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Outlining where humans live, the 
World Settlement Footprint 2015
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Human settlements are the cause and consequence of most environmental and societal changes 
on Earth; however, their location and extent is still under debate. We provide here a new 10 m 
resolution (0.32 arc sec) global map of human settlements on Earth for the year 2015, namely the 
World Settlement Footprint 2015 (WSF2015). The raster dataset has been generated by means of an 
advanced classification system which, for the first time, jointly exploits open-and-free optical and radar 
satellite imagery. The WSF2015 has been validated against 900,000 samples labelled by crowdsourcing 
photointerpretation of very high resolution Google Earth imagery and outperforms all other similar 
existing layers; in particular, it considerably improves the detection of very small settlements in 
rural regions and better outlines scattered suburban areas. The dataset can be used at any scale of 
observation in support to all applications requiring detailed and accurate information on human 
presence (e.g., socioeconomic development, population distribution, risks assessment, etc.).

Background & Summary
Scienti�c investigations related to the human presence on Earth strongly rely on the availability of accurate 
and reliable information on the extent and location of settlements. In this framework, since early 1980s satellite 
imagery has been used as primary source to outline settlements at global scale1,2 and - along with technical, 
methodological and computational advances - their detail evolved from low resolution (1 km - 500 m) to medium 
resolution (100 m) and, since the last few years, to high resolution (30–10 m).

Nowadays, satellite-based settlement extent maps are widely used for many scienti�c purposes. For instance, 
in global urbanization analyses3 they are used to de�ne urban areas, as well as characterize their morphology 
and assess the correlation with socio-economic variables. In spatial demography4, the location of settlements 
represents a fundamental spatial covariate to model the displacement of people, whereas in land-use science5,6 
settlement extent is exploited as key input for calibrating land-use change models.

In the last few years, di�erent high resolution layers outlining the global settlement extent have been presented 
in the literature7–13. Among these, the three most largely employed include:

•	 the Global Urban Footprint – GUF7 (available at 12 m resolution and referring to the year 2012) generated by 
the German Aerospace Center (DLR) from 3 m resolution TerraSAR-X/TanDEM-X radar imagery;

•	 the 2014 instance of the Global Human Settlement Layer – GHSL8, generated at 30 m resolution by the Joint 
Research Center (JRC) of the European Commission from Landsat-8 optical imagery;

•	 the arti�cial surfaces mask of the GLOBELAND30 – GLC309 (available at 30 m resolution and referring to the 
year 2010), generated by the National Geomatics Center of China from Landsat-5/7 optical imagery.

Among these, the GUF outperforms the other two layers13, which show severe under- and over-estimation in 
large parts of the world. Nevertheless, the GUF itself still exhibits two major drawbacks. On the one hand, it has 
been generated (like the GHSL and the GLC30) from single-date scenes, which are sometimes strongly a�ected 
by the speci�c acquisition conditions, hence resulting in misclassi�cation errors. On the other hand, commercial 
imagery has been employed, which prevents a systematic update due to its high costs. Moreover, the exclusive use 
of optical or radar imagery alone represents an additional limitation since these two types of data are sensitive to 
di�erent structures on the ground (i.e., arti�cial surfaces and built-up areas, respectively). For instance, bare soil 
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and sand tend to be misclassi�ed as settlements using optical imagery, while this does generally not occur with 
radar data; on the contrary, complex topography areas or forested regions can be wrongly categorized as settle-
ments with radar imagery, whereas normally this does not occur using optical data.

To overcome these issues, we have developed a novel and robust methodology to reliably outline settlements 
which jointly exploits, for the �rst time, open-and-free multitemporal optical and radar data. In particular, the 
rationale is that the temporal dynamics of human settlements over time are di�erent than those of all other 
non-settlement classes. First, we gather all the images acquired over a region of interest within a target period 
during which we do not expect considerable changes (e.g., one year). Next, we extract key temporal statistics 
(i.e., temporal mean, minimum, maximum, etc.) of: (i) the original backscattering value in the case of radar data; 
and (ii) di�erent spectral indices (e.g., vegetation index, built-up index, etc.) derived a�er performing cloud/
cloud-shadow masking in the case of optical imagery. A�er automatically extracting candidate training samples 
for the settlement and non-settlement class, binary classi�cation based on advanced machine learning is sepa-
rately applied to the optical- and radar-based temporal features. Finally, the two outputs are properly combined 
together.

Once tested its high robustness on a variety of study sites, the method has been employed to generate the 
World Settlement Footprint (WSF) 2015, a 10 m resolution (0.32 arc sec) binary mask outlining the extent of 
human settlements globally derived by means of 2014–2015 multitemporal Sentinel-1 (S1) radar and Landsat-8 
optical imagery (of which ~107,000 and ~217,000 scenes have been processed, respectively). �e WSF2015 is 
extremely accurate and reliable and outclasses all other mostly employed similar datasets. �is has been quanti-
tatively assessed through an unprecedented validation exercise based on 900,000 ground-truth samples collected 
by crowdsourcing photointerpretation and carried out in collaboration with Google. To this purpose a statistically 
robust and transparent protocol has been de�ned following recommended state-of-the-art practices.

Methods
In this Section, we describe the novel methodology developed for outlining human settlement extent based on the 
joint use of multitemporal radar and optical imagery. �e corresponding block scheme is reported in Fig. 1. First, 
both S1 and Landsat-8 data are pre-processed and suitable temporal statistics and texture features are computed. 
�en, training points for the settlement and non-settlement classes are derived by jointly exploiting both radar- 
and optical-based temporal statistics (along with additional ancillary information). Classi�cation is performed 
separately for the two types of data by means of an ensemble of Support Vector Machines (SVM) classi�ers. A 
�nal post-classi�cation phase is dedicated to properly combine the Landsat- and S1-based classi�cation maps and 
automatically identifying and deleting potential false alarms.

Each of the abovementioned steps is described into detail in the following. Next, the WSF2015 layer is pre-
sented along with all relevant details concerning its implementation.

Preprocessing and feature extraction. As concerns S1 data, we take into account imagery acquired in 
Interferometric Wide swath (IW) mode (i.e., S1 main mode over land with 250 km swath). In particular, we con-
sider High-Resolution Level-1 Ground Range Detected (GRD) products available at 10 m resolution.

All scenes acquired over the given study area in the target timeframe are �rst gathered and then pre-processed 
by means of the S1 Toolbox14. Speci�cally, this task includes:

Fig. 1 Block scheme. Schematization of the work�ow implemented for outlining human settlement extent from 
Sentinel-1 (S1) radar and Landsat-8 optical multitemporal satellite imagery.
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•	 orbit correction (for improving the geocoding);
•	 thermal noise removal (for removing dark strips near scene edges with invalid data);
•	 radiometric calibration (for computing backscattering intensity using sensor calibration parameters in the 

GRD metadata);
•	 Range-Doppler terrain correction (for removing the brightness and geometric distortions occurring in cor-

respondence of elevated and sloping terrain);
•	 conversion to decibel (dB) values (for reducing the very high dynamic range of data).

Scenes acquired in ascending and descending pass are treated separately due to the strong in�uence of the 
viewing angle in the backscattering of built-up areas. Furthermore, experimental analyses assessed that the joint 
employment of VV/VH imagery does not provide any considerable improvement with respect to the solely use of 
VV data; accordingly, VH data are disregarded.

As pointed out above, the rationale of the proposed approach is that given a series of multi-temporal images 
for a study area, the corresponding temporal dynamics of human settlements are sensibly di�erent than those 
of all other non-settlement classes. For instance, in the case of radar data the backscattering temporal mean of 
built-up areas (due to double bounce re�ection) is higher than that of forest areas (which might result in high 
backscattering in one/few acquisitions due to speci�c conditions, but in general exhibit lower values). To prop-
erly characterize this behavior, for each pixel we compute 5 key temporal statistics, namely the backscattering 
temporal maximum, minimum, mean, standard deviation, and mean slope (i.e., de�ned as the average absolute 
di�erence between consecutive items of the temporal series).

Texture information is also extracted to ease the identi�cation of lower-density residential areas mostly char-
acterized by single houses surrounded by vegetation (which are generally challenging to detect due to their lower 
backscattering values with respect to that of denser urban areas). To this purpose, we compute the coe�cient of 
variation (COV) of the temporal mean backscattering, which is de�ned for each pixel as the ratio between the 
local standard deviation and the local mean calculated over a NxN pixel spatial neighborhood. In particular, the 
COV represents an estimate of the local image heterogeneity. Here, in the light of the 10 m spatial resolution of 
the considered S1 data, a neighborhood of 5 × 5 pixels proved to be an e�ective choice.

Overall, both for VV ascending/descending passes, the �nal S1 feature stack includes 7 features, namely: the 
5 abovementioned temporal statistics and the COV derived from the backscattering temporal mean, plus the 
number of available scenes per pixel.

In the case of Landsat-8, imagery taken at 30 m resolution by the Operational Land Imager (OLI) sensor is 
used. In particular, we only consider scenes acquired in the target period over the study area with cloud cover 
lower than 60% (as reported in the corresponding metadata). Indeed, we experienced that further raising this 
threshold o�en results in accounting for images with non-negligible misregistration error. Data are then cali-
brated and Top-Of-Atmosphere (TOA) radiance is extracted.

A mask is then generated for each image to exclude pixels a�ected by cloud and cloud shadows from the 
analysis. To this purpose the Function of mask (FMask) algorithm is applied given its assessed e�ectiveness in 
the scienti�c community15. Besides pixels covered by clouds and cloud shadows, the algorithm also identi�es 
snow, clear land and clear water pixels; in particular, this is done by jointly analyzing the Normalized Di�erence 
Vegetation Index (NDVI), the Normalized Di�erence Snow Index (NDSI), and the Brightness Temperature for 
the given scene.

A thorough experimental analysis has been carried out to identify a set of spectral indices highly suitable 
for an e�ective delineation of human settlements; in particular, the �nal list and corresponding formulas are 
reported in Table 1. �e Normalized Di�erence Built-Up Index (NDBI)16 has been applied to extract built-up 
areas in many studies17,18; nevertheless, due to the use of the �rst short-wave infrared (SWIR) band (i.e., OLI band 
6) this index is also sensitive to vegetation with low water content19, which exhibits values comparable to those 
of settlement areas. Accordingly, the Normalized Di�erence Middle Infrared index (NDMIR) and the NDVI 
are applied to overcome this issue. On the one hand, the NDMIR is computed using both SWIR bands (i.e., OLI 
bands 6 and 7), thus being sensitive to vegetation moisture20. On the other hand, the NDVI21 has been widely 
employed in a variety of land cover applications as well as in the context of settlement extent classi�cation22,23. 
Moreover, the Modi�ed Normalized Di�erence Water Index (MNDWI)24 is also employed to discriminate water 
from settlement areas. Such index enhances the performance of the NDWI25 by replacing the MIR with the NIR 
band (i.e., OLI band 5), which leads to a reduction of noise from built-up areas. In addition to the previous, two 
other spectral indices have been included for improving the discrimination between settlement areas and bare 

Spectral index Formula

Normalized Di�erence Built-Up Index (NDBI) (SWIR1-NIR)/(SWIR1 + NIR)

Modi�ed Normalized Di�erence Water Index (MNDWI) (Green-NIR)/(Green + NIR)

Normalized Di�erence Vegetation Index (NDVI) (NIR-Red)/(NIR + Red)

Normalized Di�erence Middle Infrared (NDMIR) (SWIR1-SWIR2)/(SWIR1 + SWIR2)

Normalized Di�erence Red Blue (NDRB) (Red-Blue)/(Red + Blue)

Normalized Di�erence Green Blue (NDGB) (Green-Blue)/(Green + Blue)

Table 1. Landsat-8 spectral indices. Spectral indices extracted from Landsat-8 OLI imagery [Blue = band 2; 
Green = band 3; Red = band 4; Near Infrared (NIR) = band 5; Short-wave Infrared (SWIR) 1 = band 6; Short-
wave Infrared (SWIR) 2 = band 7].
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soil/bare rocks; speci�cally, these are the Normalized Di�erence Red Blue (NDRB) and Normalized Di�erence 
Green Blue (NDGB) indices26.

To characterize the generally stable temporal dynamics of the settlement class with respect to the other 
non-settlement classes, the same set of 5 key temporal statistics used in the case of S1 data are extracted for 
each of the 6 Landsat-8 spectral indices presented above. Moreover, to improve the detection of rural and sub-
urban areas (mostly characterized by a low share of built-up areas and a high share of vegetation, thus resulting 
in a heterogeneous environment compared to denser built-up areas), also here additional texture features are 
extracted. In particular, for each of the derived 6 temporal mean indices, we computed the corresponding COV in 
a neighborhood of 3 × 3 pixels, which empirically proved the most e�ective choice in the light of the 30 m spatial 
resolution of Landsat data.

�e �nal Landsat-8 feature stack includes 37 bands, namely: temporal maximum, minimum, mean (plus the 
corresponding 3 × 3 COV), standard deviation and mean slope for NDBI, NDVI, MNDWI, NDMRI, NDRG and 
NDGB, along with the number of available cloud/cloud-shadow-free acquisitions per pixel.

In Fig. 2, examples are given for Ho Chi Minh (Vietnam), Istanbul (Turkey), Johannesburg-Pretoria (South 
Africa), Karachi (Pakistan), Lagos (Nigeria), and Moscow (Russia). Speci�cally, in addition to reference Google 
Earth imagery we display for each city: (i) a RGB color composition obtained combining the Landsat-8 temporal 
mean NDBI (red), NDVI (green) and MNDWI (blue); (ii) the S1 VV backscattering temporal mean. �e same 
visualization parameters have been consistently applied to all 6 sites.

Yet by simple visual inspection, it is possible to appreciate the advantage of jointly employing radar- and 
optical-based temporal statistics. In particular, even if it is not feasible to properly delineate settlements by solely 
using radar data, it is clear how optical imagery helps overcoming this issue and vice-versa. For instance, in the 
case of Lagos, the backscattering is counterintuitively low in several highly urbanized areas; nevertheless, this 
occurs due to the extremely high building density (mostly informal housing) which prevents the typical radar 
double bounce re�ection. Instead, when employing Landsat imagery the settlement outline is clearly distinguish-
able. On the contrary, optical-based temporal features are o�en not e�ective alone in arid regions - as in Karachi 
- where bare areas tend to be misclassi�ed as settlements. Nevertheless, these can be e�ectively outlined by means 
of S1 temporal statistics.

Training points selection. Reliably identifying training points for the settlement and non-settlement class 
proved being the most critical task of the whole classi�cation system; indeed, a training set including a consistent 
number of mislabeled samples would most likely result in poor performances. To this purpose, we designed a 
strategy which jointly exploits the temporal statistics computed for both S1 and Landsat data, along with addi-
tional ancillary information. In particular, any given sample x in the study area is labelled as potentially settlement 
or non-settlement if it satis�es all the corresponding conditions listed in Table 2 (where di�erent thresholds have 
been determined based on extensive empirical analysis against Google Earth VHR imagery carried out over 450 
test sites of 1 × 1 degree size distributed all over the world).

Concerning optical data, we generally observed that most of the pixels can be e�ectively outlined as settlement/
non-settlement by jointly thresholding the corresponding NDBI, NDVI, and MNDWI temporal mean features. 
Nevertheless, being all 3 spectral indices correlated to the presence of vegetation, absolute threshold values are not 
globally e�ective as vegetation strongly varies depending on climate. To overcome this drawback, we took into 
account the well-established Köppen Geiger scheme27 and for each climate type we determined speci�c thresholds 
for outlining both candidate settlement and non-settlement training samples. Referring to Table 2, KG x( )  denotes 
the Köppen-Geiger classi�cation for the given pixel x. A KG x( ( ))Smin  and A KG x( ( ))Smax  denote minimum and 
maximum thresholds, respectively, for the temporal mean Ā x( )  of the spectral index  A, A∈{NDBI,NDVI,MNDW
I}  defined to determine whether x is a candidate settlement training sample. Similarly, A KG x( ( ))NSmin  and 
A KG x( ( ))NSmax  denote minimum and maximum thresholds defined to determine whether x is a candidate 
non-settlement training sample. Furthermore – in the reasonable hypothesis that the higher is the number of cloud/
cloud-shadow free acquisitions, the more robust are the corresponding temporal statistics – we exclude all pixels 
whose number of Landsat-8 clear observations (i.e., NLC8 (x)) is lower than 5. Since the Köppen Geiger classi�cation 
includes 30 di�erent climate types, overall we determined 360 thresholds on the three indices.

Regarding radar data, we expect the temporal mean backscattering of most settlement samples to be sensibly 
higher than that of all other land-cover classes. Accordingly, samples whose temporal mean backscattering (either 
in the case of data acquired in ascending σ x( )A

0  and descending σ x( )D
0  pass) is:

•	 lower than -7 dB are not eligible to be labelled as settlement training samples (if the number of ascending/
descending scenes used for computing the temporal statistics N x( )S A1 /N x( )S D1  is higher than or equal to 5);

•	 greater than -11 dB are not eligible to be labelled as non-settlement training samples (if the number of ascend-
ing/descending scenes used for computing the temporal statistics N x( )S A1 /N x( )S D1  is higher than or equal to 5).

It is worth noting that in complex topography regions: (i) radar data o�en show high backscattering compara-
ble to that of settlements; and (ii) bare rocks are present, which o�en exhibit a behavior similar to that of built-up 
areas in the Landsat-based temporal statistics. Accordingly, to exclude these from the analysis, we mask all pixels 
whose slope28 (i.e., the angle corresponding to the maximum elevation di�erence between the given pixel and 
its 8 neighbors) is higher than 10 degrees. To this purpose, we employed the Shuttle Radar Topography Mission 
(SRTM)29 Digital Elevation Model (DEM) for latitudes between −60° and +60° and the Advanced Spaceborne 
�ermal Emission and Re�ection Radiometer (ASTER)30 DEM elsewhere.
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Classification. In the light of their proven e�ectiveness and high generalization capabilities, Support Vector 
Machines (SVM)31,32 with Radial Basis Function (RBF) Gaussian Kernel have been chosen for the classi�cation task.

In general, the criteria de�ned in the previous section result in a high number of candidate training points; 
thus, a subset should be sampled to keep the computational burden under control. For instance, a reasonable 
choice when investigating large regions is to subdivide the study area in working units of 1 × 1 degree size; in this 
case, an e�ective strategy proved extracting 500 samples for the settlement and 500 for the non-settlement class.

Fig. 2 Temporal features. Examples for the cities of Ho Chi Minh (Vietnam), Istanbul (Turkey), Johannesburg-
Pretoria (South Africa), Karachi (Pakistan), Lagos (Nigeria) and Moscow (Russia) including: i) Google Earth 
reference imagery; ii) RGB combination of the Landsat-8 temporal mean NDBI (Red), NDVI (Green) and 
MNDWI (Blue); and iii) Sentinel-1 IW GRDH VV temporal mean backscattering.
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�e stacks of Landsat- and S1-based temporal features are classi�ed separately since this proved more e�ective 
than performing a single classi�cation on the merger of the two stacks. In both cases, a grid search with a 5-fold 
cross validation33 approach is employed to identify the optimal values for the learning parameters (i.e., the ones 
expected to provide the best possible discrimination between the settlement and non-settlement classes). �ese 
include γ and C which tune the SVM kernel spread and error penalization, respectively32. In our analyses, we test 
all combinations with = ∈ ≤

≥C i i2 , , 13i 0  and γ = . ⋅ ∈ ≤
+j j j0 1 , , 20.

Since results might vary depending on the speci�c subset of selected training points, as a means to further 
improve the �nal performances and obtain more robust classi�cation maps, we randomly subset 20 di�erent 
training sets and feed an ensemble of as many SVM classi�ers. �en, we apply a majority voting approach34,35 
to handle the resulting maps and each pixel is �nally associated with the settlement class only if it is labeled as 
settlement at least 11 over 20 times.

Post-Classification. A �nal post-classi�cation phase is dedicated to properly combine the Landsat- and 
S1-based classi�cation maps and automatically identifying and deleting false alarms. To this purpose, an updated 
version of the post-editing object-based approach adopted in the production of the GUF layer has been used7, 
which exploits the 9 reference binary datasets (7 global and 2 continental) described in Table 3.

A settlement agreement mask is �rst generated from the combination of 6 reference layers (i.e., DLR-RC, CIL, 
OSM-S, OSM-R, GL30-S, and NLCD), which is labeled as positive only where two or more of these are positive. 
Likewise, a settlement exclusion mask is obtained by combining 3 reference layers (i.e., DLR-RM, GLC30-W, 
GLC30-WL), which is labelled as positive where at least one of these is positive.

Next, segmentation is applied to both Landsat- and S1-based classi�cation maps for categorizing each cluster 
of connected pixels as individual objects; in particular, this is carried out by exploiting contour tracing to iterate 
over an image only once36.

Objects are then removed if:

•	 their extent overlaps for less than 30% the settlement agreement mask and, concurrently, it overlaps for more 
than 30% the settlement exclusion mask (this helps excluding objects wrongly covering complex topography 
regions, water or wetlands);

•	 the zonal mean of the Landsat-based temporal mean NDVI is higher than 0.6 (this is mostly the case of false 
detections in the S1-based classi�cation occurring in correspondence of speci�c types of dense forests);

•	 the zonal mean of the S1 temporal mean backscattering (either computed for scenes acquired with ascending 
or descending pass) is lower than -11 dB (this is mostly the case of false detections in the Landsat-based clas-
si�cation occurring in correspondence of bare soil and sand).

�e �nal classi�cation map is given by the merger of the objects preserved in the Landsat- and S1-based clas-
si�cation maps.

The WSF2015. �e methodology presented above has been applied globally to generate the WSF2015 layer. 
Concerning radar data, pre-processing and feature extraction have been performed for ~107,000 S1 scenes (i.e., 
~51,000 collected with ascending pass and ~56,000 with descending pass) acquired in 2014–2015. In particular, 
this task has been directly supported by Google through its Earth Engine cloud computing platform37.

As regards optical imagery, pre-processing and feature extraction have been performed for ~217,000 Landsat-8 
scenes acquired in 2014–2015 with less than 60% cloud cover and downloaded from US Geological Survey 
(USGS), European Space Agency (ESA) and the Google Cloud Storage. All cloud/cloud-shadow masks have been 
obtained from USGS via the ESPA (Earth Resources Observation and Science (EROS) Center Science Processing 
Architecture) on demand interface which employs a C version of the FMask algorithm. �e resulting dataset, 
for which more than 1.5PB of intermediate products were generated, is referred to as Landsat TimeScan 201538. 
Speci�cally, the whole processing has been carried out at the IT4Innovations Czech supercomputing center 
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Table 2. Training sample de�nition. Criteria applied for outlining candidate settlement and non-settlement 
training samples.
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(Ostrava) in the framework of ESA’s Urban �ematic Exploitation Platform (U-TEP)39 project. Classi�cation has 
been also carried out in the same infrastructure, whereas post-classi�cation activities have been performed in the 
Calvalus system40 available at DLR’s Earth Observation Center.

To e�ectively handle the huge amount of data to process, working units of 1 × 1 degree size have been de�ned 
and the �nal WSF2015 is obtained as a mosaic of ~14 K tiles (where at least a single settlement has been detected).

In Fig. 3, an overview of the WSF2015 is given for the entire World, along with 4 di�erent zooms referring to: 
(a) Eastern China and Korea; (b) Western Europe; (c) Mid-Atlantic USA; and (d) the Nairobi region in Kenya. 
Zoom a refers to one of the most populated regions of the world, including - among others - the Bohai Economic 
Rim (at the top), as well as the Yangtze River Delta and Pearl River Delta megalopolis (at the center and bottom, 
respectively). However, yet at this scale it is immediately evident how, besides the major cities, the WSF2015 also 
outlines the thousands of medium and small-size settlements scattered throughout the whole region, especially 
in the North China Plain which exhibits an extremely �at topography. �is is also evident in Zoom b, where 
the myriad of towns and (especially) small villages characterizing the Western European landscape are properly 
mapped. Moreover, one can also start noticing the high detail in the delineation of the bigger cities (e.g., London 
at the le�, Paris at the bottom le�, Berlin at the top right), which can be further appreciated in Zoom c. Here, a 
portion of the US Northeast megalopolis is shown stretching from Washington-Baltimore (bottom le� corner), to 
Philadelphia (center) and to New York (top right corner). �e WSF2015 reliably outlines all major centers, as well 
as their fragmented metropolitan and suburban areas; concurrently, it also detects the small rural villages located 
in the nooks of the Appalachian Mountains (top le� corner). Finally, in Zoom d the layer proves capable of cap-
turing the very complex settlement pattern north of Nairobi (located at the bottom center) which includes the 
counties of Muranga and Kiambo. Speci�cally, these are mostly characterized by a rugged landscape interspersed 
with several hillocks where residents intensively settled along the many valleys in the region (thus resulting in the 
striped linear pattern that might be falsely interpreted as misclassi�cation at �rst sight).

Overall, the WSF2015 estimates a global settlement surface of ~1.28 MKm², which corresponds to ~0.95% 
of the emerged surfaces (i.e., ~134.77Mkm² excluding Antarctica). �e dataset has been recently used by the 
Authors to perform a thorough analysis of the worldwide settlement spatial variability and structure through 
advanced scaling analysis41. Settlement density proved not suitable for explaining alone the high variability of 
existing patterns, hence a novel global categorization is proposed.

Data Records
�e WSF2015 layer described in this article is publicly and freely available through �gshare42. �e dataset is 
organized for download in 306 GeoTIFF �les (EPSG4326 projection, de�ate compression) each one referring 
to a portion of 10 × 10 degree size (~1110 × 1110 km) whose upper-le� and lower-right corner coordinates are 
speci�ed in the �le name [e.g., the tile WSF2015_v1_EPSG4326_e010_n60_e020_n50.tif covers the area between 
(10E;60 N) and (20E;50 N)]. A virtual mosaic �le (i.e., WSF2015_v1_EPSG4326.vrt) is also provided which allows 
visualizing the global product at once on most di�used GIS platforms (e.g., ArcGIS, QGIS, MapInfo). Settlements 
are associated with value 255; all other pixels are associated with value 0.

Additionally, 5 resampled versions are also provided at 100 m, 250 m, 500 m, 1 km and 10 km, respectively, 
reporting for each pixel the corresponding ground percent surface covered by settlements. �ese can be e�ciently 
used, for instance, as input to regional, continental, or global models and are distributed as individual GeoTIFF 
�les embedding overviews for the levels 2, 4, 8, 16, 32, 64, 128 and 256.

Reference Layer Description Coverage

Relief Mask
[DLR-RM]

Binary mask generated using the SRTM DEM for latitudes between −60° 
and +60° and the ASTER DEM elsewhere. It is labelled as positive where the 
shaded relief is greater than 212 or the roughness is greater than 15.

Global

OSM-Settlements
[OSM-S]

Binary mask labelled as positive in correspondence of settlement-related 
OpenStreetMap geometries.

Global

OSM-Roads
[OSM-R]

Binary mask labelled as positive in correspondence of road-related 
OpenStreetMap geometries.

Global

DLR Road Cluster
[DLR-RC]

Binary mask obtained applying focal mean �ltering to the OSM-R dataset. Global

GLC30-Settlements
[GLC30-S]

Binary mask labelled as positive in correspondence of GLC30 class 80 (i.e., 
arti�cial surfaces).

Global

GLC30-Water
[GLC30-W]

Binary mask labelled as positive in correspondence of GLC30 class 50 (i.e., 
water).

Global

GLC30-Wetlands
[GLC30-WL]

Binary mask labelled as positive in correspondence of GLC30 class 60 (i.e., 
wetlands).

Global

Copernicus Imperviousness 
Layer 2012
[CIL]

Binary mask labelled as positive where the Copernicus Imperviousness Layer 
2012 exhibits values greater than 30%.

Europe

US National Land Cover 
Dataset 2011
[NLCD]

Binary mask labelled as positive in correspondence of classes 22, 23 or 24 
from category “Developed” of the US National Land Cover Dataset 2011.

USA

Table 3. Reference layers. Reference. layers used in the post-classi�cation phase.
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Technical Validation
In the framework of remote sensing, accuracy assessment is generally separated into three major components43, 
namely:

•	 response design, which de�nes the protocol for determining whether the map and reference classi�cations are 
in agreement; sampling design, which de�nes the protocol for identifying a representative subset of the region 
under analysis (given the impossibility of applying the response design to the entire classi�cation map);

•	 analysis, which de�nes how to quantify accuracy.

Fig. 3 WSF2015. Overview of the WSF2015 for the entire World, along with 4 di�erent zooms referring to: (a) 
Eastern China and Korea; (b) Western Europe); (c) Mid-Atlantic USA; and (d) the Nairobi region in Kenya. 
Validation sites selected for assessing the quality of the layer are reported as red squares.
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In the following, the strategy designed for validating the WSF2015 is presented; in particular, speci�c details 
are given about the protocols adopted for each of the abovementioned components, while �nal results are dis-
cussed a�erwards.

Response design. �e four major features of the response design include the source of information from 
which reference data are taken, the spatial unit, the labeling protocol for the reference classi�cation, and a de�-
nition of agreement:

•	 Source of Reference Data: Google Earth satellite/aerial VHR imagery available for the period 2014–2015 has 
been used. �e spatial resolution varies depending on the speci�c data source; in the case of SPOT imagery 
it is ~1.5 m, for Digital Globe’s WorldView-1/2 series, GeoEye-1, and Airbus’ Pleiades it is in the order of 
~0.5 m resolution, whereas for airborne data (mostly available for North America, Europe and Japan) it is 
about 0.15 m.

•	 Spatial Assessment Unit: since input data with di�erent spatial resolutions have been employed to generate 
the WSF2015 (i.e., 30 m Landsat-8 and 10 m S1), a 3 × 3 block spatial assessment unit composed of 9 cells of 
10 × 10 m has been chosen.

•	 Reference Labeling Protocol: in our study we de�ne:

 – building as any structure having a roof supported by columns or walls and intended for the shelter, hous-
ing, or enclosure of any individual, animal, process, equipment, goods, or materials of any kind;

 – building lot as the area contained within an enclosure (e.g., wall, fence, hedge) surrounding a building or 
a group of buildings;

 – road as any long, narrow stretch with a smoothed or paved surface, made for traveling by motor vehicle, 
carriage, etc., between two or more points;

 – paved surface as any level horizontal surface covered with paving material.

Based on this taxonomy, 4 possible labels have been de�ned, namely:

 ◦ Buildings: if the given cell intersects any building;
 ◦ Building Lots: if the given cell intersects any building lot and no buildings;
 ◦ Roads/Paved-Surfaces: if the given cell intersects any road/paved surface and no buildings or building 

lots;
 ◦ None of the previous.

�e labelling task has been performed by crowdsourcing internally at Google. Speci�cally, by means of an 
ad-hoc tool, operators have been iteratively prompted a 3 × 3 assessment unit on top of the available Google 
Earth reference VHR scene closest in time to the year 2015 and given the possibility of assigning any of the 4 
labels de�ned above to each cell. For training the operators, a representative set of 100 reference 3 × 3 units was 
prepared in collaboration between Google and DLR.
•	 De�ning Agreement: to cope with the di�erent existing de�nitions of settlement, we computed the assess-

ment �gures by separately considering as settlement all areas covered by: (i) buildings; (ii) buildings or build-
ing lots; and iii) buildings, building lots or roads/paved-surfaces. Furthermore, 4 di�erent agreement criteria 
have been de�ned, speci�cally:

 (1) for each cell, positive agreement occurs only for matching labels between the classi�cation and the 
reference;

 (2) for each block, a majority rule is applied over the entire 3 × 3 block of both the classi�cation and the 
reference; if the �nal labels match, then the agreement is positive;

 (3) for the classi�cation, a majority rule is applied over the entire 3 × 3 block; for the reference, each block 
is labelled as settlement only if it contains at least one cell marked as settlement; if the �nal labels 
match, then the agreement is positive;

 (4) for both the classi�cation and the reference, each block is labelled as settlement only if it contains at 
least one cell marked as settlement; if the �nal labels match, then the agreement is positive.

Sampling design. As recommended in the state-of-the-art good practices for assessing land-cover map 
accuracy44,45, strati�ed random sampling design has been chosen. In particular, it is a probability sampling design 
and one of the easiest to implement; indeed, it involves �rst the division of the population (i.e., the collection of 
all pixels contained in the map) into mutually exclusive subsets (i.e., strata) within which random sampling is 
performed a�erwards.

To include a representative set of settlement patterns, 50 tiles of 1 × 1 degree size (out of the ~14.000 compos-
ing the WSF2015) have been selected based on the ratio between the number of settlements (i.e., disjoint clusters 
of pixels categorized as settlement in the WSF2015) and their overall area. In particular, the i-th selected tile has 
been chosen randomly among those whose ratio belongs to the interval ∈ ⊂−P P i[ ; ], [1; 50]i i2( 1) 2  (where Px 
denotes the x-th percentile of the ratio). �e �nal selected tiles are shown in red in Fig. 3.

As the settlement class covers a sensibly smaller area compared to the merger of all other non-settlement 
classes, an equal allocation reduces the standard error of its class-speci�c accuracy. Moreover, such an approach 
allows to best address user’s accuracy estimation, which corresponds to the map “reliability” and is indicative of 
the probability that a pixel classi�ed on the map actually represents the corresponding category on the ground46,47. 
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Accordingly, for each of the 50 selected tiles we randomly extracted 1,000 settlement and 1,000 non-settlement 
samples from the WSF2015 and used these as center cells of the 3 × 3 block assessment units to be labelled by 
photointerpretation. Such a strategy resulted in an overall amount of (1,000 + 1,000) × 9 × 50 = 900,000 cells 
labelled by the crowd. To our knowledge, this outnumbers any other similar exercise presented so far in the 
literature.

Analysis. To �nally assess the accuracy of the WSF2015, we considered a series of measures commonly 
employed in the remote sensing community44, namely:

•	 the Kappa coe�cient48,49, which jointly takes into account omission (i.e., underestimation) and commission 
(i.e., overestimation) errors, as well as the possibility of chance agreement between classi�cation and refer-
ence maps. Kappa assumes values between −1 and 1 and a common rule-of-thumb for its interpretation is 
the following50: < 0 no agreement; 0–0.20 slight; 0.21–0.40 fair; 0.41–0.60 moderate; 0.61–0.80 substantial; 
0.81–1.0 perfect;

•	 the percent producer’s accuracies PAS% and PANS% of the settlement and non-settlement class, respectively. 
Speci�cally, they denote the portion of assessment units (i.e., cells or blocks) categorized as settlement/
non-settlement according to the collected reference information which are correctly categorized as settle-
ment/non-settlement in the classi�cation map. Its complementary measure (100 – PA%) corresponds to the 
percent omission error;

•	 the percent user’s accuracies UAS% and UANS% of the settlement and non-settlement class, respectively. Spe-
ci�cally, they denote the proportion of all assessment units (i.e., cells or blocks) categorized as settlement/
non-settlement in the classi�cation map which are categorized as settlement/non-settlement also according 
to the collected reference information. Its complementary measure (100 – UA%) corresponds to the percent 
commission error;

•	 the percent average accuracy AA%, which is obtained as the mean between PAS% and PANS% and represents 
a balanced measure of correct settlement and non-settlement detection.

Quality assessment. Figure 4 reports the accuracies over the 900,000 collected reference samples computed 
for the WSF2015 and, concurrently, the GUF, GHSL and GLC30 layers for comparison. In particular, results are 
given for all combinations (overall 12) of three considered settlement de�nitions and four assessment criteria. 
Due to the di�erent spatial resolution of the GUF (12 m) and both the GHSL and GLC30 (30 m), while assessing 
their quality, each 10 × 10 m cell of the considered block spatial assessment unit is tagged as settlement only if the 
intersection with the speci�c layer is positive.

Noticeably, in all experiments the WSF2015 exhibited the best AA%, with a remarkable average of 86.37 and 
a mean increase with respect to GUF, GHSL and GLC30 of +6.24, +15.28 and +18.58, respectively. Alongside, it 
resulted in an average Kappa of 0.6885 with a mean increase of +0.0754 with respect to the GUF and, especially, 
+0.2338 and +0.2975 with respect to GHSL and GLC30, respectively.

By analyzing the numbers into detail, one can notice a noteworthy increase of the WSF2015 Kappa coe�cient 
for assessment criteria 3 and 4 (0.7646 on average) with respect to criteria 1 and 2 (0.6123 on average). �is is due 
to the fact that 30 m resolution Landsat imagery has been employed to generate the product. Hence, even if just a 
portion of the Landsat pixel on the ground intersects any building, building lot or paved surface, this mostly has 
a considerable e�ect in the corresponding spectral signature and the pixel tends to be �nally categorized as settle-
ment. �is is taken into account by assessment criteria 3 and 4, since the entire 30 × 30 m reference block spatial 
assessment unit is labelled as settlement even if it contains just one cell marked as settlement.

Assessment criteria 1 and 2 should be then considered more suitable for a fair comparison against the GUF 
given its 12 m spatial resolution. In this case, one can appreciate how the AA% and Kappa reported for the 
WSF2015 are in line with those exhibited by the GUF, which has been generated from highly expensive 3 m reso-
lution commercial TerraSAR-X/TanDEM-X imagery. Instead, assessment criteria 3 and 4 allow a fair comparison 
against GHSL and GLC30 as they are both derived from Landsat data. Here, the WSF2015 exhibits notable AA% 
and Kappa up to 89.33 and 0.7822, respectively, outperforming both GHSL and GLC30 (with an increase always 
higher than 17 and 0.32, respectively).

From Fig. 4, one can also notice that on average results do not signi�cantly vary across the three considered 
de�nitions of settlement; however, a proper analysis allows to better understand which one �ts best with the dif-
ferent layers. Concerning the WSF2015, the highest accuracies mostly occur when considering as settlement the 
combination of buildings and building lots. Only for assessment criteria 1 and 2 Kappa is higher when also roads/
paved surfaces are included. Indeed, despite generally associated with very low S1 backscattering values, most of 
these are not masked out given their �ne scale within urban areas. As regards the GUF, highest AA% and Kappa 
occur partly when only buildings and partly when buildings and building lots are considered as settlement. �is is 
in line with the theory, since the layer has been generated from radar imagery which is sensitive to vertical struc-
tures (these comprise both buildings, as well as main elements delimiting building lots like walls, fences, hedges, 
etc.). In the case of GHSL and GLC30, the two layers show a similar behavior and provide on average a slightly 
higher Kappa when settlements are de�ned as combination of buildings and building lots.

Giving a closer look to producer’s and user’s accuracies it is possible to better understand the nature of the dif-
ferent performances. All GUF, GHSL and GLC30 generally show very high PANS% (i.e., >85), but mostly exhibit 
consistently lower PAS%, with values never greater than 75.80, 52.39 and 44.26, respectively. On the contrary, the 
WSF2015 scores overall remarkably high PAS% and PANS% (on average 88.71 and 84.04, respectively) and, con-
currently, it always shows the best UANS% in front of a UANS% only marginally lower than that of the other layers 
(on average 92.15 and 75.95, respectively). �is quantitatively assesses the capability of the WSF2015 to e�ectively 
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detect the presence of a considerable number of settlements actually unseen in the other global products. �is 
occurs at the price of a minor settlement extent overestimation mostly due to the employment of the COV texture 
features; speci�cally, these allow a more accurate detection in rural and suburban areas, but sometimes result in 
an overestimation of 1–2 pixels around the actual settlement.

�e improved detection performances of the WSF2015 can be qualitatively appreciated in Fig. 5, where a 
cross-comparison against GUF, GHSL and GLC30 is reported for three representative regions including the 
Igboland (i.e., a cultural and common linguistic region located in south-eastern Nigeria), Kampala (i.e., the capi-
tal and largest city of Uganda) and Bangalore (i.e., the capital of the Indian state of Karnataka). Despite the rather 
di�erent settlement patterns, all three sites are characterized by the presence of medium and large size cities 
surrounded by a number of very small settlements. As one can notice, the WSF2015 proves extremely e�ective in 
all three cases, outperforming all other layers; speci�cally, it is capable of detecting a higher amount of small vil-
lages and better outlining the fringes of major urban areas. �e GUF performs equally good only in the Igboland 
region, but detects considerably less settlements in the Bangalore and, especially, the Kampala case studies. Both 
GHSL and GL30 exhibit severe underestimation in all three test sites.

Usage Notes
�e WSF2015 will be a valuable product in support to all applications requiring detailed and accurate information 
on human presence. In particular, combined either with other EO or non-EO-based datasets (e.g., related to cli-
mate, health, economy, demography, etc.), it will enable deriving indices and metrics of help not only for scienti�c 
research but even decision making.

As assessed by the extensive validation exercise, the WSF2015 proved to be the currently most accurate and 
reliable product of its kind and will hence allow to improve any type of analysis carried out so far with other exist-
ing similar layers. Nevertheless, it is worth pointing out that - due to limitations speci�c of the data used - it was 
not feasible to consistently detect very small structures (e.g., huts, shacks, tents) because of their reduced scale, the 
speci�c building material employed (e.g., cob, mudbricks, sod, straw, fabric), their temporal nature (e.g., nomad 
or refugee camps), or the presence of dense vegetation preventing their identi�cation.

Fig. 4 Quantitative accuracy assessment of the WSF2015 and comparison against the currently most largely 
employed global settlement extent layers. Quality assessment �gures computed over the 900,000 collected 
reference samples for the WSF2015, GUF, GHSL and GLC30. Results are concurrently reported for all three 
settlement de�nitions and four assessment criteria considered in terms of percent average accuracy (AA%), 
Kappa coe�cient, as well as percent producer’s (PA%) and user’s (UA%) accuracies for both the settlement (S) 
and non-settlement (NS) classes.
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Code availability
�e WSF2015 is the result of several processing steps involving tens of sub-modules run on multiple architectures 
and using di�erent so�ware. While S1 pre-processing and feature extraction has been supported by Google 
through its Earth Engine platform, the computation of Landsat-8 temporal statistics, the training point extraction 
and classi�cation tasks have been performed in the IT4Innovations Czech supercomputing center by means of 
DLR proprietary so�ware, GDAL (Geospatial Data Abstraction Library v.2.4) and Pktools (Processing Kernels 
for geospatial data v2.6) scripts. Post-classi�cation has been carried out in the Calvalus system available at DLR’s 
Earth Observation Center by means of proprietary so�ware and dedicated Python (v3.5) scripts. Given the use of 
proprietary tools, the code cannot be openly released to the public.
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Fig. 5 Qualitative cross comparison of the WSF2015 against the currently most largely employed global 
settlement extent layers. Samples for the WSF2015, GUF, GHSL and GLC30 are reported for the Igboland 
(Nigeria), Kampala (Uganda) and Bangalore (India) regions.
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