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The output-based control of a redundant robotic manipulator with relevant and adjustable joint stiffness is addressed. The
proposed controller is configured as a cascade system that allows the decoupling of the actuators dynamics from the arm dynamics
and the consequent reduction of the order of the manipulator dynamic model. Moreover, the proposed controller does not
require the knowledge of the whole robot state: only the positions of the actuators and of the joints are necessary. This approach
represents a significant simplification with respect to previously proposed state feedback techniques. The problem of controlling
simultaneously the position trajectory and the desired stiffness in both the joint and work space is investigated, and the relations
between the manipulator redundancy and the selection of both the joint and work space stiffness of the manipulator are discussed.
The effectiveness of the proposed approach is verified by simulations of a 3 degrees of freedom planar manipulator.

1. Introduction

Physical human-robot interaction currently represents one
of the most challenging issues in robotics. To this end,
a new class of robots is under development considering
safety and dependability as a primary goal. While early
applications of the variable stiffness concept were developed
for prosthetic purposes due to the bio-inspired ability of
these actuation systems of emulating the behavior of human
muscles [1], variable stiffness actuators have been recently
introduced in robotics to achieve a suitable tradeoff between
accuracy in tasks execution and safety while operating in
unstructured environments and in particular in the case of
physical interaction/cooperation with humans. In [2], it has
been shown how, due to the high reduction ratio of the
gearboxes usually adopted in the transmission systems of
robotic arms, the kinetic energy of the actuation system is
predominant with respect to the one of the arm structure.
Moreover, while the inertia of the robot arm can be reduced
by adopting lightweight structures and composite materials,
it is more difficult to reduce the inertia of the actuators and
of the gearboxes because of technological limitations. Due
to these considerations, Bicchi and Tonietti [2] proposed to
adopt variable stiffness actuation to make the robot more

rigid when the system velocities (and then kinetic energy)
are low and to make the robot more compliant (or soft)
during fast motions (that means high kinetic energy) so
that the transmission system may store at least part of the
kinetic energy of the actuation system in case unpredictable
impacts occur. On the other hand, the kinetic energy of the
robotic arm structure can be absorbed during impacts by
suitable soft covers mounted on the robot [3], emulating in
this way the function and the behavior of the human skin.
The research effort in this field is motivated by the potential
benefits given by the introduction of robots in human
everyday activities, such as assistance to elder or handicapped
people, homework activities, and entertainment. It is clear
that purposely designed robots are needed to accomplish this
kind of tasks.

Although several prototypes of single degree-of-freedom
(DOF) joints with relevant and adjustable compliance for
robotic manipulators have been designed and developed [4–
8] with the aim of verifying the effectiveness of the variable
stiffness approach, the implementation of a robotic arm
with variable stiffness actuation is still an issue, and only
recently, the German Aerospace Center (DLR) has started
the development of such a robot. From the mechanical point
of view, the main drawbacks of variable stiffness joints are a



2 Journal of Robotics

more complex mechanical design and the necessity of a pair
of actuators to adjust simultaneously both the joint position
and stiffness. It follows that a more complicated modeling
and control approach is necessary, especially when kinematic
structures with multiple DOF are considered [9]. In [10],
a general approach to the feedback linearization and the
simultaneous decoupled control of both the position and
stiffness in a serial manipulator actuated by means of variable
stiffness joints is proposed, while in [11], a robust controller
for the compensation of the model uncertainties in variable
stiffness robotic manipulators is presented.

In this paper, the control of robotic manipulators with
variable joint stiffness is addressed in the general case of
a redundant arm by means of a simplified (with respect
to previous ones) output-feedback control approach. The
proposed control is configured as a cascade system composed
by three independent controllers, one for each part in which
the dynamics of the robotic arm with variable stiffness joint
can be subdivided. A singular perturbation analysis is then
applied to the resulting system to show the separation of the
dynamics of the different components, that are the arm, the
positioning actuators, and the stiffness actuators, obtaining
in this way a reduced order model of the manipulator
and then a simplified control structure. The proposed
control approach is then validated by means of simulations
of a three-link planar manipulator with variable stiffness
actuation. In this paper, we refer to a variable stiffness joint
as a robotic joint actuated by means of a variable stiffness
actuator.

2. System Dynamics

Starting from the general dynamic model of a robot with n
variable stiffness joints as proposed in [10], a second-order
dynamic model is used to describe the stiffness behavior of
the joints (or, more in general, of the transmissions), also in
view of the nature of the mechanisms used to adjust the joint
stiffness [6, 10].

A scheme of the working principle of a variable stiffness
joint is shown in Figure 1: the robot link (on the right side)
is moved by means of a positioning actuator (on the left
side), and these two parts are connected by an elastic element
modulated by means of a second actuator, also referred to as
the stiffness actuator (in the lower center part). In [10], it has
been shown how the conceptual design shown in Figure 1
can be also used to describe the behavior of antagonistic
variable stiffness joints, such as the VSA by Bicchi et al.
[12], by means of a suitable change of coordinates in the
dynamic model of the device. The overall model of a robotic
manipulator equipped with this variable stiffness actuators
is then composed by the dynamics of an n DOF arm driven
by n positioning actuators through elastic elements and by
n stiffness actuators that modify the characteristic of the
couplings that connect the positioning actuators to the links.
It is assumed that each joint has its own positioning and
stiffness actuator and that no direct coupling between the
actuators of different joints is present. Let q, θ, k ∈ Rn

be, respectively, the generalized joint positions, the positions

of the the positioning actuators, and the vector of the joint
stiffness. Under the simplifying modeling assumption used
in [13] (viz., the kinetic energy of the actuators are due only
to their own spinning), the dynamic model of the system can
be written as

M
(
q
)
q̈ + N

(
q, q̇
)

+ K
[
q − θ

]
+ ηq = τe, (1)

Bθ̈ + K
[
θ − q

]
+ ηθ = τθ , (2)

γ
(
q, θ, k

)
k̈ − β

(
q, θ, k

)
+ ηk = τk , (3)

where M(q) is the inertia matrix of the robotic arm, the
vector N(q, q̇) contains the centrifugal, Coriolis, and gravity
forces, K = diag{k1, . . . , kn} > 0 is the joint stiffness matrix,
B = diag{b1, . . . , bn} > 0 is the inertia matrix of the
actuators, τθ , τk ∈ Rn are the positioning and the stiffness
actuators command torques, respectively, τe is the joint
torque contribution due to the effect of an external load; that
is,

τe = J
(
q
)T
Fe, (4)

where J(q) is the manipulator Jacobian matrix and Fe is the
external wrench. Equation (3) covers a situation where the
stiffness actuation modifies the transmission configuration
in order to change its compliance, for example, by precom-
pressing elastic elements or by moving some mechanical
parts. As shown in [10], the general model (1)–(3) can
be used to describe the characteristics of different variable
stiffness joint implementations both in the antagonistic case,
such as the VSA proposed by Bicchi et al. [12], and in
the nonantagonistic case, such as the device proposed by
Wolf and Hirzinger [6], by means of a suitable change
of coordinates in the dynamic model of the system. In
(3), γ(q, θ, k) and β(q, θ, k) are used to model the stiffness
variation as a function of the device configuration, and
they depend on the particular implementation of the robot
transmission system; refer to [10] for a detailed description
of the general model (1)–(3). Note that K = diag{k1, . . . , kn}

and k = [k1, . . . , kn]T are alternative representations of the
joint stiffness. It is important to stress that in this paper, the
joint stiffness matrix K in (1)-(2) is not constant and that, in
general, is a function of time

K = K(t), (5)

as expressed by (3), that models the dynamics of the joint
stiffness variation. Moreover, we consider ki(t) > 0, for all t,
since it has no physical meaning to consider negative stiff-
ness, while if the stiffness drops to zero, an unactuated system
would be obtained.

As a nonrestrictive assumption, all the effects due to
frictions, dead zones, nonmodeled dynamics, parameters
variations, and so forth, not considered in other terms of the
system dynamics (1)–(3), are collected in the functions
η{q,θ,k}(t). It is then possible to refer to the nominal system
dynamics by considering η{q,θ,k}(t) = 0.
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Figure 1: Working principle scheme of a variable stiffness joint.

As stated before, the overall system is composed by 3n
rigid bodies, and therefore, the state vector of the system can
be defined as

χ =
[
qT q̇T θT θ̇T kT k̇T

]T
∈ R6n, (6)

while it is assumed that only the state subset information

ζm =
[
qT θT kT

]T
∈ R3n (7)

are directly measurable, typically by means of optical en-
coders. Note that the joint stiffness k is usually reconstructed
by means of the knowledge of the elastic elements charac-
teristics and by measuring the actuators and joints positions
[9].

In any case, the control objective is the simultaneous and
independent regulation of the following set of outputs:

ζ =

⎡
⎣q
k

⎤
⎦ ∈ R2n, (8)

namely, the joint positions (and thus, through the robot di-
rect kinematics, the end-effector pose) and the joint stiffness,
acting on the system control inputs

ρ =

⎡
⎣τθ
τk

⎤
⎦ ∈ R2n, (9)

by means of an output-feedback controller based on the
knowledge of ζm. As general assumption that takes into
account the physical limitations of the system, the state
variables are considered bounded; that is, ‖χ‖ < X for some
properly defined norm ‖ · ‖.

3. Control Strategy

In the problem considered here, the main control goal is
to achieve the tracking of suitable workspace trajectories
assigned to the manipulator end-effector while maintaining
a desired level of apparent stiffness. As stated previously, this
allows to ensure a harmless behavior of the manipulator in
case of collision, in particular with humans.

The term apparent stiffness requires a more detailed
discussion. Usually, active stiffness control refers to the case in
which the manipulator stiffness is modified by means of the
control only and has been introduced in [14]. A more general
and notable example of active regulation of both static
and dynamic parameters of the manipulator is probably
the impedance control [15] that has been successfully used
for the control of lightweight robots [16] and for safety
evaluation of manipulators [17]. On the other hand, passive
stiffness control indicates the possibility of changing the
mechanical stiffness of the system. Note that in the case
of series-elastic actuators [18, 19], the stiffness is fixed by
design and cannot be changed anymore without using an
active stiffness control approach. In this paper, the discussion
is posed in terms of apparent stiffness, because the desired
workspace stiffness is achieved by modulating both the
mechanical compliance of the joints, that is, the passive stiff-
ness, and the compliance due to the control. This principle
is similar to the combined compliance control [20], and it has
been already used also in robotic hands control; see [21].

An important point to note is that in case of an unpre-
dictable impact, only the mechanical stiffness of the manip-
ulator is experienced by the environment (or the human)
during the very short time interval in which the energy trans-
fer due to the impact occurs [17]. This is due to the limits
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Figure 2: Scheme of the overall output-based controller.

in both the sensor and the control bandwidth that prevent
an immediate reaction of the control system. Another
motivation of this fact is the limited stiffness of the robot
structure itself (if compared with the time constant of the
force transmission along the structure) and to the fact that
the impact may occur in any point along the manipulator,
while the torque sensors, when available, are located in the
joints. This latter effect, as, in general, the energy exchange
from the robot to the environment during impacts, can be
attenuated by means of suitable soft covers mounted on the
robots [3] that allow early transmission of relatively lower
forces along the structure together with some storage and
dissipation of the energy due to the impact.

Recalling that variable stiffness actuation has been intro-
duced for safety purposes, and that its main role is to absorb
at least part of the kinetic energy of the actuation system
(i.e., usually predominant with respect to the one of the arm
structure because of the high reduction ratio gearboxes used
to connect the actuators to the links) during unpredictable
impacts, another important point to note is that the selection
of suitable values of the joint stiffness depends mainly on
the task to be performed (in particular on the required
velocities), on both the manipulator and the actuators iner-
tia, that together with the task specifications determines the
overall system kinetic energy, and, the most important, on
the criteria used to evaluate the robot safety. To this end, the
definition of suitable safety criteria for robotic applications
represents a key topic. While in early investigations these
criteria have been inherited from automotive industries, it
has been successively shown that they are not completely
suitable for robotic applications because of the very different
scenario [17]. Therefore, great attention has been devoted to
the definition of adequate principles for the measurements
and the quantification of the robot safety [17]. It is not the
topic of this paper to deal with the selection of the joint
stiffness: it is here assumed that the joint stiffness trajectory
is given by a suitable safety planner. An overview of the
complete system is depicted in Figure 2.

3.1. Preliminaries. Consider the generic second-order dy-
namic system

A(v,w)v̈ + f (v̇, v,w) + α = τ, (10)

where v, v̇ are the state variables, v is the measurable output,
w is an exogenous measurable signal, A(·, ·) is a bounded
symmetric positive definite (invertible) matrix, f (·, ·, ·) is

bounded and Lipschitz in all its arguments, and α is a generic
function of the time collecting all the disturbances and
uncertainties of the system. It is assumed that
∥∥A−1(v,w)

[
f (ṽ, v,w)− f (v̇, v,w)

]∥∥ ≤ σ
∥∥ṽ − v̇

∥∥, σ > 0.
(11)

Due to the general separation principle introduced in
[22] for SISO systems and then extended to MIMO systems
in [23], semiglobal stability (i.e., imposing that the domain of
attraction of the equilibrium contains a prescribed compact
set, [24]) of the desired equilibrium of (10) in nominal
conditions (α = 0) can be achieved by output feedback, since
(1) state feedback linearization is clearly possible under the
previously defined hypotheses and (2) the system is uniform
complete observable. While the verification of the former
point is trivial, the latter can be easily proven by dynamic
extension, [25]. It is straightforward to show that (10) is a
generic form that can be used to represent (1)–(3) (see
Property 5 in the appendix). Then, the following theorems
hold.

Theorem 1. The system (10) in nominal conditions (α = 0)
and under the effect of the output-based dynamic compensator

τ = A(v,w){τ + Γ3[z3 − z2]} + f (z2, v,w), (12)

τ = −Λ1[v − vd]−Λ2[z2 − v̇d] + v̈d, (13)

ż1 = −Γ1[z1 − v] + z2, (14)

ż2 = −Γ2[z1 − v] + τ, (15)

ż3 = τ, (16)

where vd is the desired value of v, Λ1, Λ2, Γ1, Γ2, and Γ3

that are positive definite (diagonal) matrices and has a
unique steady-state exponentially stable equilibrium point with
arbitrary fast error dynamics.

Proof. By defining the state vector composed by the system
tracking error ε1 plus the compensator estimation error ε2 as

ε =
[

(v − vd)T(v̇ − v̇d)T | (z1 − v)T(z2 − v̇)T(z3 − v̇)T
]T

=
[
εT1 | ε

T
2

]T
,

(17)

then (10)–(16) can be written as

ε̇ = Hε + Θ α̂, (18)
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where

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I 0 0 0
−Λ1 −Λ2 0 −Λ2 − Γ3 Γ3

0 0 −Γ1 I 0
0 0 −Γ2 Γ3 −Γ3

0 0 0 Γ3 −Γ3

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣ H11 H12

0 H22

⎤
⎦,

(19)

Θ =
[

0 −I 0 I I
]T
=
[
Θ

T
1 | Θ

T
2

]T
,

α̂ = A−1
[
f (v̇, v,w)− f (z2, v,w)

]
.

(20)

The arguments of A(·, ·) are omitted for brevity.
At first, the autonomous linear system obtained by

neglecting α̂ is considered. The eigenvalues of matrix H , as
can be easily seen by looking at the partitioning in (19), can
be freely selected by means of a suitable choice of the
parameters Λ1, Λ2, Γ1, Γ2, and Γ3.

Due to the linearity of the nominal system under the
effect of the proposed controller, the origin is the unique
exponentially-stable equilibrium point of the autonomous
(nominal) system and the rate of convergence can be made
arbitrarily fast.

Now, the implications of the previous hypothesis (11) are
considered: on this basis and from (20) it is possible to write
∥∥A−1

[
f (z2, v,w)− f (v̇, v,w)

]∥∥ ≤ σ‖z2 − v̇‖, σ > 0.
(21)

The effects of f (·) on (18) can be seen as a vanishing
perturbation of the nominal system, then the exponential
stability of the equilibrium point can be recovered by means
of a suitable choice of the controller parameters. In par-
ticular, by considering a symmetric positive definite matrix
Q, it is well known that a unique symmetric positive definite
matrix P exists that satisfies the Lyapunov equation

PH + HTP = −Q. (22)

If and only if the matrix H has all negative eigenvalues [26].
The Lyapunov function V(ε) = εTPε satisfies the relations

c1‖ε‖
2
≤ V(ε) ≤ c2‖ε‖

2,

∂V

∂ε
Hε = −εTQε ≤ −c3‖ε‖

2,

‖
∂V

∂ε
‖ = ‖2εTP‖ ≤ 2‖P‖‖ε‖ = c4‖ε‖,

(23)

where c1 = λmin(P), c2 = λmax(P), c3 = λmin(Q), and c4 =

2λmax(P). The derivative of V(ε) along the trajectory of the
system satisfies

V̇(ε) ≤ −c3‖ε‖
2 + c4σ‖ε‖

2, (24)

meaning that the system is exponentially stable if σ < c3/c4.
It is possible to show that this ratio can be maximized by
choosing Q = I [26].

Theorem 2. The system (18) under the effects of nonvanishing
bounded disturbances α

ε̇ = Hε + Θ
[
α̂ + A−1α

]
(25)

is ultimate uniformly bounded (UUB), [26].

Proof. Theorem 1 shows that the system (18) has the origin
ε = 0 as unique exponentially stable equilibrium point. It
is here supposed that ‖ε(t)‖ < σ, for all t ≥ 0. By means
of a suitable choice of the control parameters, it possible to
ensure that the following condition holds:

‖A−1α‖ ≤ δ <
c3

c4

√
c1

c2
ϑσ, (26)

for some positive constant ϑ < 1, where δ is a positive con-
stant representing a suitable bound of the disturbances. Tak-
ing into consideration the same Lyapunov function adopted
in Theorem 1, the derivative of V(ε) along the trajectory
of the perturbed system satisfies

V̇(ε) ≤ −c3‖ε‖
2 + c4σ‖ε‖

2 + c4δ‖ε‖

= −[1− ϑ][c3 − σc4]‖ε‖2
− ϑ[c3 − σc4]‖ε‖2 + c4δ ‖ε‖

≤ −[1− ϑ][c3 − σc4]‖ε‖2, ∀‖ε‖ ≥
c4δ

ϑ[c3 − σc4]
.

(27)

Then, for all ‖ε(t0)‖ <
√
c1/c2 σ, the trajectory of the system

satisfies the relations

‖ε(t)‖ ≤

√
c2

c1
exp

{
−

[1− ϑ][c3 − σc4]

c4
[t − t0]

}
‖ε(t0)‖,

∀t0 ≤ t < t0 + T ,

‖ε(t)‖ ≤
c4

c3 − σc4

√
c2

c1

δ

ϑ
, ∀t ≥ t0 + T ,

(28)

for some finite time interval T , see [26] for additional details
on the proof.

Property 1. Due to the structure of H and to the partitioning
of ε, the eigenvalues of the dynamic compensator (i.e., of
matrix H22) depend only on Γ1, Γ2 and Γ3, while those of
the controlled system (i.e., of H11) depend on Λ1 and Λ2.
This separation property is a consequence of the system
linearization obtained by output feedback.

Property 2. Note that (16) represents the internal model of
the system, and by assuming constant values of α, namely,
αss, the steady-state equilibrium point of the system is

εss = −H
−1
Θαss =

[
0 0 0 0 Γ

−1T
3

]T
αss, (29)

thus resulting that only z3 is affected by the external
disturbance.
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Generally speaking, by applying a singular perturbation
analysis, from Property 1, and by assuming that the eigenval-
ues of H22 are fast enough with respect to those of H11, it is
possible to assume that the system

ε̇2 = H22ε2 + Θ2

[
α̂ + A−1α

]
(30)

is always working in steady-state conditions, and its equilib-
rium point is

ε2 = −H
−1
22 Θ2A

−1αss. (31)

This last relation is a generalization of (29). It follows that

z1 −→ v, z2 −→ v̇, z3 − z2 −→ Γ
−1
3 A−1αss (32)

Then, z3 (together with z2) provides a filtered estimation of
the disturbance. This effect on the system can be seen as
a disturbance compensation action (i.e., it compensates for
the effects of α on the system state), and this compensation
action can be annihilated by posing Γ3 = 0 in (13)–(16). Note
that from (19), this is a singular condition for the controller.

Property 3. The control system (10)–(16) can be used also as
a regulator by neglecting the time derivative of the reference
signal v̇d and v̈d. This property will be exploited for the
design of the fast actuators controllers, since, in this case,
tracking performance are not necessary, and these controllers
are assumed fast enough to work always in steady-state
conditions with respect to the slow arm controller.

Property 4. By redefining the control action in (13) as

τ = −Λ1[v − vd]−Λ2[z2 − v̇d] + v̈d + u, (33)

where u is an auxiliary input signal, the system dynamics
becomes

ε̇ = Hε + Gu + Θ
[
α̂ + A−1α

]
,

G =
[

0 I 0 0 0
]T

.
(34)

Due to the structure of matrix G, it is possible to note that
the auxiliary input u does not influence the compensator
error dynamics ε2, and therefore, the resulting dynamics of
the tracking error ε1 is

ε̇1 =

⎡
⎣ 0 I

−Λ1 −Λ2

⎤
⎦ε1 +

⎡
⎣0

I

⎤
⎦u, (35)

showing a steady state tracking error (v − vd) = Λ
−1
1 u.

3.2. Actuators Control Design. It is important to note that
both (2) and (3) are in the form of (10) (see Property 5 in the
appendix). This essentially means that both the positioning
and the stiffness actuators dynamics can be decoupled from
the arm dynamics (1) by exploiting the properties of the
controller (12)–(16). Even if this decoupling can be achieved
by means of a unique controller, the use of two separated
controllers, one for the positioning actuators and one for

the stiffness actuators, is chosen to have a more clear view
of the overall system structure. Due to the implications of
Theorem 1, the possibility of assigning an arbitrary dynamics
to the actuators allows to obtain a two time-scale system,
where the actuators represent the fast system and the arm the
slow one, and then to apply a singular perturbation approach
to reduce the order of the resulting system

M
(
q
)
q̈ + N

(
q, q̇
)

+ K
[
q − θ

]
+ ηq = τe,

ε̇θ = Hθεθ + Θθ
[
α̂θ + B−1αθ

]
,

(36)

ε̇k = Hkεk + Θk
[
α̂k + γ−1αk

]
, (37)

where

εθ =
[

(θ − θd)T θ̇T |(z1θ − θ)T(z2θ − θ̇)T(z3θ − θ̇)T
]T

,

εk =
[

(k − kd)T k̇T | (z1k − k)T(z2k − k̇)T(z3k − k̇)T
]T

,

(38)

and θd is the vector of the desired positioning actuators
configuration, kd = [k1d , . . . , knd ] is the vector of the desired
joint stiffness, and α̂{θ,k}, α{θ,k} summarize the disturbances
acting on the positioning and stiffness actuators, respectively.
In the case of the actuators controllers, Property 3 has been
exploited, since, with respect to the arm dynamics, these
controllers are always working in steady-state conditions,
then tracking performance are not necessary but just the
regulation of the desired position and stiffness. Note that the
robotic arm dynamics remains the same as in (1). On the
basis of Theorem 1, for both (36) and (37), it is possible to
write

H−1 ε̇ = ε + H−1
Θα̂, (39)

where the distinction between the positioning and the
stiffness actuators has been omitted for brevity. As long as
the eigenvalues of H can be freely assigned, it is clear how the
time scale of (36) and (37) can be made arbitrarily faster than
the time scale of (1); therefore, (39) represents the fast mani-
fold dynamics. With some abuse of notation, as ‖H−1‖ → 0
(remember that this can be achieved by a suitable choice
of the controller parameters) the fast manifold dynamics
(39) degenerates, and due to Theorem 1, it is possible to
state that the fast manifold has a unique root expressed
by (29). From (29)–(37), since the disturbance does not
affect the coupling between the actuators and the arm, it
is then possible to define the reduced-order model of the
robotic manipulator with variable joint stiffness as

M
(
q
)
q̈ + N

(
q, q̇
)

+ Kd
[
q − θd

]
+ ηq = τe, (40)

where the actual actuator configuration θ and K have been
substituted with the desired ones θd and Kd in the arm
dynamic equation.

3.3. Trajectory Planning for the Actuators. In this section, the
problem of defining the desired trajectories for the actuators
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given the manipulator trajectories, both in terms of position
and stiffness, is addressed. Note that in case the desired
manipulator stiffness is defined in the joint space only, the
stiffness actuator reference signals are fully defined by Kd,
then the more general case of workspace stiffness reference
is here addressed.

It is important to note that once the desired joint stiffness
Kd has been determined, the torque provided to the joints by
the actuators can be regulated by acting on θd, that is, by a
suitable selection of the positioning actuators configuration.
To this end, (40) can be rewritten as

M
(
q
)
q̈ + N

(
q, q̇
)

+ ηq = τe + τact, (41)

τact = Kd
[
θd − q

]
, (42)

where τact is the vector of the torques provided by the arm
virtual actuators obtained from the joined action of the
stiffness and the positioning actuators. It follows that

θd = K−1
d τactd + q, (43)

where τactd is the desired torque to be applied on the arm
joints by the actuation system and computed by the arm
controller that will be defined in the following.

3.3.1. Position Trajectory. Let us define the direct kinematic
problem and the manipulator Jacobian as

p = Ψ
(
q
)
−→ ṗ =

∂Ψ
(
q
)

∂q
q̇ = J

(
q
)
q̇, (44)

where p ∈ Rm is the manipulator end-effector position
in an m-dimensional task space. Differently from the case
of state feedback linearization [10], where qd ∈ C4 and
kd ∈ C2, that is, the joint trajectories must be defined up
to the fourth time derivative, while the joint stiffness must
be defined up to the second time derivative, in this case,
due the reduced order of the arm dynamics (40), the desired
manipulator trajectory can be specified as usual for rigid
robots both in the task space and in the joint space. In other
words, the robot trajectory will be defined in terms of desired
positions, velocities, and accelerations, while no particular
requirements are necessary for the stiffness desired values. In
any case, smooth-enough stiffness profiles are preferable to
avoid abrupt oscillations of the actuators and of the arm.

If the manipulator trajectory is defined in the task space,
the vectors pd, ṗd, and p̈d indicate, respectively, the desired
position, velocity, and acceleration of the end effector. It
is assumed that both task- and joint-space trajectories are
limited and continuous (at least with a piece-wise continuous
acceleration profile). Obviously, in case of task space control,
singular configurations of the manipulator must be avoided
or explicitly considered in the controller. In that case, it is
then possible to define the desired joint-space trajectory as

qd = Ψ
−1
(
pd
)
, (45)

q̇d = J
(
qd
)#
ṗd,

q̈d = J
(
qd
)#[

p̈d − J̇
(
qd
)
q̇d
]
,

(46)

where (45) indicates the inverse kinematic function. The
solution of the manipulator inverse kinematics can be also
obtained by means of a closed-loop inverse kinematic
algorithm (CLIK), [27], as specified in the following. In case
of manipulator redundancy (n > m), the Jacobian pseu-

doinverse J(qd)# must be considered. Note that the manip-
ulator redundancy can be exploited by defining secondary
tasks [28], for example, to avoid obstacles, to deal with
general task constraints, or to optimize the manipulator joint
configuration on the basis of the desired task space stiffness,
as will be shown in the following.

3.3.2. Stiffness Reference Signals. In the following discussion,
the leading superscript w will be used to refer to workspace-
related variables. In static conditions, the workspace stiffness
of the arm wKd can be specified as

Fe=
wKddp, (47)

where the infinitesimal end-effector workspace displacement
dp and the environmental force Fe are considered.

Several works can be found in the literature about the
workspace stiffness control of both redundant and nonre-
dundant robots. In particular, in [29], the different com-
ponents that determine the total workspace stiffness are
analyzed, and the orthogonal stiffness decomposition control
is introduced, while in [30], the stability properties of the
workspace stiffness components and a minimal parametriza-
tion of the manipulator stiffness and compliance are re-
ported. Since variable stiffness actuation allows the indepen-
dent control of the joint compliance, an interesting approach
for the regulation of the workspace compliance of redundant
robots with compliant actuation can be the combined control
approach proposed in [20], where the desired manipulator
stiffness in the operational space is achieved by combining a
decoupled stiffness joint control together with a workspace
stiffness controller.

The relation between the workspace stiffness wKd and the
overall joint stiffness Ka can be expressed as

Ka = JT wKdJ , (48)

where the dependence of the Jacobian from the joint
configuration q has been omitted for brevity. Note that the
overall joint stiffness Ka may be the result of several effects,
as specified in the following. For this reason, this quantity has
been distinguished from the mechanical joint stiffness Kd.
In the right-hand side of (48), since the workspace stiffness
must be, in general, symmetric and positive definite and
due to the transformation through the manipulator Jacobian,
only m[m + 1]/2 independent terms are present. At the
same time, by considering the case of independent regulation
of the joint mechanical stiffness only, matrix Ka is diagonal
(Ka = Kd), then there are n independent terms in the
left-hand side of (48). It follows that it is possible to
assign arbitrary workspace stiffness by selecting suitable joint
mechanical stiffness only if n = m[m+1]/2, that means a cer-
tain redundancy in the manipulator, at least nonconsidering
the trivial case m = 1, that is, a single DOF mechanism. If n >
m[m+1]/2, there exist infinite combinations of joint stiffness
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that allow to achieve the desired workspace stiffness. Then,
this redundancy must be managed by suitable projection of
the workspace stiffness on the joint space [29], and it can be
exploited maybe to minimize (or maximizing depending on
the task) the overall joint stiffness. If n < m[m + 1]/2, it is
not possible to control all the components of the workspace
stiffness be means of the joint stiffness only, and suitable
couplings between the components of the workspace stiffness
must be introduced.

It is now important to remark that the introduction
of variable stiffness joints is useful to reduce the energy
transferred from the manipulator to the environment (or
humans) during unpredictable impacts by decoupling the
actuators inertia from the link during fast robot motions
(i.e., by reducing the joint stiffness) or, on the other hand,
to increase the precision of the manipulator during slow and
limited movements by imposing high joint stiffness values to
allow adequate external disturbance force/torque rejection.
Moreover, variable stiffness actuators are usually designed to
have high compliance in rest conditions and to become rigid
if necessary under the action of the control system. In this
sense, it is then clear that the role of the joint mechanical
stiffness, or passive stiffness, is completely different from the
active stiffness, that is a control strategy that to allow to
rigid robots to show a “compliant” behavior with respect to
environmental uncertainties, for example, during assembly
operations [14].

By introducing the concept of combined compliance
control reported in [20] but with different goals, it is possible
to split the overall workspace stiffness into two components,
one given by the mechanical joint stiffness Kd only, the pas-
sive stiffness, that acts at all the frequencies but that shows its
major effects at high frequency and then in case of impacts,
and in a component due to the control, the active stiffness
Kc, that is significant only within the control bandwidth.
It is also important to remark that due to the cascade
structure of the proposed controller, it is possible to design
the arm controller with a purposely defined bandwidth to
decouple the passive stiffness from the active stiffness.

The contribution to the workspace stiffness due to the
mechanical joint stiffness Kd only, namely, wK j , is given by

wK j
−1 = JK−1

d JT . (49)

It is important to note that (49) maps the joint stiffness
to the workspace stiffness no matter what is the number
of joints or the dimension of the workspace. This point is
important in case of manipulator redundancy to deal with
suitable selection of the joint stiffness.

On the basis of these considerations, the workspace stiff-
ness wKd can be partitioned into two different contributions

wKd=
wK j+

wKc, (50)

where wK j is the contribution due to the passive mechanical
joint stiffness and wKc is the active stiffness due to the
control. Note that since from (49) wK j is symmetric
positive definite by definition and wKc must be symmetric
and positive definite to avoid instability of the positioning
actuators, also wKd is positive definite, thus avoiding system

instability: this results in a lower limit of the workspace
stiffness given by the effects of the joint mechanical stiffness,
since the controller can be used only to increment the overall
stiffness. It is important to remark that while in the case of
industrial robots the control objective is to make rigid robot
softer and then the system compliance is given by the sum
of the control compliance and the joint compliance, this last
equation shows that the proposed control system is used to
the make soft robots (because of the relatively low value of
wK j) stiffer when necessary by means of control (i.e., by

acting on wKc).
From (49) and (50), the induced partitioning of the

apparent joint stiffness Ka is

Ka = Kd + JT wKcJ = Kd + Kc. (51)

Due to the effect of the joint apparent stiffness, the relation
between the infinitesimal joint displacements and the joint
torques can be expressed as

τactd = Kadq. (52)

Taking into consideration the relation between the work-
space displacement and joint displacement, by inverting (52),
it is possible to write

dq = K−1
a τactd = K−1

a JTFe

= K−1
a JT

w
Kddp = K−1

a JT
[
JK−1

a JT
]−1

dp,
(53)

where the relation between the workspace stiffness and the
joint apparent stiffness wKd

−1 = JK−1
a JT has been exploited

(see Theorem 3 in the appendix). It is possible to demon-
strate that the same relation can be written in the form
(Theorem 3 in the appendix) [20]

dq = K−1
d JT

[
JK−1

d JT
]−1

dp = J#dp, (54)

where J# = K−1
d JT[JK−1

d JT]
−1

is the pseudoinverse Jacobian
matrix, weighted by the joint mechanical stiffness Kd. This
result is important, because it shows that the relations
between workspace and joint displacements are affected only
by the mechanical joint stiffness. From the meaning of the
pseudoinverse, the inverse kinematic solution obtained from
(54) can be considered as providing the manipulator config-
uration which minimizes the deviation of the joints weighted
by the joint stiffness; that is, it minimizes the potential energy
stored in the joint compliance, ensuring the minimum
energy transfer due to the inertia of the actuators during
unexpected collisions. It follows that the desired workspace
stiffness has no effect on the inverse kinematics solution
of the manipulator. This fact suggests that the regulation
of the manipulator configuration q must be performed on
the basis of the inverse kinematic solution obtained by means
of J# both to stabilize the manipulator dynamics in the
Jacobian null space and to achieve minimum energy transfer
from the actuators to the arm.
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3.4. Arm Control Design. Several robust controllers for
robotic arms have been presented in the literature; see for
example, [31–33] for some well-known examples. Anyway,
in case of robots with variable joint stiffness, the application
suggests a particular implementation of the controller.

First of all, aiming to clarify the role of the passive and the
active stiffness, the static relation between the environmental
force Fe and the deviation of the end effector in the
workspace is considered

Fe=
wKd

[
pd − p

]
=⇒ τactd = JTFe = JT wKd

[
pd − p

]
,

(55)

and for small-enough displacements,

τactd = JT wKd J
[
qd − q

]
= Ka

[
qd − q

]
. (56)

From (43) and (51), it follows that

θd = K−1
d Ka

[
qd − q

]
+ q = K−1

d [Kd + Kc]
[
qd − q

]
+ q

= qd + K−1
d Kc

[
qd − q

]
.

(57)

By substituting (57) into (41)-(42), it follows that

M
(
q
)
q̈ + N

(
q, q̇
)

+ [Kd + Kc]︸ ︷︷ ︸
Ka

[
q − qd

]
+ ηq = τe, (58)

that means that the robotic arm behaves as a joints-position
controlled system with the desired apparent stiffness.

Looking at the right hand side of (57), the first term
represents the passive stiffness, since the positioning actu-
ators are commanded just on the basis of the manipulator
joint desired position trajectory, and then, no feedback from
the actual joint positions is present, while the second term
represents the active stiffness, since it implies the joint posi-
tions feedback on the positioning actuators. It is important to
remark that while the passive stiffness acts at high frequency
since it does not require the intervention of any controller,
the active stiffness acts within the arm controller bandwidth.
Moreover, if the manipulator configuration is obtained by
the inverse kinematic solution by using (54), the minimum
value for the potential energy stored in the joints as a
consequence of the end-effector displacement is achieved.

With the aim of controlling the workspace motion of
the manipulator, a specialized version of the controller (12)–
(16) that in particular exploits Property 4 is now applied
to the arm reduced model (41)–(43) (see Property 6 in the
appendix). The torque of the virtual actuators can be then
computed as

τactd =M
(
q
){
J#
[
F − J̇ z2

]
+ τ j

}

+ N
(
q, z2

)
− JTFem + M

(
q
)
Γ3[z3 − z2],

(59)

F=wMd
−1{−wKd

[
p − pd

]

−wDd
[
J z2 − ṗd

]
+wMd p̈d + F̂e

}
,

(60)

τ j = S
{
−Kd

[
q − qd

]
−Dd

[
z2 − q̇d

]}
, (61)

ż1 = −Γ1

[
z1 − q

]
+ z2, (62)

ż2 = −Γ2

[
z1 − q

]
+ J#

[
F − J̇ z2

]
+ τ j, (63)

ż3 = J#
[
F − J̇ z2

]
+ τ j , (64)

where S = I − J#J is the matrix that projects the joint space
control action in the null space of the manipulator Jacobian,
Dd = 2

√
Kd is the joint space damping, wDd and wMd

represent the desired workspace damping and mass of the
manipulator, respectively, and Γ1, Γ2, Γ3 are positive definite
(diagonal) matrices. In particular, qd and q̇d are provided
by a closed-loop inverse kinematic solver that exploits (54),

while Fem and F̂e are the external force measurement and
estimation, respectively. On the basis of Property 4, the
external force estimation is used as the auxiliary input u
appearing in (34) in the arm controller. Note that on the basis
of (54), the static term Kd[q − qd] in the joint space control
ensures the minimum norm of the joint space control effort.

It is initially assumed that the force Fe applied by the end
effector to the environment is measurable (i.e., by means of
a 6-axis force/torque sensor), then it is possible to impose

Fem = F̂e = Fe. Note that by recalling the boundedness
of the arm trajectory and the limited value of the state
variables and in particular of both the joint velocity q̇ and
of the controller state z2, the condition (11) is ensured by the
general properties of the robotic arm dynamics [34, 35].

By recalling Property 2, and with a suitable choice of
large-enough values of Γ{1,2,3}, the dynamic compensator
represented by (62)–(64) can be configured as a third fast
system together with the actuators controllers previously
defined. Due to the controller structure, the arm response
would be slower in two-order than the actuation control
system. This fact does not represent a limitation, since (1)
the fast control systems are very simple, and then, very fast
implementations are possible with current technologies and
computational capabilities of modern digital systems, (2)
robots with variable stiffness actuation are conceived for
the interaction with humans and to operate in a human-
like environment, then smoother and bandwidth-limited
motions are required with respect to industrial robots, (3)
fast high-gain controllers are used in the actuators, while a
slow low-gain controller is more suitable for the arm control
also for safety reasons. It is then possible to assume that

z1 −→ q, z2 −→ q̇, z3 − z2 −→ Γ
−1
3 α, (65)

where α =M(q)−1ηq is the effect of the model and parameter
uncertainties. Then, by denoting e = p − pd, the reduced-
order nominal arm dynamics (41) under the effect of the
controller (59)-(60) can be written as

wMd ë+wDd ė+wKde = Fe. (66)

In case a direct measure of the force applied by the end
effector to the environment is not available, (Fem = 0)
by assuming the perfect knowledge of the arm dynamics,
that is, ηq = 0, and by considering the external force Fe
as a disturbance, Property 2 implies that in steady state
conditions,

z1 −→ q, z2 −→ q̇, z3 − z2 −→ Γ
−1
3 M

(
q
)−1

JTFe.
(67)
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A suitable estimation of the external force Fe can be then
assumed as

F̂e = −J
#TM

(
q
)
Γ3[z3 − z2]. (68)

This equation defines a virtual force sensor that provides an
indirect measure of the external force. Hence, the reduced-
order nominal arm dynamics can be written as

wMd ë+wDd ė+wKde = F̂e+
wMdJ M

(
q
)−1

JT
[
Fe − F̂e

]
. (69)

The last term in (69) represents the perturbation on the sys-
tem dynamics due to the use of the force estimation instead
of a direct measure. Apart from this spurious term, the
robotic manipulator is now configured as an impedance
controlled system.
Once the torque τactd is determined by means of (59), the
reference trajectory for the positioning actuators can be
computed through (43).

An important remark is that while the workspace stiffness
wKd is obtained by combining the mechanical stiffness of

the robot transmission together with the control action, only
the active part of the desired stiffness implies the feedback
of the manipulator joint positions. This is a key feature for
safety reasons [2], because no reaction from the controller
is needed to achieve the desired compliant behavior at joint
level, since the compliance is a structural characteristic of the
robot itself.

Note that also the arm controller provides a filtered
estimation of the disturbance acting on the joints through
(64). These information, also called residuals in the robotic
community [36], can be used for fault evaluation and
collision detection/reaction [37], and they have recently been
successfully used for safe interaction of lightweight robots
with human operators [17]. The possibility of exploiting the
properties of robots with variable stiffness actuation together
with the safety-oriented control techniques related to the use
of the residuals justifies the proposed implementation of the
controller.

3.5. Remarks. With respect to the control approaches for
the system (1)–(3) proposed in [10, 11], the control scheme
presented in this paper presents a number of remarkable
advantages

(i) The complexity of the controller is significantly
reduced since neither static nor dynamic inversion of
the system is needed.

(ii) Redundancy of the manipulator is considered.

(iii) The computation of the Lie derivative of the system
dynamics up to the fourth order is avoided.

(iv) An output-feedback control law has been defined
instead of state-feedback controllers.

(v) The arm trajectory must now be defined only up to
the second order derivative, as in the rigid robot case,
while previously, it was necessary to define the posi-
tion trajectory up to the fourth order and the stiffness
trajectory to the second order derivative.

(vi) Since the arm control is based on the two signals
θd and Kd, that are generated online and that act
as exogenous reference for the actuators fast system,
online compensation of disturbances is permitted.

(vii) The joint stiffness is controlled by a specific control
system that directly compensates for the effects of
disturbances, external forces and couplings due to
both positioning actuators and arm dynamics.

(viii) The proposed control strategy exploits the mechan-
ical compliance of the transmission to achieve the
desired workspace behavior (passive compliance).

(ix) In case of perfect knowledge of the arm dynamics, the
system is able to estimate and regulate the workspace
interaction force without a direct measurement of the
force itself.

(x) The manipulator residuals are directly provided by
the controller, allowing a simple integration with
fault and collision detection/reaction techniques.

(xi) The extension of the proposed approach to the case
of robotic manipulator where the stiffness can be
adjusted only for some joints is straightforward, since
by applying the proposed positioning and stiffness
actuators controller where necessary, the overall
robot dynamics is reduced to the rigid case.

4. Simulation of a Three-Link
Planar Manipulator

The proposed controller has been validated by means of
simulations of a planar three-link robotic arm with variable
joint stiffness. Only the Cartesian coordinates x and y of
the workspace end-effector position are considered (not the
orientation), and this allows to analyze the effects of the
manipulator redundancy in a quite simple manner. The
extension of the proposed control approach to the case in
which gravity compensation is needed is straightforward.
The well-known dynamic model of the three-link planar arm
is omitted for brevity; see [35], and only the dynamics of
stiffness variation is specified

λ2k̈i + λ1k
2
i + λ0

[
qi − θi

]2
+ ηki = τki . (70)

This stiffness dynamic model [10] is typical of a variable
stiffness actuator with antagonistic elastic elements charac-
terized by quadratic force-deformation relation proposed by
Migliore et al. in [5]. The parameters of the three-link planar
manipulator used in simulation are reported in Table 1, and
all the links of the manipulator are considered identical
for simplicity. In the simulation scheme, the trajectories
are generated using proper filters to compute the position
trajectory in the workspace together with its derivatives up
to the second order. In this manner, the conditions given
by Theorem 1 for the stability of the system are implicitly
met. It is assumed that the joint stiffness reference values
are provided by a suitable safety controller on the basis
of some requirements given by the particular application
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Table 1: Nominal parameters of the three-link planar manipulator.

Description Value Unit

Joint inertia 1.15e − 2 Kg m2

Joint viscous friction coeff. 0.001 N s m−1

Link mass 0.541 kg

Link center of mass 0.085 m

Link length 0.3 m

Motors inertia 6.6e − 5 kg m2

Motors viscous friction coeff. 0.00462 N s m−1

Actuators Coulomb friction level 0.1 N m

Joints Coulomb friction level 0.5 N m

λ2 2.2 s2

λ1 0.4 N−1 m−1

λ0 14.7 N m rad−2

Table 2: Parameters of the three-link planar manipulator controller
used in the simulations.

Symbol Case no. 1 Case no. 2, no. 3
wKd diag{16, 16} diag{100, 100}
wDd diag{6, 6} diag{30, 30}
wMd diag{0.02, 0.02} diag{0.02, 0.02}

Γ1i 90 90

Γ2i 2.7e3 2.7e3

Γ3i 10 10

Table 3: parameters of the positioning and stiffness actuators fast
controllers used in the simulations.

Symbol Case no. 1, no. 2, no. 3

Λ1i 1e4

Λ2i 150

Γ1i 9e3

Γ2i 2.7e5

Γ3i 1e3

and contest. Moreover, the matrices that characterize the
arm impedance controller have been considered diagonal to
simplify the analysis of the simulation results. The controller
parameters adopted in the simulations are summarized in
Tables 2 and 3. Three case studies have been considered:
in the first case, whose results are reported in Figure 3,
the manipulator end-effector is driven along several point-
to-point trajectories. During this simulation, friction in
the actuators is considered together with parameter uncer-
tainties in the arm dynamics. External forces are applied
along the x and y directions at time t = 4 [s] and
t = 15 [s], respectively. From these plots, it is possible to
note that as expected on the basis of Property 2, the end-
effector position error is mainly affected by the external
force, that is considered measurable during this test, and
exactly related to the desired workspace stiffness. It is
important to note that the joint mechanical stiffness is not
significantly affected by the remaining parts of the system,
then the independent regulation of the actuation stiffness is
achieved. The joint stiffness tracking error is not reported,

since it is very limited and not meaningful. In Figure 3,
also the joint reference trajectory computed by the inverse
kinematic solver is reported (upper left plot): this informa-
tion is useful for the regulation of the null-space behavior of
the system. Finally, also the positioning actuators trajectories
are reported.

In Figure 4, the results of the case study no. 2 are re-
ported. During this test, a different set of point-to-point
trajectories have been evaluated together with an higher
values of the desired workspace stiffness and larger (measur-
able) external forces. The same limitations on the maximum
workspace velocity considered in the previous case are
assumed during this test. Also, in this simulation, the external
forces are applied along x and y at time t = 4 [s] and
t = 15 [s], respectively. As in the previous case, the end-
effector position error is determined by the external force
and by the desired workspace stiffness, while the commanded
joint stiffness is the same of the case no. 1, hence showing
the independent control of the workspace and of the joints
stiffness.

For the simulation of case no. 3, whose results are
reported in Figure 5, the same condition of case no. 2 are
considered, but the perfect knowledge of the arm parameters
is assumed, and the external force has been considered
nonmeasurable: from the comparison with Figure 4, it is
possible to note that the proposed virtual force sensor is able
to correctly estimate the external force; however, the response
of the system in case no. 3 shows larger oscillations during
transients with respect to case no. 2, but the response in static
conditions is identical to those obtained considering direct
measure of the external force, that is, in case no. 2.

5. Conclusions

In this paper, the problem of output-based regulation of
robotic manipulators with variable stiffness actuation has
been discussed. A control scheme has been proposed whose
main features are the simultaneous and decoupled workspace
stiffness-position control with limited error, disturbance
compensation and estimation-control of the environment
interaction force. Moreover, the case of manipulator redun-
dancy has been explicitly addressed and some nice features
and implications related to the control of the both the
joint mechanical stiffness and workspace stiffness have been
highlighted. The control objective is achieved by means of
a multilevel controller that decouples the dynamics of both
the positioning and the stiffness actuators from the arm
dynamics. This result is obtained by applying a singular
perturbation analysis to both the actuators and the arm
dynamics, configuring in this way a multilevel control
structure that presents fast controllers for the actuators and
a slow controller for the arm. Moreover, the proposed con-
troller presents several advantages with respect to previous
approaches for this class of devices, as the rigid-robot-like
trajectory specification, the reduced complexity and the
availability of the system residuals for collision detection/
reaction purposes to cite some of them. The extension of
the proposed analysis to an hybrid case, in which both rigid
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Figure 3: Response of the system during test no. 1.

and elastic joints are present, with constant or variable
stiffness, can be easily achieved. Also, the case of joints with
different stiffness variation models can be easily considered.
The proposed control approach is validated by means of
simulation of a three-link planar manipulator, and the ex-
perimental validation of the proposed approach will be
considered in the future.

Appendix

Property 5. The general second-order dynamic system (10)
can be used in place of each of (1)–(3) by posing:

(i) In case of (1)

v = q, w = [θ k], α = ηq, τ = τe,

A(v,w) =M
(
q
)
, f (v̇, v,w) = N

(
q, q̇
)

+ K
[
q − θ

]
.

(A.1)

(ii) In case of (2),

v = θ, w =
[
q k
]
, α = ηθ , τ = τθ ,

A(v,w) = B, f (v̇, v,w) = K
[
θ − q

]
.

(A.2)

(iii) In case of (3),

v = k, w =
[
q θ
]
, α = ηk , τ = τk ,

A(v,w) = γ
(
q, θ, k

)
, f (v̇, v,w) = β

(
q, θ, k

)
.

(A.3)

Property 6. The general second-order dynamic system (10)
can be used in place of (41)–(43) by posing

v = q, w = [θ k], α = ηq + τe, τ = τactd ,

A(v,w) =M
(
q
)
, f (v̇, v,w) = N

(
q, q̇
)
.

(A.4)

Theorem 3. Let Kd, J , and wKd be n × n diagonal positive
definite, m×n and m×m symmetric positive definite matrices,
respectively. The following definitions are given:

wK j
−1 = JK−1

d JT , (A.5)

wKc=
wKd−

wK j , (A.6)

Ka = Kd + JT
w
KcJ , (A.7)



Journal of Robotics 13

x

−0.02

0

0.02

0.04

0.06

−0.04

−2

0

2

4

6

8

−4

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

Time (s)

E
xt

er
n

al
fo

rc
e

(N
)

E
n

d
-e

ff
ec

to
r

p
o

si
ti

o
n

(m
)

P
o

si
ti

o
n

er
ro

rs
(m

)

direction

y direction

(a)

−1

−0.5

0

0.5

1

1.5

Jo
in

t
p

o
s.

(r
ad

)

−2

−1

0

1

2

3

A
ct

u
at

o
r

p
o

s.
(r

ad
)

0 10 20 30 40
0

2

4

6

8

Jo
in

t
st

iff
n

es
s

(N
m

ra
d
−

1
)

Time (s)

Joint 1

Joint 2

Joint 3

(b)

Figure 4: Response of the system during test no. 2.

where the properties of symmetry and positive definition of the
matrices wK j , wKc, and Ka should hold. Note that (A.5)–
(A.7) correspond to (49)–(51). Then,

JK−1
a JT=wKd

−1, (A.8)

K−1
a JT

[
JK−1

a JT
]−1

= K−1
d JT

[
JK−1

d JT
]−1

. (A.9)

Proof. Let consider (A.9) first. By applying the matrix
inversion lemma [38] to (A.7)

K−1
a = K−1

d − K−1
d JT

[
wKc

−1+wK j
−1
]−1

JK−1
d . (A.10)

It follows that

JK−1
a JT=wK j

−1−wK j
−1
[
wKc

−1+wK j
−1
]−1

wK j
−1. (A.11)

By applying the matrix inversion lemma also to (A.6), it
results

wKd
−1=wK j

−1−wK j
−1
[

wKc
−1+wK j

−1
]−1

wK j
−1. (A.12)

By noticing that (A.11) and (A.12) are equivalent, it follows
that the relation (A.8) is satisfied.

Now (A.9) is considered. From (A.10) and (A.8),

K−1
a JT

[
JK−1

a JT
]−1

=

{
K−1
d − K−1

d JT
[
wKc

−1+wK j
−1
]−1

JK−1
d

}
JT wKd .

(A.13)

By introducing (A.6)

K−1
a JT

[
JK−1

a JT
]−1

=

{
K−1
d − K−1

d JT
[
wKc

−1+wK j
−1
]−1

JK−1
d

}

JT
[
wKc+

wK j

]
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Figure 5: Response of the system during test no. 3.

= K−1
d JT

{
−
[
wKc

−1+wK j
−1
]−1

wK j
−1
[
wKc+

wK j

]

+wKc+
wK j

}

= K−1
d JT

{
−
[
wKc

−1+wK j
−1
]−1[

wK j
−1+wKc

−1
]
wKc

+wKc+
wK j

}
= K−1

d JT
[
JK−1

d JT
]−1

,

(A.14)

where (A.5) has been finally used.
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