligence 
James S. Albus 

Abstract-Intelligence is defined as that which produces suc- 

cessful behavior. Intelligence is assumed to result from natural 

selection. A model is proposed that integrates knowledge from 

research in both natural and artificial systems. The model con- 

sists of a hierarchical system architecture wherein: 1) control 

bandwidth decreases about an order of magnitude at each higher 

level, 2) perceptual resolution of spatial and temporal patterns 

contracts about an order-of-magnitude at each higher level, 3) 
goals expand in scope and planning horizons expand in space 

and time about an order-of-magnitude at each higher level, and 

4) models of the world and memories of events expand their 

range in space and time by about an order-of-magnitude at 

each higher level. At each level, functional modules perform 

behavior generation (task decomposition planning and execution), 

world modeling, sensory processing, and value judgment. Sensory 

feedback control loops are closed at every level. 

I. INTRODUCTION 

UCH IS UNKNOWN about intelligence, and much M will remain beyond human comprehension for a very 
long time. The fundamental nature of intelligence is only 
dimly understood, and the elements of self consciousness, 
perception, reason, emotion, and intuition are cloaked in 
mystery that shrouds the human psyche and fades into the 
religious. Even the definition of intelligence remains a subject 
of controversy, and so must any theory that attempts to 
explain what intelligence is, how i t  originated, or what are 
the fundamental processes by which it functions. 

Yet, much is known, both about the mechanisms and func- 
tion of intelligence. The study of intelligent machines and the 
neurosciences are both extremely active fields. Many millions 
of dollars per year are now being spent in Europe, Japan, 
and the United States on computer integrated manufacturing, 
robotics, and intelligent machines for a wide variety of military 
and commercial applications. Around the world, researchers in 
the neurosciences are searching for the anatomical, physiolog- 
ical, and chemical basis of behavior. 

Neuroanatomy has produced extensive maps of the inter- 
connecting pathways making up the structure of the brain. 
Neurophysiology is demonstrating how neurons compute func- 
tions and communicate information. Neuropharmacology is 
discovering many of the transmitter substances that modify 
value judgments, compute reward and punishment, activate 
behavior, and produce learning. Psychophysics provides many 
clues as to how individuals perceive objects, events, time, 
and space, and how they reason about relationships between 
themselves and the external world. Behavioral psychology 
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adds information about mental development, emotions, and 
behavior. 

Research in learning automata, neural nets, and brain mod- 
eling has given insight into learning and the similarities 
and differences between neuronal and electronic comput- 
ing processes. Computer science and artificial intelligence 
is probing the nature of language and image understanding, 
and has made significant progress in rule based reasoning, 
planning, and problem solving. Game theory and operations 
research have developed methods for decision making in 
the face of uncertainty. Robotics and autonomous vehicle 
research has produced advances in real-time sensory process- 
ing, world modeling, navigation, trajectory generation, and 
obstacle avoidance. Research in automated manufacturing and 
process control has produced intelligent hierarchical controls, 
distributed databases, representations of object geometry and 
material properties, data driven task sequencing, network com- 
munications, and multiprocessor operating systems. Modern 
control theory has developed precise understanding of stability, 
adaptability, and controllability under various conditions of 
feedback and noise. Research in sonar, radar, and optical signal 
processing has developed methods for fusing sensory input 
from multiple sources, and assessing the believability of noisy 
data. 

Progress is rapid, and there exists an enormous and rapidly 
growing literature in each of the previous fields. What is 
lacking is a general theoretical model of intelligence that ties 
all these separate areas of knowledge into a unified framework. 
This paper is an attempt to formulate at least the broad outlines 
of such a model. 

The ultimate goal is a general theory of intelligence that 
encompasses both biological and machine instantiations. The 
model presented here incorporates knowledge gained from 
many different sources and the discussion frequently shifts 
back and forth between natural and artificial systems. For 
example, the definition of intelligence in Section I1 addresses 
both natural and artificial systems. Section 111 treats the origin 
and function of intelligence from the standpoint of biological 
evolution. In Section IV, both natural and artificial system 
elements are discussed. The system architecture described 
in Sections V-VI1 derives almost entirely from research in 
robotics and control theory for devices ranging from undersea 
vehicles to automatic factories. Sections VIII-XI on behavior 
generation, Sections XI1 and XI11 on world modeling, and 
Section XIV on sensory processing are elaborations of the 
system architecture of Section V-VII. These sections all con- 
tain numerous references to neurophysiological, psychological, 
and psychophysical phenomena that support the model, and 
frequent analogies are drawn between biological and artificial 
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systems. The value judgments, described in Section XV, are 
mostly based on the neurophysiology of the limbic system and 
the psychology of emotion. Section XVI on neural computa- 
tion and Section XVII on learning derive mostly from neural 
net research. 

The model is described in terms of definitions, axioms, 
theorems, hypotheses, conjectures, and arguments in support 
of them. Axioms are statements that are assumed to be true 
without proof. Theorems are statements that the author feels 
could be demonstrated true by existing logical methods or 
empirical evidence. Few of the theorems are proven, but each 
is followed by informal discussions that support the theorem 
and suggest arguments upon which a formal proof might 
be constructed. Hypotheses are statements that the author 
feels probably could be demonstrated through future research. 
Conjectures are statements that the author feels might be 
demonstrable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

11. DEFINITION OF INTELLIGENCE 

In order to be useful in the quest for a general theory, the 
definition of intelligence must not be limited to behavior that 
is not understood. A useful definition of intelligence should 
span a wide range of capabilities, from those that are well 
understood, to those that are beyond comprehension. It should 
include both biological and machine embodiments, and these 
should span an intellectual range from that of an insect to 
that of an Einstein, from that of a thermostat to that of the 
most sophisticated computer system that could ever be built. 
The definition of intelligence should, for example, include the 
ability of a robot to spotweld an automobile body, the ability 
of a bee to navigate in a field of wild flowers, a squirrel to 
jump from limb to limb, a duck to land in a high wind, and 
a swallow to work a field of insects. It should include what 
enables a pair of blue jays to battle in the branches for a 
nesting site, a pride of lions to pull down a wildebeest, a flock 
of geese to migrate south in the winter. It should include what 
enables a human to bake a cake, play the violin, read a book, 
write a poem, fight a war, or invent a computer. 

At a minimum, intelligence requires the ability to sense the 
environment, to make decisions, and to control action. Higher 
levels of intelligence may include the ability to recognize 
objects and events, to represent knowledge in a world model, 
and to reason about and plan for the future. In advanced forms, 
intelligence provides the capacity to perceive and understand, 
to choose wisely, and to act successfully under a large variety 
of circumstances so as to survive, prosper, and reproduce in a 
complex and often hostile environment. 

From the viewpoint of control theory, intelligence might 
be defined as a knowledgeable “helmsman of behavior”. 
Intelligence is the integration of knowledge and feedback 
into a sensory-interactive goal-directed control system that can 
make plans, and generate effective, purposeful action directed 
toward achieving them. 

From the viewpoint of psychology, intelligence might be 
defined as a behavioral strategy that gives each individual a 
means for maximizing the likelihood of propagating its own 
genes. Intelligence is the integration of perception, reason, 

emotion, and behavior in a sensing, perceiving, knowing, 
caring, planning, acting system that can succeed in achieving 
its goals in the world. 

For the purposes of this paper, intelligence will be defined 
as the ability of a system to act appropriately in an uncertain 
environment, where appropriate action is that which increases 
the probability of success, and success is the achievement of 
behavioral subgoals that support the system’s ultimate goal. 

Both the criteria of success and the systems ultimate goal 
are defined external to the intelligent system. For an intelligent 
machine system, the goals and success criteria are typically 
defined by designers, programmers, and operators. For intelli- 
gent biological creatures, the ultimate goal is gene propagation, 
and success criteria are defined by the processes of natural 
selection. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem: There are degrees, or levels, of intelligence, 
and these are determined by: 1) the computational power 
of the system’s brain (or computer), 2) the sophistication 
of algorithms the system uses for sensory processing, world 
modeling, behavior generating, value judgment, and global 
communication, and 3) the information and values the system 
has stored in its memory. 

Intelligence can be observed to grow and evolve, both 
through growth in computational power, and through accu- 
mulation of knowledge of how to sense, decide, and act in a 
complex and changing world. In artificial systems, growth in 
computational power and accumulation of knowledge derives 
mostly from human hardware engineers and software program- 
mers. In natural systems, intelligence grows, over the lifetime 
of an individual, through maturation and learning; and over 
intervals spanning generations, through evolution. 

Note that learning is not required in order to be intelligent, 
only to become more intelligent as a result of experience. 
Learning is defined as consolidating short-term memory into 
long-term memory, and exhibiting altered behavior because of 
what was remembered. In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, learning is discussed as 
a mechanism for storing knowledge about the external world, 
and for acquiring skills and knowledge of how to act. It is, 
however, assumed that many creatures can exhibit intelligent 
behavior using instinct, without having learned anything. 

111. THE ORIGIN AND FUNCTION OF INTELLIGENCE 

Theorem: Natural intelligence, like the brain in which it 
appears, is a result of the process of natural selection. 

The brain is first and foremost a control system. Its primary 
function is to produce successful goal-seeking behavior in find- 
ing food, avoiding danger, competing for territory, attracting 
sexual partners, and caring for offspring. All brains that ever 
existed, even those of the tiniest insects, generate and control 
behavior. Some brains produce only simple forms of behavior, 
while others produce very complex behaviors. Only the most 
recent and highly developed brains show any evidence of 
abstract thought. 

Theorem: For each individual, intelligence provides a mech- 
anism for generating biologically advantageous behavior. 

Intelligence improves an individual’s ability to act effec- 
tively and choose wisely between alternative behaviors. All 
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else being equal, a more intelligent individual has many 
advantages over less intelligent rivals in acquiring choice 
territory, gaining access to food, and attracting more desirable 
breeding partners. The intelligent use of aggression helps 
to improve an individual’s position in the social dominance 
hierarchy. Intelligent predation improves success in capturing 
prey. Intelligent exploration improves success in hunting and 
establishing territory. Intelligent use of stealth gives a predator 
the advantage of surprise. Intelligent use of deception improves 
the prey’s chances of escaping from danger. 

Higher levels of intelligence produce capabilities in the 
individual for thinking ahead, planning before acting, and 
reasoning about the probable results of alternative actions. 
These abilities give to the more intelligent individual a com- 
petitive advantage over the less intelligent in the competition 
for survival and gene propagation. Intellectual capacities and 
behavioral skills that produce successful hunting and gathering 
of food, acquisition and defense of territory, avoidance and 
escape from danger, and bearing and raising offspring tend to 
be passed on to succeeding generations. Intellectual capabili- 
ties that produce less successful behaviors reduce the survival 
probability of the brains that generate them. Competition 
between individuals thus drives the evolution of intelligence 
within a species. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem: For groups of individuals, intelligence provides 
a mechanism for cooperatively generating biologically advan- 
tageous behavior. 

The intellectual capacity to simply congregate into flocks, 
herds, schools, and packs increases the number of sensors 
watching for danger. The ability to communicate danger 
signals improves the survival probability of all individuals 
in the group. Communication is most advantageous to those 
individuals who are the quickest and most discriminating 
in the recognition of danger messages, and most effective 
in responding with appropriate action. The intelligence to 
cooperate in mutually beneficial activities such as hunting and 
group defense increases the probability of gene propagation 
for all members of the group. 

All else being equal, the most intelligent individuals and 
groups within a species will tend to occupy the best territory, 
be the most successful in social competition, and have the 
best chances for their offspring surviving. All else being equal, 
more intelligent individuals and groups will win out in serious 
competition with less intelligent individuals and groups. 

Intelligence is, therefore, the product of continuous com- 
petitive struggles for survival and gene propagation that has 
taken place between billions of brains, over millions of years. 
The results of those struggles have been determined in large 
measure by the intelligence of the competitors. 

A. Communication and Language 

Definition: Communication is the transmission of informa- 
tion between intelligent systems. 

Definition: Language is the means by which information is 
encoded for purposes of communication. 

Language has three basic components: vocabulary, syntax, 
and semantics. Vocabulary is the set of words in the language. 

Words may be represented by symbols. Syntax, or grammar, 
is the set of rules for generating strings of symbols that 
form sentences. Semantics is the encoding of information into 
meaningful patterns, or messages. Messages are sentences that 
convey useful information. 

Communication requires that information be: 1) encoded, 
2) transmitted, 3) received, 4) decoded, and 5) understood. 
Understanding implies that the information in the message has 
been correctly decoded and incorporated into the world model 
of the receiver. 

Communication may be either intentional or unintentional. 
Intentional communication occurs as the result of a sender 
executing a task whose goal i t  is to alter the knowledge or be- 
havior of the receiver to the benefit of the sender. Unintentional 
communication occurs when a message is unintentionally sent, 
or when an intended message is received and understood by 
someone other than the intended receiver. Preventing an enemy 
from receiving and understanding communication between 
friendly agents can often be crucial to survival. 

Communication and language are by no means unique to 
human beings. Virtually all creatures, even insects, commu- 
nicate in some way, and hence have some form of language. 
For example, many insects transmit messages announcing their 
identity and position. This may be done acoustically, by smell, 
or by some visually detectable display. The goal may be to 
attract a mate, or to facilitate recognition and/or location by 
other members of a group. Species of lower intelligence, such 
as insects, have very little information to communicate, and 
hence have languages with only a few of what might be called 
words, with little or no grammar. In many cases, language 
vocabularies include motions and gestures (i.e., body or sign 
language) as well as acoustic signals generated by variety of 
mechanisms from stamping the feet, to snorts, squeals, chirps, 
cries, and shouts. 

Theorem: In any species, language evolves to support the 
complexity of messages that can be generated by the intelli- 
gence of that species. 

Depending on its complexity, a language may be capable of 
communicating many messages, or only a few. More intelli- 
gent individuals have a larger vocabulary, and are quicker to 
understand and act on the meaning of messages. 

Theorem: To the receiver, the benefit, or value, of commu- 
nication is roughly proportional to the product of the amount of 
information contained in the message, multiplied by the ability 
of the receiver to understand and act on that information, 
multiplied by the importance of the act to survival and gene 
propagation of the receiver. To the sender, the benetit is the 
value of the receiver’s action to the sender, minus the danger 
incurred by transmitting a message that may be intercepted by, 
and give advantage to, an enemy. 

Greater intelligence enhances both the individual’s and the 
group’s ability to analyze the environment, to encode and 
transmit information about it, to detect messages, to recognize 
their significance, and act effectively on information received. 
Greater intelligence produces more complex languages capable 
of expressing more information, i.e., more messages with more 
shades of meaning. 

In social species, communication also provides the basis 
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for societal organization. Communication of threats that warn 
of aggression can help to establish the social dominance 
hierarchy, and reduce the incidence of physical harm from 
fights over food, territory, and sexual partners. Communication 
of alarm signals indicate the presence of danger, and in some 
cases, identify its type and location. Communication of pleas 
for help enables group members to solicit assistance from one 
another. Communication between members of a hunting pack 
enable them to remain in formation while spread far apart, and 
hence to hunt more effectively by cooperating as a team in the 
tracking and killing of prey. 

Among humans, primitive forms of communication include 
facial expressions, cries, gestures, body language, and pan- 
tomime. The human brain is, however, capable of generating 
ideas of much greater complexity and subtlety than can be 
expressed through cries and gestures. In order to transmit mes- 
sages commensurate with the complexity of human thought, 
human languages have evolved grammatical and semantic 
rules capable of stringing words from vocabularies consisting 
of thousands of entries into sentences that express ideas 
and concepts with exquisitely subtle nuances of meaning. To 
support this process, the human vocal apparatus has evolved 
complex mechanisms for making a large variety of sounds. 

B. Human Intelligence and Technology 

Superior intelligence alone made man a successful hunter. 
The intellectual capacity to make and use tools, weapons, 
and spoken language made him the most successful of all 
predators. In recent millennia, human levels of intelligence 
have led to the use of fire, the domestication of animals, 
the development of agriculture, the rise of civilization, the 
invention of writing, the building of cities, the practice of 
war, the emergence of science, and the growth of industry. 
These capabilities have extremely high gene propagation value 
for the individuals and societies that possess them relative to 
those who do not. Intelligence has thus made modern civilized 
humans the dominant species on the planet Earth. 

For an individual human, superior intelligence is an asset in 
competing for position in the social dominance hierarchy. It 
conveys advantage for attracting and winning a desirable mate, 
in raising a large, healthy, and prosperous family, and seeing to 
it that one’s offspring are well provided for. In competition be- 
tween human groups, more intelligent customs and traditions, 
and more highly developed institutions and technology, lead to 
the dominance of culture and growth of military and political 
power. Less intelligent customs, traditions, and practices, and 
less developed institutions and technology, lead to economic 
and political decline and eventually to the demise of tribes, 
nations, and civilizations. 

Iv. THE ELEMENTS OF INTELLIGENCE 

Theorem: There are four system elements of intelligence: 
sensory processing, world modeling, behavior generation, and 
value judgment. Input to, and output from, intelligent systems 
are via sensors and actuators. 

1) Actuators: Output from an intelligent system is produced 
by actuators that move, exert forces, and position arms, 

legs, hands, and eyes. Actuators generate forces to point 
sensors, excite transducers, move manipulators, handle tools, 
steer and propel locomotion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn intelligent system may have 
tens, hundreds, thousands, even millions of actuators, all of 
which must be coordinated in order to perform tasks and 
accomplish goals. Natural actuators are muscles and glands. 
Machine actuators are motors, pistons, valves, solenoids, and 
transducers. 

2) Sensors: Input to an intelligent system is produced by 
sensors, which may include visual brightness and color sen- 
sors; tactile, force, torque, position detectors; velocity, vibra- 
tion, acoustic, range, smell, taste, pressure, and temperature 
measuring devices. Sensors may be used to monitor both 
the state of the external world and the internal state of the 
intelligent system itself. Sensors provide input to a sensory 
processing system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3) Sensory Processing: Perception takes place in a sensory 
processing system element that compares sensory observations 
with expectations generated by an internal world model. 
Sensory processing algorithms integrate similarities and dif- 
ferences between observations and expectations over time 
and space so as to detect events and recognize features, 
objects, and relationships in the world. Sensory input data 
from a wide variety of sensors over extended periods of 
time are fused into a consistent unified perception of the 
state of the world. Sensory processing algorithms compute 
distance, shape, orientation, surface characteristics, physical 
and dynamical attributes of objects and regions of space. 
Sensory processing may include recognition of speech and 
interpretation of language and music. 

4) WorldModel: The world model is the intelligent sys- 
tem’s best estimate of the state of the world. The world model 
includes a database of knowledge about the world, plus a 
database management system that stores and retrieves infor- 
mation. The world model also contains a simulation capability 
that generates expectations and predictions. The world model 
thus can provide answers to requests for information about 
the present, past, and probable future states of the world. The 
world model provides this information service to the behavior 
generation system element, so that it can make intelligent 
plans and behavioral choices, to the sensory processing system 
element, in order for it to perform correlation, model matching, 
and model based recognition of states, objects, and events, and 
to the value judgment system element in order for it to compute 
values such as cost, benefit, risk, uncertainty, importance, 
attractiveness, etc. The world model is kept up-to-date by the 
sensory processing system element. 

5) Value Judgment: The value judgment system element 
determines what is good and bad, rewarding and punishing, 
important and trivial, certain and improbable. The value judg- 
ment system evaluates both the observed state of the world 
and the predicted results of hypothesized plans. It computes 
costs, risks, and benefits both of observed situations and of 
planned activities. It computes the probability of correctness 
and assigns believability and uncertainty parameters to state 
variables. It also assigns attractiveness, or repulsiveness to 
objects, events, regions of space, and other creatures. The 
value judgment system thus provides the basis for making 
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decisions-for choosing one action as opposed to another, 
or for pursuing one object and fleeing from another. Without 
value judgments, any biological creature would soon be eaten 
by others, and any artificially intelligent system would soon 
be disabled by its own inappropriate actions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6) Behavior Generation: Behavior results from a behavior 
generating system element that selects goals, and plans and ex- 
ecutes tasks. Tasks are recursively decomposed into subtasks, 
and subtasks are sequenced so as to achieve goals. Goals are 
selected and plans generated by a looping interaction between 
behavior generation, world modeling, and value judgment 
elements. The behavior generating system hypothesizes plans, 
the world model predicts the results of those plans, and the 
value judgment element evaluates those results. The behavior 
generating system then selects the plans with the highest 
evaluations for execution. The behavior generating system 
element also monitors the execution of plans, and modifies 
existing plans whenever the situation requires. 

Each of the system elements of intelligence are reasonably 
well understood. The phenomena of intelligence, however, 
requires more than a set of disconnected elements. Intelligence 
requires an interconnecting system architecture that enables 
the various system elements to interact and communicate with 
each other in intimate and sophisticated ways. 

A system architecture is what partitions the system elements 
of intelligence into computational modules, and interconnects 
the modules in networks and hierarchies. It is what enables the 
behavior generation elements to direct sensors, and to focus 
sensory processing algorithms on objects and events worthy 
of attention, ignoring things that are not important to current 
goals and task priorities. It is what enables the world model 
to answer queries from behavior generating modules, and 
make predictions and receive updates from sensory processing 
modules. It is what communicates the value state-variables that 
describe the success of behavior and the desirability of states 
of the world from the value judgment element to the goal 
selection subsystem. 

V. A PROPOSED ARCHITECTURE FOR INTELLIGENT SYSTEMS 

A number of system architectures for intelligent machine 
systems have been conceived, and a few implemented. [1]-[15] 
The architecture for intelligent systems that will be proposed 
here is largely based on the real-time control system (RCS) that 
has been implemented in a number of versions over the past 13 
years at the National Institute for Standards and Technology 
(NIST, formerly NBS). RCS was first implemented by Barbera 
for laboratory robotics in the mid 1970’s [7] and adapted by 
Albus, Barbera, and others for manufacturing control in the 
NIST Automated Manufacturing Research Facility (AMRF) 
during the early 1980’s [ l l ] ,  [12]. Since 1986, RCS has been 
implemented for a number of additional applications, including 
the NBS/DARPA Multiple Autonomous Undersea Vehicle 
(MAUV) project zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 131, the Army Field Material Handling 
Robot, and the Army TMAP and TEAM semiautonomous land 
vehicle projects. RCS also forms the basis of the NASA/NBS 
Standard Reference Model Telerobot Control System Archi- 
tecture (NASREM) being used on the space station Flight 
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Fig. 1. Elements of intelligence and the functional relationships 
between them. 

Telerobotic Servicer [14] and the Air Force Next Generation 
Controller. 

The proposed system architecture organizes the elements of 
intelligence so as to create the functional relationships and 
information flow shown in Fig. 1. In all intelligent systems, 
a sensory processing system processes sensory information to 
acquire and maintain an internal model of the external world. 
In all systems, a behavior generating system controls actuators 
so as to pursue behavioral goals in the context of the perceived 
world model. In systems of higher intelligence, the behavior 
generating system element may interact with the world model 
and value judgment system to reason about space and time, 
geometry and dynamics, and to formulate or select plans based 
on values such as cost, risk, utility, and goal priorities. The 
sensory processing system element may interact with the world 
model and value judgment system to assign values to perceived 
entities, events, and situations. 

The proposed system architecture replicates and distributes 
the relationships shown in Fig. 1 over a hierarchical computing 
structure with the logical and temporal properties illustrated 
in Fig. 2. On the left is an organizational hierarchy wherein 
computational nodes are arranged in layers like command 
posts in a military organization. Each node in the organiza- 
tional hierarchy contains four types of computing modules: 
behavior generating (BG), world modeling (WM), sensory 
processing (SP), and value judgment (VJ) modules. Each 
chain of command in the organizational hierarchy, from each 
actuator and each sensor to the highest level of control, can 
be represented by a computational hierarchy, such as is shown 
in the center of Fig. 2. 

At each level, the nodes, and computing modules within 
the nodes, are richly interconnected to each other by a com- 
munications system. Within each computational node, the 
communication system provides intermodule communications 
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Fig. 2. Relationships in hierarchical control systems, On the left is an organizational hierarchy consisting of a tree of command 
centers, each of which possesses one supervisor and one or more subordinates. In the center is a computational hierarchy consisting of 
BG, WM, SP, and VJ modules. Each actuator and each sensors is serviced by a computational hierarchy. On the right is a behavioral 
hierarchy consisting of trajectories through state-time-space. Commands at a each level can be represented by vectors, or points in 
state-space. Sequences of commands and be represented as trajectories through state-time-space. 

of the type shown in Fig. 1. Queries and task status are 
communicated from BG modules to WM modules. Retrievals 
of information are communicated from WM modules back to 
the BG modules making the queries. Predicted sensory data is 
communicated from WM modules to SP modules. Updates to 
the world model are communicated from SP to WM modules. 
Observed entities, events, and situations are communicated 
from SP to VJ modules. Values assigned to the world model 
representations of these entities, events, and situations are 
communicated from VJ to WM modules. Hypothesized plans 
are communicated from BG to WM modules. Results are 
communicated from WM to VJ modules. Evaluations are 
communicated from VJ modules back to the BG modules that 
hypothesized the plans. 

The communications system also communicates between 
nodes at different levels. Commands are communicated down- 
ward from supervisor BG modules in one level to subordinate 
BG modules in the level below. Status reports are commu- 
nicated back upward through the world model from lower 
level subordinate BG modules to the upper level supervisor 
BG modules from which commands were received. Observed 
entities, events, and situations detected by SP modules at one 
level are communicated upward to SP modules at a higher 
level. Predicted attributes of entities, events, and situations 
stored in the WM modules at a higher level are communi- 
cated downward to lower level WM modules. Output from 
the bottom level BG modules is communicated to actuator 
drive mechanisms. Input to the bottom level SP modules is 
communicated from sensors. 

The communications system can be implemented in a va- 
riety of ways. In a biological brain, communication is mostly 
via neuronal axon pathways, although some messages are 
communicated by hormones carried in the bloodstream. In 
artificial systems, the physical implementation of communica- 

tions functions may be a computer bus, a local area network, 
a common memory, a message passing system, or some 
combination thereof. In either biological or artificial systems, 
the communications system may include the functionality 
of a communications processor, a file server, a database 
management system, a question answering system, or an 
indirect addrcssing or list processing engine. In the system 
architecture proposed here, the input/output relationships of the 
communications system produce the effect of a virtual global 
memory, or blackboard system [15]. 

The input command string to each of the BG modules 
at each level generates a trajectory through state-space as 
a function of time. The set of all command strings create 
a behavioral hierarchy, as shown on the right of Fig. 2. 
Actuator output trajectories (not shown in Fig. 2) correspond 
to observable output behavior. All the other trajectories in the 
behavioral hierarchy constitute the deep structure of behavior 

[161. 

VI. HIERARCHICAL VERSUS HORIZONTAL 

Fig. 3 shows the organizational hierarchy in more detail, 
and illustrates both the hierarchical and horizontal relation- 
ships involved in the proposed architecture. The architecture 
is hierarchical in that commands and status feedback flow 
hierarchically up and down a behavior generating chain of 
command. The architecture is also hierarchical in that sensory 
processing and world modeling functions have hierarchical 
levels of temporal and spatial aggregation. 

The architecture is horizontal in that data is shared hori- 
zontally between heterogeneous modules at the same level. 
At each hierarchical level, the architecture is horizontally 
interconnected by wide-bandwidth communication pathways 
between BG, WM, SP, and VJ modules in the same node, 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. An organization of processing nodes such that the BG modules form 
a command tree. On the right are examples or the functional characteristic 
of the BG modules at each level. On the left are examples of the type of 
visual and acoustical entities recognized by the SP modules at each level. In 
the center of level 3 are the type of subsystems represented by processing 
nodes at level 3. 

and between nodes at the same level, especially within the 
same command subtree. The horizontal flow of information 
is most voluminous within a single node, less so between 
related nodes in the same command subtree, and relatively low 
bandwidth between computing modules in separate command 
subtrees. Communications bandwidth is indicated in Fig. 3 by 
the relative thickness of the horizontal connections. 

The volume of information flowing horizontally within a 
subtree may be orders of magnitude larger than the amount 
flowing vertically in the command chain. The volume of in- 
formation flowing vertically in the sensory processing system 
can also be very high, especially in the vision system. 

The specific configuration of the command tree is task 
dependent, and therefore not necessarily stationary in time. 
Fig. 3 illustrates only one possible configuration that may 
exist at a single point in time. During operation, relationships 
between modules within and between layers of the hierarchy 
may be reconfigured in order to accomplish different goals, pri- 
orities, and task requirements. This means that any particular 
computational node, with its BG, WM, SP, and VJ modules, 
may belong to one subsystem at one time and a different 
subsystem a very short time later. For example, the mouth may 
be part of the manipulation subsystem (while eating) and the 
communication subsystem (while speaking). Similarly, an arm 
may be part of the manipulation subsystem (while grasping) 
and part of the locomotion subsystem (while swimming or 
climbing). 

In the biological brain, command tree reconfiguration can 
be implemented through multiple axon pathways that exist, 
but are not always activated, between BG modules at dif- 
ferent hierarchical levels. These multiple pathways define a 
layered graph, or lattice, of nodes and directed arcs, such as 
shown in Fig. 4. They enable each BG module to receive 
input messages and parameters from several different sources. 

Fig. 4. Each layer of the system architecture contains a number of nodes, 
each of which contains BG, WM, SP, and VJ modules, The nodes are 
interconnected as a layered graph, or lattice, through the communication 
system. Note that the nodes are richly but not fully, interconnected. Outputs 
from the bottom layer BG modules drive actuators. Inputs to the bottom 
layer SP modules convey data from sensors. During operation, goal driven 
communication path selection mechanisms configure this lattice structure into 
the organization tree shown in Fig. 3. 

During operation, goal driven switching mechanisms in the BG 
modules (discussed in Section X) assess priorities, negotiate 
for resources, and coordinate task activities so as to select 
among the possible communication paths of Fig. 4. As a 
result, each BG module accepts task commands from only 
one supervisor at a time, and hence the BG modules form a 
command tree at every instant in time. 

The SP modules are also organized hierarchically, but as 
a layered graph, not a tree. At each higher level, sensory 
information is processed into increasingly higher levels of 
abstraction, but the sensory processing pathways may branch 
and merge in many different ways. 

VII. HIERARCHICAL LEVELS 

Levels in the behavior generating hierarchy are defined by 
temporal and spatial decomposition of goals and tasks into 
levels of resolution. Temporal resolution is manifested in terms 
of loop bandwidth, sampling rate, and state-change intervals. 
Temporal span is measured by the length of historical traces 
and planning horizons. Spatial resolution is manifested in the 
branching of the command tree and the resolution of maps. 
Spatial span is measured by the span of control and the range 
of maps. 

Levels in the sensory processing hierarchy are defined by 
temporal and spatial integration of sensory data into levels of 
aggregation. Spatial aggregation is best illustrated by visual 
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images. Temporal aggregation is best illustrated by acoustic 
parameters such as phase, pitch, phonemes, words, sentences, 
rhythm, beat, and melody. 

Levels in the world model hierarchy are defined by temporal 
resolution of events, spatial resolution of maps, and by parent- 
child relationships between entities in symbolic data structures. 
These are defined by the needs of both SP and BG modules 
at the various levels. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem: In a hierarchically structured goal-driven, sensory- 
interactive, intelligent control system architecture: 

1) control bandwidth decreases about an order of magni- 
tude at each higher level, 

2) perceptual resolution of spatial and temporal patterns 
decreases about an order-of-magnitude at each higher 
level, 

3) goals expand in scope and planning horizons expand 
in space and time about an order-of-magnitude at each 
higher level, and 

4) models of the world and memories of events decrease 
in resolution and expand in spatial and temporal range 
by about an order-of-magnitude at each higher level. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

It is well known from control theory that hierarchically 
nested servo loops tend to suffer instability unless the band- 
width of the control loops differ by about an order of mag- 
nitude. This suggests, perhaps even requires, condition 1). 
Numerous theoretical and experimental studies support the 
concept of hierarchical planning and perceptual “chunking” 
for both temporal and spatial entities [17], [18]. These support 
conditions 2), 3), and 4). 

In elaboration of the aforementioned theorem, we can con- 
struct a timing diagram, as shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  The range of the 
time scale increases, and its resolution decreases, exponentially 
by about an order of magnitude at each higher level. Hence the 
planning horizon and event summary interval increases, and 
the loop bandwidth and frequency of subgoal events decreases, 
exponentially at each higher level. The seven hierarchical 
levels in Fig. 5 span a range of time intervals from three 
milliseconds to one day. Three milliseconds was arbitrarily 
chosen as the shortest servo update rate because that is 
adequate to reproduce the highest bandwidth reflex arc in the 
human body. One day was arbitrarily chosen as the longest 
historical-memory/planning-horizon to be considered. Shorter 
time intervals could be handled by adding another layer at the 
bottom. Longer time intervals could be treated by adding layers 
at the top, or by increasing the difference in loop bandwidths 
and sensory chunking intervals between levels. 

The origin of the time axis in Fig. 5 is the present, i.e., 
t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. Future plans lie to the right of t = 0, past history to 
the left. The open triangles in the right half-plane represent 
task goals in a future plan. The filled triangles in the left 
half-plane represent recognized task-completion events in a 
past history. At each level there is a planning horizon and a 
historical event summary interval. The heavy crosshatching on 
the right shows the planning horizon for the current task. The 
light shading on the right indicates the planning horizon for 
the anticipated next task. The heavy crosshatching on the left 
shows the event summary interval for the current task. The 

Fig. 5. Timing diagram illustrating the temporal flow of activity in the task 
decomposition and sensory processing systems. At the world level, high-level 
sensory events and circadian rhythms react with habits and daily routines to 
generate a plan for the day. Each elements of that plan is decomposed through 
the remaining six levels of task decomposition into action. 

light shading on the left shows the event summary interval for 
the immediately previous task. 

Fig. 5 suggests a duality between the behavior generation 
and the sensory processing hierarchies. At each hierarchical 
level, planner modules decompose task commands into strings 
of planned subtasks for execution. At each level, strings of 
sensed events are summarized, integrated, and “chunked” into 
single events at the next higher level. 

Planning implies an ability to predict future states of the 
world. Prediction algorithms based on Fourier transforms or 
Kalman filters typically use recent historical data to compute 
parameters for extrapolating into the future. Predictions made 
by such methods are typically not reliable for periods longer 
than the historical interval over which the parameters were 
computed. Thus at each level, planning horizons extend into 
the future only about as far, and with about the same level of 
detail, as historical traces reach into the past. 

Predicting the future state of the world often depends on 
assumptions as to what actions are going to be taken and what 
reactions are to be expected from the environment, including 
what actions may be taken by other intelligent agents. Planning 
of this type requires search over the space of possible future 
actions and probable reactions. Search-based planning takes 
place via a looping interaction between the BG, WM, and VJ 
modules. This is described in more detail in the Section X 

discussion on BG modules. 
Planning complexity grows exponentially with the number 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.  Three levels of real-time planning illustrating the shrinking planning 
horizon and greater detail at successively lower levels of the hierarchy. At 
the top level, a single task is decomposed into a set of four planned subtasks 
for each of three subsystem. At each of the next two levels, the first task in 
the plan of the first subsystems is further decomposed into four subtasks for 
three subsystems at the next lower level. 

of steps in the plan (i.e., the number of layers in the search 
graph). If real-time planning is to succeed, any given planner 
must operate in a limited search space. If there are too much 
resolution in the time line, or in the space of possible actions, 
the size of the search graph can easily become too large for 
real-time response. One method of resolving this problem 
is to use a multiplicity of planners in hierarchical layers 
[14], [18] so that at each layer no planner needs to search 
more than a given number (for example ten) steps deep in a 
game graph, and at each level there are no more than (ten) 
subsystem planners that need to simultaneously generate and 
coordinate plans. These criteria give rise to hierarchical levels 
with exponentially expanding spatial and temporal planning 
horizons, and characteristic degrees of detail for each level. 
The result of hierarchical spatiotemporal planning is illustrated 
in Fig. 6. At each level, plans consist of at least one, and on 
average 10, subtasks. The planners have a planning horizon 
that extends about one and a half average input command 
intervals into the future. 

In a real-time system, plans must be regenerated periodically 
to cope with changing and unforeseen conditions in the world. 
Cyclic replanning may occur at periodic intervals. Emergency 
replanning begins immediately upon the detection of an emer- 
gency condition. Under full alert status, the cyclic replanning 
interval should be about an order of magnitude less than 
the planning horizon (or about equal to the expected output 
subtask time duration). This requires that real-time planners 
be able to search to the planning horizon about an order of 
magnitude faster than real time. This is possible only if the 
depth and resolution of search is limited through hierarchical 
planning. 

Plan executors at each level have responsibility for react- 
ing to feedback every control cycle interval. Control cycle 
intervals are inversely proportional to the control loop band- 

width. Typically the control cycle interval is an order of 
magnitude less than the expected output subtask duration. 
If the feedback indicates the failure of a planned subtask, 
the executor branches immediately (i.e., in one control cycle 
interval) to a preplanned emergency subtask. The planner 
simultaneously selects or generates an error recovery sequence 
that is substituted for the former plan that failed. Plan executors 
are also described in more detail in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX. 

When a task goal is achieved at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, it becomes a 
task completion event in the historical trace. To the extent that 
a historical trace is an exact duplicate of a former plan, there 
were no surprises; i.e., the plan was followed, and every task 
was accomplished as planned. To the extent that a historical 
trace is different from the former plan, there were surprises. 
The average size and frequency of surprises (i.e., differences 
between plans and results) is a measure of effectiveness of a 
planner. 

At each level in the control hierarchy, the difference vector 
between planned (i.e., predicted) commands and observed 
events is an error signal, that can be used by executor 
submodules for servo feedback control (i.e., error correction), 
and by VJ modules for evaluating success and failure. 

In the next eight sections, the system architecture out- 
lined previously will be elaborated and the functionality of 
the computational submodules for behavior generation, world 
modeling, sensory processing, and value judgment will be 
discussed. 

VIII. BEHAVIOR GENERATION 

Definition: Behavior is the result of executing a series of 
tasks. 

Definition: A task is a piece of work to be done, or an 
activity to be performed. 

Axiom: For any intelligent system, there exists a set of tasks 
that the system knows how to do. 

Each task in this set can be assigned a name. The task 
vocabulary is the set of task names assigned to the set of tasks 
the system is capable of performing. For creatures capable of 
learning, the task vocabulary is not fixed in size. It can be 
expanded through learning, training, or programming. It may 
shrink from forgetting, or program deletion. 

Typically, a task is performed by a one or more actors on 
one or more objects. The performance of a task can usually 
be described as an activity that begins with a start-event and 
is directed toward a goal-event. This is illustrated in Fig. 7. 

Definition: A goal is an event that successfully terminates 
a task. A goal is the objective towatd which task activity is 
directed. 

Definition: A task command is an instruction to perform 
a named task. A task command may have the form: 
DO <Taskname(parameters)> AFTER <Start Event> UNTIL 
<Goal Event> Task knowledge is knowledge of how to 
perform a task, including information as to what tools, 
materials, time, resources, information, and conditions are 
required, plus information as to what costs, benefits and risks 
are expected. 
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Fig. 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA task consists of an activity that typically begins with a start event 
and is terminated by a goal event. A task may be decomposed into several 
concurrent strings of subtasks that collectively achieve the goal event. 

Task knowledge may be expressed implicitly in fixed cir- 
cuitry, either in the neuronal connections and synaptic weights 
of the brain, or in algorithms, software, and computing hard- 
ware. Task knowledge may also be expressed explicitly in data 
structures, either in the neuronal substrate or in a computer 
memory. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Definition: A task frame is a data structure in which task 
knowledge can be stored. 

In systems where task knowledge is explicit, a task frame 
[19] can be defined for each task in the task vocabulary. An 

example of a task 

TASKNAME 

tY Pe 
actor 
action 
object 
goal 

parameters 

requirements 

procedures 

effects 

frame is: 

name of the task 
generic or specifi 
agent performing the task 
activity to be performed 
thing to be acted upon 
event that successfully terminates or renders the 

task successful 
priority 
status (e.g. active, waiting, inactive) 
timing requirements 
source of task command 
tools, time, resources, and materials needed to 

perform the task 
enabling conditions that must be satisfied to begin, 

or continue, the task 
disabling conditions that will prevent, or interrupt, 

the task 
information that may be required 
a state-graph or state-table defining a plan for 

executing the task 
functions that may be called 
algorithms that may be needed 
expected results of task execution 
expected costs, risks, benefits 
estimated time to complete 

Explicit representation of task knowledge in task frames has 
a variety of uses. For example, task planners may use it for 
generating hypothesized actions. The world model may use it 
for predicting the results of hypothesized actions. The value 
judgment system may use it for computing how important the 
goal is and how many resources to expend in pursuing it. Plan 
executors may use it for selecting what to do next. 

Task knowledge is typically difficult to discover, but once 
known, can be readily transferred to others. Task knowledge 
may be acquired by trial and error learning, but more often it 
is acquired from a teacher, or from written or programmed 
instructions. For example, the common household task of 
preparing a food dish is typically performed by following 
a recipe. A recipe is an informal task frame for cooking. 
Gourmet dishes rarely result from reasoning about possible 
combinations of ingredients, still less from random trial and 
error combinations of food stuffs. Exceptionally good recipes 
often are closely guarded secrets that, once published, can 
easily be understood and followed by others. 

Making steel is a more complex task example. Steel making 
took the human race many millennia to discover how to do. 
However, once known, the recipe for making steel can be 
implemented by persons of ordinary skill and intelligence. 

In most cases, the ability to successfully accomplish com- 
plex tasks is more dependent on the amount of task knowledge 
stored in task frames (particularly in the procedure section) 
than on the sophistication of planners in reasoning about tasks. 

IX. BEHAVIOR GENERATION 

Behavior generation is inherently a hierarchical process. 
At each level of the behavior generation hierarchy, tasks are 
decomposed into subtasks that become task commands to 
the next lower level. At each level of a behavior generation 
hierarchy there exists a task vocabulary and a corresponding 
set of task frames. Each task frame contains a procedure state- 
graph. Each node in the procedure state-graph must correspond 
to a task name in the task vocabulary at the next lower level. 

Behavior generation consists of both spatial and temporal 
decomposition. Spatial decomposition partitions a task into 
jobs to be performed by different subsystems. Spatial task 
decomposition results in a tree structure, where each node 
corresponds to a BG module, and each arc of the tree cor- 
responds to a communication link in the chain of command 
as illustrated in Fig. 3. 

Temporal decomposition partitions each job into sequential 
subtasks along the time line. The result is a set of subtasks, 
all of which when accomplished, achieve the task goal, as 
illustrated in Fig. 7. 

In a plan involving concurrent job activity by different 
subsystems, there may requirements for coordination, or mu- 
tual constraints. For example, a start-event for a subtask 
activity in one subsystem may depend on the goal-event for 
a subtask activity in another subsystem. Some tasks may 
require concurrent coordinated cooperative action by several 
subsystems. Both planning and execution of subsystem plans 
may thus need to be coordinated. 

There may be several alternative ways to accomplish a task. 
Alternative task or job decompositions can be represented by 
an AND/OR graph in the procedure section of the task frame. 
The decision as to which of several alternatives to choose is 
made through a series of interactions between the BG, WM, 
SP, and VJ modules. Each alternative may be analyzed by the 
BG module hypothesizing it, WM predicting the result, and VJ 
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Fig. 8. The job assignment JA module performs a spatial decomposition of 
the task command into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS subsystems. For each subsystem, a planner zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP L ( j )  
performs a temporal decomposition of its assigned job into subtasks. For each 
subsystem, an executor E S (  j )  closes a real-time control loop that servos the 
subtasks to the plan. 

evaluating the result. The BG module then chooses the “best” 
alternative as the plan to be executed. 

X. BG MODULES 

In the control architecture defined in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, each level of 
the hierarchy contains one or more BG modules. At each level, 
there is a BG module for each subsystem being controlled. The 
function of the BG modules are to decompose task commands 
into subtask commands. 

Input to BG modules consists of commands and priorities 
from BG modules at the next higher level, plus evaluations 
from nearby VJ modules, plus information about past, present, 
and predicted future states of the world from nearby WM 
modules. Output from BG modules may consist of subtask 
commands to BG modules at the next lower level, plus status 
reports, plus “What Is?” and “What If?” queries to the WM 
about the current and future states of the world. 

Each BG module at each level consists of three sublevels 
[9], [14] as shown in Fig. 8. 

The Job Assignment Sublevel-JA Submodule: The JA sub- 
module is responsible for spatial task decomposition. It par- 
titions the input task command into N spatially distinct jobs 
to be performed by N physically distinct subsystems, where 
N is the number of subsystems currently assigned to the BG 
module. The JA submodule many assign tools and allocate 
physical resources (such as arms, hands, legs, sensors, tools, 
and materials) to each of its subordinate subsystems for their 
use in performing their assigned jobs. These assignments are 
not necessarily static. For example, the job assignment sub- 
module at the individual level may, at one moment, assign an 
arm to the manipulation subsystem in response to a <usetool> 
task command, and later, assign the same arm to the attention 
subsystem in response to a <touch/feels task command. 

The job assignment submodule selects the coordinate sys- 
tem in which the task decomposition at that level is to be 
performed. In supervisory or telerobotic control systems such 

as defined by NASREM [14], the JA submodule at each level 
may also determine the amount and kind of input to accept 
from a human operator. 

The Planner Sublevel--PL(j) Submodules j = l ,  2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . .N: For 
each of the N subsystems, there exists a planner submodule 
PL( j ) .  Each planner submodule is responsible for decompos- 
ing the job assigned to its subsystem into a temporal sequence 
of planned subtasks. 

Planner submodules P L ( j )  may be implemented by case- 
based planners that simply select partially or completely pre- 
fabricated plans, scripts, or schema [20]-[22] from the proce- 
dure sections of task frames. This may be done by evoking sit- 
uation/action rules of the form, IF(case-x)/THEN(useglan-?j). 
The planner submodules may complete partial plans by pro- 
viding situation dependent parameters. 

The range of behavior that can be generated by a library 
of prefabricated plans at each hierarchical level, with each 
plan containing a number of conditional branches and error 
recovery routines, can be extremely large and complex. For 
example, nature has provided biological creatures with an 
extensive library of genetically prefabricated plans, called 
instinct. For most species, case-based planning using libraries 
of instinctive plans has proven adequate for survival and gene 
propagation in a hostile natural environment. 

Planner submodules may also be implemented by search- 
based planners that search the space of possible actions. This 
requires the evaluation of alternative hypothetical sequences 
of subtasks, as illustrated in Fig. 9. Each planner P L ( j )  
hypothesizes some action or series of actions, the WM module 
predicts the effects of those action(s), and the VJ module 
computes the value of the resulting expected states of the 
world, as depicted in Fig. 9(a). This results in a game (or 
search) graph, as shown in 9(b). The path through the game 
graph leading to the state with the best value becomes the plan 
to be executed by E X ( j ) .  In either case-based or search-based 
planning, the resulting plan may be represented by a state- 
graph, as shown in Fig. s ( ~ ) .  Plans may also be represented 
by gradients, or other types of fields, on maps [23], or in 
configuration space. 

Job commands to each planner submodule may contain 
constraints on time, or specify job-start and job-goal events. 
A job assigned to one subsystem may also require synchro- 
nization or coordination with other jobs assigned to different 
subsystems. These constraints and coordination requirements 
may be specified by, or derived from, the task frame. Each 
planner P L ( j )  submodule is responsible for coordinating 
its plan with plans generated by each of the other N - 1 
planners at the same level, and checking to determine if 
there are mutually conflicting constraints. If conflicts are 
found, constraint relaxation algorithms [24] may be applied, 
or negotiations conducted between P L ( j )  planners, until a 
solution is discovered. If no solution can be found, the planners 
report failure to the job assignment submodule, and a new job 
assignment may be tried, or failure may be reported to the 
next higher level BG module. 

The Executor Sublevel--EX(jl Submodules: There is an ex- 
ecutor E X ( j )  for each planner PL( j ) .  The executor sub- 
modules are responsible for successfully executing the plan 
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Fig. 9. Planning loop (a) produces a game graph (b). A trace in the game 
graph from the start to a goal state is a plan that can be represented as a plan 
graph (c). Nodes in the game graph correspond to edges in the plan graph, 
and edges in the game graph correspond to nodes in the plan graph. Multiple 
edges exiting nodes in the plan graph correspond to conditional branches. 

state-graphs generated by their respective planners. At each 
tick of the state clock, each executor measures the difference 
between the current world state and its current plan subgoal 
state, and issues a subcommand designed to null the difference. 
When the world model indicates that a subtask in the current 
plan is successfully completed, the executor steps to the next 
subtask in that plan. When all the subtasks in the current 
plan are successfully executed, the executor steps to the first 
subtask in the next plan. If the feedback indicates the failure 
of a planned subtask, the executor branches immediately to a 
preplanned emergency subtask. Its planner meanwhile begins 
work selecting or generating a new plan that can be substi- 
tuted for the former plan that failed. Output subcommands 
produced by executors at level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi become input commands to 
job assignment submodules in BG modules at level i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1. 

Planners zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP L ( j )  operate on the future. For each subsystem, 
there is a planner that is responsible for providing a plan 
that extends to the end of its planning horizon. Executors 
E X ( j )  operate in the present. For each subsystem, there is an 
executor that is responsible for monitoring the current (t  = 0) 
state of the world and executing the plan for its respective 
subsystem. Each executor performs a READ-COMPUTE- 
WRITE operation once each control cycle. At each level, each 
executor submodule closes a reflex arc, or servo loop. Thus, 
executor submodules at the various hierarchical levels form a 
set of nested servo loops. Executor loop bandwidths decrease 
on average about an order of magnitude at each higher level. 

XI. THE BEHAVIOR GENERATING HIERARCHY 

Task goals and task decomposition functions often have 
characteristic spatial and temporal properties. For any task, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

VS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 3, MAYIJUNE 1991 

there exists a hierarchy of task vocabularies that can be 
overlaid on the spatial/temporal hierarchy of Fig. 5. 

For example: 
Level 1 is where commands for coordinated velocities and 

forces of body components (such as arms, hands, fingers, legs, 
eyes, torso, and head) are decomposed into motor commands 
to individual actuators. Feedback servos the position, velocity, 
and force of individual actuators. In vertebrates, this is the 
level of the motor neuron and stretch reflex. 

Level 2 is where commands for maneuvers of body com- 
ponents are decomposed into smooth coordinated dynamically 
efficient trajectories. Feedback servos coordinated trajectory 
motions. This is the level of the spinal motor centers and the 
cerebellum. 

Level 3 is where commands to manipulation, locomotion, 
and attention subsystems are decomposed into collision free 
paths that avoid obstacles and singularities. Feedback servos 
movements relative to surfaces in the world. This is the level 
of the red nucleus, the substantia nigra, and the primary motor 
cortex. 

Level 4 is where commands for an individual to perform 
simple tasks on single objects are decomposed into coordi- 
nated activity of body locomotion, manipulation, attention, and 
communication subsystems. Feedback initiates and sequences 
subsystem activity. This is the level of the basal ganglia and 
pre-motor frontal cortex. 

Level 5 is where commands for behavior of an intelligent 
self individual relative to others in a small group are decom- 
posed into interactions between the self and nearby objects or 
agents. Feedback initiates and steers whole self task activity. 
Behavior generating levels 5 and above are hypothesized to 
reside in temporal, frontal, and limbic cortical areas. 

Level 6 is where commands for behavior of the individual 
relative to multiple groups are decomposed into small group 
interactions. Feedback steers small group interactions. 

Level 7 (arbitrarily the highest level) is where long range 
goals are selected and plans are made for long range behavior 
relative to the world as a whole. Feedback steers progress 
toward long range goals. 

The mapping of BG functionality onto levels one to four 
defines the control functions necessary to control a single 
intelligent individual in performing simple task goals. Func- 
tionality at levels one through three is more or less fixed and 
specific to each species of intelligent system [25]. At level 
4 and above, the mapping becomes more task and situation 
dependent. Levels 5 and above define the control functions 
necessary to control the relationships of an individual relative 
to others in groups, multiple groups, and the world as a whole. 

There is good evidence that hierarchical layers develop in 
the sensory-motor system, both in the individual brain as the 
individual matures, and in the brains of an entire species as the 
species evolves. It can be hypothesized that the maturation of 
levels in humans gives rise to Piaget’s “stages of development” 

Of course, the biological motor system is typically much 
more complex than is suggested by the example model de- 
scribed previously. In the brains of higher species there may 
exist multiple hierarchies that overlap and interact with each 

[261. 
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other in complicated ways. For example in primates, the 
pyramidal cells of the primary motor cortex have outputs 
to the motor neurons for direct control of fine manipulation 
as well as the inferior olive for teaching behavioral skills 
to the cerebellum [27]. There is also evidence for three 
parallel behavior generating hierarchies that have developed 
over three evolutionary eras [28]. Each BG module may thus 
contain three or more competing influences: 1) the most basic 
(IF it smells good, THEN eat it), 2) a more sophisticated 
(WAIT until the “best” moment) where best is when success 
probability is highest, and 3) a very sophisticated (WHAT are 
the long range consequences of my contemplated action, and 
what are all my options). 

On the other hand, some motor systems may be less complex 
than suggested previously. Not all species have the same 
number of levels. Insects, for example, may have only two or 
three levels, while adult humans may have more than seven. In 
robots, the functionality required of each BG module depends 
upon the complexity of the subsystem being controlled. For 
example, one robot gripper may consist of a dexterous hand 
with 15 to 20 force servoed degrees of freedom. Another 
gripper may consist of two parallel jaws actuated by a single 
pneumatic cylinder. In simple systems, some BG modules 
(such as the Primitive level) may have no function (such 
as dynamic trajectory computation) to perform. In this case, 
the BG module will simply pass through unchanged input 
commands (such as <Grasp>). 

XII. THE WORLD MODEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Definition: The world model is an intelligent system’s 

internal representation of the external world. It is the system’s 
best estimate of objective reality. A clear distinction between 
an internal representation of the world that exists in the 
mind, and the external world of reality, was first made in 
the West by Schopenhauer over 100 years ago [29]. In the 
East, it has been a central theme of Buddhism for millennia. 
Today the concept of an internal world model is crucial 
to an understanding of perception and cognition. The world 
model provides the intelligent system with the information 
necessary to reason about objects, space, and time. The world 
model contains knowledge of things that are not directly and 
immediately observable. It enables the system to integrate 
noisy and intermittent sensory input from many different 
sources into a single reliable representation of spatiotemporal 
reality. 

Knowledge in an intelligent system may be represented 
either implicitly or explicitly. Implicit world knowledge may 
be embedded in the control and sensory processing algorithms 
and interconnections of a brain, or of a computer system. 
Explicit world knowledge may be represented in either natural 
or artificial systems by data in database structures such as 
maps, lists, and semantic nets. Explicit world models require 
computational modules capable of map transformations, indi- 
rect addressing, and list processing. Computer hardware and 
software techniques for implementing these types of functions 
are well known. Neural mechanisms with such capabilities are 
discussed in Section XVI. 

Value Judgment 
Functions 
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World Model 
Sensory  Functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Planner  

Recognit ion Predict 

Sensory  

C o m p a r e  

Task  

Executor  

Database 

Entity Lists 
States 

Fig. 10. Functions performed by the WM module. 1) Update knowledge 
database with prediction errors and recognized entities. 2) Predict sensory 
data. 3) Answer “What is?” queries from task executor and return current 
state of world. 4) Answer “What if?” queries from task planner and predict 
results for evaluation. 

A. WM Modules 

The WM modules in each node of the organizational hi- 
erarchy of Figs. 2 and 3 perform the functions illustrated in 
Fig. 10. 

1) WM modules maintain the knowledge database, keeping 
it current and consistent. In this role, the WM modules 
perform the functions of a database management system. 
They update WM state estimates based on correlations 
and differences between world model predictions and 
sensory observations at each hierarchical level. The 
WM modules enter newly recognized entities, states, 
and events into the knowledge database, and delete 
entities and states determined by the sensory processing 
modules to no longer exist in the external world. The 
WM modules also enter estimates, generated by the VJ 
modules, of the reliability of world model state variables. 
Believability or confidence factors are assigned to many 
types of state variables. 

2) WM modules generate predictions of expected sensory 
input for use by the appropriate sensory processing 
SP modules. In this role, a WM module performs the 
functions of a signal generator, a graphics engine, or 
state predictor, generating predictions that enable the 
sensory processing system to perform correlation and 
predictive filtering. WM predictions are based on the 
state of the task and estimated states of the external 
world. For example in vision, a WM module may use 
the information in an object frame to generate real-time 
predicted images that can be compared pixel by pixel, 
or entity by entity, with observed images. 

3) WM modules answer “What is?” questions asked by the 
planners and executors in the corresponding level BG 
modules. In this role, the WM modules perform the func- 
tion of database query processors, question answering 
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systems, or data servers. World model estimates of the 
current state of the world are also used by BG module 
planners as a starting point for planning. Current state 
estimates are used by BG module executors for servoing 
and branching on conditions. 

4) WM modules answer “What if?” questions asked by the 
planners in the corresponding level BG modules. In this 
role, the WM modules perform the function of simula- 
tion by generating expected status resulting from actions 
hypothesized by the BG planners. Results predicted by 
WM simulations are sent to value judgment VJ modules 
for evaluation. For each BG hypothesized action, a WM 
prediction is generated, and a VJ evaluation is returned 
to the BG planner. This BG-WM-VJ loop enables BG 
planners to select the sequence of hypothesized actions 
producing the best evaluation as the plan to be executed. 

Data structures for representing explicit knowledge are 
defined to reside in a knowledge database that is hierarchically 
structured and distributed such that there is a knowledge 
database for each WM module in each node at every level 
of the system hierarchy. The communication system provides 
data transmission and switching services that make the WM 
modules and the knowledge database behave like a global 
virtual common memory in response to queries and updates 
from the BG, SP, and VJ modules. The communication 
interfaces with the WM modules in each node provides a 
window into the knowledge database for each of the computing 
modules in that node. 

XIII. KNOWLEDGE REPRESENTATION 

The world model knowledge database contains both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori 
information that is available to the intelligent system before 
action begins, and a posteriori knowledge that is gained 
from sensing the environment as action proceeds. It contains 
information about space, time, entities, events, and states of 
the external world. The knowledge database also includes 
information about the intelligent system itself, such as values 
assigned to motives, drives, and priorities; values assigned to 
goals, objects, and events; parameters embedded in kinematic 
and dynamic models of the limbs and body; states of internal 
pressure, temperature, clocks, and blood chemistry or fuel 
level; plus the states of all of the processes currently executing 
in each of the BG, SP, WM, and VJ modules. 

Knowledge about space is represented in maps. Knowledge 
about entities, events, and states is represented in lists, or 
frames. Knowledge about the laws of physics, chemistry, op- 
tics, and the rules of logic and mathematics are represented as 
parameters in the WM functions that generate predictions and 
simulate results of hypothetical actions. Physical knowledge 
may be represented as algorithms, formulae, or as IFRHEN 

rules of what happens under certain situations, such as when 
things are pushed, thrown, dropped, handled, or burned. 

The correctness and consistency of world model knowledge 
is verified by sensory processing mechanisms that measure 
differences between world model predictions and sensory 
observations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A. Geometrical Space 

From psychophysical evidence Gibson [30] concludes that 
the perception of geometrical space is primarily in terms of 
“medium, substance, and the surfaces that separate them”. 
Medium is the air, water, fog, smoke, or falling snow through 
which the world is viewed. Substance is the material, such as 
earth, rock, wood, metal, flesh, grass, clouds, or water, that 
comprise the interior of objects. The surfaces that separate the 
viewing medium from the viewed objects is what are observed 
by the sensory system. The sensory input thus describes the 
external physical world primarily in terms of surfaces. 

Surfaces are thus selected as the fundamental element for 
representing space in the proposed WM knowledge database. 
Volumes are treated as regions between surfaces. Objects 
are defined as circumscribed, often closed, surfaces. Lines, 
points and vertices lie on, and may define surfaces. Spatial 
relationships on surfaces are represented by maps. 

B. Maps 

Definition: A map is a two dimensional database that 
defines a mesh or grid on a surface. 

The surface represented by a map may be, but need not be, 
flat. For example, a map may be defined on a surface that 
is draped over, or even wrapped around, a three-dimensional 
(3-D) volume. 

Theorem: Maps can be used to describe the distribution of 
entities in space. 

It is always possible and often useful to project the physical 
3-D world onto a 2-D surface defined by a map. For example, 
most commonly used maps are produced by projecting the 
world onto the 2-D surface of a flat sheet of paper, or the 
surface of a globe. One great advantage of such a projection 
is that it reduces the dimensionality of the world from three 
to two. This produces an enormous saving in the amount 
of memory required for a database representing space. The 
saving may be as much as three orders of magnitude, or more, 
depending on the resolution along the projected dimension. 

I )  Map Overlays: Most of the useful information lost in the 
projection from 3-D space to a 2-D surface can be recovered 
through the use of map overlays. 

Definition: A map overlay is an assignment of values, or 
parameters, to points on the map. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A map overlay can represent spatial relationships between 
3-D objects. For example, an object overlay may indicate the 
presence of buildings, roads, bridges, and landmarks at various 
places on the map. Objects that appear smaller than a pixel on 
a map can be represented as icons. Larger objects may be 
represented by labeled regions that are projections of the 3-D 
objects on the 2-D map. Objects appearing on the map overlay 
may be cross referenced to an object frame database elsewhere 
in the world model. Information about the 3-D geometry of 
objects on the map may be represented in the object frame 
database. 

Map overlays can also indicate attributes associated with 
points (or pixels) on the map. One of the most common map 
overlays defines terrain elevation. A value of terrain elevation 



ALBUS: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOUTLINE FOR A THEORY OF INTELLIGENCE 487 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 2 )  overlaid at each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x .1~ )  point on a world map produces a 
topographic map. 

A map can have any number of overlays. Map overlays 
may indicate brightness, color, temperature, even “behind” or 
“in-front”. A brightness or color overlay may correspond to 
a visual image. For example, when aerial photos or satellite 
images are registered with map coordinates, they become 
brightness or color map overlays. 

Map overlays may indicate terrain type, or region names, 
or can indicate values, such as cost or risk, associated with 
regions. Map overlays can indicate which points on the ground 
are visible from a given location in space. Overlays may 
also indicate contour lines and grid lines such as latitude and 
longitude, or range and bearing. 

Map overlays may be useful for a variety of functions. 
For example, terrain elevation and other characteristics may 
be useful for route planning in tasks of manipulation and 
locomotion. Object overlays can be useful for analyzing scenes 
and recognizing objects and places. 

A map typically represents the configuration of the world 
at a single instant in time, i.e., a snapshot. Motion can be 
represented by overlays of state variables such as velocity 
or image flow vectors, or traces (i.e., trajectories) of entity 
locations. Time may be represented explicitly by a numerical 
parameter associated with each trajectory point, or implicitly 
by causing trajectory points to fade, or be deleted, as time 
passes. 

Definition: A map pixel frame is a frame that contains 
attributes and attribute-values attached to that map pixel. 

Theorem: A set of map overlays are equivalent to a set of 
map pixel frames. 

Proof: If each map overlay defines a parameter value for 
every map pixel, then the set of all overlay parameter values 
for each map pixel defines a frame for that pixel. Conversely, 
the frame for each pixel describes the region covered by that 
pixel. The set of all pixel frames thus defines a set of map 
overlays, one overlay for each attribute in the pixel frames. 

Q.E.D. 
For example, a pixel frame may describe the color, range, 

and orientation of the surface covered by the pixel. It may 
describe the name of (or pointer to) the entities to which the 
surface covered by the pixel belongs. It may also contain the 
location, or address, of the region covered by the pixel in 
other coordinate systems. 

In the case of a video image, a map pixel frame might have 
the following form: 

PIXEL-NAME (.4Z. E L )  location index on map 

(Sensor egosphere coordinates) 

brightness I 

color I,. It,. I ,  

spatial brightness gradient dIJd.4Z. d I / d E L  (sensor 

egosphere coordinates) 

temporal brightness gradient d I / d t  

image flow direction B (velocity egosphere coordinates) 

image flow rate d.A/dt (velocity egosphere 

coordinates) 

R to surface covered (from 

egosphere origin) 

a:,  el of egosphere ray to surface 

covered 

r .  y. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 of map point on surface 

covered 

I .  y. z of map point on surface 

covered 

pointer to frame of line, edge, or 

vertex covered by pixel 

pointer to frame of surface 

covered by pixel 

range 

head egosphere location 

world map location 

world map location 

linear feature pointer 

surface feature pointer 

object pointer 

object map location 

pointer to frame of object covered 

by pixel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S. 1.. Z of surface covered in 

object coordinates group pointer 

pointer to group covered by pixel 

Indirect addressing through pixel frame pointers can allow 
value state-variables assigned to objects or situations to be 
inherited by map pixels. For example, value state-variables 
such as attraction-repulsion, love-hate, fear-comfort assigned 
to objects and map regions can also be assigned through 
inheritance to individual map and egosphere pixels. 

There is some experimental evidence to suggest that map 
pixel frames exist in the mammalian visual system. For ex- 
ample, neuron firing rates in visual cortex have been observed 
to represent the values of attributes such as edge orientation, 
edge and vertex type, and motion parameters such as velocity, 
rotation, and flow field divergence. These firing rates are 
observed to be registered with retinotopic brightness images 

[541. 

C. Map Resolution 

The resolution required for a world model map depends on 
how the map is generated and how it is used. All overlays 
need not have the same resolution. For predicting sensory 
input, world model maps should have resolution comparable 
to the resolution of the sensory system. For vision, map 
resolution may be on the order of 64K to a million pixels. This 
corresponds to image arrays of 256 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 256 pixels to 1000 x 1000 
pixels respectively. For other sensory modalities, resolution 
can be considerably less. 

For planning, different levels of the control hierarchy require 
maps of different scale. At higher levels, plans cover long 
distances and times, and require maps of large area, but low 
resolution. At lower levels, plans cover short distances and 
times, and maps need to cover small areas with high resolution. 

World model maps generated solely from symbolic data in 
long term memory may have resolution on the order of a few 
thousand pixels or less. For example, few humans can recall 
from memory the relative spatial distribution of as many as 
a hundred objects, even in familiar locations such as their 
own homes. The long term spatial memory of an intelligent 
creature typically consists of a finite number of relatively small 
regions that may be widely separated in space; for example, 

[I81 
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one’s own home, the office, or school, the homes of friends 
and relatives, etc. These known regions are typically connected 
by linear pathways that contain at most a few hundred known 
waypoints and branchpoints. The remainder of the world is 
known little, or not at all. Unknown regions, which make up 
the vast majority of the real world, occupy little or no space 
in the world model. 

The efficient storage of maps with extremely nonuniform 
resolution can be accomplished in a computer database by 
quadtrees [32], hash coding, or other sparse memory repre- 
sentations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[33]. Pathways between known areas can be eco- 
nomically represented by graph structures either in neuronal 
or electronic memories. Neural net input-space representa- 
tions and transformations such as are embodied in a CMAC 
[34], [35] give insight as to how nonuniformly dense spatial 
information might be represented in the brain. 

D. Maps and Egospheres 

It is well known that neurons in the brain, particularly in 
the cortex, are organized as 2-D arrays, or maps. It is also 
known that conformal mappings of image arrays exist between 
the retina, the lateral geniculate, the superior colliculus, and 
several cortical visual areas. Similar mappings exist in the 
auditory and tactile sensory systems. For every map, there 
exists a coordinate system, and each map pixel has coordinate 
values. On the sensor egosphere, pixel coordinates are defined 
by the physical position of the pixel in the sensor array. The 
position of each pixel in other map coordinate systems can be 
defined either by neuronal interconnections, or by transform 
parameters contained in each pixel’s frame. 

There are three general types of map coordinate systems 
that are important to an intelligent system: world coordinates, 
object coordinates, and egospheres. 

I )  World Coordinates: World coordinate maps are typically 
flat 2-D arrays that are projections of the surface of the earth 
along the local vertical. World coordinates are often expressed 
in a Cartesian frame, and referenced to a point in the world. 
In most cases, the origin is an arbitrary point on the ground. 
The z axis is defined by the vertical, and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and y axes 
define points on the horizon. For example, y may point North 
and z East. The value of z is often set to zero at sea level. 

World coordinates may also be referenced to a moving point 
in the world. For example, the origin may be the self, or some 
moving object in the world. In this case, stationary pixels on 
the world map must be scrolled as the reference point moves. 

There may be several world maps with different resolutions 
and ranges. These will be discussed near the end of this 
section. 

2) Object Coordinates: Object coordinates are defined with 
respect to features in an object. For example, the origin 
might be defined as the center of gravity, with the coordinate 
axes defined by axes of symmetry, faces, edges, vertices, or 
skeletons [36]. There are a variety of surface representations 
that have been suggested for representing object geometry. 
Among these are generalized cylinders [37], [38], B-splines 
[39], quadtrees [32], and aspect graphs [40]. Object coordinate 
maps are typically 2-D arrays of points painted on the surfaces 

of objects in the form of a grid or mesh. Other boundary 
representation can usually be transformed into this form. 

Object map overlays can indicate surface characteristics 
such as texture, color, hardness, temperature, and type of 
material. Overlays can be provided for edges, boundaries, 
surface normal vectors. vertices, and pointers to object frames 
containing center lines, centroids, moments, and axes of sym- 
metry. 

3) Egospheres: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn egosphere is a two-dimensional (2-D) 
spherical surface that is a map of the world as seen by an 
observer at the center of the sphere. Visible points on regions 
or objects in the world are projected on the egosphere wherever 
the line of sight from a sensor at the center of the egosphere 
to the points in the world intersect the surface of the sphere. 
Egosphere coordinates thus are polar coordinates defined by 
the self at the origin. As the self moves, the projection of the 
world flows across the surface of the egosphere. 

Just as the world map is a flat 2-D (2 .  y) array with multiple 
overlays, so the egosphere is a spherical 2-D (AZ .EL)  
array with multiple overlays. Egosphere overlays can attribute 
brightness, color, range, image flow, texture, and other prop- 
erties to regions and entities on the egosphere. Regions on the 
egosphere can thus be segmented by attributes, and egosphere 
points with the same attribute value may be connected by 
contour lines. Egosphere overlays may also indicate the trace, 
or history, of brightness values or entity positions over some 
time interval. Objects may be represented on the egosphere 
by icons, and each object may have in its database frame a 
trace, or trajectory, of positions on the egosphere over some 
time interval. 

E. Map Transformations 

Theorem: If surfaces in real world space can be covered by 
an array (or map) of points in a coordinate system defined 
in the world, and the surface of a WM egosphere is also 
represented as an array of points, then there exists a function 
G that transforms each point on the real world map into a point 
on the WM egosphere, and a function G’ that transforms each 
point on the WM egosphere for which range is known into a 
point on the real world map. 

Proof: Fig. 11 shows the 3-D relationship between an 
egosphere and world map coordinates. For every point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x. y. z )  
in world coordinates, there is a point (AZ.  EL. R)  in ego 
centered coordinates that can be computed by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 x 3 matrix 
function G 

(AZ.  EL.  = G(z. y, z)’ 

There, of course, may be more than one point in the world map 
that gives the same (AZ. E L )  values on the egosphere. Only 
the (AZ.EL)  with the smallest value of R will be visible 
to an observer at the center of the egosphere. The deletion 
of egosphere pixels with R larger than the smallest for each 
value of (AZ.  E L )  corresponds to the hidden surface removal 
problem common ih computer graphics. 

For each egosphere pixel where R is known, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x. y. z )  can 
be computed from ( A Z ,  EL.  R)  by the function G‘ 

( J ,  y. z ) ~  = G’(A2. EL.  R)T 
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Fig. 11. Geometric relationship between world map and egosphere 
coordinates. 

Any point in the world topological map can thus be projected 
onto the egosphere (and vice versa when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR is known). 
Projections from the egosphere to the world map will leave 
blank those map pixels that cannot be observed from the center 
of the egosphere. Q.E.D. 

There are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 x 2 transformations of the form 

( A Z .  EL)T = F ( a z .  el)' 

and 

(az .  el )T = F'(AZ.  EL)T 

that can relate any map point (AZ.  E L )  on one egosphere to 
a map point (az,el) on another egosphere of the same origin. 
The radius R to any egosphere pixel is unchanged by the 
F and F' transformations between egosphere representations 
with the same origin. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As ego motion occurs (i.e., as the self object moves through 
the world), the egosphere moves relative to world coordinates, 
and points on the egocentric maps flow across their surfaces. 
Ego motion may involve translation, or rotation, or both; in 
a stationary world, or a world containing moving objects. If 
egomotion is known, range to all stationary points in the world 
can be computed from observed image flow; and once range to 
any stationary point in the world is known, its pixel motion on 
the egosphere can be predicted from knowledge of egomotion. 
For moving points, prediction of pixel motion on the egosphere 
requires additional knowledge of object motion. 

F. Egosphere Coordinate Systems 

The proposed world model contains four different types of 
egosphere coordinates: 

I )  Sensor Egosphere Coordinates: The sensor egosphere is 
defined by the sensor position and orientation, and moves as 
the sensor moves. For vision, the sensor egosphere is the 
coordinate system of the retina. The sensor egosphere has 
coordinates of azimuth ( A Z )  and elevation ( E L )  fixed in the 
sensor system (such as an eye or a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATV camera), as shown 
in Fig. 12. For a narrow field of view, rows and columns 
( . c z )  in a flat camera image array correspond quite closely 
to azimuth and elevation (AZ .EL)  on the sensor egosphere. 
However, for a wide field of view, the egosphere and flat 
image array representations have widely different geometries. 
The flat image ( r .  z )  representation becomes highly elongated 
for a wide field of view, going to infinity at plus and minus 
90 degrees. The egosphere representation, in contrast, is well 

Sensor 
Field of 

View 

Fig. 12. Sensor egosphere coordinate% Azimuth (AZ) is measured clockwise 
from the sensor y-axis in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.I -y plane. Elevation (EL) is measured up and 
down (plus and minus) from the .r-y plane. 

behaved over the entire sphere (except for singularities at the 
egosphere poles). 

The sensor egosphere representation is useful for the anal- 
ysis of wide angle vision such as occurs in the eyes of most 
biological creatures. For example, most insects and fish, many 
birds, and most prey animals such as rabbits have eyes with 
fields of view up to 180 degrees. Such eyes are often positioned 
on opposite sides of the head so as to provide almost 360 
degree visual coverage. The sensor egosphere representation 
provides a tractable coordinate frame in which this type of 
vision can be analyzed. 

2) Head Egosphere Coordinates: The head egosphere has 
(AZ ,EL)  coordinates measured in a reference frame fixed 
in the head (or sensor platform). The head egosphere repre- 
sentation is well suited for fusing sensory data from multiple 
sensors, each of which has its own coordinate system. Vision 
data from multiple eyes or cameras can be overlaid and 
registered in order to compute range from stereo. Directional 
and range data from acoustic and sonar sensors can be overlaid 
on vision data. Data derived from different sensors, or from 
multiple readings of the same sensor, can be overlaid on the 
head egosphere to build up a single image of multidimensional 
reality. 

Pixel data in sensor egosphere coordinates can be trans- 
formed into the head egosphere by knowledge of the position 
and orientation of the sensor relative to the head. For example, 
the position of each eye in the head is fixed and the orientation 
of each eye relative to the head is known from stretch sensors 
in the ocular muscles. The position of tactile sensors relative 
to the head is known from proprioceptive sensors in the neck, 
torso, and limbs. 

Hypothesis: Neuronal maps on the tectum (or superior 
colliculus), and on parts of the extrastriate visual cortex, are 
represented in a head egosphere coordinate system. 

Receptive fields from the two retinas are well known to be 
overlaid in registration on the tectum, and superior colliculus. 
Experimental evidence indicates that registration and fusion of 
data from visual and auditory sensors takes place in the tectum 
of the barn owl [41] and the superior colliculus of the monkey 
[42] in head egosphere coordinates. Motor output for eye 
motion from the superior colliculus apparently is transformed 
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Fig. 13. The velocity egosphere. On the velocity egosphere, the y-axis is 
defined by the velocity factor. the .r-axis points to the horizon on the right. A 
is the angle between the velocity vector and a pixel on the egosphere, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB 
is the angles between the z-axis and the plane defined by the velocity vector 
and the pixel vector. 

back into retinal egosphere coordinates. There is also evidence 
that head egosphere coordinates are used in the visual areas 
of the parietal cortex [43], (541. 

3) Velocity Egosphere: The velocity egosphere is defined 
by the velocity vector and the horizon. The velocity vector 
defines the pole (y-axis) of the velocity egosphere, and the 
x-axis points to the right horizon as shown in Fig. 13. The 
egosphere coordinates ( A . B )  are defined such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is the 
angle between the pole and a pixel, and B is the angle between 
the yoz plane and the plane of the great circle flow line 
containing the pixel. 

For egocenter translation without rotation through a station- 
ary world, image flow occurs entirely along great circle arcs 
defined by B =constant. The positive pole of the velocity 
egosphere thus corresponds to the focus-of-expansion. The 
negative pole corresponds to the focus-of-contraction. The 
velocity egosphere is ideally suited for computing range from 
image flow, as discussed in Section XIV. 

4)  Inertial Egosphere: The inertial egosphere has coordi- 
nates of azimuth measured from a fixed point (such as North) 
on the horizon, and elevation measured from the horizon. 

The inertial egosphere does not rotate as a result of sensor or 
body rotation. On the inertial egosphere, the world is perceived 
as stationary despite image motion due to rotation of the 
sensors and the head. 

Fig. 14 illustrates the relationships between the four ego- 
sphere coordinate systems. Pixel data in eye (or camera) 
egosphere coordinates can be transformed into head (or sensor 
platform) egosphere coordinates by knowledge of the position 
and orientation of the sensor relative to the head. For example, 
the position of each eye in the head is fixed and the orientation 
of each eye relative to the head is known from stretch 
receptors in the ocular muscles (or pan and tilt encoders on a 
camera platform). Pixel data in head egosphere coordinates 
can be transformed into inertial egosphere coordinates by 
knowing the orientation of the head in inertial space. This 
information can be obtained from the vestibular (or inertial) 
system that measures the direction of gravity relative to the 
head and integrates rotary accelerations to obtain head position 
in inertial space. The inertial egosphere can be transformed 

Point in 
world 

A 

Pxxd azimuth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon inaual egosphere 

Rrel azimuth on sensor egosphere 

R i e l  azimuth on head cgosphere 

Rxel distance from velocity vector 

Fig. 14. A 2-D projection of four egosphere representations illustrating 
angular relationships between egospheres. Pixels are represented on each 
egosphere such that images remains in registration. Pixel attributes detected 
on one egosphere may thus be inherited on others. Pixel resolution is not 
typically uniform on a single egosphere, nor is i t  necessarily the same for 
different egospheres, or for different attributes on the same egosphere. 

into world coordinates by knowing the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, y, z position of the 
center of the egosphere. This is obtained from knowledge 
about where the self is located in the world. Pixels on any 
egosphere can be transformed into the velocity egosphere by 
knowledge of the direction of the current velocity vector on 
that egosphere. This can be obtained from a number of sources 
including the locomotion and vestibular systems. 

All of the previous egosphere transformations can be in- 
verted, so that conversions can be made in either direction. 
Each transformation consists of a relatively simple vector 
function that can be computed for each pixel in parallel. Thus 
the overlay of sensory input with world model data can be 
accomplished in a few milliseconds by the type of computing 
architectures known to exist in the brain. In artificial systems, 
full image egosphere transformations can be accomplished 
within a television frame interval by state-of-the-art serial 
computing hardware. Image egosphere transformations can be 
accomplished in a millisecond or less by parallel hardware. 

Hypothesis: The WM world maps, object maps, and ego- 
spheres are the brains data fusion mechanisms. They provide 
coordinate systems in which to integrate information from 
arrays of sensors (i.e., rods and cones in the eyes, tactile 
sensors in the skin. directional hearing, etc.) in space and 
time. They allow information from different sensory modalities 
(i.e., vision, hearing, touch, balance, and proprioception) to be 
combined into a single consistent model of the world. 

Hypothesis: The WM functions that transform data between 
the world map and the various egosphere representations are 
the brain's geometry engine. They transform world model 
predictions into the proper coordinate systems for real-time 
comparison and correlation with sensory observations. This 
provides the basis for recognition and perception. 
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Transformations to and from the sensor egosphere, the 
inertial egosphere, the velocity egosphere, and the world 
map allow the intelligent system to sense the world from 
one perspective and interpret it in another. They allow the 
intelligent system to compute how entities in the world would 
look from another viewpoint. They provide the ability to 
overlay sensory input with world model predictions, and to 
compute the geometrical and dynamical functions necessary to 
navigate, focus attention, and direct action relative to entities 
and regions of the world. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G. Entities 

Definition: An entity is an element from the set {point, 
line, surface, object, group}. 

The world model contains information about entities stored 
in lists, or frames. The knowledge database contains a list of all 
the entities that the intelligent system knows about. A subset 
of this list is the set of current-entities known to be present in 
any given situation. A subset of the list of current-entities is 
the set of entities-of-attention. 

There are two types of entities: generic and specific. A 

generic entity is an example of a class of entities. A generic 
entity frame contains the attributes of its class. A specific 
entity is a particular instance of an entity. A specific entity 
frame inherits the attributes of the class to which it belongs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An example of an entity frame might be: 

ENTITY NAME 

kind 

type 

position 

dynamics 

trajectory 

geometry 

links 

properties 

capabilities 

value state-variables 

name of entity 

class or species of entity 

generic or specific point, line, 

surface, object, or group 

world map coordinatcs 

(uncertainty); egosphere 

coordinates (uncertainty) 

velocity (uncertainty);acceleration 

(uncertainty) 

sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof positions 

center of gravity (uncertainty); 

axis of symmetry 

(uncertainty);size 

(uncertainty);shape boundaries 

(uncertainty) 

subentities; parent entity 

physical: mass; color; substance; 

behavioral: social (of animate 

objects) 

speed, range 

attract-repulse; confidence-fear; 

love-hate 

For example, upon observing a specific cow named Bertha, 
an entity frame in the brain of a visitor to a farm might have 
the following values: 

ENTITY NAME Bertha 

kind co w 

tY Pe 

position 

specific object zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
, I .  y. z (in pasture map coordinates) 

.AZ. EL.  R (in egosphere image of 

dynamics 

trajectory 

geometry 

links 

observer) 

velocity, acceleration (in egosphere or 

pasture map coordinates) 

sequence of map positions while grazing 

axis of symmetry (rightileft) 

size ( G  x 3 x 10 ft) 

shape (quadruped) 

subentities - surfaces (torso, neck, head, 

legs, tail, etc.) 

parent entity - group (herd) 

physica1:mass (1050 Ibs); color (black and 

white); 

substance (flesh, bone, skin, hair); 

behavioral (standing, placid, timid, etc.) 

properties 

capabilities speed, range 

value state-variables attract-repulse = 3 (visitor finds cows 

moderatcly attractive) 

confidence-fear= -2 (visitor slightly afraid 

of cows) 

love-hate = 1 (no strong feelings) 

H. Map-Entity Relationship 

Map and entity representations are cross referenced and 
tightly coupled by real-time computing hardware. Each pixel 
on the map has in its frame a pointer to the list of entities 
covered by that pixel. For example, each pixel may cover a 
point entity indicating brightness, color, spatial and temporal 
gradients of brightness and color, image flow, and range for 
each point. Each pixel may also cover a linear entity indicating 
a brightness or depth edge or vertex; a surface entity indicating 
area, slope, and texture; an object entity indicating the name 
and attributes of the object covered; a group entity indicating 
the name and attributes of the group covered, etc. 

Likewise, each entity in the attention list may have in 
its frame a set of geometrical parameters that enables the 
world model geometry engine to compute the set of egosphere 
or world map pixels covered by each entity, so that entity 
parameters associated with each pixel covered can be overlaid 
on the world and egosphere maps. 

Cross referencing between pixel maps and entity frames 
allows the results of each level of processing to add map 
overlays to the egosphere and world map representations. The 
entity database can be updated from knowledge of image 
parameters at points on the egosphere, and the map database 
can be predicted from knowledge of entity parameters in the 
world model. At each level, local entity and map parameters 
can be computed in parallel by the type of neurological 
computing structures known to exist in the brain. 

Many of the attributes in an entity frame are time de- 
pendent state-variables. Each time dependent state-variable 
may possess a short term memory queue wherein is stored 
a state trajectory, or trace, that describes its temporal history. 
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At each hierarchical level, temporal traces stretch backward 
about as far as the planning horizon at that level stretches 
into the future. At each hierarchical level, the historical trace 
of an entity state-variable may be captured by summarizing 
data values at several points in time throughout the historical 
interval. Time dependent entity state-variable histories may 
also be captured by running averages and moments, Fourier 
transform coefficients, Kalman filter parameters, or other anal- 
ogous methods. 

Each state-variable in an entity frame may have value 
state-variable parameters that indicate levels of believability, 
confidence, support, or plausibility, and measures of dimen- 
sional uncertainty. These are computed by value judgment 
functions that reside in the VJ modules. These are described 
in Section XV. 

Value state-variable parameters may be overlaid on the 
map and egosphere regions where the entities to which they 
are assigned appear. This facilitates planning. For example, 
approach-avoidance behavior can be planned on an egosphere 
map overlay defined by the summation of attractor and re- 
pulsor value state-variables assigned to objects or regions that 
appear on the egosphere. Navigation planning can be done on 
a map overlay whereon risk and benefit values are assigned to 
regions on the egosphere or world map. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I. Entity Database Hierarchy 

The entity database is hierarchically structured. Each entity 
consists of a set of subentities, and is part of a parent entity. 
For example, an object may consist of a set of surfaces, and 
be part of a group. 

The definition of an object is quite arbitrary, however, at 
least from the point of view of the world model. For example, 
is a nose an object? If so, what is a face? Is a head an object? 
Or is it part of a group of objects comprising a body? If a 
body can be a group, what is a group of bodies? 

Only in the context of a task, does the definition of an 
object become clear. For example, in a task frame, an object 
may be defined either as the agent, or as acted upon by the 
agent executing the task. Thus, in the context of a specific task, 
the nose (or face, or head) may become an object because it 
appears in a task frame as the agent or object of a task. 

Perception in an intelligent system is task (or goal) driven, 
and the structure of the world model entity database is defined 
by, and may be reconfigured by, the nature of goals and tasks. 
It is therefore not necessarily the role of the world model 
to define the boundaries of entities, but rather to represent 
the boundaries defined by the task frame, and to map regions 
and entities circumscribed by those boundaries with sufficient 
resolution to accomplish the task. It is the role of the sensory 
processing system to identify regions and entities in the 
external real world that correspond to those represented in 
the world model, and to discover boundaries that circumscribe 
objects defined by tasks. 

Theorem: The world model is hierarchically structured with 
map (iconic) and entity (symbolic) data structures at each level 
of the hierarchy. 

At level 1, the world model can represent map overlays 

for point entities. In the case of vision, point entities may 
consist of brightness or color intensities, and spatial and 
temporal derivatives of those intensities. Point entity frames 
include brightness spatial and temporal gradients and range 
from stereo for each pixel. Point entity frames also include 
transform parameters to and from head egosphere coordinates. 
These representations are roughly analogous to Marr’s “primal 
sketch” [44], and are compatible with experimentally observed 
data representations in the tectum, superior colliculus, and 
primary visual cortex (V l )  [31]. 

At level 2, the world model can represent map overlays 
for linear entities consisting of clusters, or strings, of point 
entities. In the visual system, linear entities may consist of 
connected edges (brightness, color, or depth), vertices, image 
flow vectors, and trajectories of points in spacehime. Attributes 
such as 3-D position, orientation, velocity, and rotation are 
represented in a frame for each linear entity. Entity frames 
include transform parameters to and from inertial egosphere 
coordinates. These representations are compatible with exper- 
imentally observed data representations in the secondary visual 
cortex (V2) [54]. 

At level 3, the world model can represent map overlays for 
surface entities computed from sets of linear entities clustered 
or swept into bounded surfaces or maps, such as terrain 
maps, B-spline surfaces, or general functions of two variables. 
Surface entities frames contain transform parameters to and 
from object coordinates. In the case of vision, entity attributes 
may describe surface color, texture, surface position and 
orientation, velocity, size, rate of growth in size, shape, and 
surface discontinuities or boundaries. Level 3 is thus roughly 
analogous to Marr’s “2 1/2-D sketch”, and is compatible with 
known representation of data in visual cortical areas V3 and 
v 4 .  

At level 4, the world model can represent map overlays 
for object entities computed from sets of surfaces clustered or 
swept so as to define 3-D volumes, or objects. Object entity 
frames contain transform parameters to and from object coor- 
dinates. Object entity frames may also represent object type, 
position, translation, rotation, geometrical dimensions, surface 
properties, occluding objects, contours, axes of symmetry, 
volumes, etc. These are analogous to Marr’s “3-D model” 
representation, and compatible with data representations in 
occipital-temporal and occipital-parietal visual areas. 

At level 5 ,  the world model can represent map overlays 
for group entities consisting of sets of objects clustered into 
groups or packs. This is hypothesized to correspond to data 
representations in visual association areas of parietal and tem- 
poral cortex. Group entity frames contain transform parameters 
to and from world coordinates. Group entity frames may 
also represent group species, center of mass, density, motion, 
map position, geometrical dimensions, shape, spatial axes of 
symmetry, volumes, etc. 

At level 6, the world model can represent map overlays 
for sets of group entities clustered into groups of groups, or 
group2 entities. At level 7, the world model can represent map 
overlays for sets of group’ entities clustered into group’ (or 
world) entities, and so on. At each higher level, world map 
resolution decreases and range increases by about an order of 
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magnitude per level. 
The highest level entity in the world model is the world 

itself, i.e., the environment as a whole. The environment entity 
frame contains attribute state-variables that describe the state 
of the environment, such as temperature, wind, precipitation, 
illumination, visibility, the state of hostilities or peace, the 
current level of danger or security, the disposition of the gods, 
etc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEvents 

Definition: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn event is a state, condition, or situation that 
exists at a point in time, or occurs over an interval in time. 

Events may be represented in the world model by frames 
with attributes such as the point, or interval, in time and 
space when the event occurred, or is expected to occur. Event 
frames attributes may indicate start and end time, duration, 
type, relationship to other events, etc. 

An example of an event frame is: 

EVENT NAME name of event 

kind class or species 

type 

modality 

time 

generic or specific 

visual, auditory, tactile, etc. 

when event detected 

interval period over which event took place 

position 

links 

value 

map location where event occurred 

subevents; parent event 

good-bad, benefit-cost, etc. 

State-variables in the event frame may have confidence 
levels, degrees of support and plausibility, and measures 
of dimensional uncertainty similar to those in spatial entity 
frames. Confidence state-variables may indicate the degree 
of certainty that an event actually occurred, or was correctly 
recognized. 

The event frame database is hierarchical. At each level of 
the sensory processing hierarchy, the recognition of a pattern, 
or string, of level(i) events makes up a single level(i+l) event. 

Hypothesis: The hierarchical levels of the event frame 
database can be placed in one-to-one correspondence with 
the hierarchical levels of task decomposition and sensory 
processing. 

For example at: Level 1-an event may span a few millisec- 
onds. A typical level(1) acoustic event might be the recognition 
of a tone, hiss, click, or a phase comparison indicating the 
direction of arrival of a sound. A typical visual event might 
be a change in pixel intensity, or a measurement of brightness 
gradient at a pixel. 

Level 2-an event may span a few tenths of a second. A 
typical level(2) acoustic event might be the recognition of a 
phoneme or a chord. A visual event might be a measurement of 
image flow or a trajectory segment of a visual point or feature. 

Level 3-an event may span a few seconds, and consist of 
the recognition of a word, a short phrase, or a visual gesture, 
or motion of a visual surface. 

Level &an event may span a few tens of seconds, and 
consist of the recognition of a message, a melody, or a visual 
observation of object motion, or task activity. 

Level 5-an event may span a few minutes and consist of 
listening to a conversation, a song, or visual observation of 
group activity in an extended social exchange. 

Level &an event may span an hour and include many 
auditory, tactile, and visual observations. 

Level 7-an event may span a day and include a summary 
of sensory ObSeNatiOnS over an entire day’s activities. 

XIV. SENSORY PROCESSING 

Definition: Sensory processing is the mechanism of per- 
ception. 

Theorem: Perception is the establishment and maintenance 
of correspondence between the internal world model and the 
external real world. 

Corollary: The function of sensory processing is to extract 
information about entities, events, states, and relationships in 
the external world, so as keep the world model accurate and 
up to date. 

A. Measurement of Surfaces 

World model maps are updated by sensory measurement 
of points, edges, and surfaces. Such information is usually 
derived from vision or touch sensors, although some intelligent 
systems may derive it from sonar, radar, or laser sensors. 

The most direct method of measuring points, edges, and 
surfaces is through touch. Many creatures, from insects to 
mammals, have antennae or whiskers that are used to measure 
the position of points and orientation of surfaces in the 
environment. Virtually all creatures have tactile sensors in the 
skin, particularly in the digits, lips, and tongue. Proprioceptive 
sensors indicate the position of the feeler or tactile sensor 
relative to the self when contact is made with an external sur- 
face. This, combined with knowledge of the kinematic position 
of the feeler endpoint, provides the information necessary to 
compute the position on the egosphere of each point contacted. 
A series of felt points defines edges and surfaces on the 
egosphere. 

Another primitive measure of surface orientation and depth 
is available from image flow (i.e., motion of an image on the 
retina of the eye). Image flow may be caused either by motion 
of objects in the world, or by motion of the eye through 
the world. The image flow of stationary objects caused by 
translation of the eye is inversely proportional to the distance 
from the eye to the point being observed. Thus, if eye rotation 
is zero, and the translational velocity of the eye is known, the 
focus of expansion is fixed, and image flow lines are defined 
by great circle arcs on the velocity egosphere that emanate 
from the focus of expansion and pass through the pixel in 
question [45]. Under these conditions, range to any stationary 
point in the world can be computed directly from image flow 
by the simple formula 

U sin A 
R = -  

d A / d t  

where R is the range to the point, U is translational velocity 
vector of the eye, A is the angle between the velocity vector 
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and the pixel covering the point. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd A / d t  is the image flow rate 
at the pixel covering the point 

When eye rotation is zero and U is known, the flow rate 
dA/dt can be computed locally for each pixel from temporal 
and spatial derivatives of image brightness along flow lines 
on the velocity egosphere. dA/dt can also be computed from 
temporal crosscorrelation of brightness from adjacent pixels 
along flow lines. 

When the eye fixates on a point, d A / d t  is equal to the 
rotation rate of the eye. Under this condition, the distance to 
the fixation point can be computed from (l), and the distance 
to other points may be computed from image flow relative to 
the fixation point. 

If eye rotation is nonzero but known, the range to any 
stationary point in the world may be computed by a closed 
form formula of the form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs and z are the image coordinates of a pixel, T 
is the translational velocity vector of the camera in camera 
coordinates, W is the rotational velocity vector of the camera 
in camera coordinates, and I is the pixel brightness intensity. 
This type of function can be implemented locally and in 
parallel by a neural net for each image pixel [46]. 

Knowledge of eye velocity, both translational and rotational, 
may be computed by the vestibular system, the locomotion 
system, and/or high levels of the vision system. Knowledge of, 
rotational eye motion may either be used in the computation 
of range by (2), or can be used to transform sensor egosphere 
images into velocity egosphere coordinates where (1) applies. 
This can be accomplished mechanically by the vestibulo- 
ocular reflex, or electronically (or neuronally) by scrolling the 
input image through an angle determined by a function of data 
variables from the vestibular system and the ocular muscle 
stretch receptors. Virtual transformation of image coordinates 
can be accomplished using coordinate transform parameters 
located in each map pixel frame. 

Depth from image flow enables creatures of nature, from fish 
and insects to birds and mammals, to maneuver rapidly through 
natural environments filled with complex obstacles without 
collision. Moving objects can be segmented from stationary by 
their failure to match world model predictions for stationary 
objects. Near objects can be segmented from distant by their 
differential flow rates. 

Distance to surfaces may also be computed from stereo- 
vision. The angular disparity between images in two eyes 
separated by a known distance can be used to compute range. 
Depth from stereo is more complex than depth from image 
flow in that it requires identification of corresponding points 
in images from different eyes. Hence it cannot be computed 
locally. However, stereo is simpler than image flow in that it 
does not require eye translation and is not confounded by eye 
rotation or by moving objects in the world. The computation 
of distance from a combination of both motion and stereo is 
more robust, and hence psychophysically more vivid to the 
observer, than from either motion or stereo alone. 

Distance to surfaces may also be computed from sonar 
or radar by measuring the time delay between emitting ra- 
diation and receiving an echo. Difficulties arise from poor 
angular resolution and from a variety of sensitivity, scattering, 
and multipath problems. Creatures such as bats and marine 
mammals use multispectral signals such as chirps and clicks 
to minimize confusion from these effects. Phased arrays and 
synthetic apertures may also be used to improve the resolution 
of radar or sonar systems. 

All of the previous methods for perceiving surfaces are 
primitive in the sense that they compute depth directly from 
sensory input without recognizing entities or understanding 
anything about the scene. Depth measurements from primitive 
processes can immediately generate maps that can be used di- 
rectly by the lower levels of the behavior generation hierarchy 
to avoid obstacles and approach surfaces. 

Surface attributes such as position and orientation may also 
be computed from shading, shadows, and texture gradients. 
These methods typically depend on higher levels of visual 
perception such as geometric reasoning, recognition of objects, 
detection of events and states, and the understanding of scenes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Recognition and Detection 

Definition: Recognition is the establishment of a one-to-one 
match, or correspondence, between a real world entity and a 
world model entity. 

The process of recognition may proceed top-down, or 
bottom-up, or both simultaneously. For each entity in the world 
model, there exists a frame filled with information that can be 
used to predict attributes of corresponding entities observed 
in the world. The top-down process of recognition begins 
by hypothesizing a world model entity and comparing its 
predicted attributes with those of the observed entity. When 
the similarities and differences between predictions from the 
world model and observations from sensory processing are 
integrated over a space-time window that covers an entity, a 
matching, or crosscorrelation value is computed between the 
entity and the model. If the correlation value rises above a 
selected threshold, the entity is said to be recognized. If not, 
the hypothesized entity is rejected and another tried. 

The bottom-up process of recognition consists of applying 
filters and masks to incoming sensory data, and computing 
image properties and attributes. These may then be stored 
in the world model, or compared with the properties and 
attributes of entities already in the world model. Both top- 
down and bottom-up processes proceed until a match is 
found, or the list of world model entities is exhausted. Many 
perceptual matching processes may operate in parallel at 
multiple hierarchical levels simultaneously. 

If a SP module recognizes a specific entity, the WM at that 
level updates the attributes in the frame of that specific WM 
entity with information from the sensory system. 

If the SP module fails to recognize a specific entity, but 
instead achieves a match between the sensory input and a 
generic world model entity, a new specific WM entity will be 
created with a frame that initially inherits the features of the 
generic entity. Slots in the specific entity frame can then be 
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updated with information from the sensory input. 
If the SP module fails to recognize either a specific or a 

generic entity, the WM may create an “unidentified” entity 
with an empty frame. This may then be filled with information 
gathered from the sensory input. 

When an unidentified entity occurs in the world model, 
the behavior generation system may (depending on other 
priorities) select a new goal to <identify the unidentified 
entity>. This may initiate an exploration task that positions 
and focuses the sensor systems on the unidentified entity, and 
possibly even probes and manipulates it, until a world model 
frame is constructed that adequately describes the entity. The 
sophistication and complexity of the exploration task depends 
on task knowledge about exploring things. Such knowledge 
may be very advanced and include sophisticated tools and 
procedures, or very primitive. Entities may, of course, simply 
remain labeled as “unidentified,” or unexplained. 

Event detection is analogous to entity recognition. Observed 
states of the real world are compared with states predicted by 
the world model. Similarities and differences are integrated 
over an event space-time window, and a matching, or cross- 
correlation value is computed between the observed event and 
the model event. When the crosscorrelation value rises above 
a given threshold, the event is detected. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. The Context of Perception 

If, as suggested in Fig. 5, there exists in the world model 
at every hierarchical level a short term memory in which is 
stored a temporal history consisting of a series of past values 
of time dependent entity and event attributes and states, it can 
be assumed that at any point in time, an intelligent system 
has a record in its short term memory of how it reached its 
current state. Figs. 5 and 6 also imply that, for every planner 
in each behavior generating BG module at each level, there 
exists a plan, and that each executor is currently executing the 
first step in its respective plan. Finally, it can be assumed that 
the knowledge in all these plans and temporal histories, and 
all the task, entity, and event frames referenced by them, is 
available in the world model. 

Thus it can be assumed that an intelligent system almost 
always knows where it is on a world map, knows how it got 
there, where it is going, what it is doing, and has a current list 
of entities of attention, each of which has a frame of attributes 
(or state variables) that describe the recent past, and provide 
a basis for predicting future states. This includes a prediction 
of what objects will be visible, where and how object surfaces 
will appear, and which surface boundaries, vertices, and points 
will be observed in the image produced by the sensor system. 
It  also means that the position and motion of the eyes, ears, 
and tactile sensors relative to surfaces and objects in the world 
are known, and this knowledge is available to be used by the 
sensory processing system for constructing maps and overlays, 
recognizing entities, and detecting events. 

Were the aforementioned not the case, the intelligent system 
would exist in a situation analogous to a person who suddenly 
awakens at an unknown point in space and time. In such cases, 
it typically is necessary even for humans to perform a series zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Hypothesis verification zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
level 

Detection 
Threshold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t 

Time & 1 &+? 
Comparison coo 

Fig. 15. Each sensory processing SP module consists of the following. 1)  
A set of comparators that compare sensory observations with world model 
predictions, 2) a set of temporal integrators that integrate similarities and 
differences, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 )  a set of spatial integrators that fuse information from different 
sensory data streams, and 4) a set of threshold detectors that recognize entities 
and detect events. 

of tasks designed to “regain their bearings”, i.e., to bring their 
world model into correspondence with the state of the external 
world, and to initialize plans, entity frames, and system state 
variables. 

It is, of course, possible for an intelligent creature to 
function in a totally unknown environment, but not well, 
and not for long. Not well, because every intelligent creature 
makes much good use of the historical information that 
forms the context of its current task. Without information 
about where it is, and what is going on, even the most 
intelligent creature is severely handicapped. Not for long, 
because the sensory processing system continuously updates 
the world model with new information about the current 
situation and its recent historical development, so that, within 
a few seconds, a functionally adequate map and a usable set 
of entity state variables can usually be acquired from the 
immediately surrounding environment. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASensory Processing SP Modules 

At each level of the proposed architecture, there are a 
number of computational n.odes. Each of these contains an 
SP module, and each SP module consists of four sublevels, 
as shown in Fig. 15. 

Sublevel IXomparison: Each comparison submodule 
matches an observed sensory variable with a world model 
prediction of that variable. This comparison typically involves 
an arithmetic operation, such as multiplication or subtraction, 
which yields a measure of similarity and difference between 
an observed variable and a predicted variable. Similarities 
indicate the degree to which the WM predictions are correct, 
and hence are a measure of the correspondence between 
the world model and reality. Differences indicate a lack of 
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correspondence between world model predictions and sensory 
observations. Differences imply that either the sensor data 
or world model is incorrect. Difference images from the 
comparator go three places: 

Recognized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 tity hypothesis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:I,,. 
Threshold 

Level i+l 
Entity confirmation 

Confidence level F~~~~ 

Attribute 
Measured attribute values 

Spatial /Temporal 
Integration, Correlation They are returned directly to the WM for real-time local 

pixel attribute updates. This produces a tight feedback 
loop whereby the world model predicted image becomes 
an array of Kalman filter state-estimators. Difference 
images are thus error signals by which each pixel of the 
predicted image can be trained to correspond to current 

They are also transmitted upward to the integration 
sublevels where they are integrated over time and space 
in order to recognize and detect global entity attributes. 
This integration constitutes a summation, or chunking, of 

tities are “chunked” into higher order entities, i.e., points 

World 
sensory input. Scene 

sensory data into entities. At each level, lower order en- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ; ~ e f i m ~ s  c(t+l) = ?(t) + A 21) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB u(t) + K (x(t) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$1)) 

are chunked into lines, lines into surfaces, surfaces into 
objects, objects into groups, etc. 
They are transmitted to the VJ module at the Same level 
where statistical parameters are computed in order to 
assign confidence and believability factors to pixel entity 
attribute estimates. 

Fig. 16. Interaction between world model and sensory processing. Differ- 
ence images are generator by comparing predicted images wtth observed 
image$ Feedback of differences produces a Kalman best estimate for each 
data variable in the world model. Spatial and temporal tntegration produce 
crosscorrelation functions between the estimated attributes in the world model 
and the real-world attributes measured in the observed image When the 
correlation exceeds threshold, entity recognition occurs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Sublevel 2-Temporal integration: Temporal integration 
submodules integrate similarities and differences between 
predictions and observations over intervals of time. Temporal 
integration submodules operating just on sensory data can 
produce a summary, such as a total, or average, of sensory 
information over a given time window. Temporal integrator 
submodules operating on the similarity and difference values 
computed by comparison submodules may produce temporal 
crosscorrelation and covariance functions between the model 
and the observed data. These correlation and covariance 
functions are of how well the dynamic properties 

The boundaries of the temporal integration window may be 

form behavior generation parameters such as sensor fixation 
periods. 

Sublevel 3 S p a t i a l  integration: Spatial integrator submod- 
ules integrate similarities and differences between predictions 
and observations over regions of space. This produces spatial 
crosscorrelation or convolution functions between the model 

information from multiple sources at a single point in time. 
It determines whether the geometric properties of a world 
model entity match those of a real world entity. For example, 
the product of an edge operator and an input image may be 
integrated over the area of the operator to obtain the correlation 
between the image and the edge operator at a point. The 
limits of the spatial integration window may be determined 
by world model predictions of entity size. In some cases, the 
order of temporal and spatial integration may be reversed, or 
interleaved. 

spatiotemporal correlation function exceeds some threshold, 
object recognition (or event detection) occurs. For example, 

if the spatiotemporal summation over the area of an edge 
operator exceeds threshold, an edge is said to be detected at 
the center of the area. 

Fig. 16 illustrates the nature of the SP-WM interactions 
between an intelligent vision system and the world model at 
one level. On the left of Fig. 16, the world of reality is viewed 
through the window Of an egosphere such as exists in the 
primary visual cortex. On the right is a world model consisting 
of  1) a symbolic entity frame in which entity attributes are 

real-time with the observed sensory image. In the center of Fig. 

from (Or Otherwise compared with) the Observed image. 
The level(i) predicted image is initialized by the equivalent 

of a graphics engine operating on symbolic data from frames 
of entities hypothesized at level(i + 1). The predicted image is 
updated by differences between itself and the observed sensory 
input. By this process, the predicted image becomes the world 

image, and a high speed loop is closed between the WM and 
sp  ~ o d u l e s  at level(i). 

When recognition occurs in level (z), the world model 
level(z + 1) hypothesis is confirmed and both level(i) and 
level(i + 1) symbolic parameters that produced the match 
are updated in the symbolic database. This closes a slower, 
more global, loop between WM and SP modules through the 
symbolic entity frames of the world model. Many examples 
of this type of looping interaction can be found in the model 
matching and model-based recognition literature [47]. Similar 

Sublevel 4-RecognitionlDetection threshold: When the closed loop filtering concepts have been used for years for 
signal detection, and for dynamic systems modeling in aircraft 
flight control systems. Recently they have been applied to 

of the world model entity match those of the real world entity. stored, and 2, an iconic predicted image that is registered in 

derived from world model prediction of event durations, or l6, is a comparator where the expected image is subtracted 

and the observed data. Spatial integration summarizes sensory model’s “best estimate prediction” of the incoming sensory 
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high speed visually guided driving of an autonomous ground 
vehicle [48]. 

The behavioral performance of intelligent biological crea- 
tures suggests that mechanisms similar to those shown in 
Figs. 15 and 16 exist in the brain. In biological or neural 
network implementations, SP modules may contain thousands, 
even millions, of comparison submodules, temporal and spatial 
integrators, and threshold submodules. The neuroanatomy of 
the mammalian visual system suggests how maps with many 
different overlays, as well as lists of symbolic attributes, could 
be processed in parallel in real-time. In such structures it is 
possible for multiple world model hypotheses to be compared 
with sensory observations at multiple hierarchical levels, all 
simultaneously. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E. World Model Update 

updated by a formula of the form 
Attributes in the world model predicted image may be 

k ( t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1) = k ( t )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAjj(t) + B u ( ~ )  + K ( t ) [ ~ ( t )  - ?( t ) ]  

(3) 

where k ( t )  is the best estimate vector of world model i-order 
entity attributes at time t ,  A is a matrix that computes the 
expected rate of change of k ( t )  given the current best estimate 
of the z +  1 order entity attribute vector y ( t ) ,  B is a matrix that 
computes the expected rate of change of k ( t )  due to external 
input U @ ) ,  and K ( t )  is a confidence factor vector for updating 
k( t ) .  The value of K ( t )  may be computed by a formula of 
the form 

where K S ( j .  t )  is the confidence in the sensory observation of 
the j th  real world attribute x( j .  t )  at time t, 0 5 K3( j ,  t )  5 1 
Km( j .  t )  is the confidence in the world model prediction of 
the j th  attribute at time t 0 5 KvL( j , t )  5 1. 

The confidence factors (K ,  and K,) in formula (4) may 
depend on the statistics of the correspondence between the 
world model entity and the real world entity (e.g. the number 
of data samples, the mean and variance of [ ~ ( t )  - ?( t ) ] ,  etc.). 
A high degree of correlation between x ( t )  and [ ?(t) ]  in both 
temporal and spatial domains indicates that entities or events 
have been correctly recognized, and states and attributes of 
entities and events in the world model correspond to those 
in the real world environment. World model data elements 
that match observed sensory data elements are reinforced by 
increasing the confidence, or believability factor, Km(j ,  t )  for 
the entity or state at location zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj in the world model attribute 
lists. World model entities and states that fail to match sensory 
observations have their confidence factors K,  (j, t )  reduced. 
The confidence factor K, ( j ?  t )  may be derived from the signal- 
to-noise ratio of the j th  sensory data stream. 

The numerical value of the confidence factors may be 
computed by a variety of statistical methods such Baysian or 
Dempster-Shafer statistics. 

F. The Mechanisms of Attention 

Theorem: Sensory processing is an active process that is 
directed by goals and priorities generated in the behavior 
generating system. 

In each node of the intelligent system hierarchy, the behav- 
ior generating BG modules request information needed for the 
current task from sensory processing SP modules. By means 
of such requests, the BG modules control the processing of 
sensory information and focus the attention of the WM and 
SP modules on the entities and regions of space that are 
important to success in achieving behavioral goals. Requests 
by BG modules for specific types of information cause SP 
modules to select particular sensory processing masks and 
filters to apply to the incoming sensory data. Requests from 
BG modules enable the WM to select which world model 
data to use for predictions, and which prediction algorithm to 
apply to the world model data. BG requests also define which 
correlation and differencing operators to use, and which spatial 
and temporal integration windows and detection thresholds to 

Behavior generating BG modules in the attention subsystem 
also actively point the eyes and ears, and direct the tactile 
sensors of antennae, fingers, tongue, lips, and teeth toward 
objects of attention. BG modules in the vision subsystem 
control the motion of the eyes, adjust the iris and focus, 
and actively point the fovea to probe the environment for 
the visual information needed to pursue behavioral goals [49], 
[50]. Similarly, BG modules in the auditory subsystem actively 
direct the ears and tune audio filters to mask background noises 
and discriminate in favor of the acoustic signals of importance 
to behavioral goals. 

Because of the active nature of the attention subsystem, 
sensor resolution and sensitivity is not uniformly distributed, 
but highly focused. For example, receptive fields of optic nerve 
fibers from the eye are several thousand times more densely 
packed in the fovea than near the periphery of the visual field. 
Receptive fields of touch sensors are also several thousand 
times more densely packed in the finger tips and on the lips 
and tongue, than on other parts of the body such as the torso. 

The active control of sensors with nonuniform resolution 
has profound impact on the communication bandwidth, com- 
puting power, and memory capacity required by the sensory 
processing system. For example, there are roughly 500 000 
fibers in the the optic nerve from a single human eye. These 
fibers are distributed such that about 100 000 are concentrated 
in the 21.0 degree foveal region with resolution of about 
0.007 degrees. About 100 000 cover the surrounding +3 degree 
region with resolution of about 0.02 degrees. 100000 more 
cover the surrounding k10 degree region with resolution of 
0.07 degrees. 100000 more cover the surrounding 30 degree 
region with a resolution of about 0.2 degrees. 100000 more 
cover the remaining 280 degree region with resolution of 
about 0.7 degree [51]. The total number of pixels is thus 
about 500000 pixels, or somewhat less than that contained 
in two standard commercial TV images. Without nonuniform 
resolution, covering the entire visual field with the resolution 
of the fovea would require the number of pixels in about 6 000 

apply. 
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standard TV images. Thus, for a vision sensory processing 
system with any given computing capacity, active control and 
nonuniform resolution in the retina can produce more than 
three orders of magnitude improvement in image processing 
capability. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

SP modules in the attention subsystem process data from 
low-resolution wide-angle sensors to detect regions of interest, 
such as entities that move, or regions that have discontinuities 
(edges and lines), or have high curvature (corners and inter- 
sections). The attention BG modules then actively maneuver 
the eyes, fingers, and mouth so as to bring the high resolution 
portions of the sensory systems to bear precisely on these 
points of attention. The result gives the subjective effect of 
high resolution everywhere in the sensory field. For example, 
wherever the eye looks, it sees with high resolution, for the 
fovea is always centered on the item of current interest. 

The act of perception involves both sequential and parallel 
operations. For example, the fovea of the eye is typically 
scanned sequentially over points of attention in the visual field 
[52]. Touch sensors in the fingers are actively scanned over 
surfaces of objects, and the ears may be pointed toward sources 
of sound. While this sequential scanning is going on, parallel 
recognition processes hypothesize and compare entities at all 
levels simultaneously. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G. The Sensory Processing Hierarchy 

It has long been recognized that sensory processing occurs 
in a hierarchy of processing modules, and that perception 
proceeds by “chunking”, i.e., by recognizing patterns, groups, 
strings, or clusters of points at one level as a single feature, 
or point in a higher level, more abstract space. It also has 
been observed that this chunking process proceeds by about 
an order of magnitude per level, both spatially and temporally 
[17], [l8]. Thus, at each level in the proposed architecture, SP 
modules integrate, or chunk, information over space and time 
by about an order of magnitude. 

Fig. 17 describes the nature of the interactions hypothesized 
to take place between the sensory processing and world 
modeling modules at the first four levels, as the recognition 
process proceeds. The functional properties of the SP modules 
are coupled to, and determined by, the predictions of the 
WM modules in their respective processing nodes. The WM 
predictions are, in turn, effected by states of the BG modules. 

Hypothesis: There exist both iconic (maps) and symbolic 
(entity frames) at all levels of the SP/WM hierarchy of the 
mammalian vision system. 

Fig. 18 illustrates the concept stated in this hypothesis. 
Visual input to the retina consists of photometric brightness 
and color intensities measured by rods and cones. Brightness 
intensities are denoted by I ( k .  AZ. EL,  t ) ,  where I is the 
brightness intensity measured at time t by the pixel at sensor 
egosphere azimuth A 2  and elevation E L  of eye (or camera) 
I C .  Retinal intensity signals I may vary over time intervals on 
the order of a millisecond or less. 

Image preprocessing is performed on the retina by hori- 
zontal, bipolar, amacrine, and ganglion cells. Center-surround 
receptive fields (“on-center’’ and “off-center”) detect both 
spatial and temporal derivatives at each point in the visual 
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Fig. 17. The nature of the interactions that take place between the world 
model and sensory processing modules. At each level, predicted entities are 
compared with bo observed. Differences are returned as errors directly to 
the world model to update the model. Correlations are forwarded upward to 
be integrated over time and space windows provided by the world model. 
Correlations that exceed threshold are d recognized as entities. 

field. Outputs from the retina carried by ganglion cell axons 
become input to sensory processing level 1 as shown in Fig. 
18. Level 1 inputs correspond to events of a few milliseconds 
duration.. 

It is hypothesized that in the mammalian brain, the level 1 
vision processing module consists of the neurons in the lateral 
geniculate bodies, the superior colliculus, and the primary 
visual cortex (VI). Optic nerve inputs from the two eyes are 
overlaid such that the visual fields from left and right eyes 
are in registration. Data from stretch sensors in the ocular 
muscles provides information to the superior colliculus about 
eye convergence, and pan, tilt, and roll of the retina relative to 
the head. This allows image map points in retinal coordinates 
to be transformed into image map points in head coordinates 
(or vice versa) so that visual and acoustic position data can 
be registered and fused [41], [42]. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVI, registration of 
corresponding pixels from two separate eyes on single neurons 
also provides the basis for range from stereo to be computed 
for each pixel [31]. 

At level 1, observed point entities are compared with pre- 
dicted point entities. Similarities and differences are integrated 
into linear entities. Strings of level 1 input events are integrated 
into level 1 output events spanning a few tens of milliseconds. 
Level 1 outputs become level 2 inputs. 

The level 2 vision processing module is hypothesized to 
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were true, it would require that the retinal image be scrolled 
over the cortex, and there is little evidence for this, at least 
in V1 and V2. Instead, it is conjectured that the neurons 
that make up both observed and predicted iconic images 
exist on the visual cortex in retinotopic, or sensor egosphere, 
coordinates. The velocity and inertial egosphere coordinates 
for each pixel are defined by parameters in the symbolic entity 
frame of each pixel. The inertial, velocity (and perhaps head) 
egospheres may thus be “virtual” egospheres. The position 
of any pixel on any egosphere can be computed by using the 
transformation parameters in the map pixel frame as an indirect 
address offset. This allows velocity and inertial egosphere 
computations to be performed on neural patterns that are 
physically represented in sensor egosphere coordinates. 

The possibility of image scrolling cannot be ruled out, 
however, particularly at higher levels. It has been observed 
that both spatial and temporal retinotopic specificity decreases 
about two orders of magnitude from V1 to V4 [54]. This is 
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Fig. 18. Hypothesized correspondence between levels in the proposed model 
and neuranatomical structures in the mammalian vision system. At each level, 
the WM module contains both iconic and symbolic representations. At each 
level, the SP module compares the observed image with a predicted image. 
At each level, both iconic and symbolic world models are updated, and 
map overlays are computed. LGN is the lateral geniculate nuclei, OT is 
the occipital-temporal, OP is the occipital-parietal, and SC is the superior 
colliculus. 

consist of neurons in the secondary visual cortex (V2). At 
level 2, observed linear entities are compared with predicted 
linear entities. Similarities and differences are integrated into 
surface entities. Some individual neurons indicate edges and 
lines at particular orientations. Other neurons indicate edge 
points, curves, trajectories, vertices, and boundaries. 

Input to the world model from the vestibular system indi- 
cates the direction of gravity and the rotation of the head. This 
allows the level 2 world model to transform head egosphere 
representations into inertial egosphere coordinates where the 
world is perceived to be stationary despite rotation of the 
sensors. 

Acceleration data from the vestibular system, combined with 
velocity data from the locomotion system, provide the basis 
for estimating both rotary and linear eye velocity, and hence 
image flow direction. This allows the level 2 world model 
to transform head egosphere representations into velocity 
egosphere coordinates where depth from image flow can be 
computed. Center-surround receptive fields along image flow 
lines can be subtracted from each other to derive spatial 
derivatives in the flow direction. At each point where the 
spatial derivative in the flow direction is nonzero, spatial and 
temporal derivatives can be combined with knowledge of eye 
velocity to compute the image flow rate d A / d t  [45]. Range 
to each pixel can then be computed directly, and in parallel, 
from local image data using formula (1) or (2). 

consistent with scrolling. 
Strings of level 2 input events are integrated into level 3 

input events spanning a few hundreds of milliseconds. 
The level 3 vision processing module is hypothesized to 

reside in areas V3 and V4 of the visual cortex. Observed 
surface entities are compared with predicted surface entities. 
Similarities and differences are integrated to recognize object 
entities. Cells that detect texture and motion of regions in 
specific directions provide indication of surface boundaries and 
depth discontinuities. Correlations and differences between 
world model predictions and sensory observations of surfaces 
give rise to meaningful image segmentation and recognition of 
surfaces. World model knowledge of lighting and texture allow 
computation of surface orientation, discontinuities, boundaries, 
and physical properties. 

Strings of level 3 input events are integrated into level 4 in- 
put events spanning a few seconds. (This does not necessarily 
imply that it takes seconds to recognize surfaces, but that both 
patterns of motion that occupy a few seconds, and surfaces, 
are recognized at level 3. For example, the recognition of a 
gesture, or dance step, might occur at this level.) 

World model knowledge of the position of the self relative 
to surfaces enables level 3 to compute offset variables for each 
pixel that transform it from inertial egosphere coordinates into 
object coordinates. 

The level 4 vision processing module is hypothesized to 
reside in the posterior inferior temporal and ventral intrapari- 
etal regions of visual cortex. At level 4, observed objects are 
compared with predicted objects. Correlations and differences 
between world model predictions and sensory observations of 
objects allows shape, size, and orientation, as well as location, 
velocity, rotation, and size-changes of objects to be recognized 
and measured. 

World model input from the locomotion and navigation 
systems allow level 4 to transform object coordinates into 
world coordinates. Strings of level 4 input events are grouped 
into level 5 input events spanning a few tens of seconds. 

The previous egosphere transformations do not necessarily 
imply that neurons are physically arranged in inertial or 
velocity egosphere coordinates on the visual cortex. If that 

Level 5 vision is hypothesized to reside in the visual 
association areas of the parietal and temporal cortex. At level 
5 ,  observed groups of objects are compared with predicted 
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groups. Correlations are integrated into group’ entities. Strings 
of level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 input events are detected as level 5 output events 
spanning a few minutes. For example, in the anterior inferior 
temporal region particular groupings of objects such as eyes, 
nose, and mouth are recognized as faces. Groups of fingers can 
be recognized as hands, etc. In the parietal association areas, 
map positions, orientations, rotations of groups of objects are 
detected. At level 5, the world model map has larger span and 
lower resolution than level 4. 

At level 6, clusters of group’ entities are recognized as 
group3 entities, and strings of level 6 input events are grouped 
into level 6 output events spanning a few tens of minutes. 
The world model map at level 7 has larger span and lower 
resolution than at level 6. 

At level 7, strings of level 7 input events are grouped into 
level 7 output events spanning a few hours. 

It must be noted that the neuroanatomy of the mammalian 
vision system is much more convoluted than suggested by 
Fig. 18. Van Essen [53] has compiled a list of 84 identified 
or suspected pathways connecting 19 visual areas. Visual 
processing is accomplished in at least two separate subsystems 
that are not differentiated in Fig. 18. The subsystem that 
includes the temporal cortex emphasizes the recognition of 
entities and their attributes such as shape, color, orientation, 
and grouping of features. The subsystem that includes the 
parietal cortex emphasizes spatial and temporal relationships 
such as map positions, timing of events, velocity, and direction 
of motion [54]. It should also be noted that analogous figures 
could be drawn for other sensory modalities such as hearing 
and touch. 

H. Gestalt Effects 

When an observed entity is recognized at a particular 
hierarchical level, its entry into the world model provides 
predictive support to the level below. The recognition output 
also flows upward where it narrows the search at the level 
above. For example, a linear feature recognized and entered 
into the world model at level 2, can be used to generate 
expected points at level 1. It can also be used to prune the 
search tree at level 3 to entities that contain that particular 
type of linear feature. Similarly, surface features at level 
3 can generate specific expected linear features at level 2, 
and limit the search at level 4 to objects that contain such 
surfaces, etc. The recognition of an entity at any level thus 
provides to both lower and higher levels information that is 
useful in selecting processing algorithms and setting spatial 
and temporal integration windows to integrate lower level 
features into higher level chunks. 

If the correlation function at any level falls below threshold, 
the current world model entity or event at that level will be 
rejected, and others tried. When an entity or event is rejected, 
the rejection also propagates both upward and downward, 
broadening the search space at both higher and lower levels. 

At each level, the SP and WM modules are coupled so as 
to form a feedback loop that has the properties of a relaxation 
process, or phase-lock loop. WM predictions are compared 

with SP observations, and the correlations and differences 
are fed back to modify subsequent WM predictions. WM 
predictions can thus be “servoed” into correspondence with 
the SP observations. Such looping interactions will either 
converge to a tight correspondence between predictions and 
observations, or will diverge to produce a definitive set of 
irreconcilable differences. 

Perception is complete only when the correlation functions 
at all levels exceed threshold simultaneously. It is the nature 
of closed loop processes for lock-on to occur with a positive 
“snap”. This is especially pronounced in systems with many 
coupled loops that lock on in quick succession. The result is 
a gestalt “aha” effect that is characteristic of many human 
perceptions. 

I. Flywheeling, Hysteresis, and Illusion 

Once recognition occurs, the looping process between SP 
and WM acts as a tracking filter. This enables world model 
predictions to track real world entities through noise, data 
dropouts, and occlusions. 

In the system described previously, recognition will occur 
when the first hypothesized entity exceeds threshold. Once 
recognition occurs, the search process is suppressed, and 
the thresholds for all competing recognition hypotheses are 
effectively raised. This creates a hysteresis effect that tends to 
keep the WM predictions locked onto sensory input during the 
tracking mode. It may also produce undesirable side effects, 
such as a tendency to perceive only what is expected, and a 
tendency to ignore what does not fit preconceived models of 
the world. 

In cases where sensory data is ambiguous, there is more 
than one model that can match a particular observed object. 
The first model that matches will be recognized, and other 
models will be suppressed. This explains the effects produced 
by ambiguous figures such as the Necker cube. 

Once an entity has been recognized, the world model 
projects its predicted appearance so that it can be compared 
with the sensory input. If this predicted information is added 
to, or substituted for, sensory input, perception at higher levels 
will be based on a mix of sensory observations and world 
model predictions. By this mechanism, the world model may 
fill in sensory data that is missing, and provide information that 
may be left out of the sensory data. For example, it is well 
known that the audio system routinely “flywheels” through 
interruptions in speech data, and fills-in over noise bursts. 

This merging of world model predictions with sensory 
observations may account for many familiar optical illusions 
such as subjective contours and the Ponzo illusion. In patho- 
logical cases, it may also account for visions and voices, and 
an inability to distinguish between reality and imagination. 
Merging of world model prediction with sensory observation 
is what Grossberg calls “adaptive resonance” [55]. 

xv. VALUE JUDGMENTS 

Value judgments provide the criteria for making intelligent 
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choices. Value judgments evaluate the costs, risks, and benefits 
of plans and actions, and the desirability, attractiveness, and 
uncertainty of objects and events. Value judgment modules 
produce evaluations that can be represented as value state- 
variables. These can be assigned to the attribute lists in entity 
frames of objects, persons, events, situations, and regions of 
space. They can also be assigned to the attribute lists of plans 
and actions in task frames. Value state-variables can label 
entities, tasks, and plans as good or bad, costly or inexpensive, 
as important or trivial, as attractive or repulsive, as reliable 
or uncertain. Value state-variables can also be used by the 
behavior generation modules both for planning and executing 
actions. They provide the criteria for decisions about which 
coarse of action to take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[56]. 

Definition: Emotions are biological value state-variables 
that provide estimates of good and bad. 

Emotion value state-variables can be assigned to the at- 
tribute lists of entities, events, tasks, and regions of space so 
as to label these as good or bad, as attractive or repulsive, 
etc. Emotion value state-variables provide criteria for making 
decisions about how to behave in a variety of situations. For 
example, objects or regions labeled with fear can be avoided, 
objects labeled with love can be pursued and protected, 
those labeled with hate can be attacked, etc. Emotional value 
judgments can also label tasks as costly or inexpensive, risky 
or safe. 

Definition: Priorities are value state-variables that provide 
estimates of importance. 

Priorities can be assigned to task frames so that BG planners 
and executors can decide what to do first, how much effort 
to spend, how much risk is prudent, and how much cost is 
acceptable, for each task. 

Definition: Drives are value state-variables that provide 
estimates of need. 

Drives can be assigned to the self frame, to indicate internal 
system needs and requirements. In biological systems, drives 
indicate levels of hunger, thirst, and sexual arousal. In me- 
chanical systems, drives might indicate how much fuel is left, 
how much pressure is in a boiler, how many expendables have 
been consumed, or how much battery charge is remaining. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A.  The Limbic System 

In animal brains, value judgment functions are computed 
by the limbic system. Value state-variables produced by the 
limbic system include emotions, drives, and priorities. In 
animals and humans, electrical or chemical stimulation of 
specific limbic regions (i.e., value judgment modules) has been 
shown to produce pleasure and pain as well as more complex 
emotional feelings such as fear, anger, joy, contentment, and 
despair. Fear is computed in the posterior hypothalamus. 
Anger and rage are computed in the amygdala. The insula 
computes feelings of contentment, and the septal regions 
produce joy and elation. The perifornical nucleus of the 
hypothalamus computes punishing pain, the septum pleasure, 
and the pituitary computes the body’s priority level of arousal 
in response to danger and stress [57]. 

The drives of hunger and thirst are computed in the limbic 

system’s medial and lateral hypothalamus. The level of sexual 
arousal is computed by the anterior hypothalamus. The control 
of body rhythms, such as sleep-awake cycles, are computed 
by the pineal gland. The hippocampus produces signals that 
indicate what is important and should be remembered, or what 
is unimportant and can safely be forgotten. Signals from the 
hippocampus consolidate (i.e., make permanent) the storage of 
sensory experiences in long term memory. Destruction of the 
hippocampus prevents memory consolidation [58]. 

In lower animals, the limbic system is dominated by the 
sense of smell and taste. Odor and taste provides a very simple 
and straight forward evaluation of many objects. For example, 
depending on how something smells, one should either eat 
it, fight it, mate with it, or ignore it. In higher animals, the 
limbic system has evolved to become the seat of much more 
sophisticated value judgments, including human emotions and 
appetites. Yet even in humans, the limbic system retains its 
primitive function of evaluating odor and taste, and there 
remains a close connection between the sense of smell and 
emotional feelings. 

Input and output fiber systems connect the limbic system 
to sources of highly processed sensory data as well as to 
high level goal selection centers. Connections with the frontal 
cortex suggests that the value judgment modules are inti- 
mately involved with long range planning and geometrical 
reasoning. Connections with the thalamus suggests that the 
limbic value judgment modules have access to high level 
perceptions about objects, events, relationships, and situations; 
for example, the recognition of success in goal achievement, 
the perception of praise or hostility, or the recognition of 
gestures of dominance or submission. Connections with the 
reticular formation suggests that the limbic VJ modules are 
also involved in computing confidence factors derived from 
the degree of correlation between predicted and observed 
sensory input. A high degree of correlation produces emotional 
feelings of confidence. Low correlation between predictions 
and observations generates feelings of fear and uncertainty. 

The limbic system is an integral and substantial part of 
the brain. In humans, the limbic system consists of about 53 
emotion, priority, and drive submodules linked together by 35 
major nerve bundles [57]. 

B. Value State-Variables 

It has long been recognized by psychologists that emotions 
play a central role in behavior. Fear leads to flight, hate to 
rage and attack. Joy produces smiles and dancing. Despair 
produces withdrawal and despondent demeanor. All creatures 
tend to repeat what makes them feel good, and avoid what 
they dislike. All attempt to prolong, intensify, or repeat those 
activities that give pleasure or make the self feel confident, 
joyful, or happy. All try to terminate, diminish, or avoid those 
activities that cause pain, or arouse fear, or revulsion. 

It is common experience that emotions provide an eval- 
uation of the state of the world as perceived by the sensory 
system. Emotions tell us what is good or bad, what is attractive 
or repulsive, what is beautiful or ugly, what is loved or hated, 
what provokes laughter or anger, what smells sweet or rotten, 
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what feels pleasurable, and what hurts. 
It is also widely known that emotions affect memory. 

Emotionally traumatic experiences are remembered in vivid 
detail for years, while emotionally nonstimulating everyday 
sights and sounds are forgotten within minutes after they are 
experienced. 

Emotions are popularly believed to be something apart 
from intelligence-irrational, beyond reason or mathematical 
analysis. The theory presented here maintains the opposite. 
In this model, emotion is a critical component of biological 
intelligence, necessary for evaluating sensory input, selecting 
goals, directing behavior, and controlling learning. 

It is widely believed that machines cannot experience emo- 
tion, or that it would be dangerous, or even morally wrong to 
attempt to endow machines with emotions. However, unless 
machines have the capacity to make value judgments (i.e., to 
evaluate costs, risks, and benefits, to decide which course of 
action, and what expected results, are good, and which are bad) 
machines can never be intelligent or autonomous. What is the 
basis for deciding to do one thing and not another, even to 
turn right rather than left, if there is no mechanism for making 
value judgments? Without value judgments to support decision 
making, nothing can be intelligent, be it biological or artificial. 

Some examples of value state-variables are listed below, 
along with suggestions of how they might be computed. This 
list is by no means complete. 

Good is a high level positive value state-variable. It may be 
assigned to the entity frame of any event, object, or person. 
It can be computed as a weighted sum, or spatiotemporal 
integration, of all other positive value state-variables assigned 
to the same entity frame. 

Bad is a high level negative value state-variable. It can be 
computed as a weighted sum, or spatiotemporal integration, 
of all other negative value state-variables assigned to an entity 
frame. 

Pleasure: Physical pleasure is a mid-level internal positive 
value state-variable that can be assigned to objects, events, 
or specific regions of the body. In the latter case, pleasure 
may be computed indirectly as a function of neuronal sensory 
inputs from specific regions of the body. Emotional pleasure 
is a high level internal positive value state-variable that can be 
computed as a function of highly processed information about 
situations in the world. 

Pain: Physical pain is a low level internal negative value 
state-variable that can be assigned to specific regions of the 
body. It may be computed directly as a function of inputs from 
pain sensors in specific regions of the body. Emotional pain is 
a high level internal negative value state-variable that may be 
computed indirectly from highly processed information about 
situations in the world. 

Success-observed is a positive value state-variable that 
represents the degree to which task goals are met, plus the 
amount of benefit derived therefrom. 

Success-expected is a value state-variable that indicates the 
degree of expected success (or the estimated probability of 
success). It may be stored in a task frame, or computed 
during planning on the basis of world model predictions. When 
compared with success-observed it provides a base-line for 

measuring whether goals were met on, behind, or ahead of 
schedule; at, over, or under estimated costs; and with resulting 
benefits equal to, less than, or greater than those expected. 

Hope is a positive value state-variable produced when 
the world model predicts a future success in achieving a 
good situation or event. When high hope is assigned to a 
task frame, the BG module may intensify behavior directed 
toward completing the task and achieving the anticipated good 
situation or event. 

Frustration is a negative value state-variable that indicates 
an inability to achieve a goal. It may cause a BG module to 
abandon an ongoing task, and switch to an alternate behavior. 
The level of frustration may depend on the priority attached to 
the goal, and on the length of time spent in trying to achieve it. 

Love is a positive value state-variable produced as a function 
of the perceived attractiveness and desirability of an object or 
person. When assigned to the frame of an object or person, 
it tends to produce behavior designed to approach, protect, or 
possess the loved object or person. 

Hate is a negative value state-variable produced as a func- 
tion of pain, anger, or humiliation. When assigned to the frame 
of an object or person, hate tends to produce behavior designed 
to attack, harm, or destroy the hated object or person. 

Comfort is a positive value state-variable produced by the 
absence of (or relief from) stress, pain, or fear. Comfort can be 
assigned to the frame of an object, person, or region of space 
that is safe, sheltering, or protective. When under stress or in 
pain, an intelligent system may seek out places or persons with 
entity frames that contain a large comfort value. 

Fear is a negative value state-variable produced when the 
sensory processing system recognizes, or the world model 
predicts, a bad or dangerous situation or event. Fear may be 
assigned to the attribute list of an entity, such as an object, 
person, situation, event, or region of space. Fear tends to 
produce behavior designed to avoid the feared situation, event, 
or region, or flee from the feared object or person. 

Joy is a positive value state-variable produced by the 
recognition of an unexpectedly good situation or event. It is 
assigned to the self-object frame. 

Despair is a negative value state-variable produced by world 
model predictions of unavoidable, or unending, bad situations 
or events. Despair may be caused by the inability of the 
behavior generation planners to discover an acceptable plan 
for avoiding bad situations or events. 

Happiness is a positive value state-variable produced by 
sensory processing observations and world model predictions 
of good situations and events. Happiness can be computed as 
a function of a number of positive (rewarding) and negative 
(punishing) value state-variables. 

Confidence is an estimate of probability of correctness. A 

confidence state-variable may be assigned to the frame of any 
entity in the world model. It may also be assigned to the self 
frame, to indicate the level of confidence that a creature has in 
its own capabilities to deal with a situation. A high value of 
confidence may cause the BG hierarchy to behave confidently 
or aggressively. 

Uncertainty is a lack of confidence. Uncertainty assigned 
to the frame of an external object may cause attention to be 



ALBUS: OUTLINE FOR A THEORY OF INTELLIGENCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA503 

directed toward that object in order to gather more informa- If time dependency is included, the function E( t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 
tion about it. Uncertainty assigned to the self-object frame d t )  =V(S( t ) )  may be computed by a set of equations of 
may cause the behavior generating hierarchy to be timid or the form 
tentative. 

I t  is possible to assign a real nonnegative numerical scalar 
value to each value state-variable. This defines the degree, or 
amount, of that value state-variable. For example, a positive 
real value assigned to ‘‘good’’ defines how good; i.e., if 

e := “good” and 0 5 e 5 10 (5) 

then, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = 10 is the “best” evaluation possible. 
Some value state-variables can be grouped as conjugate 

pairs. For example, good-bad, pleasure-pain, success-fail, love- 
hate, etc. For conjugate pairs, a positive real value means the 
amount of the good value, and a negative real value means 
the amount of the bad value. 

For example, if 

e := “good-bad and - 10 5 e 5 $10 

where e(g. t )  is the value of the j th  value state-variable in the 
vector E at time t S ( L .  t )  is the value of the zth input variable 
at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU J ( Z , J )  is a coefficient, or weight, that defines the 
contribution of s(z) to e ( ) ) .  

Each individual may have a different set of “values”, i.e., a 
different weight matrix in its value judgment function V .  

The factor ( k d l d t  + I) indicates that a value judgment is 
typically dependent on the temporal derivative of its input 
variables as well as on their steady-state values. If k > 1, then 
the rate of change of the input factors becomes more important 
than their absolute values. For k > 0, need reduction and 
escape from pain are rewarding. The more rapid the escape, 
the more intense, but short-lived, the reward. 

Formula (8) suggests how a V J  function might compute 
the value state-variable “happiness”: then e = 5 is good e = 6 is better e = 10 is best e = -4 

is bad e = -7 is worse e = -10 is worst e = 0 is neither 

good nor bad. + hope-frustration 
Similarly, in the case of pleasure-pain, the larger the positive 

value, the better it feels. The larger the negative value, the 

happiness = ( k  d / d t  + l)(success-expectation 

+ love-hate 

worse it hurts. For example, if + comfort-fear 

+ joy-despair) (8) 
e := “pleasure-pain’’ 

then e 

The 
e = -  

where success, hope, love, comfort, joy are all positive value 
state-variables that contribute to happiness, and expectation, 
frustration, hate, fear, and despair are all negative value 
state-variables that tend to reduce or diminish happiness. 
In this example, the plus and minus signs result from +1 
weights assigned to the positive-value state-variables, and 
- 1 weights assigned to the negative-value state-variables. Of 

= 5 is Pleasurable e = 10 is ecstasy e = -5 is Painful 
10 is agony e = 0 is neither pleasurable nor painful. 
Positive and negative elements of the conjugate Pair 

may be computed separately, and then combined. 

C. VJ Modules - 

Value state-variables are computed by value judgment func- course, different brains may assign different values to these 

tions residing in VJ modules. Inputs to VJ modules describe 

functions compute of cost, risk, and benefit. vJ 
outputs are value state-variables. 

Theorem: The VJ value judgment mechanism can be de- 
fined as a mathematical or logical function of the form 

entities, events, situations, and states. VJ value judgment Expectation is listed in as a negative state- 
variable because the positive contribution of success is di- 
minished if success-observed does not meet or exceed suc- 
cess-expected. This suggests that happiness could be increased 
if expectations were lower. However, when k > 0, the hope 
reduction that accompanies expectation downgrading may be 

E = V ( S )  

where E is an output vector of value state-variables, V 
is a value judgment function that computes E given S,  S 
is an input state vector defining conditions in the world 
model, including the self. The components of S are entity 
attributes describing states of tasks, objects, events, or regions 
of space. These may be derived either from processed sensory 
information, or from the world model. 

The value judgment function V in the VJ module computes 
a numerical scalar value (i.e., an evaluation) for each compo- 
nent of E as a function of the input state vector S ,  E is a time 
dependent vector. The components of E may be assigned to 
attributes in the world model frame of various entities, events, 
or states. 

just as punishing as the disappointments that result from 
unrealistic expectations, at least in the short term. Therefore, 
lowering expectations is a good strategy for increasing hap- 
piness only if expectations are lowered very slowly, or are 
already low to begin with. 

Fig. 19 shows an example of how a VJ module might 
compute pleasure-pain. Skin and muscle are known to contain 
arrays of pain sensors that detect tissue damage. Specific 
receptors for pleasure are not known to exist, but pleasure 
state-variables can easily be computed from intermediate state- 
variables that are computed directly from skin sensors. 

The VJ module in Fig. 19 computes “pleasure-pain” as 
a function of the intermediate state-variables of “softness”, 
“warmth”, and “gentle stroking of the skin”. These interme- 
diate state-variables are computed by low level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASP modules. 
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Fig. 19. How a VJ value judgment module might evaluate tactile and thermal 
sensory input. In this example, pleasure-pain is computed by a VJ module 
as a function of “warmth,” “softness,” and “gentle stroking” state-variables 
recognized by an SP module, plus inputs directly from pain sensors in the 
skin. Pleasure-pain value state-variables are assigned to pixel frames of the 
world model map of the skin area. 

“warmth” is computed from temperature sensors in the skin. 
“softness” is computed as a function of “pressure” and “defor- 
mation” (i.e., stretch) sensors. “gentle stroking of the skin” is 
computed by a spatiotemporal analysis of skin pressure and 
deformation sensor arrays that is analogous to image flow 
processing of visual information from the eyes. Pain sensors 
go directly from the skin area to the VJ module. 

In the processing of data from sensors in the skin, all of 
the computations preserve the topological mapping of the 
skin area. Warmth is associated with the area in which the 
temperature sensors are elevated. Softness is associated with 
the area where pressure and deformation are in the correct 
ratio. Gentle stroking is associated with the area in which the 
proper spatiotemporal patterns of pressure and deformation are 
observed. Pain is associated with the area where pain sensors 
are located. Finally, pleasure-pain is associated with the area 
from which the pleasure-pain factors originate. A pleasure-pain 
state-variable can thus be assigned to the knowledge frames 
of the skin pixels that lie within that area. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAValue State-Variable Map Overlays 

When objects or regions of space are projected on a world 
map or egosphere, the value state-variables in the frames 
of those objects or regions can be represented as overlays 
on the projected regions. When this is done, value state- 
variables such as comfort, fear, love, hate, danger, and safe 
will appear overlaid on specific objects or regions of space. 
BG modules can then perform path planning algorithms that 
steer away from objects or regions overlaid with fear, or 
danger, and steer toward or remain close to those overlaid with 
attractiveness, or comfort. Behavior generation may generate 
attack commands for target objects or persons overlaid with 
hate. Protect, or care-for, commands may be generated for 
target objects overlaid with love. 

Projection of uncertainty, believability, and importance 
value state-variables on the egosphere enables BG modules to 
perform the computations necessary for manipulating sensors 
and focusing attention. 

Confidence, uncertainty, and hope state-variables may also 
be used to modify the effect of other value judgments. For 
example, if a task goal frame has a high hope variable but 
low confidence variable, behavior may be directed toward the 
hoped-for goal, but cautiously. On the other hand, if both hope 
and confidence are high, pursuit of the goal may be much 
more aggressive. 

The real-time computation of value state-variables for vary- 
ing task and world model conditions provides the basis for 
complex situation dependent behavior [56]. 

XVI. NEURAL COMPUTATION 

Theorem: All of the processes described previously for 
the BG, WM, SP, and VJ modules, whether implicit or 
explicit, can be implemented in neural net or connectionist 
architectures, and hence could be implemented in a biological 
neuronal substrate. 

Modeling of the neurophysiology and anatomy of the brain 
by a variety of mathematical and computational mechanisms 
has been discussed in a number of publications [16], [27], [34], 
[35] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, [ S S ] ,  [S9]-[64]. Many of the submodules in the BG, WM, 
SP, and VJ modules can be implemented by functions of the 
form P=H(S). This type of computation can be accomplished 
directly by a typical layer of neurons that might make up a 
section of cortex or a subcortical nucleus. 

To a first approximation,any single neuron, such as illus- 
trated in Fig. 20, can compute a linear single valued function 
of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p ( k )  = h ( S )  = s(z)w(z. k )  (9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1=1 

where p ( k )  is the output of the kth neuron; S = 
(s( l) .s(2) . . .  . s ( L ) . . .  . . s ( N ) )  is an ordered set of input 
variables carried by input fibers defining an input vector; 
W = (w (1 .k ) .  w(2. k ) ,  . . . w ( ~ . k ) .  . . . w ( N , k )  is an ordered 
set of synaptic weights connecting the N input fibers to the 
kth neuron; and h(S)  is the internal product between the input 
vector and the synaptic weight vector. 

A set of neurons of the type illustrated in Fig. 20 can 
therefore compute the vector function 

P = H ( S )  (10) 

where P = ( p ( l ) . p ( 2 ) .  . . . p ( k ) .  . . . p ( L ) )  is an ordered set 
of output variables carried by output fibers defining an output 
vector. 

Axon and dendrite interconnections between layers, and 
within layers, can produce structures of the form illustrated 
in Fig. 4. State driven switching functions produce structures 
such as illustrated in Figs. 2 and 3. It has been shown how such 
structures can produce behavior that is sensory-interactive, 
goal-directed, and value driven. 

The physical mechanisms of computation in a neuronal 
computing module are produced by the effect of chemical acti- 
vation on synaptic sites. These are analog parameters with time 
constants governed by diffusion and enzyme activity rates. 
Computational time constants can vary from milliseconds to 
minutes, or even hours or days, depending on the chemicals 
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V N  

Fig. 20. A neuron computes the scalar value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( k )  as the inner product 
of the input vector s(l),s(2). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . .s(z) .  . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,.(A') and the weight vector 
w ( 1 . k ) .  w ( 2 . k ) .  . . . w ( z . k ) ,  . . . , W ( N , k ) .  

carrying the messages, the enzymes controlling the decay time 
constants, the diffusion rates, and the physical locations of 
neurological sites of synaptic activity. 

The time dependent functional relationship between input 
fiber firing vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS( t )  and the output cell firing vector P(t )  
can be captured by making the neural net computing module 
time dependent 

P(t  + d t )  = H(S( t ) ) .  (11) 

The physical arrangement of input fibers in Fig. 20 can also 
produce many types of nonlinear interactions between input 
variables. It can, in fact, be shown that a computational 
module consisting of neurons of the type illustrated in Fig. 
20 can compute any single valued arithmetic, vector, or 
logical function, IFRHEN rule, or memory retrieval operation 
that can be represented in the form P(t + d t )  = H ( S ( t ) ) .  
By interconnecting P(t + d t )  = H ( S ( t ) )  computational 
modules in various ways, a number of additional important 
mathematical operations can be computed, including finite 
state automata, spatial and temporal differentiation and inte- 
gration, tapped delay lines, spatial and temporal auto- and 
crosscorrelation, coordinate transformation, image scrolling 
and warping, pattern recognition, content addressable memory, 
and sampled-data, state-space feedback control. [59]-[63]. 

In a two layer neural net such as a Perceptron, or a brain 
model such as CMAC [27], [34], [35], the nonlinear function 

P(t + d t )  = H ( S ( t ) )  
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is computed by a pair of functions 

4 7 )  = F ( S ( t ) )  (12) 

P(t + d t )  = G(A(T) )  (13) 

where S( t )  represents a vector of firing rates s(z, t )  on a set 
of input fibers at time t ,  A ( T )  represents a vector of firing 
rates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu ( j ,  T )  of a set of association cells at time T = t + d t /2 ,  
P(t + d t )  represents a vector of firing rates p ( k ,  t + d t )  on a 
set of output fibers at time t + d t ,  F is the function that maps 
S into A, and G is the function that maps A into P. 

The function F is generally considered to be fixed, serving 
the function of an address decoder (or recoder) that transforms 
the input vector S into an association cell vector A.  The 
firing rate of each association cell a ( j ,  t )  thus depends on the 
input vector S and the details of the interconnecting matrix 
of interneurones between the input fibers and association cells 
that define the function F .  Recoding from S to A can enlarge 
the number of patterns that can be recognized by increasing 
the dimensionality of the pattern space, and can permit the 
storage of nonlinear functions and the use of nonlinear decision 
surfaces by circumscribing the neighborhood of generalization. 

[34], W l .  
The function G depends on the values of a set of synaptic 

weights w( j ,  k )  that connect the association cells to the output 
cells. The value computed by each output neuron p ( k ,  t )  at 
time t is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P@, t + dtj = 4 j ) w ( j 1  k )  (14) 
3 

where w( j ,  k)=synaptic weight from a ( j )  to p ( k ) .  
The weights w( j ,  k )  may be modified during the learning 

process so as to modify the function G ,  and hence the function 
H .  

Additional layers between input and output can produce 
indirect addressing and list processing functions, including tree 
search and relaxation processes [16], [61]. Thus, virtually all of 
the computational functions required of an intelligent system 
can be produced by neuronal circuitry of the type known to 
exist in the brains of intelligent creatures. 

XVII. LEARNING 

It is not within the scope of this paper to review of the 
field of learning. However, no theory of intelligence can be 
complete without addressing this phenomenon. Learning is 
one of several processes by which world knowledge and task 
knowledge become embedded in the computing modules of 
an intelligent system. In biological systems, knowledge is also 
provided by genetic and growth mechanisms. In artificial sys- 
tems, knowledge is most often provided through the processes 
of hardware engineering and software programming. 

In the notation of (13), learning is the process of modifying 
the G function. This in turn, modifies the P = H ( S )  
functions that reside in BG, WM, SP, and VJ modules. Thus 
through learning, the behavior generation system can acquire 
new behavioral skills, the world model can be updated, the 
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sensory processing system can refine its ability to interpret 
sensory input, and new parameters can be instilled in the value 
judgment system. 

The change in strength of synaptic weights w( j ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI C )  wrought 
by the learning process may be described by a formula of the 
form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d 4 . A  I C ,  t )  = g ( t ) a ( i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ) d k  t )  (15) 

where dw(j, I C ,  t )  is the change in the synaptic weight w( j ,  I C ,  t )  
between t and t + dt ;  g ( t )  is the learning gain at time t; u ( j ,  t )  
is the firing rate of association cell j at time t ;  and p ( k ,  t )  is 
the firing rate of output neuron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk at time t. 

If g ( t )  is positive, the effect will be to reward or strengthen 
active synaptic weights. If g ( t )  is negative, the effect will be 
to punish, or weaken active synaptic weights. 

After each learning experience, the new strength of synaptic 
weights is given by 

w(j, lc,t  + d t )  = w(j ,  k , t )  + dw(j, IC,t). (16) 

A. Mechanisms of Learning 

Observations from psychology and neural net research sug- 
gests that there are at least three major types of learning: 
repetition, reinforcement, and specific error correction learn- 
ing. 
1) Repetition: Repetition learning occurs due to repetition 

alone, without any feedback from the results of action. For 
this type of learning, the gain function g is a small positive 
constant. This implies that learning takes place solely on the 
basis of coincidence between presynaptic and postsynaptic 
activity. Coincident activity strengthens synaptic connections 
and increases the probability that the same output activity will 
be repeated the next time the same input is experienced. 

Repetition learning was first hypothesized by Hebb, and is 
sometimes called Hebbian learning. Hebb hypothesized that 
repetition learning would cause assemblies of cells to form 
associations between coincident events, thereby producing 
conditioning. Hebbian learning has been simulated in neu- 
ral nets, with some positive results. However, much more 
powerful learning effects can be obtained with reinforcement 
learning. 

back from the results of action. In reinforcement learning, the 
learning gain factor g ( t )  varies with time such that it conveys 
information as to whether the evaluation computed by the VJ 
module was good (rewarding), or bad (punishing). g( t )  is thus 
computed by a VJ function of the form 

2) Reinforcement: Reinforcement learning incorporates feed- 

g ( t  + d t )  = V(S(t))  (17) 

where S( t )  is a time dependent state vector defining the object, 
event, or region of space being evaluated. 

For task learning 

g( t  + d t )  = V{R(t) - R d ( t ) }  (18) 

where R(t) is the actual task results at time t, R d ( t )  is the 
desired task results at time t, R(t) - R d ( t )  is the difference 
between the actual results and the desired results. 

Task learning may modify weights in BG modules that 
define parameters in subtasks, or the weights that define 
decision functions in BG state-tables, or the value of state- 
variables in the task frame, such as task priority, expected 
cost, risk, or benefit. Task learning may thus modify both 
the probability that a particular task will be selected under 
certain conditions, and the way that the task is decomposed 
and executed when it is selected. 

Attribute learning modifies weights that define state- 
variables in the attribute list of entity or event frames in the 
world model. Attribute learning was described earlier by (3) 
and (4). 

For attribute learning 

g( t  + d t )  = Ks(i ,  t)[ l - Km(j ,  t)]V(attribute,) (19) 

where K,(i , t)  is the degree of confidence in the sensory 
observation of the ith real world attribute at time t (See 
formula (4)); Km(j , t )  is the degree of confidence in the 
prediction of the j t h  world model attribute at time t ;  and 
V(attribute,) is the importance of the j th  world model 
attribute. 

In general, rewarding reinforcement causes neurons with 
active synaptic inputs to increase the value or probability of 
their output the next time the same situation arises, or through 
generalization to increase the value or probability of their 
output the next time almost-the-same situation arises. Every 
time the rewarding situation occurs, the same synapses are 
strengthened, and the output (or its probability of occurring) 
is increased further. 

For neurons in the goal selection portion of the BG modules, 
the rewarding reinforcement causes rewarding goals to be 
selected more often. Following learning, the probabilities 
are increased of EX submodules selecting next-states that 
were rewarded during learning. Similarly, the probabilities are 
increased of PL and JA submodules selecting plans that were 
successful, and hence rewarding, in the past. 

For neurons in the WM modules, rewarding results follow- 
ing an action causes reward expectations to be stored in the 
frame of the task being executed. This leads to reward values 
being increased on nodes in planning graphs leading up to the 
rewarding results. Costbenefit values placed in the frames of 
objects, events, and tasks associated with the rewarding results 
are also increased. As a result, the more rewarding the result 
of behavior, the more the behavior tends to be repeated. 

Reward reinforcement learning in the BG system is a 
form of positive feedback. The more rewarding the task, 
the greater the probability that it will be selected again. 
The more it is selected, the more reward is produced and 
the more the tendency to select it is increased. This can 
drive the goal selection system into saturation, producing 
effects like addiction, unless some other process such as 
fatigue, boredom, or satiety produce a commensurate amount 
of negative g ( t )  that is distributed over the population of 
weights being modified. 

Punishing reinforcement, or error correcting, learning occurs 
when g ( t )  is negative, i.e., punishing. In biological brains, 
error correction weakens synaptic weights that are active 
immediately prior to punishing evaluations from the emotional 
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system. This causes the neurons activated by those synapses 
to decrease their output the next time the same situation arises. 
Every time the situation occurs and the punishing evaluation 
is given, the same synapses are weakened and the output (or 
its probability of occurring) is reduced. 

For neurons in the goal selection portion of the BG modules, 
error correction tends to cause punishing tasks to be avoided. 
It decreases the probability of EX submodules selecting a 
punishing next state. It decreases the probability of PL and 
JA submodules selecting a punishing plan. 

For neurons in the WM modules, punishment observed 
to follow an action causes punishment state variables to be 
inserted into the attribute list of the tasks, objects, events, 
or regions of space associated with the punishing feedback. 
Thus, punishment can be expected the next time the same 
action is performed on the same object, or the same event 
is encountered, or the same region of space is entered. Pun- 
ishment expectations (i.e., fear) can be placed in the nodes 
of planning graphs leading to punishing task results. Thus, the 
more punishing the task, the more the task tends to be avoided. 

Error correction learning is a form of negative feedback. 
With each training experience, the amount of error is reduced, 
and hence the amount of punishment. Error correction is 
therefore self limiting and tends to converge toward a stable 
result. It produces no tendencies toward addiction. 

It does, however, reduce the net value of the synaptic 
weight pool. Without some other process such as excitement, 
or satisfaction, to generate a commensurate amount of reward 
reinforcement, there could result a reduction in stimulus to 
action, or lethargy. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3) Specific Error Correction Learning: In specific error cor- 
rection, sometimes called teacher learning, not only is the 
overall behavioral result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( t )  known, but the correct or desired 
response zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApd(k,t) of each output neuron is provided by a 
teacher. Thus, the precise error ( p ( k )  - p d ( k ) )  for each neuron 
is known. This correction can then be applied specifically to 
the weights of each neuron in an amount proportional to the 
direction and magnitude of the error of that neuron. This can 
be described by 

where p d ( k , t )  is the desired firing rate of neuron k at t and 

Teacher learning tends to converge rapidly to stable precise 
results because it has knowledge of the desired firing rate for 
each neuron. Teacher learning is always error correcting. The 
teacher provides the correct response, and anything different 
is an error. Therefore, g ( t )  must always be negative to correct 
the error. A positive g ( t )  would only tend to increase the error. 

If the value of g( t )  is set to -1, the result is one-shot 
learning. One-shot learning is learning that takes only one 
training cycle to achieve perfect storage and recall. One-shot 
teacher learning is often used for world model map and entity 
attribute updates. The SP module produces an observed value 
for each pixel, and this becomes the desired value to be 
stored in a world model map. A SP module may also produce 
observed values for entity attributes. These become desired 
values to be stored in the world model entity frame. 

-1 5 g ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 0. 

Teacher learning may also be used for task skill learning 
in cases where a high level BG module can act as a teacher 
to a lower level BG module, i.e., by providing desired output 
responses to specific command and feedback inputs. 

It should be noted that, even though teacher learning may 
be one-shot, task skill learning by teacher may require many 
training cycles, because there may be very many ways that a 
task can be perturbed from its ideal performance trajectory. 
The proper response to all of these must be learned before the 
task skill is fully mastered. Also, the teacher may not have 
full access to all the sensory input going to the BG module 
that is being taught. Thus, the task teacher may not always 
be fully informed, and therefore may not always generate the 
correct desired responses. 

Since teacher learning is punishing, it must be accompanied 
by some reward reinforcement to prevent eventually driving 
synaptic weights to zero. There is some evidence, that both 
reward reinforcement, and teacher learning, take place simul- 
taneously in the cerebellum. Reward signals are thought to 
be carried by diffuse noradrenergic fibers that affect many 
thousands of neurons in the same way, while error correction 
signals are believed to be carried by climbing fibers each of 
which specifically targets a single neuron or a very small 
groups of neurons [27]. 

It should be noted, however, that much of the evidence for 
neuronal learning is ambiguous, and the exact mechanisms of 
learning in the brain are still uncertain. The very existence 
of learning in particular regions of the brain (including the 
cerebellum) is still controversial [65]. In fact, most of the 
interesting questions remain unanswered about how and where 
learning occurs in the neural substrate, and how learning 
produces all the effects and capabilities observed in the brain. 

There are also many related questions as to the relationships 
between learning, instinct, imprinting, and the evolution of 
behavior in individuals and species. 

XVIII. CONCLUSION 

The theory of intelligence presented here is only an outline. 
It is far from complete. Most of the theorems have not 
been proven. Much of what has been presented is hypothesis 
and argument from analogy. The references cited in the 
bibliography are by no means a comprehensive review of 
the subject, or even a set of representative pointers into the 
literature. They simply support specific points. A complete 
list of references relevant to a theory of intelligence would fill 
a volume of many hundreds of pages. Many important issues 
remain uncertain and many aspects of intelligent behavior are 
unexplained. 

Yet, despite its incomplete character and hypothetical nature, 
the proffered theory explains a lot. It is both rich and self 
consistent, but more important, it brings together concepts 
from a wide variety of disciplines into a single conceptual 
framework. There is no question of the need for a unifying 
theory. The amount of research currently underway is huge, 
and progress is rapid in many individual areas. Unfortunately, 
positive results in isolated fields of research have not coalesced 
into commensurate progress toward a general understanding of 
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the nature of intelligence itself, or even toward improved abil- 
ities to build intelligent machine systems. Intelligent systems 
research is seriously impeded because of the lack of a widely 
accepted theoretical framework. Even a common definition of 
terms would represent a major step forward. 

The model presented here only suggests how the neural 
substrate could generate the phenomena of intelligence, and 
how computer systems might be designed so as to produce 
intelligent behavior in machines. No claim is made that the 
proposed architecture fully explains how intelligence actually 
is generated in the brain. Natural intelligence is almost cer- 
tainly generated in a great variety of ways, by a large number 
of mechanisms. Only a few of the possibilities have been 
suggested here. 

The theory is expressed almost entirely in terms of explicit 
representations of the functionality of BG, WM, SP, and VJ 

modules. This almost certainly is not the way the brains of 
lower forms, such as insects, generate intelligent behavior. 
In simple brains, the functionality of planning, representing 
space, modeling and perceiving entities and events is almost 
surely represented implicitly, embedded in the specific con- 
nectivity of neuronal circuitry, and controlled by instinct. 

In more sophisticated brains, however, functionality most 
likely is represented explicitly. For example, spatial informa- 
tion is quite probably represented in world and egosphere 
map overlays, and map pixels may indeed have frames. 
One of the principal characteristics of the brain is that the 
neural substrate is arranged in layers that have the topological 
properties of maps. Output from one layer of neurons selects, 
or addresses, sets of neurons in the next. This is a form a 
indirect addressing that can easily give rise to list structures, 
list processing systems, and object-oriented data structures. 
Symbolic information about entities, events, and tasks may 
very well be represented in neuronal list structures with the 
properties of frames. In some instances, planning probably is 
accomplished by searching game graphs, or by invoking rules 
of the form IF (S)/THEN (P). 

Implicit representations have an advantage of simplicity, 
but at the expense of flexibility. Implicit representations have 
difficulty in producing adaptive behavior, because learning 
and generalization take place only over local neighborhoods 
in state-space. On the other hand, explicit representations 
are complex, but with the complexity comes flexibility and 
generality. Explicitly represented information is easily modi- 
fied, and generalization can take place over entire classes of 
entities. Class properties can be inherited by subclasses, entity 
attributes can be modified by one-shot learning, and small 
changes in task or world knowledge can produce radically al- 
tered behavior. With explicit representations of knowledge and 
functionality, behavior can become adaptive, even creative. 

This paper attempts to outline an architectural framework 
that can describe both natural and artificial implementations of 
intelligent systems. Hopefully, this framework will stimulate 
researchers to test its hypotheses, and correct its assumptions 
and logic where and when they are shown to be wrong. The 
near term goal should be to develop a theoretical model with 
sufficient mathematical rigor to support an engineering science 
of intelligent machine systems. The long term goal should be 

a full understanding of the nature of intelligence and behavior 
in both artificial and natural systems. 
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