
 

Output-based event-triggered control with guaranteed L∞-gain
and improved event-triggering
Citation for published version (APA):
Donkers, M. C. F., & Heemels, W. P. M. H. (2010). Output-based event-triggered control with guaranteed L∞-
gain and improved event-triggering. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC
2010) 15-17 december 2010, Atlanta, GA, USA (pp. 3246-3251) https://doi.org/10.1109/CDC.2010.5718032

DOI:
10.1109/CDC.2010.5718032

Document status and date:
Published: 01/01/2010

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://doi.org/10.1109/CDC.2010.5718032
https://doi.org/10.1109/CDC.2010.5718032
https://research.tue.nl/en/publications/5f4eac74-187f-49cd-9535-a40d364b1db3


Output-Based Event-Triggered Control with
Guaranteed L∞-gain and Improved Event-Triggering

M.C.F. Donkers and W.P.M.H. Heemels

Abstract— Most event-triggered controllers available nowa-
days are based on static state-feedback controllers. As in many
control applications the full state is not available for feedback,
it is the objective of this paper to propose event-triggered
dynamical output-based controllers. The fact that the controller
is based on output feedback instead of state feedback does not
allow for straightforward extensions of existing event-triggering
mechanisms if a minimum time between two subsequent events,
the so-called ‘minimum inter-event time’, has to be guaranteed.
Therefore, we will propose an event-triggering mechanism that
invokes execution of the control task when the difference
between the measured output or the control input of the plant
or controller, respectively, and its previously sampled value
becomes ‘large’ compared to its current value and an additional
threshold. For such event-triggering mechanisms, we will study
closed-loop stability and L∞-performance and provide bounds
on the minimum inter-event time. In addition, we will model the
event-triggered control system using impulsive systems, which
truly describe the behaviour of the event-triggered control
system. As a result, we can guarantee stability and performance
for improved event-triggered controllers with larger minimum
inter-event times than existing results in literature.

I. INTRODUCTION

In many control applications nowadays, the controller is
implemented on a digital platform. In such an implementa-
tion, the control task consists of sampling the outputs of the
plant and computing and implementing new actuator signals.
Typically, the control task is executed periodically, since
this allows the closed-loop system to be analysed and the
controller to be designed using the well-developed theory on
sampled-data systems, see, e.g., [1], [2]. Although periodic
sampling is preferred from an analysis and design point of
view, it is sometimes less preferable from an implementation
point of view. Namely, executing the control task at times
that no disturbances are acting on the system and the system
is close to its desired equilibrium might be a waste of
computational resources. Moreover, in case the measured
outputs and/or the actuator signals have to be transmitted
over a shared network, this can lead to unnecessary utilisa-
tion of the network, or power consumption of the wireless
radios, in case of a wireless network. For these reasons, an
alternative to sampled-data control, namely, event-triggered
control has been proposed, [3], [4]. Event-triggered control
is a control strategy in which the control task is executed
after the occurrence of an external event, generated by some
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well-designed event-triggering mechanism, rather than the
elapse of a certain period of time as in done in conventional
sampled-data control.

Although the advantages of event-triggered control are
well-motivated and even practical applications show its po-
tential, only few theoretical results exist that study event-
triggered control systems, see, e.g., [5]–[14]. In these ref-
erences, several different event-triggering mechanisms and
control strategies are proposed. However, most of the work
on event-triggered control considers state-feedback con-
trollers, which assumes that all the plant states can be
measured. To the best of the authors’ knowledge, the only re-
sult on event-triggered control using dynamical output-based
controllers is presented in [12]. However, a thorough analysis
of the minimum time between two subsequent events, the
so-called inter-event time, is not available for [12]. Further-
more, extending the event-triggering mechanisms in [10],
[11] to output-based controllers is not straightforward, since
for these event-triggering mechanisms, no minimum inter-
event times can be shown to exist, even though they have
a guaranteed minimum inter-event time for state-feedback
controllers.

As in many control applications the full state is not
available for feedback, we study in this paper stability
and L∞-performance of event-triggered control systems for
dynamical output-based controllers. Inspired by [11], we
propose a modified event-triggering mechanism that invokes
execution of the control task when the difference between
the current output and the previously sampled output of
either the plant or the controller becomes ‘large’ compared
to the current value of the output of the plant or controller,
respectively, plus some additional threshold. This additional
threshold ensures the existence of a nonzero minimum inter-
event time. The event-triggering mechanism presented in this
paper can be seen as a unification of the event-triggering
mechanisms proposed in [10], [11] and [12]–[14].

As a second contribution of this paper, we propose to
model the event-triggered control system as an impulsive
system, see, e.g., [15], [16], which truly describes the be-
haviour of the event-triggered control system. Furthermore,
we extend the framework presented in [11] towards output-
feedback controllers and we formally show that the impulsive
systems framework allows stability to be guaranteed for
event-triggering mechanisms that result in larger minimum
inter-event times than the extended results of [11]. We derive
conditions for stability in terms of linear matrix inequalities
(LMIs) and using two numerical examples, we illustrate that
the guaranteed minimum inter-event times is improved with



respect to existing results in literature.

A. Nomenclature

The following notational conventions will be used.
diag(A1, . . . , AN ) denotes a block-diagonal matrix with the
entries A1, . . . , AN on the diagonal, A> ∈ Rm×n denotes
the transposed of matrix A ∈ Rn×m, and λmax(A) and
λmin(A) denote the maximum and minimum eigenvalue of
a (symmetric) matrix A ∈ Rn×n, respectively. For a vector
x ∈ Rn, we denote by ‖x‖ :=

√
x>x its 2-norm, for a signal

x : R+ → Rn, we denote by ‖x‖L∞ = ess supt∈R+ ‖x(t)‖,
its L∞-norm, and for a matrix A ∈ Rn×m, we denote by
‖A‖ :=

√
λmax(A>A), its induced 2-norm. Finally, we

denote x+(t) = lims↓t x(s), i.e., taking the limit from above,
and for brevity, we write symmetric matrices of the form[
A B

B> C

]
as
[
A ?

B> C

]
.

II. EVENT-TRIGGERED CONTROL

In this section, we present the event-triggered control
problem and formulate it as an impulsive system.

A. Problem Formulation

Let us consider a linear time-invariant (LTI) plant given by{
d
dtxp = Apxp +Bpû+Bww,

y = Cpxp,
(1)

where xp ∈ Rnp denotes the state of the plant, û ∈ Rnu the
input applied to the plant, w ∈ Rnw an unknown disturbance
and y ∈ Rny the output of the plant. The plant is controlled
using a continuous-time controller given by{

d
dtxc = Acxc +Bcŷ,

u = Ccxc +Dcŷ,
(2)

where xc ∈ Rnc denotes the state of the controller, û ∈ Rny
the input of the controller, and u ∈ Rnu the output of the
controller. We assume that the controller is designed to render
(1) and (2) with y(t) = ŷ(t) and u(t) = û(t), for all t ∈ R+,
asymptotically stable.

In an event-triggered implementation, the outputs of the
plant and controller are not sent continuously, but only at
transmission times tk, k ∈ N. Therefore, we let the inputs
of the plant and controller be described by a zero-order
hold, i.e.,

ŷ(t) = y(tk) and û(t) = u(tk), (3)

for all t ∈ (tk, tk+1], where tk+1 > tk, k ∈ N. In a
conventional sampled-data implementation, the transmission
times are distributed equidistantly in time, meaning that
tk+1 = tk + h, for all k ∈ N and for some constant
transmission interval h > 0. In event-triggered control,
however, we let these transmissions to be orchestrated by
an event-triggering mechanism, as is shown in Fig. 1.

In this paper, we consider an event-triggering mechanism
that invokes transmissions of both the outputs of the plant
and the controller when either ŷ(t) − y(t) or û(t) − u(t)

Fig. 1: Event-triggered Control Schematic

becomes too large. In particular, the event-triggering mech-
anism considered in this paper, results in transmitting the
outputs of the plant and the controller at times tk, k ∈ N,
satisfying

tk+1 = inf
{
t > tk| ‖ey(t)‖2 = σy‖y(t)‖2 + εy or

‖eu(t)‖2 = σu‖u(t)‖2 + εu
}
, (4)

and t0 = 0, for some σy, σu, εy, εu > 0. In these expressions,

ey(t) := ŷ(t)− y(t) and eu(t) := û(t)− u(t) (5)

denote the errors induced by the event-triggered implemen-
tation of the controller. The event-triggering mechanism is
such that when either one of the conditions in (4) is satisfied,
both y and u are sent in a synchronised way, in which it is
assumed that y(tk) is sent first. As a result, we have that both
e+
y (tk) = 0 and e+

u (tk) = 0. Note that this is equivalent to
the approach taken in the case the system is controlled by a
state-feedback controller, see, e.g., [11]. Namely, in this case
the outputs of the plant are transmitted first, after which the
controller outputs are updated and transmitted. As a result of
(4), the event-triggered-induced errors satisfy, for all t ∈ R+{

‖ey(t)‖2 6 σy‖y(t)‖2 + εy,

‖eu(t)‖2 6 σu‖u(t)‖2 + εu.
(6)

The main objective of the paper is to determine σy ,
σu, εy and εu, such that the closed-loop system is stable
in an appropriate sense and a certain level of disturbance
attenuation is guaranteed, while the number of transmissions
of the outputs of the plant and the controller is minimised.
Note that for εy = εu = 0, the event-triggering conditions in
(4) can be thought of to be an extension of [11] for output-
based controllers, and for σy = σu = 0, it is equivalent to
[12]–[14].

B. Discussion and Possible Extensions

The event-triggering mechanism as discussed above re-
quires that it is possible to synchronise the transmissions of
both y and u in a particular way in which y is sent just
before u, thereby allowing the transmitted u to be based on
the newly received ŷ, (see (2)). The reason for making this
assumption is to allow that Dc 6= 0 in (2), which also allows
us to compare the results presented in this paper with existing
results on state-feedback controllers, see below. To explain
in more detail what issues might arise in case Dc 6= 0,
let us consider the case in which the transmissions are not



synchronised and that the outputs of the plant are transmitted
at times tyk, satisfying

tyk+1 = inf
{
t > tyk| ‖ey(t)‖2 > σy‖y(t)‖2 + εy

}
, (7)

and the outputs of the controller are transmitted at times tuk ,
satisfying

tuk+1 = inf
{
t > tuk | ‖eu(t)‖2 > σu‖u(t)‖2 + εu

}
, (8)

and ty0 = tuk = 0, for some σy, σu, εy, εu > 0. In this case,
the transmission times can coincide, i.e., tk = tyk = tuk ,
and therefore both ŷ+(tk) = y(tk) and û+(tk) = u(tk)
are implemented simultaneously. Since ŷ directly affects u,
according to (2), we could have that the condition in (8) is
again satisfied immediately, resulting in another transmission
of u. Hence, we would have that u is transmitted twice at one
time instant, which might not be desirable from a practical
point of view and prohibits us from proving the existence of
a guaranteed lower bound on the inter-event time.

In the case that synchronisation of the transmissions of
the outputs of the plant and the controller is not possible,
and it is acceptable that u is sometimes transmitted twice
in an infinitesimal amount of time, the modelling steps and
the stability results presented in this paper can be applied
mutatis mutandis. In case that Dc = 0, in which the situation
discussed above cannot occur, a lower-bound on the inter-
event time can be proven to exist.

C. An Impulsive System Formulation
In this section, we reformulate the event-triggered control

problem into an impulsive system formulation, see, e.g., [15],
[16], of the form{

d
dt x̄ = Āx̄+ B̄w, when x̄ ∈ C
x̄+ = Ḡx̄, when x̄ ∈ D,

(9)

where x̄ ∈ X ⊆ Rnx denotes the state of the system and
w ∈ Rnw an external disturbance. The flow and the jump
sets are denoted by C ⊆ Rnx and D ⊆ Rnx , respectively,
and satisfy X = C ∪ D.

To arrive at a system description of the event-triggered
control system (1), (2), with (4) of the form (9), we combine
(1), (2), (5), and define x̄ := [x>p x

>
c e
>
y e
>
u ]>∈ Rnx , where

nx := np +nc +ny +nu, yielding the flow dynamics of the
system

d
dt x̄ =

[
A+BDC BD

−C(A+BDC) −CBD

]
︸ ︷︷ ︸

=:Ā

x̄+

[
E
−CE

]
︸ ︷︷ ︸

=:B̄

w, (10)

in which

A = diag(Ap, Ac), B =

[
0 Bp
Bc 0

]
, (11a)

C = diag(Cp, Cc), D =

[
I 0
Dc I

]
, E =

[
Bw
0

]
. (11b)

The system ‘flows’ as long as the event-triggering conditions
are not met, i.e., as long as (6) holds, which is equivalent to
x̄ ∈ C, with

C = {x̄ ∈ Rnx | x̄>Qyx̄ 6 εy and x̄>Qux̄ 6 εu}, (12)

and

Qy =

[
0 0
0
[
I 0
0 0

]]−[(DC)>

D>− I

] [
σyI 0

0 0

] [
DC D − I

]
, (13a)

Qu =

[
0 0
0
[

0 0
0 I

]]−[(DC)>

D>− I

] [
0 0
0 σuI

] [
DC D − I

]
. (13b)

As mentioned before, when the event-triggering mechanism
invokes a transmission of the plant and controller outputs, a
reset according to e+

y (tk) = 0 and e+
u (tk) = 0 occurs. This

can be expressed by

x̄+ =

[
I 0
0 0

]
︸ ︷︷ ︸

=:Ḡ

x̄, (14)

for all x̄ ∈ D, in which

D = {x̄ ∈ Rnx | x̄>Qyx̄ = εy or x̄>Qux̄ = εu}, (15)

based on (4). Combining (10), (12), (14) and (15), yields an
impulsive system of the form (9).

D. Special Case: State Feedback

In the existing literature, the event-triggered control prob-
lem has mostly been applied to state-feedback controlled
systems, see, e.g., [10], [11]. In this case, the controller is
given by

u(t) = Kx(tk), (16)

for all t ∈ (tk, tk+1]. We can regard this as a special case of
the model presented above, and can also formulate it as an
impulsive system. In this case (1) has Cp = I , i.e., all states
are measurable, and (2) is replaced by (16). Furthermore, the
states of the plant and the controller outputs are transmitted
at transmission times tk, k ∈ N, satisfying

tk+1 = inf
{
t > tk| ‖e(t)‖2 > σ‖x(t)‖2 + ε

}
, (17)

in which e(t) := x(tk) − x(t) and t0 = 0. Based on these
simplifications, the resulting impulsive system is given by
(10) and x̄ = [x>p e>]>, in which now

A = Ap, B = Bp, C = I, D = K, E = Bw (18)

and (10). The flow and jump sets are now given by

C = {x̄ ∈ Rnx | x̄>Qx̄ 6 ε}, D = {x̄ ∈ Rnx | x̄>Qx̄ = ε},
(19)

where Q = diag(−σI, I), for some appropriately chosen σ
and ε. Taking ε = 0 gives the event-triggered mechanism as
studied in [11].

III. STABILITY AND L∞-GAIN

In this section, we study stability of the event-triggered
control system in the sense of Lyapunov and its L∞-gain.
We will first review some basic stability and L∞-gain results.

Definition III.1 [15] Consider the impulsive system, given
by (9) with w = 0 and a compact set A ⊂ X .
• The set A is said to be globally stable for the impulsive

system (9) with w = 0, if for each ε > 0 there exists
δ > 0, such that minx?∈A ‖x̄(0) − x?‖ 6 δ implies



minx?∈A ‖x̄(t) − x?‖ 6 ε, for all solutions x̄ to the
impulsive system (9) with w = 0 and all t ∈ R+.

• The set A is said to be globally attractive if each
solution x̄ to the impulsive system (9) with w = 0
satisfies minx?∈A ‖x̄(t)− x?‖ → 0 as t→∞.

• The set A is globally asymptotically stable for (9), with
w = 0, if it is globally stable and globally attractive.

Let us now define the notion of L∞-gain of a system,
which was studied for LTI systems in [17], and for which
we introduce a performance variable z ∈ Rnz given by

z = C̄x̄+ D̄w. (20)

Definition III.2 The L∞-gain of the system (9), with (20)
is defined as

γ = inf{γ̄ ∈ R+ | ∃ω : Rn → R+ such that
‖z‖L∞ 6 γ̄‖w‖L∞ + ω(x̄0), for all x̄(0) ∈ X

and all w with ‖w‖L∞ <∞}. (21)

where z is given by (20), in which x̄ is a solution to (9),
with initial condition x̄(0) ∈ X and input w.

Theorem III.3 Consider the system given by (9), with (10),
(12), (14) and (15), and (20) and assume its solutions exist
for all t ∈ R+ and all w ∈ Rnw , satisfying ‖w‖L∞ <
∞. Now suppose there exist a positive definite matrix P ∈
R(np+nc)×(np+nc), a matrix U ∈ Rnx×nx , such that P̄ :=
diag(P, 0) + U , scalars α, β, γ > 0 and µ1, µ2, µ3 > 0,
satisfying[

Ā>P̄ + P̄ Ā+ αP̄ − µ1Qy − µ2Qu ?
B̄>P̄ −βI

]
� 0, (22a)

Ḡ>P̄ Ḡ− P̄ + µ3Qy � 0, (22b)

Ḡ>P̄ Ḡ− P̄ + µ3Qu � 0, (22c)αP̄ ? ?
0 (γ2 − β)I ?
C̄ D̄ I

 � 0. (22d)

Then,

A = {x̄ ∈ C ∪ D | x̄>P̄ x̄ 6 µ1εy+µ2εu
α } (23)

is an globally asymptotically stable equilibrium set for (9),
with w = 0, and the L∞-gain of (9) is smaller than or equal
to γ.

In case disturbances are absent (w = 0), we can arrive
at simpler conditions to guarantee that A is an globally
asymptotically stable equilibrium set for system (9).

Corollary III.4 Consider the system given by (9), with (10),
(12), (14) and (15), and (20) and assume its solutions exist
for all t ∈ R+. Now suppose there exist a positive definite
matrix P ∈ R(np+nc)×(np+nc), a matrix U ∈ Rnx×nx , such
that P̄ := diag(P, 0)+U � 0, scalars α > 0, µ1, µ2, µ3 > 0,
satisfying

Ā>P̄ + P̄ Ā+ αP̄ − µ1Qy − µ2Qu � 0, (24)

and (22b) and (22c). Then, (23) is an globally asymptotically
stable equilibrium set for (9), with w = 0.

Let us now comment on the results presented in Theorem
III.3. Feasibility of (22) is determined by the choice of
suitable σy and σu, which determine Qy and Qu, and by α
and γ, and is not affected by the choice of εy and εu. Hence,
once (22) is feasible, practical stability and the upper bound γ
on the L∞ gain are guaranteed. The ‘size’ of the equilibrium
set A is affected by α, γ, σy and σu, through the resulting
P , as well as εy and εu. However, after choosing σy and
σu that render the event-triggered control system globally
asymptotically stable to the equilibrium set A and has the
desired upper bound γ on the L∞-gain, the parameters εy
and εu can be freely chosen to determine the size of the
equilibrium set A. As we can see from (6), this will affect the
number of events, enabling us to make trade-offs between the
size of the set A, and the number of transmissions of y and u.
Although, the naive choice to take εy = εu = 0 guaranteeing
the system to converge to the origin, the inter-event times
become zero, i.e., infinitely many events occur around times
t when either y(t) = 0 or u(t) = 0 and x̄(t) 6= 0.

IV. A LOWER BOUND ON THE INTER-EVENT TIMES

In this section, we show that the inter-event times tk+1 −
tk, k ∈ N, of the event-triggered control system are bounded
from below. We will show that although the stability and L∞-
gain condition of the system hold globally, the guaranteed
lower bound on the inter-event time is a local property of
the event-triggered control system.

Theorem IV.1 Consider the event-triggered control system
given by (9), with (10), (12), (14) and (15). For every initial
condition x̄(0) satisfying ‖x̄(0)‖ 6 δx and every disturbance
w ∈ Rnw satisfying ‖w‖L∞ 6 δw, there exists a nonzero
minimum inter-event time hmin, i.e., tk+1 − tk > hmin > 0,
for all k ∈ N. An explicit expression for a lower bound on
hmin is given by

min{h > 0 |
[
I
0

]>
eĀ

>hQye
Āh
[
I
0

]
− ζy(h)I ⊀ 0

or
[
I
0

]>
eĀ

>hQue
Āh
[
I
0

]
− ζu(h)I ⊀ 0}, (25)

in which

ζy(h) =
εy−λmax(Qy)

(
ρ(h)+2

√
cρ(h)‖eĀhḠ‖

)
c , (26a)

ζu(h) =
εu−λmax(Qu)

(
ρ(h)+2

√
cρ(h)‖eĀhḠ‖

)
c , (26b)

with c = 1
λmin(P )

(
λmax(P̄ )δ2

x + β
αδ

2
w +

µ1εy+µ2εu
α

)
and

ρ(h) =
∫ h

0
eλmax(Ā>+Ā)sds‖B̄‖2δ2

w.

Eqn. (25) in Theorem IV.1 can be solved by computing
the eigenvalues of the h-dependent matrix in the left-hand
side of the conditions in (25) for h > 0 and check when
they cross zero for the first time. This determines the lower
bound on hmin as in (25). Besides the fact that Theorem IV.1
formally shows that solutions of (9), with (10), (12), (14) and
(15), exist for all times t ∈ R+ as was assumed in Theorem



III.3 and Corollary III.4, it also provides a lower bound on
the inter-event times. This lower bound decreases as ‖x̄(0)‖
or ‖w‖L∞ increases, meaning that the control task has to
be executed more often if the system’s initial state is further
away from its equilibrium set or in case the norm of the
disturbance is larger. In the special case that Cp and Cc are
full rank (implying that Qy and Qu are full rank), and there
are no disturbances, (i.e., δw = 0), taking εy = εu = 0 still
yields a lower bound larger than zero for all x̄(0). In fact,
the resulting condition recovers then the one presented in
Theorem 5.1 in [18].

V. IMPROVED EVENT-TRIGGERING CONDITIONS

In the previous sections, we modelled the event-triggered
control system as an impulsive system and presented condi-
tions to guarantee its stability. The reason to take an impul-
sive system approach is that it truly describes the behaviour
of the event-triggered control system. In this section, we
extend the work of [11] towards output-based controllers, and
show how the event-triggering mechanism (4) obtained using
the method presented in this section also yields a feasible
solution to the conditions of Corollary III.4, (i.e., using the
impulsive system description of the event-triggered control
system).

Let us consider the following auxiliary system:
d
dtx = (A+BDC)x+BD

[
ey
eu

]
,[

y
u

]
= DCx+ (I −D)

[
ey
eu

]
,

(27)

which is obtained from (10) by setting E = 0 and consider-
ing the errors ey and ey as external inputs. In (27), we let
x = [x>p x>c ]>. Since (27) is an LTI system, asymptotic
stability also implies that the system has a finite L2-gain,
i.e., there exist a positive definite storage function of the
form V (x) = x>Px (see [19]), and positive scalars α, σy ,
σu, γ, such that

d
dtV (x(t)) 6 −αV (x(t))− ‖y(t)‖2 − ‖u(t)‖2

+ 1
σy
‖ey(t)‖2 + 1

σu
‖eu(t)‖2. (28)

The matrix P , and scalars α, σy , σu can be obtained by
solving LMIs. Since (6) holds, we have that
1
σy
‖ey(t)‖2 + 1

σu
‖eu(t)‖2 6 ‖y(t)‖2 + ‖u(t)‖2 +

εy
σy

+ εu
σu
,

(29)
for all t ∈ R+. Combining (28) and (29) yields

d
dtV (x(t)) 6 −αV (x(t)) +

εy
σy

+ εu
σu
. (30)

This expression shows that for αV (x(t)) > εy
σy

+ εu
σu

, the
state x of (27), with (6), converges asymptotically to the set
A = {x ∈ Rnp+nc |αV (x) 6 εy

σy
+ εu

σu
}.

Let us now present a theorem that formally states that any
event-triggering condition obtained using (27), with (6), and
(28), also renders the set A and the impulsive system given
by (10), (12), (14) and (15) globally asymptotically stable.

Theorem V.1 Consider the event-triggered control system,
given by (10), (12), (14) and (15) and the auxiliary system

(27). The positive definite matrix P and the scalars α, σy ,
and σu satisfying V (x) = x>Px > 0, which satisfies (28),
also satisfy the conditions of Corollary III.4 with P̄ :=
diag(P, 0), µ1 = 1

σy
, µ2 = 1

σu
and µ3 = 0.

This theorem states that the event-triggering condition
resulting from the methodology presented in this section,
(i.e., based on (28)), also renders the LMIs in Corollary
III.4 (i.e., based on the impulsive system) feasible. As a
result, the conditions based on impulsive systems are less
conservative than the ones based on system (27), since we
can allow P̄ in Theorem III.3 and Corollary III.4 to have any
structure. Hence, this creates the opportunity to guarantee
stability for event-triggering conditions that yield a larger
inter-event time.

VI. ILLUSTRATIVE EXAMPLES

In this section, we illustrate the presented theory using
two numerical examples. The first example is taken from
[11], in which an unstable plant is stabilised using an event-
triggered implementation of a state-feedback controller. We
will show that by formulating the event-triggered control
system as an impulsive system, we can guarantee stability
for event-triggered control systems with larger minimum
inter-event times. In the second example, we stabilise an
unstable plant using a dynamic output-based controller. For
both systems, we design an event-triggering condition and
reflect on the resulting minimum inter-event time and the
size of the globally asymptotically stable set A.

Example 1: Let us consider the numerical example from
[11]. The plant (1) is given by

d
dtxp =

[
0 1
−2 3

]
xp +

[
0
1

]
u, (31)

and the state-feedback controller (16), with K =
[
1 −4

]
.

In [11], asymptotic stability of the origin is guaranteed
for σ̄ 6 0.055 and the event-triggering condition ‖e‖ =
σ̄‖x‖, obtained using an alternative approach. This yields
σ = 0.0552 = 0.0030 and ε = 0 for the event-triggering
mechanism, as in (4), adapted for state-feedback, see Section
II-D. For this event-triggering mechanism, Theorem IV.1, or
its counterpart Theorem 5.1 in [18], yields a lower bound
on the inter-event times of 0.0318. We now compare this
result with the event-triggering mechanism obtained using
the results from Section V, i.e., obtained by maximising σ
in the LMIs related to (28). Taking this approach allows us
to guarantee stability up to σ = 0.0273, resulting in a lower
bound on the inter-event times of 0.0840. Therefore, we can
conclude that taking the approach as in Section V already
increases the allowable minimum inter-event time. However,
if we analyse stability using the result of Corollary III.4, we
can guarantee stability of this event-triggered control system
up to σ = 0.0588 and ε = 0, which yields a lower bound on
the inter-event times of 0.1136. The increase of inter-event
times is expected due to the results of Theorem V.1.

We therefore conclude that by modelling the event-
triggering control system using impulsive models, which
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Fig. 2: Convergence of the states of the plant and controller.

truly describes the behaviour of the event-triggered con-
trol system, stability can be guaranteed for event-triggering
mechanisms that yield larger minimum inter-event times.

Example 2: Let us now consider the plant (1) given by d
dtxp =

[
1 2
−2 1

]
xp +

[
0
2

]
û

y =
[
2 0

]
xp,

(32)

and the controller (2) is given by d
dtxc =

[
−2 2
−3 −2

]
xc +

[
3
2
1
4

]
ŷ

u =
[
− 1

4 − 3
2

]
xc.

(33)

We assume that no disturbances act on the plant, i.e., Bw =
0, and therefore, we simply take C̄ = 0 and D̄ = 0. Practical
stability of the event-triggered control system (1), (2), with
event-triggering mechanism (4), with σy = σu = 0.0011,
can be guaranteed using the impulsive system formulation (9)
and the results of Corollary III.4. If we take εy = εu = 10−4,
we obtain that the event-triggered control system converges
asymptotically to ‖[x>p (t) x>c (t)]>‖ 6 3.9. Using the result
of Theorem IV.1, we obtain that if the initial conditions
satisfy, e.g., ‖x̄(0)‖ 6 10, a lower bound on the inter-event
times of 1.16 · 10−5 is guaranteed.

When we compare these results with a simulation of
the response of the system to the initial condition x̄(0) =
[5
√

2,−5
√

2, 0, 0, 0, 0]>, see Fig. 2, we observe that the
system indeed converges asymptotically to a vicinity of
the origin. However, as t → ∞, the states of the plant
and controller approach ‖[x>p (t) x>c (t)]>‖ ≈ 0.1, which is
smaller than the predicted value of approximately 3.9, and
the observed minimum inter-event time is hmin ≈ 10−4,
which is larger than the predicted value of 1.16 · 10−5.
This seems to hold for many initial conditions satisfying
‖x̄(0)‖ 6 10. This shows that, although we can prove the
existence of an globally asymptotically stable compact set
and a nonzero lower bound on the inter-event times, the
obtained bounds seem to be conservative to some extent,
which leaves room for improvement.

VII. CONCLUSIONS

In this paper, we studied stability and L∞-performance of
event-triggered control systems for dynamical output-based
controllers. We modelled the event-triggered control system
as an impulsive system that truly describes the behaviour of
the event-triggered control system, and whose stability can
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Fig. 3: The inter-event times as function of time.

be analysed using linear matrix inequalities. We provided
bounds on the inter-event time and we formally proved that
by using an impulsive systems approach, stability and per-
formance can be guaranteed for event-triggered controllers
with larger inter-event times than existing results in literature.
Using two numerical examples, we illustrated the presented
theory.
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