
International Conference on Computer Systems and Technologies - CompSysTech’09

Outline of RISC-based Core for Multiprocessor
on Chip Architecture Supporting Moving Threads

Jani Paakkulainen, Jari-Matti Mäkelä, Ville Leppänen and Martti Forsell

Abstract: Programming multicore systems is currently considered very difficult. One reason is that
those are mostly constructed from the hardware point of view. Many of the processor core design solutions
in contemporary constructions emphasize execution speed of a single thread. Since the memory access
delay is the real bottleneck, such techniques often aim at maximizing cache hits by programmer guided
locality of memory references and prefetching memory locations, etc.

In this paper, we consider constructing processor core solutions that support easy-to-use programming
approach based on the PRAM model. Specifically, we consider a processor core design of a multicore
system, where the aim is to amortize the memory access delays by having multiple simultaneous executable
software threads per each processor core. The core switches the executed extremely light-weight thread at
each step, and thus the core can wait for pending memory requests to complete without any penalty (as long
as it has non-blocked threads). Moreover, we consider the core to support moving threads paradigm instead
of traditional moving data paradigm. We present an outline of such a processor core architecture, where we
change the traditional pipelined execution model of RISC.

Key words: Moving Threads, Multiprocessor on Chip Architecture, Multicore on Chip, Parallel
Random Access Machine

1 INTRODUCTION
Multicore based architectures have become the basic contemporary solution for

processors, since the increasing of clock frequencies seems to approach its end (mainly
due to heating problems). Although the processor manufacturing industry can construct
various kinds of multicore architectures, their programmability has been seen as a major
problem for several years now. Many authors and institutions have called for approaches
supporting better programmability. Considering programming, the efficiency has often
required the programmer to explicitly map data and parallel threads into the physical
memories and cores of the underlying parallel computer. It is considered very difficult to
maintain and express such dynamic mapping efficiently and correctly using programming
language constructs and e.g. guiding the functionality of caches as in the Cell processor.

In our MOTH1 (Moving threads realization study) project we have considered an
approach for multicore on chip architectures, where the programming model is based on
the classical Parallel Random Access Machine (PRAM) [6],[7] model. The PRAM
approach abstracts away all kinds of mapping problems by providing a shared memory
abstraction with unit (amortized) access cost. It also provides flexible expression of
threads as well as strong synchronous execution of different kinds of threads. These
properties together provide easy-to-program approach for programming multicore
systems, but at the same time ask for efficient implementations of the PRAM approach.

SB-PRAM project [1],[9] provided one implementation of the PRAM in the
multicomputer context. Recently, such PRAM implementations have been provided in the
multicore on chip context by Forsell [3],[4] (Eclipse architecture) and by Vishkin et al [14]
(Paraleap architecture).

We have invented a completely new kind of approach for mapping the computing of
an application to MP-SOC architectures [5] (some preliminary ideas appear in [10],[11]).
Instead of moving data read and write requests, we move extremely lightweight threads
between the processor cores. Each processor core is coupled with memory module and
parts of each memory module together form a virtual shared memory abstraction.
Applications are written using a high-level language based on shared memory. As a
consequence of moving threads instead of data we avoid all kinds of cache coherence

1 This research has been funded by the Academy of Finland project numbers 128729 and 128733.

International Conference on Computer Systems and Technologies - CompSysTech’09

problems. Another advantage is flexible and efficient creation of new threads. In our
architecture, the challenge of having efficient implementation of an application reduces to
mapping the used data so that the need to move threads is balanced with respect to the
bandwidth of the communication lines. Writing an application to use lots of threads is
rather easy (due to rich literature of parallel algorithms using shared memory abstraction).
This method also eliminates the need for separate reply network and introduces a natural
way to exploit locality without sacrificing the synchronicity of the PRAM model.

Besides the PRAM approach, moving threads or thread migration has also been
studied e.g. in [8],[2],[13].

Next in Section 2 we consider the moving threads approach in more detail. In
Section 3, we provide our main contribution, which is an architecture outline for processor
core supporting moving threads in the multicore on chip context. We also provide some
preliminary cost evaluation of our architecture. Finally, conclusions are drawn in Section 4.

2 MOVING THREADS APPROACH
In the moving threads approach, a multicore system consists of P processor cores

that are connected to each other with some sparse network [10], e.g. with a butterfly, a
sparse mesh, a mesh of tree, etc. While the sparse networks have different properties
concerning scalability, physical connection length and degree of nodes, they all share a
property: a P-core sparse network can accept (P) new messages per step and deliver

(P) messages to their targets per step. The delivery of a message involves a delay
comparable with the diameter of the network, and can be non-modest. In traditional
approaches, the messages correspond to read or write requests and replies, whereas in
the moving threads approach, a message moves a thread consisting of a program counter,
an id number, and a small set of registers. The messages in the moving threads approach
are longer, but respectively there is no need for a network deliver the replies of read
requests.

A cache-based access to the memory system is provided via each processor core.
However, each core sees only a unique fraction of the overall memory space, and thus
there are no cache coherence problems and when a thread makes a reference out of the
scope of the core's memory area, the referencing thread must be moved to the core that
can access that part of the main memory. Besides a cache to access the data memory,
each core also has another cache for program instructions.

Each of the cores has (X) threads to execute, and the threads are independent of
each other — i.e. the core can take any of them and advance its execution. By taking an
instruction cyclically from each thread, the core can wait for memory access taking a long
time (and even tolerate the delays caused by moving the threads). The key to hide the
memory (as well as network and other) delays is that the average number of threads X per
core must be higher than the expected delay of executing a single instruction from any
thread.

In this paper we assume that the program's address space is statically distributed into
the memories accessible via cache modules attached to each core. The advantage of this
is that the programmer can have influence on the physical allocation of data — and
consequently on the physical allocation of the work of each thread on the processor-
storage modules. Careful design of the allocation of actual data used in the program, thus
allows the programmer to balance the work-loads and to minimize the movement of data.

For the creation and termination of threads in the programming language level, we
take the approach of supporting only implicit termination as well as creation of threads. We
do not consider Java-like explicit declaration of threads as first-class objects as a feasible
solution. In practice, we have a parallel loop-like construction which creates threads with
logical id-numbers in the interval [low, high] and each threads is running the same program
block. The code in the program block can of course depend on the logical processor id-

International Conference on Computer Systems and Technologies - CompSysTech’09

number. The id-numbers are program controlled, but the runtime system expects them to
be unique at anytime during the program execution. We also consider supporting nested
thread creations. Each thread faces an implicit termination at the end of the program block
(which was defined in the thread creation statement).

3 ARCHITECTURE FOR A CORE OF RISC BASED-PROCESSOR
3.1 General pipeline structure
A thread based processor core is modified from the well-known basic RISC

architecture [12]. The conventional textbook model of RISC architecture consists of five
pipeline stages: fetch, decode, execute, memory access and write back. A typical
traditional single thread core contains sequencer (program counter), arithmetic logic unit
and memory units (typically register file, data and instruction cache memories). The thread
processor core architecture has thread table and selector unit, register file, arithmetic logic
unit and two cache memories respectively. The major differencies compared to the basic
architecture are the thread table and selector structure, large register file and the way
instructions are fetched from the instruction cache memory. Another remarkable difference
concerns a data memory access and an address space handling. Number of the pipeline
stages (see Figure 1) is corresponding to the classical textbook model, but functional
model of the pipeline is reorganised and extended from the original setup.

The 32-bit integer part of the DLX-type instruction set is considered to be a starting
point of the thread processor design. Only the integer part of the pipeline is modelled in an
initial architecture scheme. Although a pipeline for the integer computations is more
regular and easier to design than such for floating point operations, it is possible to
enhance the processor architecture to handle floating point calculations with needed
extension of the hardware later. A couple of special instructions is included in the
instruction set to fulfil the PRAM approach requirements.

Instead of one program counter the thread processor core has many, for example
256, parallel program counters. And for each thread there is a dedicated program counter
with additional information fields. All program counters and information fields are ordered
in a table form. Each entry contains present instruction address (program counter value),
prefetched instruction itself (32-bit instruction), thread identity number (id) and thread state
fields. In every cycle one executable entry is selected and fetched for further processing in
the processor's pipeline.

Figure 1: The pipeline stages of the processor core.

3.2 Execution stages
A thread pipeline is organised in a similar way as the classical five stage pipeline of

the RISC processor. Each stage is separated with extended pipeline registers. These
registers contain extra fields that are reserved to store thread's id number and program
counter value. Both fields are carried through all pipeline stages.

In the first phase of the pipeline the selection control of the processor finds out the
next instruction. The control points previously selected table entry and the next executable
instruction is chosen based on the thread id numbers and the state of these threads. After

International Conference on Computer Systems and Technologies - CompSysTech’09

a suitable entry is located, command, id and program counter value of selected thread are
forwarded to the decode stage.

A decode phase operates with the same instruction as a normal pipeline. The
operation code (opcode) bits indicate command type under decoding and depending on
the opcode the rest of the instruction bits are connected to a desired path. The important
part of this phase is the thread id number, which is used to select correct set of registers
from the register file. The number of the register groups is equal to the maximum number
of threads in the processor core, meaning that every thread has its own dedicated set of
registers. A program counter value is updated in this stage by adding four to the current
value (memory addresses are aligned). In the case of a jump instruction a new value is
concatenated from updated program counter value and instruction bits.

Figure 2: A Simplified data path model without control logic.

An arithmetic logic unit executes demanded operations in the next pipeline phase.
The terms of branch instructions are tested in this stage and the correct address for the
next instruction is solved. The result of ALU operations and the next program counter
value are sent forward and the thread id is passed to the next pipeline registers.

A memory access stage is heavily extended from the conventional model. The data
memory access operates with small preloaded data buffer, assumed that necessary data
is available in this phase almost in every case due to predecode method. Also the
instruction fetch is carried out in this step parallel to the data access. The feeding pipeline
registers contain the final program counter value for the next instruction and a new
command is fetched from that address. If an instruction reference request caused
instruction cache miss, thread's status would be changed by processor control. A data
request should not cause any data miss, but in this rare event, thread's status would be
fixed to the corresponding value. Thread's id points the target entry, where fetched
instruction is stored in the end of the next stage.

A pipeline is finalized by write back and predecode stage. The write back part saves
the result of arithmetic and logic operations and data memory requests. The correct
register bank and the target register is decoded using both thread's id and passed
destination register value. A predecode part detects whether just fetch instruction is load or
store type of command, and in the case of memory related opcodes the data address is
evaluated with a separate adder structure. The adder calculates final data address and

International Conference on Computer Systems and Technologies - CompSysTech’09

verifies that the requested address is inside the processor’s address space. When the
address is between limits, the address request is transmitted to the data cache control, but
if the address belonged to an address space of another processor core, a thread moving
process would begin by the processor control. In the end of each cycle, the new program
counter value and the instruction are stored in a table entry pointed by thread id. The
thread's status is updated depending on the type of predecoded instruction.

3.3 Handling of threads
The indexed thread table is a key element of the core execution control. A table

memory has n entries that indicate the maximum number of parallel threads in each
processor core. The thread id is concatenated from the core id bits and a row index of the
table. Each row has three fields; present program counter value (initially 32-bit), thread
status (2-bit) and preloaded instruction (32-bit).

A status field has four possible values; free, run, wait and sync. When processor
starts a new thread, the thread is placed in the next line with free status counted from the
last selected entry. If thread's status is run, a selection unit can send out the thread to the
pipeline. When the thread is fetched to an operation, thread's status is switched to wait
state by the processor control. A status is wait until instruction is gone through all required
pipeline stages. With jump, branch, arithmetic and logic commands, the thread status is
updated back to run state after write back and predecode stage. With data access
instructions, the status is wait, until the data cache control indicates hit. In the case of data
address being outside of processor core's address space after predecode stage and
address generation, the thread is moved from the core and thread's status value stays in
wait mode until all values related to the thread are sent out to the new target processor
and finally reserved entry is released. The thread is ended with a special instruction and
after the final stage of command execution, the thread entry is released. If the fetch next
stage failed with instruction fetch, thread's status would be kept wait until the instruction
cache is updated. A sync status is reserved for future extension.

3.4 Memory Systems
A processor system has the main memory behind a network rooted at the data

caches. A minimum access latency through the network is dozens of cycles and therefore
each processor core has both the local instruction memory and data memories. The
access delay of the local memories is estimated to be one or two cycles. Naturally, the
local and global latencies depend on final implementation.

The local instruction memory is implemented by using typical one level cache
memory structure. A direct mapping or two-way associative block replacement method
fulfil operational requirements of the instruction cache. The executable threads are
lightweight and multiple treads exploit the same instruction code sequence in parallel with
each other. For this reason local cache memory is used efficiently and communication
between the instruction cache memory and the main memory is expected to be lower than
in the case of single thread core with the same code sequence.

The data memory model of the processor is organised in two levels. The nearest part
of the pipeline consists of small buffer memory module, which has only one slot for each
thread. In memory access stage, data is located by thread id and read from that position.
When data write occurs, write-through method is used to update the data cache and the
data buffer.

The lower part is set-associative data cache memory. A data address is generated
and relayed to a cache memory in predecode phase. When the data address is a cache
hit, the asked data is transferred immediately and thread's status is changed to run by the
main control. Whereas, if the result of data access was cache miss, the thread would be
pending as long as the required data block was on the way from the main memory. Long
data latency for one entry associated with this situation will be masked from the individual
thread, if the total executable thread count in processor core is high enough.

International Conference on Computer Systems and Technologies - CompSysTech’09

4 CONCLUSIONS
We have proposed a RISC-based architecture for a processor core supporting the

moving threads approach. Among the contributions is a new kind of pipelined execution
model for multithreaded RISC-based architecture. Our architecture models each executed
thread as a register set, an execution state information, a program counter, and a core-
related unique id number. As the idea is to support hundreds (if not more) threads per
core, the thread data is arranged as id number indexed register sets that can be efficiently
accessed with the execution pipeline.

REFERENCES
[1] P. Bach, M. Braun, A. Formella, J. Friedrich, T. Grun, C. Lichtenau. “Building the 4

processor SB-PRAM prototype”. In Proc. of the 30th Hawaii International Conference on System
Sciences: Advanced Technology Track - Vol. 5, 1997.

[2] V. Chaudhary and H. Jiang, Techniques for Migrating Computations on the Grid, In
Engineering the Grid: Status and Perspective, Editors: Beniamino Di Martino, Jack Dongarra,
Adolfy Hoisie, Hans Zima, and Laurence T. Yang, American Scientific Publishers, January 2006,
399-415.

[3] M. Forsell. “A Scalable High-Performance Computing Solution for Network on Chips.”
IEEE Micro 22(5) (September-October 2002), pp. 46-55.

[4] M. Forsell, V. Leppänen. “High-Bandwidth On-Chip Communication Architecture for
General Purpose Computing.'' Proceedings of 9th World Multi-Conference on Systems,
Cybernetics and Informatics, WMSCI'2005, pages 1--6, 2005.

[5] M. Forsell and V. Leppänen. “Moving Threads: A Non-Conventional Approach for
Mapping Computation to MP-SOC.” In Proceedings of the 2007 International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA'07), pages 232-238, Jun
2007.

[6] S. Fortune, J. Wyllie. “Parallelism in Random Access Machines”. In Proc. 10th ACM
Symposium on Theory of Computing, pp 114-118, 1978.

[7] J. J'aj'a. An Introduction to Parallel Algorithms. Addison Wesley, 1992.
[8] S. Jenks and J-L. Gaudiot, A Multithreaded Runtime System with Thread Migration for

Distributed Memory Parallel Computing, In Proceedings of High Performance Computing
Symposium, 2003, Advanced Simulation Technologies Conference, Orlando, FL, 2003,

[9] J. Keller, C. Kessler, and J. Träff. Practical PRAM Programming. Wiley, 2001.
[10] V. Leppänen: Studies on the Realization of PRAM, PhD thesis, University of Turku,

Department of Computer Science, TUCS Dissertation 3, November, 1996.
[11] V. Leppänen. “Balanced PRAM Simulations via Moving Threads and Hashing.” Journal

of Universal Computer Science, 4:8, 675--689, 1998.
[12] D. A. Patterson and J. L. Hennessy. Computer Organization and Design; The

Hardware/Software Interface, third edition, Morgan Kaufmann, San Francisco, 2005
[13] K.A. Shaw and W.J. Dally, Migration in Single Chip Multiprocessors, Computer

Architecture Letters, Vol. 1, No. 3, Nov. 2002, pp. 2-5.
[14] X. Wen, U. Vishkin. “FPGA-based prototype of a PRAM-On-Chip processor.” Computer

Frontiers 2008, May 5-7, 2008.

ABOUT THE AUTHORS
Researcher Jani Paakkulainen, MSc, Department of Information Technology,

University of Turku, Finland, E-mail: jani.paakkulainen@utu.fi
Researcher Jari-Matti Mäkelä, BSc, Department of Information Technology,

University of Turku, Finland, E-mail: jmjmak@utu.fi
Adjunct Professor Ville Leppänen, PhD, Department of Information Technology,

University of Turku, Finland, E-mail: ville.leppanen@it.utu.fi
Chief Research Scientist Martti Forsell, PhD, Platform Architectures Team, VTT Oulu,

Finland, E-mail: martti.forsell@vtt.fi

mailto:jani.paakkulainen@utu.fi
mailto:jmjmak@utu.fi
mailto:ville.leppanen@it.utu.fi
mailto:martti.forsell@vtt.fi

