
Purdue University
Purdue e-Pubs

Other Nanotechnology Publications Birck Nanotechnology Center

4-1-2008

Outperforming the conventional scaling rules in
the quantum-capacitance limit
Joachim Knoch
IBM Res GmbH, Zurich Res Lab

W Riess
IBM Res GmbH, Zurich Res Lab

Joerg Appenzeller
Birck Nanotechnology Center, Purdue University, appenzeller@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/nanodocs
Part of the Nanoscience and Nanotechnology Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Knoch, Joachim; Riess, W; and Appenzeller, Joerg, "Outperforming the conventional scaling rules in the quantum-capacitance limit"
(2008). Other Nanotechnology Publications. Paper 172.
http://docs.lib.purdue.edu/nanodocs/172

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fnanodocs%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nanodocs?utm_source=docs.lib.purdue.edu%2Fnanodocs%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nano?utm_source=docs.lib.purdue.edu%2Fnanodocs%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nanodocs?utm_source=docs.lib.purdue.edu%2Fnanodocs%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=docs.lib.purdue.edu%2Fnanodocs%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages


372 IEEE ELECTRON DEVICE LETTERS, VOL. 29, NO. 4, APRIL 2008

Outperforming the Conventional Scaling Rules
in the Quantum-Capacitance Limit

J. Knoch, W. Riess, and J. Appenzeller, Senior Member, IEEE

Abstract—We present a study on the scaling behavior of field-
effect transistors in the quantum-capacitance limit (QCL). It will
be shown that a significant performance improvement in terms
of the power delay product can be obtained in devices scaled
toward the QCL. As a result, nanowires or nanotubes exhibiting a
1-D transport are a premier choice as active channel materials for
transistor devices since the QCL can be attained in such systems.

Index Terms—Gate delay, MOSFET, nanowire/tube, one-
dimensional (1-D), quantum capacitance, scaling.

I. INTRODUCTION

THE DRIVING force for generations of chip designs has
been Denard’s scaling rules of device miniaturization [1].

During device scaling, the gate capacitance (not normalized)
is kept almost constant by decreasing the gate length L and
the gate-oxide thickness dox simultaneously. When applying
the same approach to novel nanotransistors based on, e.g.,
nanotubes or nanowires exhibiting a 1-D transport, the so-
called quantum-capacitance limit (QCL) [2] can be reached—a
regime that is not accessible in conventional 2- or 3-D FETs.
The reason for this is the density of states (DOS) within
the channel that increases in bulk FETs but decreases in the
case of 1-D structures. In the QCL, the potential within the
channel is determined by the gate potential, and as such,
short channel effects are suppressed. On the other hand, in
the QCL, the charge in the channel no longer increases with
decreasing dox contrary to the usually encountered classical
limit (CL). At a first glance, one may therefore assume that
due to the absence of any dox dependence, the QCL is detri-
mental to the transistor performance. However, our analy-
sis demonstrates that the opposite is indeed the case. Here,
we address the question of how scaling manifests itself in
the QCL using the gate delay and the power delay product
as relevant figures of merit to quantify the ON-state perfor-
mance of the scaled transistor devices. We will show that
improving the device performance in terms of gate delay and
power delay product occurs faster in 1-D transistors in the
QCL than predicted according to the conventional scaling
rules.
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Fig. 1. (a) Schematics of the wrap-gate transistor design under consideration.
(b) Surface potential along the direction of current transport. The total charge
in the channel is determined by all terminal voltages.

II. ANALYTICAL CONSIDERATIONS

Consider the wrap-gate device geometry shown in Fig. 1(a)
with a nanowire/tube of diameter dch and an oxide thickness of
dox. The source/drain contacts are degenerately doped, whereas
the channel of length L is considered as intrinsic. Fig. 1(b)
shows the surface potential Φf (x) along the device together
with the source, drain, and geometrical oxide capacitances. The
potential maximum in the channel Φ0

f determines the carrier
injection from the source Fermi distribution into the channel [3]
and, hence, determines the current flow as well as the amount
of mobile charge within the channel. Φ0

f can be obtained
by noting that the channel charge is Qtot = −Φ0

f/e · (Cs +
Cox + Cd), where the C’s refer to the source, gate oxide, and
drain capacitances. At the same time, Qtot = CsVs + CdVd +
CoxVg + Qch, where Qch is the mobile charge injected by the
contacts. Solving for the gate potential Φg = −eVg and with
the so-called quantum capacitance Cq = e∂Qch/∂Φ0

f [2], [4],
one obtains δΦ0

f = Cox/CΣ · δΦg + Cd/CΣ · Φd, where CΣ =
Cs + Cox + Cd + Cq, and Vd = −eΦd. In the following, we
only consider electrostatically well-behaved devices where
Cs,d � Cox, leading to Φ0

f = Cox/(Cox + Cq)Φg + Φbi with
Φbi being the built-in potential.

In order to obtain first-order expressions for the gate delay τ
and the power delay product P · τ , we employ the Landauer ap-
proach of current transport [3]. The following approximations
are made. First, since Φ0

f determines the injection of carriers,
the transmission probability for carriers to flow from source
to drain T (E) = 0 for energies E < Φ0

f . For E ≥ Φ0
f , we

approximate T (E) = lscat/(lscat + L), where lscat is the mean
free path for scattering [5]. Although this expression is strictly
valid only in the field-free case [3], it is applicable here since
the fields are rather small in the case of long channel lengths.
In devices with a short channel length as considered here, the
fields are also small since in the QCL, the potential distribution
in the channel is determined by the gate potential (rather than
the channel charge) which enforces a constant potential within
the channel. Second, Vds is considered to be large enough so
that f(Ed

f ) ≈ 0 for E > Φ0
f . With these approximations and by
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Fig. 2. Power delay product as a function of L and dox. The horizontal black
dotted line shows the CL, where P · τ = const., and the straight black line
belongs to the QCL with P · τ ∝ L. The gray dashed line is the superposition
of the two limiting curves showing an increasing scaling benefit in the QCL.

using the expression for Φ0
f , the drain current can be calculated

analytically to be

Id ∝ lscat
lscat + L

· 1
L

· CoxCq

Cox + Cq
(Vgs − Vth)vinj. (1)

Here, Vth is the threshold voltage, and vinj is the maximum
velocity at which carriers are injected into the channel from
the source contact; in addition, Cox ∝ L/dox, and Cq ∝ L ×
1/

√
Es

f − Φ0
f , i.e., Cq is approximately proportional to the

DOS in the channel (see below). One can now distinguish
between four different cases: the classical as well as the QCL,
where either Cox or Cq becomes dominant. Furthermore, in
the diffusive transport regime, lscat/(lscat + L) ≈ lscat/L, or
in the case of ballistic transport, lscat/(lscat + L) ≈ 1. By
calculating τ = CgVdd/Id and the power delay product P · τ
for the different cases and transport regimes, we obtain the
following results: 1) In case of diffusive transport, τdiff ∝ L2,
and for ballistic transport, τball ∝ L. This is true in the CL
and the QCL suggesting that scaling toward the QCL does not
negatively impact the device performance as measured by τ .
2) A difference between the QCL and the CL is expected for
P · τ since in the QCL, the total gate capacitance Cg ≈ Cq

becomes independent of dox such that P · τ linearly decreases
when the device dimensions are shrunk. In the CL, however,
P · τ = const. when L and dox are scaled simultaneously.
Fig. 2 shows P · τ in the CL and the QCL. Scaling a device
from the CL toward the QCL is expected to result in a smooth
transition with an improving power delay product in the QCL,
implying a substantial scaling benefit.

III. DEVICE SIMULATIONS AND DISCUSSION

In order to verify the results of the analytical considerations,
we performed simulations based on a self-consistent solution
of the Poisson and Schrödinger equations. To keep the com-
putational burden as small as possible, the surface potential
approach of Yan et al. [6] and Auth and Plummer [7] is
used. The following modified Poisson equation is obtained
which captures all aspects related to the scaling of dox and the
appearance of short channel effects in laterally scaled devices

d2Φf

dx2
− Φf − Φg + Φbi

λ2
= −e(ρ ± N)

ε0εch
. (2)

Fig. 3. Conduction band profile for (a) a device with L = 120 nm and
dox = 9.6 nm and (b) for a FET with L = 10 nm and dox = 0.8 nm showing
that (a) is rather in the CL, whereas (b) is scaled toward the QCL. Here,
Vds = 0.5 V, and Vgs = 0.5 and 0.55 V.

Here, λ =
√

εch/εox · dox/4 · dch is the relevant length scale
of potential variations, and Φg and Φbi are the gate and built-in
potentials.1 To calculate the charge in and current through the
device, we use the nonequilibrium Green’s function formalism
[5]. An effective mass approximation is employed, and scatter-
ing is taken into account via Buettiker contacts [8].

Simulations of devices were carried out with the following
parameters: Es,d

f = 0.1 eV, m� = 0.1m0, and dch = 3 nm; a
midgap work-function metal was assumed as gate electrode,
and Φbi = 0.4 eV. Furthermore, εox = 3.9, and εch = 12.
Transfer characteristics of several devices were simulated start-
ing with a rather long channel length of L = 140 nm and an
oxide thickness of dox = 11.2 nm. The channel length L and the
gate-oxide thickness dox are then scaled down simultaneously
to L = 10 nm and dox = 0.8 nm, whereas the supply voltage
was kept constant at a value of Vdd = 0.5 V. The inset of
Fig. 4(a) shows the Id–Vgs curves for three different devices
with L = 10, 40, and 140 nm.

From δΦ0
f = Cox/CΣ · δΦg + Cd/CΣ · Φd (see Section II),

it is apparent that in the device’s ON-state, ∂Φ0
f/∂Φg ap-

proaches zero in the CL and unity in the QCL. Fig. 3(a) shows
the conduction band for two different Vgs’s in a device with
L = 120 nm and dox = 9.6 nm. It is apparent that Φ0

f hardly
changes with Vgs (i.e., δΦ0

f/δΦg becomes small) showing that
the device in Fig. 3(a) is rather in the CL. On the other hand,
in the case of L = 10 nm and dox = 0.8 nm [Fig. 3(b)], the
bands are moved much more efficiently for the same δΦg .
The large band movement is a result of the scaling of dox in
relation to the DOS in the channel, leading to Cox > Cq which
shows that the device is scaled toward the QCL. Note that in a
bulk FET, this would not happen since the large DOS always
leads to Cq � Cox even for the thinnest dox considered here.
Consequently, the QCL is (for reasonable dox) a unique feature
of 1-D transistor structures.

When scaling the devices from the CL toward the QCL,
the gate capacitance Cg = CoxCq/(Cox + Cq) becomes
increasingly dependent on Vgs. This is due to the fact that

Cq ∝L×(∂/∂Φ0
f )

∫
dE(1/

√
E−Φ0

f )fs(E−Es
f )=L ×

∫
dE

1The expression for λ used in the present analysis is an approximation for a
surround-gate FET (see also [7]).
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(1/
√

E) (∂/∂Φ0
f ) fs (E + Φ0

f − Es
f ) ∝ L × 1/

√
Es

f − Φ0
f ,

where Φ0
f , in turn, depends on Vgs. Note that the thermal

broadening of the Fermi function prevents Cq from diverging
once the conduction band in the channel aligns with the
Fermi level of the source contact. Here, the maximum value
Cmax

q ∝ 1/
√

4kBT which is roughly a factor of five smaller
than Cox for dox = 0.8 nm. With the chosen parameters, Cmax

q

lies within the chosen range of Vdd such that the QCL can
actually be reached for the smallest oxide thicknesses. Since
P · τ represents the energy needed for switching a device, it
was calculated according to

∫
QdVgs, where Q is the total

channel charge extracted from the simulations. In the same
fashion, the gate delay is obtained as τ =

∫
QdVgs/(VddId).

The main panel of Fig. 4(a) shows the extracted τ values
as a function of L and dox in the case of (hollow circles)
scattering and (solid squares) ballistic transport. The dashed
line in Fig. 4(a) is a second-order polynomial fit, and the
black line is a linear fit showing that the gate delay exactly
shows the dependence on L expected from the analytical
considerations aforementioned. This is true over the entire
range, i.e., from the CL toward the QCL, as has been pointed
out previously. As a result, continued scaling yields improved
gate delays irrespective of the scaling regime, i.e., CL or
QCL. On the contrary, in terms of power delay product, the
analytical considerations predict a performance benefit in
the QCL. Fig. 4(b) shows the simulated data exhibiting the
same behavior in both cases: the scattering and the ballistic
transport. To increase the channel length and the gate-oxide
thickness, the device tends toward the CL, and the power
delay product approaches a constant value. However, toward
the QCL, the devices exhibit a significantly decreasing power
delay product, as was predicted previously. In the present case,
an ∼40% lower P · τ compared with the CL is observed for a
technologically feasible dox = 1.6 nm.2

The important implication of the present analysis is the
following. Nanowires/tubes with a very small diameter enable
ultimately scaled transistor devices in a wrap-gate architecture
since electrostatic integrity is preserved down to the smallest
dimensions. However, besides this pure geometrical argument,
this letter shows that the nanowires/tubes offer an additional
scaling benefit. In the case of a 1-D transport, devices can be
scaled toward the QCL which shows a clear scaling advantage
in terms of the power delay product, i.e., the energy needed
for switching the transistors. In practical cases, where parasitic
source/drain capacitances Cpar exist, this scaling advantage
is somewhat diminished. Since P · τ is proportional to the
capacitance of the FET (if Vdd is constant) and by taking
Cpar into account, one obtains (P · τ)QCL

par /(P · τ)CL
par = ((1 +

CQCL/Cpar)/(1 + Cox/Cpar)), where QQCL =
∫

QdVgs/V 2
dd

is an average quantum capacitance. This ratio is always smaller
than one, which means that if Cpar is not too large compared
with Cox, a significant scaling benefit is obtained in practical
cases as well. As a result, nanowires/tubes exhibiting 1-D

2The reason for the lower P · τ in case of dox = 0.8 nm and scattering is that
the conduction band in the channel is moved substantially below the (quasi)-
Fermi level in source due to the tight gate control. Therefore, scattering in the
source extension leads to a somewhat lower carrier density and, thus, lower
capacitance within the channel compared with the ballistic case.

Fig. 4. (a) Gate delay extracted from simulations versus L, dox for (hollow
circles) scattering and (solid black squares) ballistic transport. The dashed black
line is a quadratic fit to the data points. In the case of ballistic transport, the data
points lie on a straight line. (b) Simulated P · τ as a function of L and dox. The
curves exhibit the same behavior as shown in Fig. 2, implying a significant
scaling benefit in the QCL.

transport are a premier choice as the channel materials for high-
performance ultimately scaled FET devices.

IV. CONCLUSION

We studied the performance of the nanotube/nanowire FETs
scaled into the QCL. Continued scaling leads to improved τ
independent of whether the device is in the CL or the QCL.
However, in approaching the QCL, a FET yields a significantly
improved performance in terms of P · τ , which means that
1-D devices offer a significant performance advantage when
compared with their 2- or 3-D counterparts.
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