
Output Constraints

in Multimedia Database Systems

Dissertation zur Erlangung des akademischen Grades

Doktor–Ingenieur (Dr.-Ing.)

vorgelegt der Fakultät für Informatik und Automatisierung

der Technischen Universität Ilmenau

von Dipl.–Inf. Thomas Heimrich

1. Gutachter: Prof. Dr. habil. Kai-Uwe Sattler
2. Gutachter: Prof. Dr. habil. Klaus Meyer-Wegener
3. Gutachter: Prof. Tamer Özsu

Tag der Einreichung: 19.09.2005
Tag der wissenschaftlichen Aussprache: 13.02.2006

urn:nbn:de:gbv:ilm1-2006000019

Zusammenfassung

Semantische Fehler treten bei jeder Art von Datenverwaltung auf. Herkömmliche

Datenbanksysteme verwenden eine Integritätskontrolle, um semantische Fehler zu ver-

meiden. Um die Integrität der Daten zu gewährleisten werden Integritätsregeln be-

nutzt. Diese Regeln können allerdings nur die Konsistenz einfach strukturierter Daten

überprüfen.

Multimedia Datenbanksystem verwalten neben einfachen alphanumerischen Daten

auch komplexe Mediendaten wie Videos. Um die Konsistenz dieser Daten zu sichern,

bedarf es einer erheblichen Erweiterung des bestehenden Integritätskonzeptes. Dabei

muss besonders auf die konsistente Datenausgabe geachtet werden. Im Gegensatz zu

alphanumerischen Daten können Mediendaten während der Ausgabe verfälscht wer-

den. Dieser Fall kann eintreten, wenn eine geforderte Datenqualität bei der Ausgabe

nicht erreicht werden kann oder wenn Synchronisationsbedingungen zwischen Me-

dienobjekten nicht eingehalten werden können. Es besteht daher die Notwendigkeit,

Ouptut Constraints einzuführen. Mit ihrer Hilfe kann definiert werden, wann die Aus-

gabe von Mediendaten semantisch korrekt ist. Das Datenbanksystem kann diese Be-

dingungen überprüfen und so gewährleisten, dass der Nutzer semantisch einwandfreie

Daten erhält.

In dieser Arbeit werden alle Aspekte betrachtet, die notwendig sind, um Aus-

gabebedingungen in ein Multimedia Datenbanksystem zu integrieren. Im einzelnen

werden die Modellierung der Bedingungen, deren datenbankinterne Repräsentation

sowie die Bedingungsüberprüfung betrachtet.

Für die Bedingungsmodellierung wird eine Constraint Language auf Basis der

Prädikatenlogik eingeführt. Um die Definition von zeitlichen und räumlichen Syn-

chronisationen zu ermöglichen, verwenden wir Allen-Relationen. Für die effiziente

Überprüfung der Ausgabebedingungen müssen diese aus der Spezifikationssprache in

eine datenbankinterne Darstellung überführt werden.

Für die datenbankinterne Darstellung werden Difference Constraints verwendet.

Diese erlauben eine sehr effiziente Bedingungsüberprüfung. Wir haben Algorithmen

entwickelt, die eine effiziente Überprüfung von Ausgabebedingungen erlauben und

dies anhand von Experimenten nachgewiesen. Neben der Überprüfung der Bedingun-

gen müssen Mediendaten so synchronisiert werden, dass dies den Ausgabebedingun-

gen entspricht. Wir haben dazu das Konzept des Output Schedules entwickelt. Dieser

wird aufgrund der definierten Ausgabebedingungen generiert.

Durch die Ausgabebedingungen, die in dieser Arbeit eingeführt werden, werden

semantische Fehler bei der Verwaltung von Mediendaten erheblich reduziert. Die Ar-

beit stellt daher einen Beitrag zur qualitativen Verbesserung der Verwaltung von Me-

diendaten dar.

Abstract

Semantic errors exist as long as data are managed. Traditional database systems try to

prevent this errors by proposing integrity concepts for stored data. Integrity constraints

are used to implement these integrity concepts. However, integrity constraints can only

detect semantic errors in elementary data.

Multimedia database systems manage elementary data as well as complex media

data, like videos. Considering these media data we need a much wider consistency

concept as traditional database systems provide. Especially, data output of media data

must be taken into account. In contrast to alphanumeric data the semantics of media

data can be falsified during data output if data quality or synchronization of data are

not suitable. Thus, we need a concept for output constraints that allow for preventing

semantic errors in case of data output. For integrating output constraints into a multi-

media database system we have to consider modelling, representation and checking of

output constraints.

For modelling output constraints we have introduced a constraint language which

uses the same principles as traditional constraint languages. Our constraint specifica-

tion language must support temporal and spatial synchronization constraints. How-

ever, it is desired to support both kinds of synchronization in almost the same manner.

Therefore, we use Allen-Relations for defining temporal synchronization constraints

as well as for defining spatial synchronization constraints.

We need a database internal representation of output constraints that makes effi-

cient constraint checking possible. The Allen-Relations used in the constraint lan-

guage cannot be checked efficiently. However, difference constraints are a class of

constraints that allows an very efficient checking. Therefore, we use difference con-

straints as database internal representation of output constraints.

As methods for checking consistency of output constraints we use an approach

based on graph theory as well as an analytical approach. Both approaches require a

constraint graph as data structure. For data output we need an output order that is

adequate to the defined output constraints. This ‘output schedule’ can be produced

based on the output constraints.

With output constraints, proposed in this thesis, semantical correctness of media

data considering the data output can be supported. Thus, the contribution of this work

is an qualitative improvement of managing media data by database systems.

Acknowledgements

My thanks aim to all people who supported my work. Kai–Uwe Sattler, my supervi-

sor, gave me the freedom to develop my own ideas and challenged them in numerous

discussions. Furthermore, he gave me the chance to write research papers and helped

me with many hints. Actually, Klaus Meyer–Wegener was my supervisor as well. He

helped me very much during the hard first time of my research. Furthermore, he gave

me the possibility of visiting him regularly which was always very useful. Thanks go

to Tamer Özsu. He gave me the opportunity to visit him and his research group at

the University of Waterloo. I am very glad that he accepted to review this thesis. My

special thanks go to Katja Hose. She cleans up the English, found some content errors,

and made the thesis readable.

Contents

1 Motivation 1

2 Requirements on Output Constraints 6

2.1 Wave Field Synthesis . 6

2.2 Virtual University . 11

2.3 Hospital Database Application . 13

2.4 Conclusion . 15

3 Related Work 17

3.1 Data Models and Architecture of MMDBS 17

3.1.1 Requirements on a Multimedia Database System 17

3.1.2 Data Models for Multimedia Database Systems 19

3.1.3 Architecture of Multimedia Database Systems 20

3.1.4 Existing Approaches for Multimedia Database Systems 22

3.2 Integrity Constraints . 23

3.2.1 Types and Semantics of Integrity Constraints 24

3.2.2 Specification of Integrity Constraints 26

3.2.3 Checking of Integrity Constraints 28

3.3 Presentation of Media Data . 30

3.3.1 Quality of Service . 30

3.3.2 Presentation Models for Multimedia Data 31

3.4 Consistency Rules for Multimedia Data 35

3.4.1 Constraints on Data Quality 35

3.4.2 Temporal Consistency . 36

3.4.3 Spatial Consistency . 38

3.4.4 Constraints in Commercial Database Systems 39

3.5 Conclusion . 39

4 Modelling of Output Constraints 41

4.1 Taxonomy of Output Constraints . 41

4.2 A Classification of Output Constraints 45

4.3 Fundamentals of Output Constraints 46

4.3.1 Elements of Constraint Notation 46

i

4.3.2 Temporal Logic . 47

4.3.3 Specification of Temporal Constraints 49

4.3.4 Specification of Spatial Constraints 50

4.4 The Database Output . 53

4.5 General Structure of Output Constraints 54

4.6 Specification Language for Output Conditions 55

4.6.1 Conditions for Static Output Parameters 56

4.6.2 Conditions for Dynamic Output Parameters 57

4.6.3 Synchronization Conditions 61

4.7 Notation of Output Constraints . 65

4.8 Conclusion . 67

5 Internal Representation of Output Constraints 69

5.1 Process of Output Constraint Management 69

5.2 Representation of Output Constraints 72

5.2.1 Output Constraints on Output Parameters 72

5.2.2 Output Constraints for Synchronization 73

5.2.3 Transforming Temporal and Spatial Lengths 77

5.3 Storage Structure of Output Constraints 78

5.4 Conclusion . 79

6 Output Constraints and Data Consistency 80

6.1 Execution Model of Output Constraints 81

6.2 Consistency Check using Graph Theoretical Approach 82

6.3 Building a Partial Constraint Graph 84

6.3.1 Restrictions on Constraint Graphs 84

6.3.2 Modifications of Allen-Relations 85

6.3.3 Modifications of Output Objects 90

6.3.4 Algorithm for Building a Partial Graph 92

6.4 Consistency Check using Analytic Approach 94

6.5 Auxiliary Data Structure for Checking Consistency 95

6.6 Conclusion . 96

7 Management of Output Schedules 97

7.1 Use Cases for Output Schedules . 97

7.2 Producing an Output Schedule . 98

7.3 Structure of Output Schedules . 100

7.4 Consistency of Output Schedules . 101

7.4.1 Modifying Allen-Relations in the Front Section of the Output

Line . 101

7.4.2 Modifying Allen-Relations at the End of the Output Line . . . 104

7.4.3 Modifications on Output Objects 105

7.4.4 Output Schedules with Several Output Lines 105

7.5 Checking Output Consistency During the Output Process 108

7.6 Conclusion . 109

8 Implementation and Evaluation 110

8.1 Output Constraints for Wave Field Synthesis 110

8.1.1 Modelling of Output Constraints 111

8.1.2 Integration of Output Constraints into a Database System . . . 114

8.1.3 Checking Output Constraints 114

8.1.4 Producing Data Output . 115

8.2 Implementation of Further Scenarios 117

8.3 Experiments . 117

8.4 Conclusion . 123

9 Conclusion and Future Work 125

A Harmless and Critical Allen-Relations 129

B Analytical Constraints for Allen-Relations 140

Chapter 1

Motivation

A main reason for using databases for managing data is storing data in a semantical

correct manner. Semantic errors occur if stored data do not fit the part of the real

world that is modeled by the database. Mostly, semantic errors arise from incorrect

data input. Sometimes a user does not have enough knowledge about the problem

domain that the database was built for. This might result in creates incorrect data input

unintentionally.

Whether or not data are semantically correct depends on the specific problem do-

main. We can check the semantic consistency of data either in the database application

or inside the database system.

To prevent semantic errors, database systems possess an integrity concept. This

includes a descriptive constraint language for defining semantic integrity constraints

as well as efficient checking methods for integrity constraints [GA93]. It is generally

accepted that checking semantic consistency should be done inside the database system

because it has the following advantages:

• The integrity constraints can be defined in a declarative manner.

• The development of database applications becomes easier because checking data

consistency does not have to be considered.

• Integrity constraints are checked for ad-hoc queries as well as for database queries

generated by database applications.

• The database system can execute an optimized constraint checking.

Integrity constraints supported by traditional database systems are usually classi-

fied into static and dynamic integrity constraints. Static integrity constraints work just

on one database state. Thus, their checking is relatively easy. Furthermore, defin-

ing these integrity constraints is very intuitive. Usually, check-clauses are used for

specifying this group of integrity constraints. Dynamic Integrity constraints are more

complex because several database states are required for checking them. Furthermore,

1

2 CHAPTER 1. MOTIVATION

co
m

p
le

x

C
o

m
p

le
x

it
y

 o
f

In
te

g
ri

ty
 C

o
n

st
ra

in
ts

Complexity of Data

elementary complex

Traditional Database System Multimedia Database System

Output

Constraints

quality

constraints

synchronization

constraints

dynamic

constraints

static

constraints

el
em

en
ta

ry

Figure 1.1: Classification of Integrity Constraints

triggers or assertions are used to define dynamic integrity constraints. However, both

kinds of integrity constraints work on elementary data (figure 1.1).

New developments in several commercial and scientific fields make greater de-

mands on database systems. Take as an example the data management of a hospital.

It is no more sufficient to manage only alphanumeric data of patients. We also have

to manage media and multimedia data which arise from several modern diagnostic

techniques.

Multimedia Database Systems are built to manage structured data as well as media

data, like videos, audios, images, and full text. These systems must be able to man-

age large amounts of multimedia data. Some special architectures have been proposed

[BBH+02, Ber02] which allow efficient storage, retrieval, presentation, and manipula-

tion of multimedia data.

As in traditional database systems, correctness of stored data is of great importance

in a multimedia database system. Thus, a multimedia database system must support

the same database techniques in order to prevent errors as traditional database systems

do. The characteristics of media data are different from alphanumeric data. Therefore,

new concepts for maintaining data semantics are required and must be integrated into

a multimedia database system.

We want to use the presentation of stored media data as an example to clarify these

new requirements demanded by a multimedia database system. Usually, media data

are stored in a database but a presentation script outside the database is used to define

the presentation constraints. In this case errors can arise from the following:

• Some media data are physical signals. Therefore, physical parameters are im-

portant for the semantics of this kind of data. Usually, these physical parameters

must be into specific ranges during the data output process otherwise the seman-

tics of the data can be disordered. For the user there is no difference between

3

data which are stored incorrectly or those which are stored correctly but output

in an incorrect manner.

It is assumed that we define an output of audio data using a certain sample rate.

We make this definition in our presentation script. If the data output is done

with an incorrect sample rate, the semantics of the audio will be incorrect, too.

This means the audio can be heard but the content cannot possibly be under-

stood. However, the script cannot detect whether the sample rate is wrong or not

because the database system does not provide this information.

However, it is hard to guarantee an end to end data quality for the whole data

output process but the first step to guarantee a certain data quality must be done

in the multimedia database system. If we observed the sample rate of an au-

dio during the output process we would have the basis for preventing semantic

errors.

• Multimedia documents consist of different (multi-)media objects and relation-

ships between them. In our presentation script we can define a film that consists

of an audio stream and a video stream connected by synchronization constraints.

Often, the output of these streams must be lip synchronous. The semantics of

the multimedia document will be distorted if the synchronization relationships

cannot be fulfilled.

Here we have the same problem as in the case above. The database application

cannot detect whether the synchronization constraint is violated. A constraint

violation can be caused by delays or other errors during the data output or by

storing media data which cannot fulfill the defined synchronization constraints.

For instance, a lip synchronized output of our defined film is only possible when

audio and video stream have the same length.

As we can see from the points above semantically incorrect data can appear during

the data output. The reason for these semantic errors are either falsifications of special

physical properties or incorrect synchronizations of media data. These two classes of

integrity constraints are completely ignored in traditional database systems because

they are not critical for alphanumeric data. However, they are important to ensure the

semantics of media data.

We have enhanced the traditional classification of integrity constraints, as shown

in figure 1.1. Usually, constraints on output parameters define requirements for qual-

ity of media data (e.g. a certain sample rate). Therefore, we call these constraints

quality constraints in figure 1.1. Quality constraints are easier than synchronization

constraints because output parameters are usually stored as metadata of media objects.

The resolution of an image is an example of such metadata. We can use traditional

comparing operators (e.g. <,>, =) to define constraints on these output parameters.

However, the checking of these constraints must be done during the data output pro-

cess. Thus, we need new constraint checking concepts which are beyond the means of

usual concepts.

4 CHAPTER 1. MOTIVATION

Synchronization constraints are more complex because we need possibilities for

specifying as well as for checking several classes of synchronization constraints. We

have to consider synchronization constraints for temporal, spatial, and spatiotemporal

synchronizations.

Synchronization constraints as well as quality constraints are used to define re-

quirements for the multimedia data output. Therefore, we build a generalized con-

straint class called output constraints (figure 1.1) which contains both aspects. Output

constraints do not take the database state into account like integrity constraints do,

rather they restrict output objects. Output objects are built of stored media data ob-

jects. They exist only during data output. As an example, an output object for a stored

text could be that text as image (PDF). The same text can be transformed into an audio

for data output. In this case the audio is the output object. To satisfy output consis-

tency all defined output constraints associated with an output process must be fulfilled.

As we will see the output consistency is not independent from consistency defined by

means of integrity constraints. In some cases integrity constraints can be derived from

output constraints. Thus, both types of constraints are related.

This work supports the statement that integration of output constraints into a multi-

media database system is necessary. The following points demonstrate the advantages

of such an approach:

• The producer of multimedia data can define output constraints in order to support

the correct semantics of the data. The multimedia database systems guarantees

the desired semantics of multimedia data for each data output.

• Output constraints can be checked before or during the data output. Only those

data are sent to the application which fulfill the specified output constraints.

If output constraints are violated during the output process a defined action is

executed.

• The database can guarantee that the stored data are suitable for the defined out-

put constraints. Only such media data are stored that fulfill the defined output

constraints.

• By using output constraints for synchronization the database system can build

an output order for output objects. This order is called output schedule. The

database system can use the output schedule for a data organization that allows

for an efficient data output.

• Usually, values for output parameters are also defined in database queries. The

multimedia database system can check if these values can be tolerated consider-

ing the semantics of the multimedia data.

5

The Contribution of this Thesis

In this work we want to introduce concepts for handling output constraints inside a

multimedia database system. The first step is defining the semantics of output con-

straints. This means we must determine types of output constraints and their utiliza-

tion. Therefore, chapter 2 analyses several application scenarios especially, consid-

ering requirements for output constraints. Based on our requirement analysis chapter

3 gives an overview of related works which can be used as basis for our output con-

straints.

Data Output

Representation
Constraint

Chapter 5

Multimedia

Data
C

h
ap

te
r

6

C
h
ec

k
in

g
 O

u
tp

u
t

C
o
n
st

ra
in

ts
Building

Output Schedules

Chapter 7

Output Constraints

Chapter 4

Modelling

Modification

Figure 1.2: Processing of Output Constraints

Figure 1.2 shows several phases we have to consider for managing output con-

straints. The first topic we must address is modelling output constraints. For modelling

output constraints we have to know what kinds of output constraints exist. Thus, we

build a classification of output constraints in chapter 4. Furthermore, we introduce a

specification language for output constraints.

For checking output constraints efficiently a database internal representation is nec-

essary. We develop this database internal representation of output constraints in chap-

ter 5. Furthermore, a transformation is required that transforms output constraints –

specified in the constraints specification language – into the database internal repre-

sentation. This topic is also considered in chapter 5.

Output constraints must be checked in case of modifications to stored media data

and in case of data output. Chapter 6 shows concepts for checking consistency of

output constraints. In addition to basic algorithms for checking we propose several

optimizations.

For data output we need an output schedule that is built based on output constraints.

Chapter 7 deals with the management of output schedules. We show how output sched-

ules are produced and adapted efficiently.

Chapter 8 shows an implementation of output constraints for a practical example.

Furthermore, several experiments are done in order to prove the practical benefit of

output constraints. Chapter 9 gives a conclusion of this work and shows what can be

done in future work.

Chapter 2

Requirements on Output Constraints

This chapter analyses the requirements of some applications which manage multime-

dia data. We do not a general requirement analysis, rather we analyse the output con-

straints which are used in these applications.

2.1 Wave Field Synthesis

A new application area for multimedia database systems arise from new developments

in the media production area. Wave Field Synthesis (WFS) [BV94] is one of these new

developments. It allows to produce sound sources on a certain place in a listening

room. This spatial sound is used in cinemas for giving the visitors the impression of

spatial order of sound sources in a movie scene. In order to build the wave field a large

number of loudspeakers is needed. They are arranged around the walls of the listening

room. Each of these loudspeakers can be controlled separately. To define a wave field,

we have to specify the time where loudspeakers are active and the sound which they

output.

Up to now only some prototypes of WFS systems are built. The first prototype

was built in the cinema of Ilmenau (Germany), a second was built in summer 2004 in

Los Angeles near the Hollywood film studios. It is used as exhibition system for film

producers. A third system is located in a Virtual-Reality-Laboratory of the University

of Surry (United Kingdom). WFS systems can also be used for live entertainment

events such as concerts or theater productions.

The technique of wave field synthesis was developed in1989 in the Laboratory of

Acoustical Imaging and Sound Control of the TU Delft. It is based on the wave theory

concept of Huygens. This theory says that each point on a wave front serves as a point

source of spherical secondary wavelets. It is possible to apply this concept in acoustics

by using a large number of small and closely spaced loudspeakers (loudspeaker arrays),

as shown in figure 2.1.

The main advantage of WFS systems in comparison to Dolby 5.1 or other sound

systems is the ability to position sound sources inside or outside the listening room.

6

2.1. WAVE FIELD SYNTHESIS 7

Each listener has its owns; natural, spatial correct, and realistic sound impression in-

dependent from its position in the room. Inside the listening room sounds can come

from any direction. With Dolby 5.1. only few people have the possibility to listen to

the sound in the correct spatial way. In contrast to that, people can move freely around

within the wave field that is produced in the listening room. At all positions in the

room, they have the same natural and spatial correct sound impression. The ‘sweet-

spot’ is no longer limited to only few places in the audience. It now fills the complete

listening room. Furthermore, sound sources can be moved through the room, and ev-

ery listener is able to follow the acoustical motion of the sound sources. Regarding the

technical setup, more loudspeakers are required than in other sound systems, but no

special loudspeaker setup is needed.

WFS systems improve the modelling of sound by supporting an object-oriented

modelling approach. In contrast to this today’s sound reproduction and production

systems are based on a channel oriented approach. This approach defines the storage

and transmission of audio data for a certain loudspeaker setup. Channel oriented means

that for each single audio channel the sound must be modelled. In other words, the

sound must be modelled for every single loudspeaker. An advantage of this approach

is its easy realization and that only a little computational effort during the data output

is necessary. Therefore, channel oriented sound systems have a high performance

at runtime, but the process of sound production is a very extensive work. It takes a

long time and costs much money. Furthermore, produced sounds depend on a specific

loudspeaker setup. As mentioned before, for a wave field we need loudspeakers around

the walls in the listening room. Thus, the number of loudspeakers is variable. It is easy

to see that a channel oriented sound modelling is not suitable for a WFS system.

Figure 2.1: WFS-System Architecture

The kinds of data which must be handled in a WFS system and the data flow is

shown in figure 2.1. The existing WFS prototypes store the required audio data on an

audio server, usually as single audio files.

Beside audio data, control data must be handled as well. These data come from

the authoring tool and define the spatial position of sound sources and their temporal

order. The current WFS prototypes do not support a relative definition of temporal and

spatial output orders, rather the spatial positions and the point in time of output are

hard coded. This kind of modelling is very inflexible and an extensive work.

8 CHAPTER 2. REQUIREMENTS ON OUTPUT CONSTRAINTS

Before we can launch a WFS system its modelling options must become easier. For

a comfortable modelling the system must provide possibilities to define the temporal

and spatial order of sound sources relatively. Output constraints can be used to do this.

As an example, we want to define an overlap of a certain sound source with another

sound source, but we do not want to use hard coded time points. So, we need a special

overlap relationship in our output constraints in order to realize this.

For a real data output the database system must build an output order that fulfills

the output constraints. We call this output order an output schedule.

Figure 2.2: Graphical Authoring Tool

Figure 2.2 shows the graphical authoring tool, it is used for modelling the temporal

and spatial constraints as well as constraints on properties of sound sources, like a

certain loudness for a sound source. At the moment the authoring tool only allows a

hard coded definition for spatial positions and temporal orders of sound sources. It

stores all these information in an XML file. Thus, the defined temporal and spatial

constraints are totally independent from the audio data involved in these constraints.

Beside the modelling of sound sources audio data must be recorded and stored.

Usually, this is done without regarding the constraints that arise from the modelling

process. So the risk is high to store audio data which are not appropriate to the defined

2.1. WAVE FIELD SYNTHESIS 9

output constraints. The current WFS prototypes have no consistency concept for this

problem. A possible way to solve this problem is using a multimedia database system

that manages audio data and output constraints together. Database systems provide

possibilities to check data consistency. It is possible to extend this technique in such a

way that the consistency between audio data and output constraints can be checked.

The renderer is the core piece of the WFS-System. It builds the actual wave field by

using the control data which contain the spatial and temporal descriptions of sound

sources as well as the audio data. Both kinds of data are delivered synchronously to

the renderer. There are several renderers in a listening room, each one controls some

loudspeakers. Inside the renderer the geometry of the wave field is calculated. Accord-

ing to this calculation the loudspeakers are activated by different intensity. Thereby, a

listener has the feeling that a sound source is located on a certain place in the listening

room. Because of the costly wave field calculation every renderer can manage only

eight loudspeakers. For a real cinema we need over a hundred loudspeakers as well as

a high amount of renderers to control them.

The actual WFS prototypes have a big drawback, each renderer calculates the ge-

ometry of the whole wave field. According to this calculation the renderer can decide

whether it must activate its loudspeakers or not. There are several problems that arise

from this architecture. First, each renderer needs all control data as well as all audio

data. Thereby, much more data are sent than actually needed. The second problem is

that each renderer must permanently calculate the wave field. Hence, we need very

good hardware for the renderers and a high speed network between the components.

If we could discharge the renderer from the complex calculation, we could use much

cheaper hardware. This is a very important point if we want to bring the system on the

market.

Another challenge is the data organization. The WFS systems use the WAV-format

with 24Bit@48kHz for audio data. Therefore, we have a data rate of 48.000 Samples/s·
24 Bit = 1125 KBit/s ≈ 1 MBit/s for every sound source. Some movie scenes have

100 sound source. Consequently, we need a data output rate of 100 MBit/s. This is

more as most hard disks can provide. We can use several database techniques for op-

timizing the data organization according to the output constraints. As an example we

can use partitioning, indexing or caching strategies.

The actors author, sound producer and renderer are involved in a WFS system as

follows:

The Author defines the spatial, temporal and spatiotemporal relationships between

audio objects. Composers or sound masters for concerts or movies are possible au-

thors. An authoring tool is used to make authoring comfortably. If the sound for

a movie must be defined, often several authors work at the same time on the movie

sound, but usually, authors work on different scenes. Thereby, it is not useful to define

temporal relations between output objects with absolute time points, rather we want

to express temporal relations between audio objects in a relative manner. Modelling

10 CHAPTER 2. REQUIREMENTS ON OUTPUT CONSTRAINTS

a scene should be very intuitive. This means the relationships used must be easy to

understand for the author. It is desired to use Allen-Relations [All83] for modelling

temporal relationships between audio objects.

The defined relationships are stored in an XML file. The existing prototypes do

not store this information into a database system.

The Sound Producer prepares audio objects. The audio objects must be recorded.

Usually, some special software is used to edit the audio data. The sound producer

must define constraints on quality parameters for the data output. As an example the

minimal sample rate for the data output must be defined.

The Renderer controls the loudspeakers, it produces the actual wave field. In order

to improve the current WFS prototypes the renderer should ask a database system for

the required audio data. So it does not have to calculate the wave field geometry by its

own.

The Output Constraints we need for WFS systems are mainly synchronization con-

straints. Only constraints on audio data are needed. It must be possible to define

temporal, spatial and spatiotemporal output constraints for audio objects inside the

database system.

The relationships between audio objects must be defined relatively to each other.

For temporal constraints we use Allen-Relationships. An easy way must be found for

defining spatial relationships between audio objects. For the wave field synthesis an

audio object can be seen as a point in a 2-dimensional space. Hence, we must only

model spatial relationships between points. The author also wants to define spatiotem-

poral relationships. These are constraints which restrict the movement of the output

object over a certain time period. As an example an output object be close to another

output object for a certain span of time.

We have constraints that arise from physical characteristics. As an example we

have defined that the audio object for a bass must be output at most 10 millisecounds

after the audio for a guitar. Now we want to scale the room of this scene. As a

consequence the spatial distance between bass and guitar increases. We assume that

the listener is close to the audio object of the guitar. Because of the larger distance

between bass and guitar the bass sound has a longer way and needs more time to get to

the listener. Consequently, the listener can hear the bass more then 10 millisecounds

after the guitar.

If we define the output constraints relatively between the output objects, we must

produce an absolute order between the output objects for the output process. Thus, we

have to produce output schedules for the temporal and spatial order of audio objects.

The output process must be appropriate to that output schedule. The output constraints

must be checked during the data output process. There are different possibilities to

react on a constraint violation. A basic reaction would be the abort of the output

2.2. VIRTUAL UNIVERSITY 11

process. However, instead of an abort the database system should give a warning to the

user of the system. Output constraints must also be checked during the modification of

audio data. In this case the database system should not accept audio data which cannot

fulfill the output constraints.

Temporal output constraints deal with very small units of time, and a lot of audio

data must be output at the same time. The database system must organize the data in

such a way that the output schedule can be guaranteed. This means that the database

system must use special caching, portioning and indexing strategies.

2.2 Virtual University

E-learning is a popular research field for several sciences. Many educational institu-

tions expect a great benefit from e-learning. Therefore, a lot of e-learning projects

have been started. The Virtual University of Bavaria is one of these projects. The

intention of this project is to build a platform for multimedia course offerings. That

means videos, slides, and audios from lectures are stored. The students can access

these data through the internet. This frees them from fixed timetables and they can

take their lessons on any place they want. Furthermore, the students can repeat the

lessons and they can choose the specific information they need. The way of learning

can be determined by the students themselves, so they can learn more efficiently. At

the moment it can be regarded as an addition to normal lectures, but a positive impact

from that extra offer can be recognized. The final goal is that the Virtual University of

Bavaria becomes equal to a normal university.

The virtual university needs both alphanumeric and media data. The data man-

agement can be done either by a multimedia database system or by a file server. The

advantage of the database system in comparison to the file server is that it provides

more functionality for searching and transactions. Therefore, a multimedia database

system is more suitable for this application.

In this application media data and output constraints are stored at different places.

Media data are stored inside the database system, in contrast to this output constraints

are hard coded in HTML pages or in SMIL scripts. Usually, these scripts are not

stored in the database. Media data can be changed regardless of output constraints.

Thus, inconsistency between stored (multi)media data and output constraints can easily

occur. As an example a video and an audio shall be output equally, but the length of

the video is changed in such a way that it afterwards differs from the audio length.

Thus, an equal output is not possible. This error can be recognized only during the

data output process.

Problems can also occur if availability of the required resources cannot be guaran-

teed during the data output. As an example a minimum bandwidth should be defined

for a video output, output constraints can be used for this purpose. The database system

must observe the bandwidth during the output and must react if the output constraint

is violated.

12 CHAPTER 2. REQUIREMENTS ON OUTPUT CONSTRAINTS

The Virtual University has two actors modeler and consumer, which interact with

the systemas follows:

The Modeler designs the multimedia documents for the lectures. The design pro-

cess includes the layout definition (e.g. colors, fonts) and the definition of spatial and

temporal relationships between media data.

As an example a professor wants to integrate teaching material into the system.

Two steeps are necessary for that. First the media data (e.g. videos) must be inserted

into the system. In a second step the modeler has to define a multimedia document

based on the single media data. The multimedia document describes constraints be-

tween the single media data as well as their presentation.

The Consumer wants to get information about lectures. Usually, the data consumer

poses queries to the database system in order to get the required information. Several

kinds of queries can be distinguished, the easiest group of queries requests only al-

phanumeric data. Another group asks only for single media data. As an example, a

user can ask only for the audio of a lecture. The most complex queries ask for whole

multimedia documents. It is often desired that the user can interact with these doc-

uments. It is important to note that the number of possible queries is very restricted.

This means only predefined queries are possible, the user cannot define ad-hoc queries.

Usually, the system is used via an internet browser. To keep the system simple we

do not install extra client software. So, the server must produce a HTML or SMIL

document as query result. The server must be able to output the media data in the

required temporal order.

Students are consumers of the Virtual University. They send requests to the database

system and want to get information about lectures. Usually, they are looking for a

specific topic of a lecture. Often, they do not want to see the entire lecture informa-

tion, rather they only need a small part of the stored information. We can use the

stored metadata for searching, but there are also some query languages [LÖSO97] for

building semantic queries directly on media data (e.g. videos). The database system

is responsible for the correct data output of the multimedia data. This means that the

database system must maintain all output constraints which are defined on the required

output objects.

The Output Constraints we need for this applications are mainly synchronization

constraints. The modeler defines temporal and spatial constraints between different

kinds of media data. Usually, the temporal and spatial order of media data is hard

coded with absolute numbers. We can do this because the media data belong to only

one multimedia document. This kind of modelling is analog to modelling the output

constraints by using SMIL. An advantage that arises from this is that output constraints

can automatically be generated from SMIL scripts.

2.3. HOSPITAL DATABASE APPLICATION 13

It is possible that output constraints can be violated by data inputs or updates. As an

example if a video and an audio must be output equally and the length of one of them

has been changed, an equal output is no more possible. If we allowed those changes,

the output consistency could not be achieved. This means that output constraints are

violated.

The violation of output constraints during the output process is also possible. As

an example if we must handle many output processes at the same time, the read rate

from hard disk can become a bottleneck. Thus, the database system must check the

output constraints during the output process. If a violation is detected, we have several

possibilities to react on it. The hardest solution is to abort the complete data output

process. A more adequate way is to continue the data output and try to tune the system

online.

2.3 Hospital Database Application

In hospitals we have the situation that many specialists (e.g. internist, orthopaedist)

work together, but often each one maintains its own patient records. It is a simple

fact that the same patient data (e.g. x-ray image) are needed by several specialists for

diagnosis. It is quite evident that this often leads to a repetition of examinations. To

solve this problem a hospital can establish a central database system which manages

all data. This system must be able to handle many data output processes at the same

time. Usually, each output process deals with large amounts of data.

In the medical science a lot of examination methods are used which produce im-

ages and videos. Therefore, lots of x-ray images, ultra sound videos, and videos that

originate from computed tomography must be handled in a hospital. Furthermore, al-

phanumeric patient data like patient name or insurance policy number must also be

managed. The challenge is to handle both kinds of data efficiently in one database

system. If we have a central data source for all applications, we can realize electronic

patient files. Such a file contains all information about a patient, particularly it must

include all media data. With such an electronic patient file we can avoid the needless

repetition of examinations.

Each computer application that is used by a specialist must be connected to this

central data source. The specialist often needs media data or multimedia documents

for the diagnosis. As an example a multimedia document can consist of two ultra

sound videos. One shows the situation before a surgery the other has been made after

the surgery. Both videos should be output equally in order to determine the effect of the

surgery. Today it is usual that multimedia documents are built by applications. Usually,

the database system only provides the media data to the application. All constraints

which are necessary for building a multimedia document are part of the application

logic. The well-known problems of this approach are redundant implementations of

output constraints in each application and possibly unintentional modifications on me-

dia data which make the output constraints unrealizable.

14 CHAPTER 2. REQUIREMENTS ON OUTPUT CONSTRAINTS

From an abstract viewpoint the actors data producer, modeler, and data user inter-

act with the hospital database application as follows:

The Data Producer is the medical system which generates the data. A system is

the combination of a device (e.g. fluoroscope) and the control software for this device.

Normally, a system only generates single media data. As an example the fluoroscope

only produces images.

It is important to note that the data quality is a crucial factor for medical data. The

resolution of an x-ray image is an example for this. If the resolution is too low, some

details in the image can be lost. This means the data become semantically incorrect.

So, it is useful if the producer of data could define constraints on output parameters in

order to maintain the semantics of the data. As an example the x-ray application must

be able to define a minimal resolution for the x-ray images.

The Modeler defines the required multimedia documents. Usually, special software

systems assist doctors to build diagnoses. Different specialists often need the same

multimedia document. The aforementioned multimedia document which contains two

ultra sound videos – one before and one after a surgery – is of interest for the internist

and for the surgeon. If some applications use the same multimedia document it is

useful to model it outside these applications.

The modeler designs the multimedia documents by defining spatial and temporal

relationships between the media data and constraints on output parameters.

The Data User asks for (multi)media data. All kinds of applications which need

data are data users. It is very important that the required data have the defined data

quality. The database system must guarantee this quality during the output process.

Furthermore, the database system must guarantee consistency between stored media

data and output constraints in case of modifications.

The Output Constraints needed for this application are synchronization constraints

and constraints for quality parameters. In contrast to the Virtual University of section

2.2 temporal and spatial relationships are modelled relatively between media data. As

an example we could define that two ultra sound videos should be output equally,

regardless of the exact start and stop time of these videos.

Because of the relative definition of temporal and spatial constraints an absolute

temporal and spatial output order must be built for the output process. The database

system has to build this output schedule by using the output constraints. Furthermore,

the data organization must be suitable to the output schedule.

Output constraints for temporal or spatial synchronizations can be violated by ma-

nipulations of media data which are involved in this constraints. The database system

has to prevent this kind of manipulations. Furthermore, constraints on output parame-

ters can be violated during the output process. The database system must detect these

2.4. CONCLUSION 15

violations and an appropriate reaction must be executed. There is a wide spectrum of

possible reactions that includes sending a message to the user as well as aborting the

output process.

2.4 Conclusion

Virtual University Hospital Database WFS-System

Kind of Video, Audio, Video, Audio, Audio

multimedia data Full Text, Image Image

Output Synchronization, Synchronization, Synchronization

Constraints Quality Constraint Quality Constraint

Definition of hard coded relatively between relatively between

Synchronization time points output objects output objects

Time-point of during data input, during data input, during data input,

Constraint check during data output during data output during data output

Reaction on transaction transaction transaction

violation during abort abort abort

data input

Reaction on self-tuning of output warning message

violation during the data output abort to the system

data output process administrator

Table 2.1: Requirements for Output Constraints

Table 2.1 shows the requirements on output constraints which arise from different

applications. It is important to note that we do not support output constraints which

take user interactions into account. Examples of user interactions for an audio are play

and stop. This group of constraints has been considered in [VB97].

It is a requirement of the considered applications that it must be possible to de-

fine output constraints on any kind of media data. Furthermore, we can identify syn-

chronization constraints and constraints on output parameters as the main constraint

groups, that we need.

How synchronization constraints must be defined depends on the application. As

an example in the virtual university application (section 2.2) we define temporal syn-

chronization constraints between output objects by using absolute time points. In con-

trast to this in a WFS system we must model those constraints relatively between the

output objects. Therefore, it is necessary for the data output to produce an absolute

output order. This means that the database system must generate an output schedule

before outputting data.

All applications need a constraint check during the input or modification of media

data and during the data output. If output constraints are violated by data modification

16 CHAPTER 2. REQUIREMENTS ON OUTPUT CONSTRAINTS

operations, we can handle this violation like a traditional integrity constraint violation,

that is why we try to use integrity constraints in this point.

Chapter 3

Related Work

Multimedia database systems are a basis of this work, we want to improve these sys-

tems by integrate output constraints into them. Therefore, we must consider the latest

developments in this field of research. From the requirements analysis (chapter 2) we

have seen that output constraints come very close to the integrity concept of database

systems. We can even say that our output constraints are an enhancement of the tra-

ditional integrity concept. That is the reason why we must consider the state of the

art for integrity constraints. Presentation of media data is well-known in the field of

multimedia documents. Several presentation models have been developed there. We

have to consider these models and determine their usability for our output constraints.

Synchronization models and other approaches are proposed for managing consistency

of multimedia data. We have to consider these works because they are a basis for our

output constraints.

3.1 Data Models and Architecture of Multimedia

Database Systems

There is no general definition of multimedia database systems. Thus, we begin with

considering requirements on multimedia database systems that are important for this

work. Afterwards, we give a short overview of data models and show a possible archi-

tecture of a multimedia database system. At the end of this section we consider some

multimedia database systems that are related to this work.

3.1.1 Requirements on a Multimedia Database System

The term multimedia database system means different things to different people. This

is not surprising because multimedia can imply many different things. In this section

we present a perspective on and a definition of multimedia databases, which is used in

this work.

17

18 CHAPTER 3. RELATED WORK

A multimedia system [Mar92] is a computer based integration of information ob-

jects from different media types (text, audio, image, video). The integration covers the

points: data modelling, data storage, data presentation and temporal synchronization.

From this definition it is easy to see that a multimedia database system is only

one part of a multimedia system. The multimedia database system is that part of the

multimedia system which stores the multimedia data.

A multimedia database system [Spe98] has all characteristics of a traditional data-

base system. In contrast to this, it manages not only alphanumeric data but also a

high amount of media data on several storage media. These storage media includes

main memory, hard disk and optical storage media. Data retieval, data access and data

manipulation must be efficient for alphanumeric and media data [KB96]. Furthermore,

it is assumed that all media data are digital and stored on a computer.

Several differences to traditional database systems arise from the fact that a multi-

media database system must manage time dependent data as well as very huge single

data objects [KA97]. In the following we only mention a few of them, which have

influence on defining or checking output constraints:

Extendible data types are important for media data. Traditional database systems

only support a few data types. This leads to the fact that media data are usually

stored as binary large objects (BLOB). All kinds of media data (text, audio,

image, video) are stored using this data type. However, different media data

must be handled in different ways during data output. If a BLOB covers all

these data types, it is difficult to handle each kind of media data individually.

Access on data slides is very important for media data. As an example if we want

to output only one scene of a video, a direct access to this scene data is needed.

Thus, a multimedia database system must provide techniques for efficient access

on parts of large media objects.

Index structures for media objects are very different from traditional index struc-

tures. In traditional database systems an index is built on one or a few attributes.

Media data have a lot of characteristic features which must be considered during

data retrieval. Thus, a multimedia database system must support high dimen-

sional index structures. Furthermore, special temporal and spatial index struc-

tures are necessary.

Device and format independency is a well-known feature of traditional database sys-

tems. Thus, multimedia database systems must support this feature for media

data as well. This means that the internal storage format for media data is in-

dependent from the data format which is used for the data input or data output.

Therefore, the database system must be able to transform media data from the in-

ternal storage format into several output formats. This is a big challenge for time

dependent media data, e.g. video. For these data types the format transformation

must be accomplished in real time [MR97].

3.1. DATA MODELS AND ARCHITECTURE OF MMDBS 19

The requirements on a multimedia database system mentioned before are well-known

from literature. To the best of our knowledge there is no requirement concerning the

integrity of media data. We want to put the requirement of output consistency on the

above list.

Supporting multimedia documents is another requirement we have to make on mul-

timedia database systems. These documents consist of several media objects and rela-

tionships between them. Media objects as well as relationships must be managed by

the multimedia database system.

All the aforementioned requirements on a multimedia database system can be sum-

marized in the following working definition:

A multimedia database system must be able to manage alphanumeric data as well as

a high amount of media data. Storing of media data must be device and format in-

dependent. Efficient storage structures for media data and retrieval methods must be

supported as well as an adequate multimedia query language. In order to build com-

plex multimedia documents constraints between media data must be provided. Fur-

thermore, output consistency must be guaranteed by the multimedia database system.

The multimedia database system should also provide a graphical user interface and an

application interface.

3.1.2 Data Models for Multimedia Database Systems

A data model [AHV95, KBL05] consists of a set of concepts and languages for de-

scribing these concepts.

Conceptual and external schemas. A schema specifies the structure of the data that

are stored in the database. Schemas are described by using a data definition

language (DDL).

Constraints. A constraint specifies a condition that the data items in the database

must satisfy. A constraint specification language is usually part of the DDL.

Operations on data. These operations give us a high-level data abstraction. A data

manipulation language (DML) is used for describing these operations.

The Relational Data Model [Cod70] is still the most popular data model in prac-

tice. Furthermore, it is the elementary data model. The structural part of the rela-

tional model supports relation schemas, relations, attributes, domains and integrity

constraints. The operational part supports operations on these relations, like selection,

projection, join, and set operations. SQL is the common language which can be used

as DDL, DML and constraint language.

Relational database system provide very efficient implementations of operations,

like joins. Therefore, they are very fast in link tracing [Spe97], which is an important

20 CHAPTER 3. RELATED WORK

operation for hypermedia documents. On the other side, the relational model does not

support structured data types. Usually, relational database systems support only data

types like BLOB.

The Object-Oriented Data Model is close to concepts coming from object-oriented

programming languages. The structural concepts include a type system, classes, ob-

jects, object identities and methods [ABD+89]. An object definition language (ODL)

is used for defining structural elements. The object-oriented data model supports

generic operations like retrieval of objects in classes and specific operations imple-

mented by methods.

This data model is suitable for a multimedia database system. Concepts like struc-

tured types, inheritance and methods are very useful for handling multimedia data. In

practice powerful object-oriented database systems are not on the market.

The Object-Relational Data Model [SBM99] is an extension of the relational data

model. It has features like structured types for attributes, methods and identifiers for

tuples. The new SQL:1999 standard takes this extensions into account.

Object-relational database systems can handle media data very well. Existing sys-

tems like Oracle and DB2 have their own extensions for managing media data. For the

sake of simplicity we mainly use the pure relational data model in this work. How-

ever, for some examples we use object-relational extensions, like structured types, for

a better understanding.

3.1.3 Architecture of Multimedia Database Systems

The contribution of this work is to integrate output constraints into a multimedia

database system. Thus, the architecture of existing multimedia database systems is

of interest. Figure 3.1 shows an architecture of a multimedia database system which

was used in the projects MultiMap [Spe97] and OMNIS [SB00]. The component Pre-

viewer is usually a stand-alone software and not part of a multimedia database system.

The multimedia database system consists of a Multimedia-Engine and a Multimedia-

Interface.

The Multimedia-Engine has all components which are known of traditional database

architectures. Of course, special requirements which arise from the characteristics of

multimedia data must be considered. The index structures exemplify this. Traditional

database systems use some variants of B-Trees and Hash techniques for managing in-

dices. These techniques work well for indices up to ten dimensions, but for media data

(e.g. images) we must handle indices on high dimensional feature vectors. Thus, the

database system has to support special index techniques such as VA-Files [WBS00].

The Multimedia-Interface contains components which realize a pre-processing of

the database query and a post-processing of the query result. Usually, a special mul-

timedia query language is used for a multimedia database system [LÖSO97]. The

3.1. DATA MODELS AND ARCHITECTURE OF MMDBS 21

Previewer

Query Manager

Lock

Manager

Recovery

Manager

Operatorgraph Interpreter

Access Structure

Manager

Transaction Manager Query Compiler

Catalog Manager Query Optimizer

Storage System

Multimedia−Engine

Multimedia−Interface

Presentation Manager Link Manager

Text, Image, Video, Audio

Figure 3.1: Architecture of a Multimedia Database System [Spe98]

Query Manager transforms a query defined in a multimedia query language into SQL-

Statements, which will be sent to the Multimedia-Engine. The user of a multimedia

database system often wants to get a multimedia document that consists of several

single media data. Therefore, the original database query also includes information

about the links between media data and information about presentation parameters

such as temporal and spatial relationships between the data. The Link Manager builds

the static links between the media data and the Presentation Manager generates the

temporal and spatial order according to the requirements that arise from the original

database query.

The architecture of figure 3.1 only considers the output constraints which are part

of the database query. In other words, only the database user can define how the stored

multimedia data should be presented. The original data producer cannot define the

way of data output. If the user modifies the data output in any way, a semantical

falsification is possible, even in an unintentional manner. The described architecture

does not check the output constraints during the output process, thus defined reactions

on output constraint violations are not possible.

22 CHAPTER 3. RELATED WORK

If we want to integrate output constraints into a multimedia database system, we

have to modify its architecture. An additional component must be integrated into the

Multimedia Interface. This component must check the output consistency during the

data output as well as in case of data modifications.

3.1.4 Existing Approaches for Multimedia Database Systems

There is a large number of existing multimedia database systems, both commercial

and research systems. In this section we only mention those systems which are either

strongly related to this work or important commercial systems.

Realtime Data Output for Media Database Systems has been investigated in the

projects RETAVIC [SMMW04], KANGAROO [MR97], and MOSS [KMMW93]. The

challenge was to bring format independency for media objects and realtime together in

one system. This means that the user can define the output format of media objects in

a database query, the database system has to transform the internal storage format into

the required output format. For special media objects, such as videos, hard temporal

limitations exist for this transformation.

It is possible to define specific quality parameters for the transformation, but to the

best of our knowledge there is no possibility for the producer of media data to define

constraints for quality parameters.

Object-Oriented Multimedia Database Systems have been proposed in [OIS+97,

LÖSO97, OIÖ98, Adi96, Vaz96]. The idea behind this approaches is to use object-

oriented techniques for modelling multimedia objects. These concepts, like classes,

methods, and inheritance, are very suitable for media data. Therefore, some researchers

postulate object-oriented database systems as imperative basis for a multimedia data-

base system [WK87].

Multimedia object query languages are proposed in [HK96, LÖSO97]. A multime-

dia object query language of particular interest is MOQL [LÖSO97]. The contribution

of MOQL is to integrate spatial and temporal predicates into an object query language.

This means that the user can define spatial and temporal predicates for salient objects

in database queries. Furthermore, a new clause ‘presentation layout’ is added as direct

extension to OQL. The layout consists of the following three components:

• The spatial layout specifies spatial relationships of the presentation, such as size

and location of windows (salient objects).

• The temporal layout specifies the temporal relationships of the presentation,

such as the temporal order of media objects and how long the presentation should

last.

• The scenario layout allows a user to specify both spatial and temporal layout

using other presentation models or languages.

3.2. INTEGRITY CONSTRAINTS 23

The following example originates from [LÖSO97] and shows the power of MOQL.

The query should find all the image and video pairs from the tables Images and Videos

such that the video contains all the cars in the image, show the image in a window with

the corner points ((0,0),(300,400)) and the video in a window at ((301,401),(500,700)),

and start the video 10 seconds after displaying the image; display the image for 20

seconds, but play the video for 30 minutes:

select m,v

from Images m, Videos v

where for all c in (select r from Cars r where m contains r)

v contains c

present atWindow(m,(0,0),(300,400)) and atWindow(v,(301,401),(500,700)) and

play(v,10,normal,30*60) parStart display(m,0,20)

Some special operators for synchronization are integrated into that query language. An

example is the operator parStart, it starts two media objects simultaneously.

It is easy to see that this powerful query language can be used for defining any kind

of presentation consisting of stored media objects. The output relationships defined by

this query language can be seen as user defined output constraints. Thus, implementa-

tion concepts for output constraints can be used for realizing this query language.

Commercial Database Systems, such as ORACLE and DB2 as well as free data-

base implementations, such as PostgreSQL, support several media types. Usually, the

multimedia extensions of those systems provide special data types for media data, spe-

cial integrity constraints or output constraints are not supported.

Several aspects considering the output of multimedia objects have been investigated,

but to the best of our knowledge up to now there is no project and no approach that

considers output constraints.

3.2 Integrity Constraints

The complexity of modern database applications requires powerful facilities for con-

trolling semantic correctness of the data in the database. In traditional database sys-

tems we use integrity constraints to ensure the correctness of the stored data. The

research field of integrity constraints is as old as the database research. There are a

number of research topics in this filed. We can classify them by the following three

categories [GA93]:

Constraint types and semantics addresses various types of integrity constraints in

the field of traditional database systems.

Constraint specification deals with various approaches for specifying integrity con-

straints.

24 CHAPTER 3. RELATED WORK

Constraint enforcement and preprocessing attends to various approaches to enforce

constraints and the execution of violation response actions. Preprocessing means

for example the verification of new constraints, i.e. checking if new constraints

are correct and meaningful with respect to a number of criteria.

In the following sections each of these topics is discussed.

3.2.1 Types and Semantics of Integrity Constraints

Static– and dynamic integrity constraints are the most noted classes of integrity

constraints. Table 3.1 gives an overview of these classes and the correspond-

ing subclasses.

Static Attribute Domain

Nonull

Tuple Attribute comparison

Relation Uniqueness (key)

Functional dependency

Aggregate

Transitive closure

Database Referential integrity

Interrelation aggregate

Dynamic Attribute Domain

Tuple Attribute comparison

Relation Aggregate

Database Interrelation aggregate

Table 3.1: Taxonomy of Integrity Constraints [GA93]

We want to consider constraint types that are of special interest for multimedia

data. As aforementioned a group of output constraints restricts output parame-

ters, more precisely it restricts the values of output parameters during the data

output. Thus, it is close to ‘domain’ and ‘nonull’ integrity constraints. Referen-

tial integrity constraints are interesting because hyperlinks in multimedia docu-

ments are often implemented using referential integrity constraints [Oom99].

For checking dynamic integrity constraints different database states must be con-

sidered. Some groups of output constraints deal with output parameters that

changing over time, like the frame rate of a video. Thus, several time points

(states) during the output process are needed for checking these output con-

straints. We will consider dynamic integrity constraints because they are close

to several types of output constraints.

Temporal constraints can be seen as a special group of transition constraints. They

originate from the field of temporal database systems and they work on the his-

3.2. INTEGRITY CONSTRAINTS 25

tory of a database. We have to make a distinction between these temporal in-

tegrity constraints and those temporal output constraints for synchronization of

media data.

Data privacy becomes more important for database management systems. Data pri-

vacy means that data producers have control over who is allowed to see their

information and for what purpose. In practice the database system supports

rules for restricting the data output. This concept is called limited disclosure

[LAE+04], it is applied in statistic and hippocratic databases. Because limited

disclosure deals with data output restrictions, we must consider it in this work.

Domain and Nonnull Constraints

Domain constraints restrict values of attributes. This means that an attribute can adopt

only those values that are permitted by the domain constraints. Usually, domain con-

straints specify a certain range of values for attributes. Sometimes the range of an

attribute is defined by an enumeration of possible values. In the relational model the

enumerated values can be stored in a separate relation. So, it is possible to implement

this domain constraint as referential integrity constraint. As it is shown in [dB89],

‘variable enumerated domain constraints’ can be defined in this way.

Nonnull constraints also restrict the domain of an attribute. Therefore, they can

be seen as a special kind of domain constraints. They are considered in [Gol81] more

precisely.

Referential Integrity Constraints

The concept of referential integrity is a central issue in the relational and object-

relational data model. We can use it for specifying semantic links between various

relations in a database. Therefore, this type of constraints has received some attention.

The original idea of referential integrity is described in [Cod79]. An enhancement

of referential integrity is given in [Dat81]. An important extension is that foreign keys

can contain null values. On the other side this can lead to various kinds of problematic

situations. As an example it is hard to describe the semantics of referential integrity

constraints with foreign key values that are partly null.

Dynamic Constraints

Mostly, in literature we can find transitions or dynamic constraints as ‘single-step’

transition constraints [eS97]. This means that those constraints are evaluated on a pair

of pre-transaction and post-transaction states of a database. Usually, these constraints

are tuple constraints, i.e. they relate old and new attribute values in a single tuple.

26 CHAPTER 3. RELATED WORK

Temporal Constraints

Sometimes it is desired to describe dynamic constraints that are not limited to single-

step transitions. Thus, temporal constraints take the whole database history into ac-

count. Special temporal qualifiers, like always and sometime [ELG84], are used for

defining this constraints. Always can be used to specify hat something must be fulfilled

for the entire database history. Sometime is used for constraints that must sometimes

be fulfilled in the database history.

We can see from [ELG84] that the enforcement of general temporal constraints

is very inefficient. Restricted temporal constraints are discussed in [Cho92]. There

a method is described for the enforcement of temporal constraints taking only past

database states into account. This method makes use of redundant information to be

able to enforce temporal constraints without storing the entire history of a database.

We can see a similar idea in [PTJ01]. There a graph is used for modelling temporal

constraints. Thus, it is not necessary to store the database history for a constraint

check.

Output Constraints in Statistic Database Systems

For security reasons private data in statistic and hippocratical databases need a spe-

cial protection. Therefore, rules are introduced which restrict the data output. The

producer of data can use these rules to protect its information. In practice the result

set is restricted by the rules. As an example very small result sets are not allowed.

Generally, these rules can be seen as output constraints, because they restrict the data

output. However, they do not guarantee the semantics of the data output like the output

constraints proposed in this work.

To the best of our knowledge up to now database systems do not support output

constraints which guarantee data semantics during the output process.

3.2.2 Specification of Integrity Constraints

We have discussed some meaningful integrity constraints in section 3.2.1. This section

deals with alternative kinds of constraint specification. We can consider the following

kinds of specification:

declarative: The integrity constraints are defined by using a data definition language.

operational: The integrity constraints are defined by using a programming language.

This can be done inside a database application or in stored procedures as part of

the database system.

rule based: We can use rules, usually Event-Condition-Action-Rules, for defining in-

tegrity constraints.

3.2. INTEGRITY CONSTRAINTS 27

Declarative Specification of Integrity Constraints

The declarative approach of specification is based on relational algebra. A common

way to express a constraint is to specify a relational expression that calculates the

tuples in the database that do not satisfy the constraint [Gre93]. Some approaches add

special-purpose constructs to the relational algebra in order to specify constraints. As

an example in the PRISMA [AvBF+92, WGAK89] project all constraints are defined

in a first-order logic. These constraints are translated into an extension of the relational

algebra, called XRA [Gre92]. Therefore, they are directly executable by a special

system component.

Usually, the SQL language is used for constraint specification [ABC+76, CW90].

Today’s database systems support the integrity constraints shown in table 3.1 as declar-

ative integrity constraints [TG01].

Operational Definition of Integrity Constraints

We can use stored procedures or methods in an object-relational database system for

defining integrity constraints. So, checking integrity constraints can be encapsulated

into class methods or stored procedures. This way of integrity control has the advan-

tage that a programming language, like Java, can be used for implementing integrity

control. On the other side there are a number of disadvantages. The implementation

of complex integrity constraints is not trivial. We have to consider that possibly sev-

eral stored procedures affect others. Another point is that the integrity constraints are

defined inside the stored procedure. This means that the database system cannot use

those integrity constraints for query optimization. Furthermore, the modelling of out-

put constraints inside stored procedures leads to many procedures with very complex

implementations.

Rule-Based Definition of Integrity Constraints

Event-Condition-Action-Rules (ECA-Rules) can be used for defining and enforcing in-

tegrity constraints. ECA-Rules are also known as active rules, since with this kind of

rules the database system can react actively on defined situations. Usually, a certain

action is executed when a defined situation occurs. The components of an ECA-Rule

are defined as follows [CW90]:

Event: This component describes a specific situation (event) which is the trigger

event. We can distinguish primitive events, as an example the start or end of

an operation, and composed events that are compositions of primitive events.

Condition: This part of an ECA-Rule specifies a condition that must be fulfilled for

the execution of the defined action. It is possible to use a database query as

condition. In this case the condition is fulfilled if the result set is not empty.

28 CHAPTER 3. RELATED WORK

Action: This part defines the action that must be executed when the defined event

occurred and the condition is fulfilled. Usually, this is a sequence of method

calls or the transaction abort.

The following general SQL notation for integrity rules was originally proposed in

[ABC+76, Dat83]:

assert < Constraints Name >
[immediate | deferred] [on < Operation >]

[for < Relation >]: < Condition-Clause >
[else (< SQL Statements >)]

The event defined in the ECA-Rule can be mapped to operation, the condition can be

mapped to condition-clause, and action can be mapped to SQL statements.

Triggers are a special group of ECA-Rules that are well-known from relational

database systems. Usually, triggers can only detect database events, i.e. updates or

deletes. In real database systems we have to specify a certain coupling mode for a

trigger. This means that we must define whether a trigger is executed immediately

after a triggering event or at the end of the transaction.

The rule based definition of output constraints has some consequences that must be

considered. ECA-Rules can activate each other, this can lead to a not terminated situ-

ation during the execution of ECA-Rules. Some work has been done dealing with this

termination problem [BW00]. Another problem occurs when a set of different ECA-

Rules must be executed on a certain event. So, we have to define an execution order

for the ECA-Rules. Maintaining ECA-Rules is a general problem and a sophisticated

task because it is difficult to analyse the netting of ECA-Rules.

The advantage of the rule based approach is that it gives the database designer

the chance of building very smart triggers and of enhancing the efficiency of the con-

straint enforcement. Of course, in order to do so the database designer needs detailed

knowledge about the database.

3.2.3 Checking of Integrity Constraints

The process of constraint checking contains the following four parts [GA93]:

Constraint verification checks if constraints are syntactically and semantically valid

[Bro78].

Constraint translation translates constraints from the constraint definition language

into a representation which is more suitable for constraint enforcement [GA91].

Constraint optimization transforms constraints in such a way that the execution costs

of constraints enforcement are minimal. The execution cost of constraint en-

forcement is one of the major problems in constraint handling. Thus, constraint

3.2. INTEGRITY CONSTRAINTS 29

optimization is very important. This topic is very similar to query optimization

[Tür99, CP84].

Constraint enforcement deals with constraint prevention and detection. Further-

more, different kinds of system responses to constraint violation are considered

in [GL97].

For checking output constraints these four steps are necessary. Since we can use some

ideas for managing output constraints, we want to consider constraint verification and

constraint enforcement in detail.

Constraint Verification

The following points must be verified when a new integrity constraint is defined:

• Syntactic correctness must be checked with respect to the syntax rules for spec-

ifying constraints. After the syntax check a semantic check must be done. As

an example it must be checked if all used relations and attributes exist, and if all

comparisons are made only between compatible operands.

• We have to consider the relationship between the set of already defined con-

straints and the new constraint. It must be checked if the new constraint is not

contradictory to already existing constraints. This can be done by checking the

consistency of the constraint set. Valid database states or transitions can only

exist if the set of constraints is consistent.

• It must be checked if the new constraint is implied by already existing con-

straints. If this is the case, the new constraint is superfluous. A redundant set of

constraints is undesired for efficiency reasons.

• In case of using triggers it must be guaranteed that the violation response action

does not trigger an infinite process of compensating actions due to the interaction

with other constraints [CW90].

Constraint verification is also necessary for output constraints. All the points men-

tioned before must be taken into account for handling output constraints.

Constraint Enforcement

Violation prevention and violation detection are two general techniques for enforcing

integrity constraints [GV89].

Violation detection is used if integrity constraints are enforced after the updates of

a transaction is applied to the database. In case of violations the transaction is aborted

and the changes are made undone.

Violation prevention is used if integrity constraints are enforced before the updates

of a transaction are actually applied to the database. Usually, the transaction is aborted

30 CHAPTER 3. RELATED WORK

when the constraints are violated. An undo operation is not necessary because the

database state is not changed. To realize violation prevention we can use transaction

analysis. This technique tries to analyse update transaction before they are post on the

database system. A transaction is safe if it cannot violate the integrity of any database

state.

Another technique for violation prevention is query modification. In this approach

updates on the database are modified in such a way that they cannot violate the integrity

of the database [Sto75]. After these modifications the updates can be executed without

any further checks. However, query modification is not applicable to all constraint

types [SV84].

3.3 Presentation of Media Data

Initially, the management of multimedia data on a computer was not done by a multi-

media database system. Actually, the user had the wish to use images and other media

objects in internet presentations, therefore, a presentation model was needed and a

certain data quality must be guaranteed. These are the topics of this section.

3.3.1 Quality of Service

Quality of service (QoS) is generally important for all kinds of multimedia data. The

notation of quality of service emerged from communications to describe certain tech-

nical characteristic data of transmission. QoS parameters for data transmission mostly

apply on lower protocol layers and are not meant to be directly observable or ver-

ifiable by an application. As time-dependent data became prevalent in multimedia-

applications the entire system need to participate in providing the guaranteed perfor-

mance level. Therefore, QoS parameters can now be found on communication level,

on operating system level and on application level (e.g. in a multimedia database sys-

tem) [BEH01, BEH03]. If we take the output of a stored video as an example we can

find the quality parameters throughput on transmission level, Signal-to-Noise Ratio

[Ohm04] on operating system level and delay on application level (database system).

If we wanted to give a definition for QoS, we could only do this in a very general

manner. We use the definition of [VKvBG95]: ‘Quality of service represents the set of

those quantitative and qualitative characteristics of a multimedia system necessary to

achieve the required functionality of an application.’

Functionality includes both presentation of multimedia data to the user and general

user requirements. In other words, we have quality parameters that arise from technical

environment like a network’s bandwidth and other quality parameters directly given

by the user, e.g. a specific image resolution. The QoS of a given system is expressed

by a set of parameter-value pairs. These parameters are from different system levels

(transmission, operating system and application level), some parameters might not be

mutually independent. This fact must be taken into account when a certain level of

3.3. PRESENTATION OF MEDIA DATA 31

quality is supposed to be guaranteed. Therefore, parameters are often not considered

separately, rather a parameter space is considered where each parameter is assigned to

a dimension of that space [SWM95]. A special function takes all quality parameters

and computes a value of the parameter space, best quality is given when this value

reaches an optimum.

When dealing with quality parameters on different system levels, a serious prob-

lem is to map quality parameters from the higher levels to adequate parameter-value

pairs of lower system levels. As an example, parameters of video quality on the appli-

cation level (e.g. delay) must be mapped into parameters of the transmission level like

throughput. Some important work in this field has been done by Goebel and Plagmann

[GP99, EGPJ02].

In this work we assume that a parameter mapping is given and values can be de-

tected for all required quality parameters. There are several ways of specifying quality

parameters. Beside the parameter-value pairs mentioned before a specification using

difference constraints is proposed in [CRS98]. To simplify matters in this work we

use parameter-value pairs for defining output constraints on quality parameters. These

pairs can be defined much more intuitively than difference constraints.

3.3.2 Presentation Models for Multimedia Data

Several presentation models and languages have been developed, HTML and SMIL are

common examples. So, it became possible to build complex multimedia documents out

of single media data which are stored as files in the file system. Usually, a presentation

model defines several ways for temporal and spatial synchronization of media data.

There is a high number of presentation models, a good overview to that topic is

given in [MW03, BF98]. This section only refers standards, like ODA [Hor85], generic

reference models, like Dexter [HS90], and SMIL [Bul01] as a presentation language

with great practical importance.

SMIL

The ‘Synchronized Multimedia Integration Language’ is a multimedia extension of

XML [Bul01]. SMIL 2.0 exists since August 2001 and has great practical relevance

since it is supported by many multimedia and internet browsers.

SMIL supports temporal and spatial synchronization for several media data. Usu-

ally, media data are stored in appropriate formats within conventional files. To address

media data within a SMIL-Script a path expression is used. There is no possibility

for a SMIL-Script to recognize a change of that path or of the media file. A mismatch

between the stored media data and the defined synchronization can occur easily. There-

fore, the risk of errors is very high. Techniques for maintaining consistency between

media data and SMIL-Scripts are not considered by the SMIL standard.

32 CHAPTER 3. RELATED WORK

Open Document Architecture (ODA)

The reason for developing ODA [Hor85, Krö88] was to build a standard for document

exchange between arbitrary systems. ODA specifies three parts for any document:

Logical structure defines the semantic order of a document. Usually, a large text

document can be subdivided into chapters and sections.

Layout structure defines the way of presenting the document. There are several pos-

sibilities to define spatial positions for the presentation, but the support for tem-

poral synchronization is very restricted.

Content consists of real text modules or other media data. Both logical and layout

structure refer to these modules.

ODA mainly defines the static structure of a multimedia document, dynamic aspects

such as temporal synchronization are not emphasized in this approach. Special tech-

niques for maintaining consistency between logical structure, layout structure and con-

tent are not proposed. The actual data output process is not considered by the ODA

standard.

Dexter Reference Model

Initially, the Dexter Model [HS90, HS94] was an architecture for hypertext systems,

but later it was used for hypermedia systems, too [SB00]. The Dexter Model consists

of the following layers:

The Within-Component-Layer represents the internal data structures which contain

atomic data units. The Dexter Model does not make any restrictions on that

layer.

The Storage Layer defines the links between several media objects. This layer is

very important for the Dexter Model, it specifies several components and con-

nections between them that are necessary for an efficient link tracing.

The Run-Time-Layer manages the presentation of media objects during run-time.

There are several possibilities for defining the layout of media objects and spatial

relationships between these objects.

It is not possible to define temporal relationships between media objects with the Dex-

ter Model. An enlargement to do so is the Amsterdam Model. It supports temporal

relationships that are based on Allen-Relations [All83]. The Dexter/Amsterdam Model

can be used to define links as well as spatial and temporal relationships between media

objects, but there is no model inherent concept for maintaining consistency of these

relationships.

3.3. PRESENTATION OF MEDIA DATA 33

The Dexter/Amsterdam Model can be implemented by using relational database

concepts [Spe97]. Several database concepts are very useful for the Dexter Model. As

an example links can be realized by foreign keys, thereby, consistency of these links

can be guaranteed. However, it is not possible to check consistency for spatial and

temporal relationships.

ZyX Model

The ‘ZyX Data Model for Multimedia Documents and Presentations’ [BK99] is a

generic model for the presentation of multimedia documents. In contrast to the ap-

proaches mentioned above ZyX is built especially for multimedia database systems, a

prototype was built on an object-relational multimedia database system [BKW99].

The basis of this approach is a tree that contains several parts of a multimedia doc-

ument. Within the nodes of that tree spatial coordinates can be defined, thus, spatial

relations can be modelled. For temporal relationships special operators are used. How-

ever, only a parallel and sequential output is supported. Furthermore, we have loop and

delay as temporal operators.

Even though the ZyX-Model is based on a database system, there is no concept

for consistency between defined spatial/temporal synchronizations and stored media

objects. In the ZyX-Model media data are stored without considering their output

relationships (e.g. synchronization). Therefore, an unfavourable storage structure can

lead to problems during a synchronized data output.

Interactive Multimedia Document (IMD)

In contrast to the aforementioned models interactive multimedia documents [MPS+00,

MPV99, VB97, BKL96] take user interactions with the multimedia document into ac-

count. Thus, it is necessary to model spatial and temporal relationships between media

data as well as events that arise from user interactions. An interactive multimedia doc-

ument contains the following points:

Events are the basic elements of an IMD. There are different causes for events, they

can arise from user interactions (e.g. mouse clicks) as well as from media objects

(e.g. end of a video). Very complex events can be built by means of logical

connections of other events. To make a correct reaction on an event the point in

time and its position in the presentation is required.

The spatial/temporal composition of multimedia data is essential for modelling an

IMD. Usually, constraints are used to define a spatial and temporal order for the

presentation.

A scenario describes the behavior of an IMD. We have to define which events can be

handled by the IMD. Each event has a list of actions which will be executed if

that event occurs. As an example a video has to be stopped if the user presses

the stop button.

34 CHAPTER 3. RELATED WORK

The transformation (e.g. format transformation, transformation of image size) of

media data has to be defined within an IMD. Usually, the kind of transforma-

tion and some quality parameters for that transformation are defined, the real

transformation algorithm is not part of an IMD.

During a presentation a user can release several events, thus, event sequences arise.

Such a sequence shows how a user interacts with the presentation. Mostly, it is not

desired that a user can interact with the presentation in an arbitrary way. As an example

it can be required that the start of a video is only possible at a certain point during a

presentation or that a video can only be stopped after it was started.

From an abstract point of view an event sequence is just a path through the scenario

of an IMD. Because we want to control the user behaviour, not all possible event

sequences are allowed. Thus, special constraints [MPS+00] are used that restrict the

possible event sequences. The user behavior depends on the application that uses the

interactive multimedia document. This means that different applications have different

requirements on the user behavior. Thus, these kinds of conditions can be seen as part

of the application logic.

Beside conditions on event sequences we must also define spatial and temporal

conditions on media data. This group of constraints builds the real multimedia docu-

ment from single media data. If we deal with sets of constraints, inconsistencies can

occur by constraint modifications. Furthermore, a problem can arise from actions on

events. Actions can activate other tiggers. This can lead to a not deterministic process

if triggers activate each other. The IMD approach only provides consistency checks

for temporal constraints between media objects, for this purpose a temporal constraint

network (TCN) is used. Originally, this technique is used for static constraint check-

ing, but during the output of an IMD the user can make interactions. As an example the

user can start or stop a video on arbitrary points in time during a presentation. These

user interactions are important for the consistency, they have to be considered by the

consistency check which makes this test very complicated.

Actually, the scenario model defines Event-Action-Rules. It is well-known that ter-

mination and confluence of a set of Event-Action-Rules cannot be guaranteed. Check-

ing such a set for confluence as well as a test for termination is an NP-hard problem.

Lots of the constraints, defined in an interactive multimedia document, only con-

sider user interaction. These constraints are not important for a multimedia database

system itself, because they are part of the application logic and not universal for the

stored media data. Of course, the database system must be able to react on certain

user actions which occur during the output (presentation) of a multimedia document.

To do this user actions must be passed on the database system which must execute an

appropriate reaction. As an example a movie is played in a multimedia document, a

user wants to stop it and press the stop button in the presentation. The database system

must be notified about this event, an adequate reaction of the database system is to

stop the video output stream. Usually, user defined functions or methods can be used

to implement that reactions within a database system.

3.4. CONSISTENCY RULES FOR MULTIMEDIA DATA 35

Beside application-specific constraints there are some generic constraints for user

interactions defined in [MPV99]. An example for these constraints is the general fact

that a video can only be stopped after it has been started. These constraints must be

guaranteed by database operators. In our example we need operators for starting and

stopping videos. The stop operator must check whether the video has been started, so,

the operator implements generic constraints for user interactions.

To the best of our knowledge there is no concept for consistency between defined

synchronization constraints and stored media data. There is still the problem that a

change of media data can modify these data in such a way that the defined synchro-

nization is no more possible. Furthermore, synchronization constraints have no impact

on physical data organization. This can lead to problems if a high transfer rate is

required during data output [GIÖ98a]. If we want to avoid these problems, an integra-

tion of output constraints into the database system is necessary. If the database system

maintains output constraints, consistency of the data output can be guaranteed. This

means that the stored media data and defined output constraints are always consistent

and the database system organizes the physical data structure according to the output

constraints.

3.4 Consistency Rules for Multimedia Data

The semantics of multimedia data strongly depends on their presentation. We can

distinguish between output processes where user interactions are allowed and those

where not. Restrictions at user interactions are part of the application logic. Thus,

we do not have to integrate them into a database system. Therefore, we consider only

multimedia outputs without user interactions in this work.

There are four groups of consistency rules for multimedia data: rules concerning

data quality are the first group, rules dealing either with temporal or spatial relation-

ships and rules for spatiotemporal correlations. In the following we outline each of

these groups.

3.4.1 Constraints on Data Quality

As mentioned before, data quality is very important when we have to deal with media

data. If we change data quality, it is even possible that the same media data have

different meanings in several presentations of a multimedia document. As an example

an x-ray image can be displayed with different resolutions. In the case of displaying it

with an appropriate resolution we can notice a capillary crack in the bone, with a lower

resolution we do not.

In order to avoid this effect, we need constraints that define appropriate output

parameters. Usually, the producer of the media data has to define these constraints.

However, this kind of constraints can also be used in MOQL [LÖSO97] to build a

database query. As an example it is possible to define the output window for images or

36 CHAPTER 3. RELATED WORK

videos. Thus, the output resolution is defined implicitly. MOQL is no data definition

language. Therefore, it cannot be used for specifying data quality constraints in data

definitions.

Constraints for data quality are also known for the realtime data output of media

data [MR97, Mar03]. If certain transformation steps are necessary for data transfor-

mation, it must be ensured that data quality is maintained in each transformation step.

However, the producer of media data cannot define a certain data quality that must be

obtained for every data output.

A very formal way for defining constraints on certain data quality parameters is

given in [CRS98]. The main idea is using inequalities to define constraints for out-

put parameters. As an example we can define that the difference between the average

throughput for a whole data stream and the throughput for a single media object must

be greater as a defined constant. Inequalities can be checked easily, this is the ad-

vantage of this approach. On the other side we have the problem that it is hard for

the producer of media data to define constraints in such a way. Furthermore, it is not

considered how these constraints can be integrated into a multimedia database system.

3.4.2 Temporal Consistency

Usually, media objects have to be presented in a certain temporal order. If the de-

signer of a multimedia document defines such an order, an appropriate data output is

expected. Temporal consistency is given when a data output has the defined temporal

order.

A equal B

A A A A

B B B B

A A

A

B B B

A before B A meets B A overlaps B

A during B A starts with B A ends with B

Figure 3.2: Allen-Relations

Allen-Relations [All83] are the most common way of defining temporal constraints

between intervals. All possible temporal relations between two temporal intervals can

be modelled by using Allen-Relations. An overview of these relations is given in figure

3.2. The temporal intervals are named with A and B. Except for the equality relation,

intervals A and B can be inverted for each relation. Consequently, we have 13 possible

Allen-Relations at all.

Inconsistencies can occur when the length of temporal intervals is being changed.

Assume we have defined relation A before B. Furthermore, we assume that the interval

3.4. CONSISTENCY RULES FOR MULTIMEDIA DATA 37

A has a defined temporal start point. If the length of interval A has been increased, it

is possible that interval A meets or overlaps interval B. This means that the originally

defined relation before is no more possible, because of changing the length of interval

A.

Figure 3.3 shows possible inconsistencies in a set of Allen-Relations. Initially,

we assume that the data output is consistent to the defined Allen-Relations. Because

of modifications of media objects or of Allen-Relations, inconsistencies can occur.

The main classes of inconsistencies are qualitative, quantitative and indeterminate

inconsistencies [LSI96].

(c) indeterminate

A

C

B

A

B

C

A

C

B

(a) qualitative (b) quantitative

Figure 3.3: Kinds of temporal Inconsistencies [JLR+98]

Part (a) of figure 3.3 defines a scenario in such a way that A meets B and B meets

C. Now, it is assumed that the relation C overlaps A must be inserted. It is easy to see

that such a set of Allen-Relations cannot be consistent. In this case the length of the

involved objects has no influence on the consistency of the set. Because of the fact that

the set is always inconsistent, it is called a qualitative inconsistency.

Part (b) of figure 3.3 defines a temporal order where A meets B; A starts with C

and C overlaps B. This scenario has no qualitative inconsistencies, this means it can

be fulfilled under certain conditions. In our example the following conditions must

be fulfilled: length(A) < length(C) and length(A) + length(B) > length(C);
where length(X) means the length of interval X . Therefore, the relationships in the

example are consistent for the following values: length(A) = 20s, length(B) = 15s,

length(C) = 30s. Assumed length(C) would be 15 seconds, the defined set of Allen-

Relations cannot be fulfilled. In this case the whole scenario would be inconsistent.

This set of Allen-Relation can only be fulfilled under certain conditions, therefore, it

is quantitative inconsistent.

Part (c) of figure 3.3 shows the same scenario as part (b), but it deals with problems

caused by user interactions. There are intervals depending on user interactions. This

means that a user must do something during the presentation of this interval. As an

example a button must be pressed. Because it is unpredictable when the button is

pressed, we call this the non-deterministic part of an interval. As an example the

length of interval C depends on a user interaction. We use a broken line in interval C to

illustrate the non-deterministic part. If we must handle intervals with arbitrary lengths,

it is useful to assume a certain maximum and minimum length for that interval. For the

38 CHAPTER 3. RELATED WORK

example of part (c) at figure 3.3 we can take again length(A) = 20s and length(B)=15s.

If the scenario should be consistent, length(C) must be between 20 and 35 seconds.

Without doubt, Allen-Relations are the must common way to model temporal re-

lationships between intervals. The biggest advantage of Allen-Relations is their easy

intelligibility. On the other side there are serious problems if a set of Allen-Relations

must be checked for consistency. James F. Allen [All83, All84] proposed an alge-

bra and shows how Allen-Relations can be used for reasoning about time. Allen’s

algorithm is based on a technique called constraint propagation which computes all

consequences of a new relation using the transitive closure of the temporal relations.

Allen proves that his algorithm requires O(N2) time and space. However, Vilian and

Kautz show in [VK86] that Allen’s algorithm is not complete. Furthermore, they show

that both finding the closer of assertions in the interval algebra and determining the

satisfiability of the assertions are NP-hard.

The original Allen-Relations are only qualitative descriptions of relationships be-

tween temporal intervals. When we want to define output constraints, a qualitative or

functional [DK95] description of interval relations is needed. Functional means that

a kind of control structure is defined, as an example the end of an interval defines the

start of another interval.

Several other researchers, including Candan et al. [KC96, CPS98, CLS00], Buch-

anan and Zellweger [BZ93a, BZ93b, BZ93c], Kim and Song [KS95] and Subrahma-

nian et al. [ASS00, MS96] proposed using a highly-structured class of linear con-

straints called difference constraints. A set of difference constraints can be checked on

consistency in a very efficient way. This is the main advantage of that approach. On

the other side we have the problem that even simple relationships between intervals

lead to complex sets of difference constraints. It is very hard for a user to handle these

sets.

If we want to integrate output constraints into a multimedia database system we

need both an easy way to define output constraints and an efficient constraint check-

ing method. So, it would be useful if we could use Allen-Relations to define output

constraints and use difference constraints to check them. A rough concept for such

a transformation is proposed in [CRS98]. This approach only allows defining qual-

itative relationships between intervals because only the original Allen-Relations are

considered.

3.4.3 Spatial Consistency

The spatial order for media objects is also important for multimedia documents or

multimedia applications. Usually, the producer of media data or the designer of a

multimedia document wants to place data on certain positions. Take the wave field

synthesis as example, in this case the sound designer wants to specify that a certain

sound source has a specific position in the listening room. If this output constraint

cannot be fulfilled, an undesired sound effect is the result and the listener in the cinema

room gets a wrong impression.

3.5. CONCLUSION 39

There are many different approaches to define spatial relationships between spatial

objects. Many of these approaches were developed independently from approaches

for temporal relationships. So, we have spatial relationships that come from the field

of geographical information systems [MGSV99, FGNS00, ES02]. Other approaches

come from spatiotemporal logic [GKK+03] or directly from constraint database sys-

tems [BC98], in this case the mathematical theory of constraint databases is used for

shape management.

From the users point of view it is desired to utilize a similar way for defining tempo-

ral and spatial output constraints. This is also useful considering constraint checking.

If we can use the same formalism for both temporal and spatial output constraints,

we are able to use the same techniques for checking the output constraints. Li, Özsu

and Szafron [LÖS96] show a possible way to use Allen-Relations also for spatial con-

straints. The idea behind this approach is to use Allen-Relations separately for each

spatial dimension. This means, one Allen-Relation must be defined for each dimen-

sion and a conjunction is built from these relations. For the sake of simplicity each

salient object is covered by a minimum bounding rectangle. The approach proposed in

[LÖS96] is the basis for the definition of spatial output constraints in this work. How-

ever, we have to enhance this approach because it only allows qualitative definitions of

spatial constraints, but we need quantitative spatial output constraints.

3.4.4 Constraints in Commercial Database Systems

Commercial database management systems, like DB2, as well as free systems, like

PostgreSQL, provide no special consistency rules for multimedia data. However,

all these systems support integrity rules for static and dynamic integrity constraints.

Check-clauses, unique, primary key, and foreign key constraints are supported usually.

Trigger and assertions are also known in most systems, however, their usage differs.

Some very basic constraints on media data can be built by using traditional integrity

rules. For instance an integrity rule can be defined that only allows storing an image

if it has a certain resolution. Actually, this kind of constraints is defined on meta-

data which are traditional alphanumeric data. Constraints considering the data output

cannot be defined in today’s commercial database systems.

3.5 Conclusion

This section has shown research results which are the basis of this work. The main

conclusions for this work considering existing works are the following:

• Different kinds of applications need data from a multimedia database system.

Thus, a list of requirements concerning data types, data access, indexing and

format independency can be built. Up to now there are no requirements for data

output.

40 CHAPTER 3. RELATED WORK

• Integrity constraints are a well-known concept for traditional database systems.

Usually, integrity means correct storing of data. Beside the correct data storage

media data also need a correct data output, both is very important for their se-

mantics. Maintaining of integrity requires integrity constraints (rules), output

constraints are needed for a correct data output (output integrity). Integrity con-

straints can be defined declaratively, operationally or rule based. For defining

output constraints a rule based approach is suitable, because we must define an

action for the case of constraint violation. For maintaining integrity we have to

verify, translate, optimize, and enforce integrity constraints. All these steps are

also necessary for handling output constraints. Existing approaches for multime-

dia database systems do not support output constraints. Up to now it is common

that each database application checks its required media data by its own because

there is no possibility for a central check on the database side.

• Several existing approaches of multimedia database systems have been consid-

ered. Some works are close to this, but to the best of our knowledge there is

no approach for multimedia database systems that deals with constraints on data

output. In fact, output constraints can be seen as the missing piece between the

storage of multimedia data and existing techniques for format transformation or

multimedia database queries.

Chapter 4

Modelling of Output Constraints

The first we need for managing output constraints is modelling output constraints (fig-

ure 4.1). For modelling we must consider all classes of output constraints. Thus, a

classification of output constraints is required first. However, output constraints can be

classified by different criteria (dimensions).

Building

Data

Modification

Data Output

Output Constraints

Modelling

C
h

ec
k

in
g

 O
u

tp
u

t
C

o
n

st
ra

in
ts

Representation

Constraint

Output Schedules
Multimedia

Figure 4.1: Processing of Output Constraints

Thus, this chapter first gives an overview of possible classification criteria of output

constraints. Afterwards, a classification is proposed that are used in this thesis. On

the basis of this classification we will develop a specification language for output con-

straints that is suitable for each identified class.

4.1 Taxonomy of Output Constraints

A taxonomy shows what criteria of output constraints can be used for building a classi-

fication of output constraints. These criteria are an equivalent of dimensions of a clas-

sification. For integrity constraints several classifications are known [SST97, eS97,

Tür99, Deß93]. We use these to build a taxonomy for output constraints. Table 4.1

gives an overview of possible classification criteria.

41

42 CHAPTER 4. MODELLING OF OUTPUT CONSTRAINTS

Criterion for Classification Alternatives

granularity of data single output object

several output objects same media type

several media types

definition inherent in the model

defined explicitly

output states for checking static

dynamic

reason for checking data output

data manipulation insert

update

delete

point in time for checking immediat (after each operation)

deferred (at the end of all operations)

permanent during the data output

kind of reaction disallow the operation

transaction abort

correcting action

complexity of checking complexity classes

level of tolerance soft (with range of tolerance)

hard (without range of tolerance)

duration of existence temporary

permanent

types of output objects media types

output feature output parameter static

dynamic

synchronization temporal

spatial

spatiotemporal

Table 4.1: Taxonomy for output constraints

Granularity of Data: Output constraints can be classified by the size of the data unit

which is concerned.

We can build a classification by taking the number of output objects into account

that we need for checking the constraint. As an example if we define an output

constraint for the frame rate of a video, we have to consider only that video for

checking the defined constraint. However, if we define that a video and an audio

must output equally, we need both output objects for checking the constraint. If

we need more output objects, we can build a group of output constraints that

only need output objects of a single media type and a group that deals with

output objects of several media types.

4.1. TAXONOMY OF OUTPUT CONSTRAINTS 43

Explicit and Inherent Output Constraints: There are several models which can be

used for defining output constraints. As an example a lot of synchronization

models are well-known [BF98]. Each of these models can express a specific kind

of synchronization constraints. Allen-Relations are a synchronization model that

supports special key words for temporal synchronizations. Other groups of con-

straints (e.g. spatial constraints) are not directly supported by this model.

Inherent output constraints are directly supported by the model used for the spec-

ification of output constraints. Thus, inherent output constraints are covered by

the semantics of the model. Explicit or user defined output constraints are not

directly supported by the specification model. Each output constraint is either

model inherent or explicit. This fact can be used to classify output constraints.

Required Output States for Checking: As above-mentioned the data output for me-

dia data is a time depending process. Every single point in time during the data

output process has its data output state. So, we have to consider two groups

of output constraints. There is a group which only needs one output state for

checking. As an example we have defined an output constraint for an image that

restricts the minimal resolution for this image. To check this constraint we need

only one output state. This is due to the fact that the resolution of the image does

not change during data output. Other output constraints need more than one out-

put state for checking. As an example if we define an output constraint for the

average delay of frames of a video, we must consider several output states for

checking.

We can build a classification on this criterion. An analog classification is known

from traditional integrity constraints where static and dynamic integrity con-

straints exist. It is easy to see that this classification is close to ours of output

constraints.

Reason for Checking: The reason for output constraint checking can be an insert,

update or delete operation on media data. A database query can also be the

reason for checking output constraints. A query leads to the output of media

data. Before the data output process can start an output schedule must be built.

Furthermore, it is necessary to check output constraints during data output. An

appropriate classification can be built that considers the reason for constraint

checking.

Point in Time of Checking: Normally, output constraints are checked directly after

critical operations (immediate mode). Critical operations are those which mod-

ify media data in such a way that output constraints could be violated. There

are also complex output constraints which concern many media objects. It is

useful to check them after all modification operations (deferred mode). These

two classes are very close to traditional integrity constraints. We can also find

them in classifications of integrity constraints.

44 CHAPTER 4. MODELLING OF OUTPUT CONSTRAINTS

We also have output constraints which must be checked continuously during data

output. As an example we have to check the frame rate of a video permanently

during output of a video. The output of media data can be seen as database

operation. The check of output constraints after finishing this operation is not

suitable, rather the output constraints must be checked during this operation.

Kind of Reaction: If output constraints are violated, we can react in several ways. We

can classify output constraints by the kind of this reaction. One way to react on

output constraint violations is to reject the operation (e.g. an insert operation)

or to abort the whole transaction. This may be useful if we check an output

constraint after the modification of media data. We can also try to avoid the

transaction abort. For this we must correct the media data that violates output

constraints. Production rules [CW90] and triggers can be used for that.

If an output constraint is violated during data output, we can abort the whole

output process. This can be useful if output parameters like the frame rate of

videos gets to worse. An output process needs a lot of resources. So, we waste all

these resources if we abort the data output. Instead of an abort it is more suitable

to avoid the violation of output constraints. As an example we have defined an

output constraint for the minimal frame rate of a video. This constraint must be

observed permanently. If it is violated, we can try to tune the system to get a

better frame rate.

Complexity of Checking: Checking output constraints requires a certain computa-

tional complexity. Each output constraint belongs to a complexity class. These

classes can be used to classify output constraints.

Level of Tolerance: We can divide output constraints into soft and hard output con-

straints. Hard output constraints do not have a range of tolerance. An example

for a hard output constraint is a constraint defining a certain resolution for the

output of an image. Soft output constraints have a range of tolerance. This class

of output constraints is often used for realizing synchronizations. As an example

a video has to start at least 5 time units and at most 10 time units before an audio.

Duration of Existence: Usually, an output constraint is defined for a set of output

objects. The constraint is valid for every output object as a whole. As an example

if we define an output constraint for a video, it is valid for the entire video. In

this case the existence of the output constraint is not limited. The other class

of output constraints has a limited existence. As an example we want to define

an output constraint for the minimal frame rate of a video. We do not want to

define this constraint for the whole video. The output constraint is only needed

for the first 5 minutes of the video. Thus, we have an output constraint with a

time limit.

4.2. A CLASSIFICATION OF OUTPUT CONSTRAINTS 45

It is also imaginable that an output constraint depends on the content of media

data. As an example an output constraint could be valid only during a video has

specific content. This class of constraints can be activated dynamically.

Types of Output Objects: There are several groups of output objects. We can divide

time dependent (e.g. video) and time independent (e.g. image) output objects.

Time dependent output objects can be divided into video and audio. It is easy

to see that we can find output constraints which can only be defined for specific

types of output objects. As an example for a video and an image we can define

an output constraint for the minimal resolution. It is not possible to define any

resolution for an audio.

Restricted Output Feature: Section 4.2 describes this classification criteria in detail.

4.2 A Classification of Output Constraints

After we have proposed several criteria for classifications in section 4.1 we want to

describe the classification that is used in the rest of this thesis (figure 4.2).

Not Periodic Constraints

Constraints

Constraints

Inter Object

Constraints

Spatial
Constraints

Temporal

Continuous

Synchronization Synchronization

Discret

Constraints

Spatiotemporal

Intra Object

Constraints

Parameter Constraints

Dynamic Output

Parameter Constraints

Static Output

Output Costraints

Periodic Constraints

Periodic Event Constraints

Synchronization

Figure 4.2: Classification of Output Constraints [Hei04b]

As we know from section 4.1 we can use the criteria ‘restricted output feature’ for

building a classification of output constraints. Output features are output parameters,

like the resolution of an image, as well as several kinds of synchronizations. If we

order output constraints according to the output feature they restrict, we will get a

classification as shown in figure 4.2.

46 CHAPTER 4. MODELLING OF OUTPUT CONSTRAINTS

The main classes of output constraints deal either with output parameters or with

synchronization. Considering output parameters we can distinguish between static

and dynamic output parameter. Static output parameters are immutable during the data

output, e.g. the resolution of an image. Dynamic output parameters, like the frame

rate of a video, are changeable during the output process. The frame rate is also an

example of a periodic output parameter because we define it for a specific period,

e.g. frames per second. Consequently, we have to introduce classes which deal with

periodic output parameters and those which attend non-periodic output parameters.

Output constraints for synchronizations include constraints for intra object syn-

chronization and constraints for synchronizations between output objects. Synchro-

nizations between output objects are realized by spatial, temporal or spatiotemporal

output constraints.

We use this classification in this work as the basis for modelling and checking out-

put constraints. For each class a formal specification will be introduced and checking

mechanisms will be proposed.

4.3 Fundamentals of Output Constraints

Before we can introduce our specification of output constraints, we must discuss some

basics we need for our specification language. First we must mention temporal logic.

It is needed to define temporal constraints. We will see that temporal logic can be used

for spatial constraints as well. After this we will introduce relationships that we need

for spatial conditions.

4.3.1 Elements of Constraint Notation

A constraint language is a logical language for expressing restrictions of data and

relationships between data. Because of the fact that an output constraint must access

data, the constraint language must take the data model into account. In this work it is

assumed that the relational data model is used. We use the common notation of this

model:

• A relation schema R with degree n is annotated as R(A1, A2, . . . , An).
A1, . . . , An are the attribute names of this relation schema.

• A n-tuple t in a relation r(R) is annotated as t = 〈v1, v2, . . . , vn〉. The value of

the attribute Ai is vi. With t.Ai the value vi in t is denoted.

• Usually, the letters R, S are used for relation schemas, r, s denote relation in-

stances and t, u are used for tuple instances.

Usually, first order logic is the basis of a constraint language. First order logic is plain

and can be evaluated efficiently. A constraint language consists of logical symbols (e.g.

4.3. FUNDAMENTALS OF OUTPUT CONSTRAINTS 47

∃,∀), a set of constants, functions, predicates and variables. For our output constraint

language we use the same syntax and semantic as the first order logic [Con98]. A

constraint language for output constraints must have the following elements:

Symbols are used to connect predicates. We use the same set of symbols as the first

order logic: {¬,∨,∧,→,↔,∃,∀}

Variables are necessary to define logical terms like predicates and formulas. There-

fore, constraints are defined based on a set of variables. This means for output

constraints that the output objects are variables.

Constants are a set of values which can be used in functions or predicates. For our

output constraint language, the set of constants is a set of float numbers.

Functions take variables or constants and compute a term. For instance, we assume

that we have an audio as an output object o1 and that we want to determine

its loudness. Formally, we can use the function loudness(o1) to determine the

loudness.

Predicates define temporal and spatial relationships between media data. The eval-

uation of a predicate gives a logical value. The predicates must allow all pos-

sible temporal and spatial combinations between media data. On the other side

the set should be as small as possible. Furthermore, we need the predicates

{≤,≥, 6=, =}. They are necessary if we want to build output constraints for out-

put parameters. As an example we want to restrict the loudness of an output

object o1. Hence, we can use the predicate ≤ and build the term: loudness(o1)

≤ c. It is easy to see that loudness(o1) is a function that takes the variable o1.

The function determines a specific value for the loudness. The predicate ≤ takes

this value and the constant c and determines a logical value.

4.3.2 Temporal Logic

Temporal logic is built by adding temporal connectors to a logic language. Explicit ref-

erences to time are hidden inside the temporal connectors. There are different kinds of

temporal logic [Cho94]. Each temporal logic has its own connectors. Several features

of temporal logic makes it especially attractive as a query and integrity constraint lan-

guage for temporal database systems. So, it is possible to define queries and integrity

constraints in an abstract, representation-independent manner. The other reason is that

temporal logic is amenable to efficient implementation. For example we can translate

temporal logic queries to an algebra language.

If we deal with temporal logic there is a choice of linear vs. nonlinear time. This

means time can be seen as a single line or as a tree. Although nonlinear time is po-

tentially applicable to the presentation of multimedia data with user interactions, there

has been very little work in this field. User interactions with the database output are

48 CHAPTER 4. MODELLING OF OUTPUT CONSTRAINTS

not the scope of this work. Thus, we use temporal domains that are defined on linear

ordered sets.

Definition 1 (Temporal domain TP). The structure TP = (T,≤,−, +) is a one-

dimensional ordered temporal domain. T is a set of temporal instances (e.g. {1

o’clock, 2 o’clock}) and ≤ is a linear order on T . The function − defines a distance

between two elements out of T as follows: − : T × T → D; where D is a set of

temporal distance elements (e.g. D = {1 hour, . . . , n hours}). The function + defines

a sum between a point in time and a temporal distance as follows: + : T × D → T .

Definition 2 (Distance domain TD). The structure TD = (D,≤, ·) is a temporal dis-

tance domain. D is a set of temporal distance elements. The relation ≤ is a linear order

on D. The function · is defined between i ∈ Z and l ∈ D so that · : Z × D → D.

Let TP = (T,≤,−, +) be a one-dimensional ordered temporal domain. D(T) is

the set D(T) = {a − b : a, b ∈ T} and D(T) ⊆ D.

As an example TP = ({0, 1, 2, . . . , 23},≤,−, +). The set {0, 1, 2, . . . , 23} repre-

sents the time instances 0 o’clock, 1 o’clock and so on. A time instance is a concrete

point in time. The order ≤ is equal to that one which is defined on natural numbers.

The function − defines a distance between two points in time. It is easy to see that

the difference between two points in time cannot be a point in time again. In reality

the difference between two points in time is a span of time. As an example the dif-

ference between 9 o’clock and 10 o’clock is 1 hour and never 1 o’clock. Therefore,

the function ‘−’ maps two points in time into the distance domain TD. In our example

are hours temporal distance elements. The function ‘+’ is inverse to the function ‘−’.

It builds the sum from a point in time and a temporal distance element. The result of

this function is a point in time. For instance we build the sum between 9 o’clock and

1 hour. As result we get 10 o’clock, it is a concrete point in time.

As mentioned before the distance domain TD defines time spans. As an example

TD = ({0, 1, 2, . . . , n},≤, ·) is a distance domain. It is important to note that the

elements in the set {0, 1, 2, . . . , n} are time spans. The order ≤ is equal to that one

which is defined on natural numbers. We define a function ‘·’, it maps a natural number

and a time span into a set of distance elements. As an example we have the distance

element 2 hours and the natural number 3. It is easy to see that the result of 3 · 2 hours

is a time span of 6 hours. We can build a set of distance elements D(T) which is

suitable to a specific set of time instances T . Thus, for computing D(T) considering

our example we have to determine all possible differences between the points in time.

All possible time spans between the time points T= {0 o’clock, 1 o’clock, . . . , 23

o’clock} are elements of the set D(T)= {0 hour, 1 hour, . . . , 23 hours}.

Intervals and Periods are very important for the specification of output constraints.

We will see that several groups of output constraints are defined on a temporal interval

or on a period. As an example if we specify an output constraint which restricts the

minimal frame rate of a video during the data output, we have to define the minimal

4.3. FUNDAMENTALS OF OUTPUT CONSTRAINTS 49

frame rate as frames per second. This means that we have an output constraint for each

second in the video. During the data output we must check that output constraint in

each second. The following definitions define intervals and periods formally. Intervals

are defined on an interval domain.

Definition 3 (Interval domain TI [CT98]). Let TP = (T,≤,−, +) be a one-dimen-

sional ordered temporal domain. The following set is defined on T:

I(T) = {(a, b) : a ≤ b, a ∈ T ∪ {−∞}, b ∈ T ∪ {∞}}
Elements of I(T) are noted as [a, b] and called intervals. The following relationships

are defined between the elements [a, b], [a′, b′] ∈ I(T):

([a, b] <−− [a′, b′]) ⇐⇒ a < a′ ([a, b] <+− [a′, b′]) ⇐⇒ b < a′

([a, b] <−+ [a′, b′]) ⇐⇒ a < b′ ([a, b] <++ [a′, b′]) ⇐⇒ b < b′

The structure TI = (I(T), <−−, <+−, <−+, <++) is an interval-based temporal do-

main TI .

Definition 4 (Period P). Let TP = (T,≤,−, +) be a one-dimensional ordered tem-

poral domain. TI is an interval-based temporal domain. The following set is defined

on I(T) and D(T): P (I(T), D(T)) = {([s, e], l) : [s, e] ∈ I(T), l ∈ D(T), l ≤ e− s}
Elements of P (I(T), D(T)) are noted as 〈[s, e], l〉 and called period.

Definition 5 (Period elements pi). If 〈[s, e], l〉 is a period P then the period elements

pi ∈ I(T) with i ∈ Z, i ≥ 0 are defined as follows:

pi =























[i · l + s, (i + 1) · l + s] : (i + 1) · l + s ≤ e,
i · l + s ≤ e

[i · l + s, e] : e ≤ (i + 1) · l + s,
i · l + s ≤ e

undefined : other

pi ∈ P ↔ pi is defined for P

Informally speaking, a period defined as 〈[s, e], l〉 starts at point s and ends at point

e. A set of period elements pi is defined for that period. The length of a period element

pi is l. The counter i counts the period elements. As an example we define the period

〈[1, 4], 2〉. Period elements are defined for the interval between the start point 1 and

the end point 4. Each period element has the length 2. Therefore, the period elements

are: p0 = [1, 3] and p1 = [3, 4]. It is easy to see that the last period element has not

the normal time span. This fact must be taken into account if we want to check output

constraints which are defined on periods.

4.3.3 Specification of Temporal Constraints

To specify temporal constraints we have the choice of the specification model, which

can be based either on time points (instants) or on time intervals. For modelling output

50 CHAPTER 4. MODELLING OF OUTPUT CONSTRAINTS

constraints a interval-based specification is natural and thus, we concentrate on it in

this work.

As we have seen in section 3 Allen-Relations can define temporal relations between

temporal intervals. We can use Allen-Relations for an output constraint language as

well, since the several realtionships can be used as predicates that language.

For our application scenarios of section 2 we need a qualitative description of rela-

tionships between temporal intervals. For example when we want to model the audio

for a movie scene. We exactly have to specify the time between the sound sources.

Assuming we want to define that an audio called violin must end 2 time units before

another audio called trumpet starts, we cannot use the original Allen-Relation ‘before’

because it is too unspecific. If we exactly want to define how long one audio source

has to start before another, we must restrict the Allen-Relation ‘before’. Consequently,

we introduce the relation beforeV (c1, l). We can see from table 4.2 that this relation

is used to define a variable time between two temporal intervals. The parameter l of

the relation beforeV (c1, l) defines the variability of the time between the two temporal

intervals. For our example we can use the relation violin beforeV (2, 0) trumpet. In

our output constraint language we use restricted Allen-Relations as shown in table 4.2

as temporal predicates.

4.3.4 Specification of Spatial Constraints

Beside temporal constraints we have to specify spatial constraints between output ob-

jects. Considering our application scenarios, we have spatial constraints between spa-

tial point objects and between salient objects. A salient object [LÖS96] can be an

interesting physical object (e.g. car, persons) in a video frame.

Point Objects are adequate for many application scenarios. For example, at wave

field synthesis each sound source can be seen as a point in space and we must only

handle constraints between these points. Like temporal constraints we want define

spatial constraints in a relative manner. This means that we do not want to use the

absolute space co-ordinates for spatial constraints. Assume we specify spatial con-

straints for sound sources in a movie scene. If we used the absolute coordinates of

the cinema room, we would have to specify the spatial constraints for several cinema

rooms. Therefore, it is more appropriate for our applications to specify spatial con-

straints relatively to the center point of the cinema room.

To simplify matters we concentrate on spatial constraints in a 2-dimensional space.

In spatial constraints we must define qualitative and quantitative relationships between

points in space. Therefore, we have to specify the direction and the distance between

the points in space. Table 4.3 shows all spatial constraints we use for point objects. If

we want to support spatial constraints between point objects in a higher-dimensional

space, we have to introduce spatial constraints for each further dimension. We can

reach the same expression power with a smaller set of constraints. We only need one

4.3. FUNDAMENTALS OF OUTPUT CONSTRAINTS 51

A before(c1) B The end of A is at least c1 time units before the start

of B; with c1 > 0
A beforeV (c1, l) B Variable time interval [c1, (c1 + l)] between the end of

A and the start of B; with c1 > 0, l ≥ 0.

A overlaps(c1, c2) B The time between the start of A and the start of B is at

least c1. The time between the end of A and the end

of B is at least c2; with c1 > 0, c2 > 0.

A overlapsVs(c1, l, c2) B Variable time interval [c1, (c1 + l)] between the start

of A and the start of B. The time between the end of

A and the end of B is at least c2; with c1 > 0, c2 > 0,

l ≥ 0.

A overlapsVe(c1, c2, l) B Variable time interval [c2, (c2 + l)] between the end of

A and the end of B. The time between the start of A

and the start of B is at least c1; with c1 > 0, c2 > 0,

l ≥ 0.

A overlapsVse(c1, l, c2, m) B Variable time interval [c1, (c1 + l)] between the start

of A and the start of B as well as between the end of A

and the end of B [c2, (c2 + m)]; with c1 > 0, c2 > 0,

l ≥ 0, m ≥ 0.

A during(c1, c2) B The time between the start of A and the start of B is at

least c1. The time between the end of A and the end

of B is at least c2; with c1 > 0, c2 > 0.

A duringVs(c1, l, c2) B Variable time interval [c1, (c1 + l)] between the start

of A and the start of B. The time between the end of

A and the end of B is at least c2; with c1 > 0, c2 > 0,

l ≥ 0.

A duringVe(c1, c2, l) B Variable time interval [c1, (c1 + l)] between the end of

A and the end of B. The time between the start of A

and the start of B is at least c1; with c1 > 0, c2 > 0,

l ≥ 0.

A duringVse(c1, l, c2, m) B Variable time interval [c1, (c1+l)] between the start of

A and the start of B. Variable time interval [c2, (c2 +
m)] between the end of A and the end of B; with c1 >
0, c2 > 0, l ≥ 0, m ≥ 0.

Table 4.2: Restrictions for Allen-Relations [Hei05]

constraint for each dimension. It is easy to see that pointA left(c,l) pointB is equal to

pointB right(c,l) pointA. The constraint spatial-equal can also be replaced by a combi-

nation of others. We support all constraints of table 4.3 which makes the modelling of

spatial constraints easier for the user.

52 CHAPTER 4. MODELLING OF OUTPUT CONSTRAINTS

pointA west(c.l) pointB Variable spatial interval [c, (c+l)] between pointA and

pointB. pointA is west of pointB; with c > 0, l > 0.

pointA east(c.l) pointB Variable spatial interval [c, (c+l)] between pointA and

pointB. pointA is east of pointB; with c > 0, l > 0.

pointA south(c.l) pointB Variable spatial interval [c, (c+l)] between pointA and

pointB. pointA is south of pointB; with c > 0, l > 0.

pointA north(c.l) pointB Variable spatial interval [c, (c+l)] between pointA and

pointB. pointA is north of pointB; with c > 0, l > 0.

pointA spatial-equal pointB pointA and pointB have the same spatial position.

Table 4.3: Spatial Predicates for Point Objects

Salient Objects like persons or cars in a movie scene must be represented in a way

that allows defining relationships between these objects. A common way is building

an approximation of salient objects. Usually, a minimum bounding rectangle (MBR)

with boundaries parallel to the horizontal and vertical axis of a coordinate system is

built.

Definition 6 (Bounding Box [LÖS96]). The bounding box of a salient object Ai

is defined by its MBR (Aix, Aiy) and a depth Aiz where Aix = [xsi
, xfi

], Aiy =
[ysi

, yfi
], Aiz = [zsi

, zfi
]. xsi

and xfi
are Ai’s projection on the X axis with xsi

≤ xfi

and similarly for ysi
, yfi

, zsi
and zfi

.

Spatial relations between salient objects are modelled as spatial relations between

the MBR’s of these objects. Between two regions eight meaningful relations have

been identified which lead to eight predicates called equal, disjoint, coveredBy, covers,

overlap, meet, inside, contains. For defining output constraints a similar model of

temporal and spatial relations is needed. Therefore, we want to use Allen-Relations

for defining spatial relationships as well. Our approach is based on [LÖS96]. J.Z. Li,

T. Özsu and D. Szafron have introduced sets of strict directed relations, mixed directed

relations and positional relations between bounding boxes. They have also shown, how

these spatial relations can be defined in terms of Allen’s relational algebra. We cannot

directly use these spatial relationships in this work, because we need a qualitative

specification for spatial relationships. The basic idea proposed in [LÖS96] is that each

spatial dimension is considered separately. Hence, in a two-dimensional space we must

consider the X and Y axis separately. Therefore, the Aix and the Aiy sites of MBR’s

can be seen as intervals in an one-dimensional space and Allen-Relations can be used

for defining relationships. We build one predicate based on Allen-Relations for each

spatial dimension and the conjunction of these predicates is the spatial condition.

Figure 4.3 shows two MBR’s which are in a spatial relation called touch [LÖS96].

We have made a projection of Aix and Aiy on the axis, now the accompanying Allen-

Relations for each dimension can easily be seen. In X direction we have A1x meets A2x

and in Y direction we have A1y starts A2y . If we put both dimensions together, we

4.4. THE DATABASE OUTPUT 53

x

1

A 2

X

Y

A 1 A 2x

A2

A1y

y

A

Figure 4.3: Spatial Condition Using MBR’s of Salient Objects

get (A1x meets A2x) ∧ (A1y starts A2y). This basic example does not show restricted

Allen-Relations, but it is easy to see that they can be used in the same manner.

4.4 The Database Output

Our output constraints are rules to define a correct data output of media data. There-

fore, we must consider the database output in more detail. We assume that each stored

media object can be output. Thus, a set of output objects OUTOBJ exists which can

be built from the stored media objects. The stored media data and the output objects

belong to them can be very different. The reason for this is the format independency

which is required by a multimedia database system.

As mentioned before we use the relational data model in this work. Thus, we

assume that media objects, like videos, are stored as attribute values of a relation.

Usually, beside the real media object (e.g. video) metadata (e.g. producer of the

video) of media objects are stored in the database as well. Without loss of generality,

we assume that a media object (mo) and its metadata are stored in a single tuple. Thus,

we use in the following the relation schema R(A1, A2, . . . , An, A
MO
n+1, . . . , A

MO
m). AMO

x

are names of attributes that store media objects. The domain of these attributes is a set

of media objects called MO.

An output function foutj builds an output object o from a stored media object mo ∈
MO.

foutj : MO → OUTOBJj, foutj(mo) = o (4.1)

Different output functions are possible on the same stored media object. Every output

function has its own domain. As an example a text is stored as a media object. One

output function can build an audio as output object from that text. Another output func-

tion can build an image (e.g. PDF) as output object from the same text. The domains

of both output functions are very different. Different output constraints can be used to

54 CHAPTER 4. MODELLING OF OUTPUT CONSTRAINTS

restrict these domains of output objects. Considering our example the resolution can

be restricted for the image but not for the audio. We consider the following groups of

output functions:

fs(mo) produces spatial output objects

ftd(mo) produces time dependent output objects

fs/td(mo) produces spatial and time dependent output objects
A spatial output object has no internal time dependency. An image is an example for

this group of output objects. It has only a spatial shape but it is not time dependent.

Time dependent output objects (e.g. audio) do not have any spatial shape but they have

an internal time dependency. A video is an example for spatial and time dependent

output objects. It is easy to see that it has a spatial shape and an internal time depen-

dency.

Equation 4.2 shows a formal definition for the domain of an output function. All

output objects o produced by the function foutj(mo) are members of this domain. The

co-domain MO of the output function is a set of media objects.

OUTOBJMO
foutj

= {o | o = foutj(mo) ∧ mo ∈ MO} (4.2)

The domain of all possible output objects for a set of media objects MO is called

OUTOBJMO = {foutj(mo)|1 ≤ j ≤ x ∧ mo ∈ MO}. Output constraints restrict

the sets OUTOBJMO
fout

in order to define legal output objects. The general form of an

output constraint is shown in equation 4.3.

{∀,∃}o ∈ OUTOBJMO
fout

: F (4.3)

F is a first order logic formula but in this formula we can also use the temporal and

spatial predicates, which we have introduced. The meaning of this definition is that for

one or for all output objects, built from the set of media objects MO, the formula F
must be true.

Most output constraints restrict all elements in a set of output objects. Therefore,

output constraints often have the form: ∀o ∈ OUTOBJMO
fout

: F . Thus, we use in the

following the notation of equation 4.4 to denote that the predicate F must be fulfilled

for each element in OUTOBJMO
fout

.

OUTOBJMO
fout

÷ F (4.4)

4.5 General Structure of Output Constraints

For a general specification of integrity rules (section 3.2.2) we have to define the con-

straint name, the time point of constraint checking, the condition clause, and a reaction.

Thus, we have to consider all these parts in our general structure of output constraints:

The Output Constraint Name is required if we want to handle this constraint as a

database object.

4.6. SPECIFICATION LANGUAGE FOR OUTPUT CONDITIONS 55

The Reason for Checking defines when the output condition is checked. This check

can be executed after modifications on stored data or before data output.

The Output Condition defines a term that must be fulfilled for the data output pro-

cess. For defining output conditions we need special predicates to specify tem-

poral and spatial conditions. Thus, the predicates of tables 4.2 and 4.3 must be

supported.

In practice, some SQL extensions support temporal or spatial predicates. For

example TSQL supports the following temporal predicates [Sno00]:

A PRECEDES B implements A before B

A SUCCEEDS B implements A before−1 B

A MEETS B implements A meets B ∨ A meets−1 B

A CONTAINS B implements A during B ∧ A 6= B
A OVERLAPS B implements A overlaps B ∨ A overlaps−1 B ∨ A starts B

∨ A starts−1 B ∨ A finishes B ∨ A finishes−1 B

∨ A during B ∨ A during−1 B ∨ A equals B

However, these predicates can only test the qualitative relationships between pe-

riods. TSQL supports periods, which define a temporal interval with a fixed

start and end point. Actually, this periods come from temporal database sys-

tems. Hard coded start and end points are required for defining these periods.

Therefore, we cannot use them for output constraints.

The Reactions on condition violations must be defined for two cases. We need a re-

action that must be executed if the output condition is violated by modifications

on stored media data. Another reaction defines what should be done if the output

condition is violated during data output. Both reactions are normally defined by

the user. This is necessary because a standard reaction is not convenient. So,

we cannot say that an abort of a data output is always suitable when an output

condition is violated.

The name of an output constraint as well as the reason for checking can be specified

directly (section 4.7). The reaction of a condition violation is either a basic reaction,

like a transaction abort, or a complex operations, like a program call. Thus, an ele-

mentary specification can be used for defining the reaction (section 4.7). However,

specifying output conditions needs more attention. We need an uniform definition of

output conditions that supports all classes of output constraints. Thus, we will consider

the specification of output conditions in detail in the following sections.

4.6 Specification Language for Output Conditions

This section shows how formal specifications for several classes of output conditions

can be built. We use the classification of figure 4.2 for the following considerations.

56 CHAPTER 4. MODELLING OF OUTPUT CONSTRAINTS

We will introduce an example that is used to explain the formal specifications. Our

example is based on the application which deals with wave field synthesis for cinemas.

Each movie scene has a number of sound sources which are audible in the scene. We

assume that the following table exist in the database:

MOVIE(SCENE NR, SOUND SOURCE 1,. . . ,

SOUND SOURCE N,MOVIE SCENE)

Such a table exists for each movie handled by the database. This table stores all scenes

for a certain movie and all sound sources belong to the scenes. For the sake of sim-

plicity we assume that all sound source attributes contain real audio data. The attribute

MOVIE SCENE contains the videos to the scenes.

4.6.1 Conditions for Static Output Parameters

Static output parameters are those which do not change during the output process of

output objects. For our movie example the resolution of the film is a static output

parameter. In practice cinemas have different screen sizes. Therefore, different reso-

lutions of a film must be provided. The resolution is a static output parameter because

it usually does not change during the movie presentation.

Equation 4.5 shows the formal definition of constraints for static output parameters.

The function p(o) determines the value of an output parameter in an output object (e.g.

resolution of a video). c is a constant and θ ∈ {≤,≥, =}.

OUTOBJMO
fout

÷ p(o) θ c (4.5)

Equation 4.5 can be transformed into the general form of output condition. The term

p(o) θ c can be written as first order logic predicate θ(p(o), c). Thus, we can trans-

form equation 4.5 into the general form of output conditions (equation 4.3) as follows:

OUTOBJMO
fout

÷ θ(p(o), c).
Equation 4.6 shows an example of an output condition on a static output param-

eter. We restrict all output objects o which are built by a spatial output function fs

from videos stored in the attribute MOVIE SCENE in relation MOVIE. The horizontal

resolution (denoted by hor resolution) of each output object must be greater than or

equal to 1365. Only output objects which satisfy this constraint should be output.

OUTOBJ
{z.MOVIE SCENE | movie(z)}
fs

÷ hor resolution(o) ≥ 1365 (4.6)

The following expression shows the same output condition. Instead of the compact

notation of the output domain OUTOBJ we use, according to equation 4.2, a more

detailed notation that is easier to understand.

{o | o = fs(mo) ∧ mo ∈ {z.MOVIE SCENE | movie(z)}}
÷hor resolution(o) ≥ 1365

4.6. SPECIFICATION LANGUAGE FOR OUTPUT CONDITIONS 57

Other examples for output constraints on static output parameters can be found in

our hospital scenario. In the hospital x-ray images of patients must be handled. Static

output parameters like resolution are very important for these media data. Therefore,

the producer of an x-ray image must define a certain output resolution.

Because output constraints only restrict output objects, we can store media data,

which do not fulfill the defined output constraints, into the database system. This is

useful if we only have a movie scene or an x-ray image with a low resolution and no

chance to get one with the required resolution. In this case we can store the data we

have.

4.6.2 Conditions for Dynamic Output Parameters

As we know from section 4.2 dynamic output parameters are distinguished into peri-

odic and non-periodic output parameters. Thus, we want to consider output conditions

for both types of parameters in the following.

Non-Periodic Dynamic Output Parameters are defined for a temporal interval dur-

ing the data output. Assume we define an output condition for the loudness of a sound

source. During the presentation of a movie in a cinema it is not desired to regulate the

loudness of sound by hand. The author of the movie sound must define the loudness

during the modelling process. We have to store this control information together with

the audio data into the database system. The system must control the loudness during

the data output. It is easy to see that the loudness of sound sources is a dynamic output

parameter because it often changes during the presentation of a movie scene. If we

want to define a specific loudness for a certain interval of the sound source during the

data output, we can define an appropriate output condition.

Each time dependent media object has an internal media time. The internal media

time is defined by an attribute that has a temporal domain. For example, the frame

numbers of a video define such an internal media time. A time dependent output

object also has an internal time. We assume that a mapping exists between the internal

time of the stored media object and the time of the output object. For simplicity, it

is assumed that an output object has the same internal media time as its multimedia

object.

A condition can then be defined for a temporal interval [s, e] of the internal media

time. To describe the end of the internal media time the symbol ∞ is used. For

all points t of the interval the defined condition must be met. Equation 4.7 gives a

formal definition for conditions of dynamic output parameters that are not periodic.

The defined condition must be fulfilled for each output object o of an output object set.

The function p(t, o) determines the value of an output parameter of an output object at

a point in time t (e.g. loudness of a sound source with sample number t). c is a constant

and θ ∈ {≤,≥, =}.

OUTOBJMO
ftd

÷ (∀t ∈ [s, e] : p(t, o) θ c) (4.7)

58 CHAPTER 4. MODELLING OF OUTPUT CONSTRAINTS

To give a practical example we want to use the movie example again. We want to

define an output condition only for the output objects of a certain sound source. Let us

assume the output condition is supposed to restrict sound source 1 in scene ‘2’. For

all output objects generated from this audio and for all points in time from 1 to 100

the defined condition must be fulfilled. The output constraint defines that the loudness

must be greater or equal 20 decibel. This means, that a user cannot define another

value for the loudness for the time interval from 1 to 100. The expression below shows

the output condition for our example.

{o | o = ftd(mo) ∧ mo ∈
{z.SOUND SOURCE 1| movie(z) ∧ z.SCENE = ‘2’}

} ÷ (∀t ∈ [1, 100] : loudness(t,o) ≥ 20)

Only output objects which satisfy this constraint should be output. The constraint

checking is only possible during the output process. Of course, the stored audio signal

has a certain loudness. We could restrict this loudness by an integrity constraint (as-

sertion) which we can generate from our output condition. However, we can change

the loudness of a stored audio signal arbitrarily by an output function. Therefore, we

have to check the condition for the output object and not for the stored data.

It is very costly to check the output condition for each point in time. We need

some more feasible strategies for checking output conditions. One strategy is to check

random samples during the interval. It is also possible to check the output conditions

in certain time steps.

Periodic Output Parameters are those which are defined on a period. The frame

rate of a video is an example for this group of output parameters. We can use periodic

output conditions to restrict these output parameters. Periodic output conditions are

defined on a period as the output parameters, too. We assume that the period defined

in the output condition and the period of the parameter have the same length. For

instance, if the frame rate of a video is 25 frames per second the period of the parameter

is one second. Therefore, a condition that observes this parameter must be checked

every second.

Equation 4.8 shows the formal definition of periodic conditions for dynamic output

parameters. The condition is defined for the output objects o ∈ OUTOBJMO
ftd

. The

output function ftd produces timedependent output objects. Thus, this group of output

conditions can only restrict output objects with an internal time dependency. In a

periodic condition we define the period 〈[s, e], l〉 on the internal time of the output

object. The interval [s, e] defines the start and end point of the period and l is the

length of a time interval, it defines the length for each period element. Take as an

example the period definition 〈[1,∞], 2〉. There the period starts at the first time unit

and ends with the last time unit of the output object. The length of each period element

pi is two time units.

4.6. SPECIFICATION LANGUAGE FOR OUTPUT CONDITIONS 59

The condition should be checked for each period element pi of a period 〈[s, e], l〉.
The function u(pi, o) determines the value of the restricted output parameter of an

output object for each period element pi. This means if we want to restrict the frame

rate, a function is needed that determines the frame rate for each second. c is a constant

and θ ∈ {≤,≥, =}.

OUTOBJMO
ftd

÷ (∀pi ∈ 〈[s, e], l〉 : u(pi, o) θ c) (4.8)

For example we want to define an output condition for a periodic output parameter

on our MOVIE relation. The frame rate of a video is a periodic output parameter and

we want to define an output condition for all output objects produced by the video

of scene ‘2’. For these output objects the frame rate should be greater or equal to 25

frames per second. This output condition must be valid from the first time unit of the

output object and must be fulfilled until the end of the output. The duration of a period

element defined in the output condition must be equal to the period of the dynamic

output parameter. Thus, we have defined one time unit (second) as duration of period

elements. The following shows the output condition according to our example:

{o | o = ftd(mo) ∧ mo ∈ {z.MOVIE SCENE| movie(z) ∧ z.SCENE NR = ‘2’}
} ÷ (∀pi ∈ 〈[1,∞], 1〉 : frame rate(pi, o) ≥ 25)

In other words we define for each time dependent output object, produced from a cer-

tain video, that for each defined period element the frame rate is grater or equal to 25

frames per second. To determine the frame rate we use the function frame rate(pi, o)
that takes a period element and the output object as input. With the predicate ≥ we

achieve a logical value. It is easy to see that this output condition can only be checked

during the data output process. The condition must be checked for each period ele-

ment, i.e. we have a periodic condition check.

Periodic Event Conditions are a more specific group of periodic output conditions.

They restrict sequences of events within periods. In some cases it is very important

to determine events which occur during data output in a certain period element. An

example for this are jitter-constrained periodic event streams. In these streams certain

events occur in a semi-fixed span. This is the reason why very efficient buffer strategies

can be used for these streams. However, we can only use these strategies if we know

that the output object is a jitter-constrained periodic event stream. Until now there is

no suitable way to detect whether a stream is a jitter-constrained periodic stream or

not.

However, our approach of periodic event conditions can be used to check whether

or not a stream has the properties of a jitter-constrained periodic event stream [Ham97].

Such a stream has the following parameters:

L > 0 average event distance, i.e. the length of the period

0 ≤ D ≤ L minimum distance between successive events

τ > 0 maximum lateness for an event (relative to the end of its period).

60 CHAPTER 4. MODELLING OF OUTPUT CONSTRAINTS

The parameters D, τ and L are fixed. The event Ei occurs at point in time ai. For a

jitter-constrained periodic stream, it must be ensured that the distance between events

is nearly constant. Formally this is written as ∀Ei : ai < i · L + τ ∧ ai+1 − ai ≥ D.

Equation 4.9 shows the formal definition of periodic event conditions. It is defined

for the time dependent output objects o ∈ OUTOBJMO
ftd

. The condition should be

checked for each period element pi of a period 〈[s, e], l〉. 〈E〉oi is a sequence of events.

This notation means that the sequence of events belongs to the period element pi of

the output object o. In other words the events are generated from the output object o
during the period element pi. c is a constant and θ ∈ {≤,≥, =}.

OUTOBJMO
ftd

÷ (∀pi ∈ 〈[s, e], l〉 : u(〈E〉oi) θ c) (4.9)

Assume we want to check whether a stream is a jitter-constrained stream or not. We

can use the MOVIE relation again for an example. The output condition should work

on every time dependent output object generated from a stored video. As long as the

output condition is fulfilled the output object is a jitter-constrained stream. So, we

can use special optimization strategies for the database buffer. If the output condition

is violated, an adequate action must be executed, this means the buffer strategy must

be changed. In the following example we assume that the span between two events

(L average event distance) takes 5 time units and the condition should be valid for

the whole stream (〈[1,∞], 5〉). As we know from equation 4.9, we need a predicate

that checks the properties of a jitter-constrained stream. In the example below this

predicate is called jitter constraint. If we want to check those properties, we must

take the time points of the event occurrence into account. Therefore, the predicate

jitter constraint takes a sequence of time points as parameters. This is possible in

that case because events and time points are synonyms. The predicate evaluates the

following expression: aj+1 − aj ≥ D ∧ aj ≤ j · L + τ . The terms D, τ and L are fix

and known.

{o | o = ftd(mo) ∧ mo ∈ z.MOVIE SCENE| movie(z)}÷
(∀pi ∈ 〈[1,∞], 5〉 : (jitter constraint(〈event〉oi))

Now we want to use a periodic event condition to express the same condition as in the

example for periodic output conditions. This means, we want to restrict the frame rate

for all time dependent output objects generated from the stored video of scene ‘2’. The

frame rate for these output objects should be greater or equal to 25 frames per second.

Every output of a frame can be seen as an event. If we define the output of a frame as

event, we can say that we require 25 such events for each second. Thus, we can easily

count this events for each second. In the output condition below each period element

pi has a duration of one second. The sequence 〈frame output〉oi represents the frame

output events which have arisen during the period pi. The function count counts these

events and the predicate ≥ gives a logical value.

{o | o = ftd(mo) ∧ mo ∈
{z.MOVIE SCENE| movie(z) ∧ z.SCENE NR = ‘2’}

} ÷ (∀pi ∈ 〈[1,∞], 1〉 : count(〈frame output〉oi) ≥ 25)

4.6. SPECIFICATION LANGUAGE FOR OUTPUT CONDITIONS 61

4.6.3 Synchronization Conditions

In our classification of output constraints (section 4.2) we have identified intra-object

and inter-object synchronization constraints. Considering output constraints inter-

object synchronization and its subclasses temporal, spatial, and spatiotemporal output

constraints are very important. Thus, this section concentrates on them.

Intra-Object Conditions

Intra-object conditions define synchronization relationships within an output object.

As an example the temporal order of frames in a video is an intra object conditions.

Intra-object conditions define the structure of the output objects. Usually, this structure

is defined by the data format (e.g. MPEG). Therefore, the producer or the user of media

data cannot influence intra-object synchronization. From reasons of the completeness

intra-object conditions are also mentioned in this work.

Inter-Object Conditions

This group of output condition can be used to define the output of complex multimedia

documents. Up to now it is not possible to define temporal and spatial inter-object

conditions into a multimedia database system. Thus, the multimedia database system

cannot maintain the consistency of complex multimedia documents. This means, the

database system is neither able to ensure the semantic integrity nor can it ensure the

output integrity.

With inter-object conditions the producer of multimedia data can specify the order

of the data output. In our movie example we can define temporal output constraints

between the sound sources. When the duration of sound sources is changed, modifica-

tions on sound sources can lead to violations of these constraints. The database must

maintain the defined synchronization conditions in the case of data modifications and

during data output.

Spatial Output Conditions define a spatial order between output objects. As an

example we want to take a spatial condition which is needed in the wave field synthesis

in our movie example. Each scene has a set of sound sources which must have a spatial

order during the presentation of the movie scene. To simplify matters we assume that

each sound source does not change its spatial position during the scene. Therefore, the

sound master can describe the scenes statically, this means the time is not important for

the output conditions. Figure 4.4 shows two sound sources of a movie scene. For wave

field synthesis each sound source is a point object in the listening room, with a spatial

output condition we can define the distance between sound sources as it is shown in

figure 4.4. It is assumed that both sound sources exist during the whole scene. This

means, even when a sound source does not play it exists, but it is in silence.

62 CHAPTER 4. MODELLING OF OUTPUT CONSTRAINTS

Sound Source 2

Listening Room

Sound Source 1
4 meters

Figure 4.4: Spatial Output Condition for Sound Sources

Equation 4.10 shows the formal definition of spatial output conditions. These con-

ditions only work for spatial output objects. Thus, we need an output function which

generates either a spatial or spatiotemporal output object. With condition 4.10 we de-

fine that for each spatial output object o1 there must exist a spatial output object o2

which fulfills the spatial predicates. Assuming that we define the spatial condition for

point objects in a 2-dimensional space, we can use the spatial predicates west, east,

south, north, spatial-equal (table 4.3). If we want to define spatial conditions between

salient objects, we must use the spatial predicates (section 4.3.4) for this group of

objects.

∀o1 ∈ OUTOBJMO1

s : ∃o2 ∈ OUTOBJMO2

s :

spatial predicate(o1, o2)
(4.10)

The following example defines the spatial output constraint shown in figure 4.4 for-

mally. For each spatial output object o1 built from an audio stored as attribute value

in SOUND SOURCE 1 of scene ‘1’ a spatial output object o2 must exist which comes

from the same scene, but it must be built from the audio in SOUND SOURCE 2. Both

output objects (sound sources) are point objects, thus we can define with o1 west(4.0) o2

that o1 is exact 4 space units west from o2.

∀o1 ∈ {o | o= fs(mo)∧
mo ∈ {u.SOUND SOURCE 1 | movie(u) ∧ SCENE NR=‘1’}} :

∃o2 ∈ {o | o= fs(mo)∧
mo ∈ {u.SOUND SOURCE 2 | movie(u) ∧ SCENE NR=‘1’}} :

(o1 west(4.0) o2)

Temporal Conditions define a temporal order between time dependent output ob-

jects. Thus, the applied output function must produce output objects with an internal

time. Therefore, we can only use output functions which produce time dependent or

spatial and time dependent output objects.

Equation 4.11 shows the formal definition of a temporal output condition. The con-

dition defines that for each time dependent output object o1 must exist a time dependent

output object o2 which fulfills the temporal predicate. For our condition language we

must use restricted Allen-Realtions of table 4.2 as temporal predicates.

4.6. SPECIFICATION LANGUAGE FOR OUTPUT CONDITIONS 63

∀o1 ∈ OUTOBJMO1

td : ∃o2 ∈ OUTOBJMO2

td :

temporal predicate(o1, o2).
(4.11)

Figure 4.5 shows that two sound sources must be output equally. This temporal output

condition must be fulfilled for sound sources of a certain movie scene. For our movie

Sound Source 2

Sound Source 1

Time

Figure 4.5: Temporal Output Condition for Sound Sources

example we can use the following temporal condition to define the output condition

shown in figure 4.5:

∀o1 ∈ {o | o= ftd(mo)∧
mo ∈ {u.SOUND SOURCE 1 | movie(u) ∧ SCENE NR=‘1’}} :

∃o2 ∈ {o | o= ftd(mo)∧
mo ∈ {u.SOUND SOURCE 2 | movie(u) ∧ SCENE NR=‘1’}} :

(o1 equal o2)

By using the Allen-Relation equal we can express that both output objects have the

same start and end time points. The synchronization is only defined on the output

objects as a whole and the condition check only takes these time points into account. It

is possible that the temporal condition is fulfilled for the start and end time points of the

output object, but during the output of the output objects the synchronization condition

is not satisfied. Assume we want to define a lip synchronization for the output of a

video and an audio. Now it is no more sufficient to consider only the start and end time

points of the output objects. We must define and check the synchronization condition

on smaller units.

It is often useful to define a fine granular synchronization between time dependent

output objects. To achieve this, we must define synchronization conditions for small

parts of the time dependent output objects. Small parts of a time dependent output

object can be generated by defining a period with short period elements on the output

object . Hence, we define the period 〈[s, e], l〉oi on the output object oi. The start time

point of this period is s and its end is at time point e. A period element has the length

l. Equation 4.12 uses periods of time dependent output objects and defines temporal

conditions on these periods. For every period element pi of output object o1 exists a

period element qi of output object o2. The temporal predicate takes the period elements

pi and qi as input. The temporal condition is fulfilled when the temporal predicate is

64 CHAPTER 4. MODELLING OF OUTPUT CONSTRAINTS

true for each period element. As temporal predicate we can use each of the restricted

Allen-Relations shown in table 4.2.

∀o1 ∈ OUTOBJMO1

td : ∃o2 ∈ OUTOBJMO2

td :

∀pi ∈ 〈[sp, ep], lp〉
o1 : ∃qi ∈ 〈[sq, eq], lq〉

o2 :

(temporal predicate(pi, qi))

(4.12)

The temporal predicate in equation 4.12 considers the period elements pi and qi. This

means that we use the same period element from both output objects. It is important to

note, that the period elements must have the same temporal domain. It is not possible

that one period is defined e.g. over time stamps and the other over integers.

Constraints are defined for the start and end points of the period elements. There

are no conditions within the period elements. The start and end points of a period are

synchronization points. In this way we define a discrete synchronization. A continuous

synchronization cannot be defined directly. It is possible to define very small period

elements. So, a continuous synchronization can be simulated.

For our movie example the synchronization between two sound sources sometimes

must be fine granular. Especially for music a very fine granular synchronization is

necessary because even small breaks or delays interfere with the sound impression.

Thus, a rough synchronization which takes only the start and end points into account is

not enough. The following output condition is suitable for our example. This condition

is defined for each tuple of the relation MOVIE. The periods are defined for the whole

output objects of the sound sources. With the temporal predicate equal we define that

the period elements pi and qi start and end at the same time.

∀u ∈ MOV IE :

(∀o1∈ {o | o = ftd(mo) ∧ mo ∈ {u.SOUND SOURCE 1 | movie(u)}} :
∃o2∈ {o | o = ftd(mo) ∧ mo ∈ {u.SOUND SOURCE 2 | movie(u)}} :
∀pi ∈ 〈[1,∞], 1〉o1 : ∃qi ∈ 〈[1,∞], 1〉o2 :
pi equal qi)

Spatiotemporal Conditions define a spatial order between output objects for a cer-

tain time. This is only possible if an output object is both time dependent object and

spatial output object. A video is an example for such an output object. It has an internal

time, therefrom it is time dependent. Of course, a video needs a frame for displaying.

Thus, it is also a spatial output object. Another example can be found in our wave

field synthesis scenario. There we have sound sources which are points in the listening

room. A sound source is represented by an audio and therefore it has an internal time.

Hence, we can regard sound sources as spatiotemporal output objects. If we want to

define a spatiotemporal output condition we need at least one output object that is a

time dependent and spatial output object. The other output object must be a spatial or

spatiotemporal output object.

4.7. NOTATION OF OUTPUT CONSTRAINTS 65

Equation 4.13 shows the formal definition of spatiotemporal output conditions.

The output object o1 is a spatiotemporal output object (e.g. a video). The output object

o2 is a spatial output object (e.g. an image) or also a spatiotemporal output object.

Equation 4.13 defines that during the time interval [s, e] specified on o1 the predicate

must be fulfilled. As predicate we use spatial predicates.With other words we can say

that the output objects o1 and o2 are a group for a certain time. Thus, spatiotemporal

output conditions are time restricted.

∀o1 ∈ OUTOBJMO1

ftd/s
: ∃o2 ∈ OUTOBJMO2

fsorftd/s
:

∀t ∈ [s, e]o1 : spatial predicate(o1, o2)
(4.13)

As an example we want to define an spatiotemporal output condition according

to figure 4.4, but now the output condition has a temporal restriction. The following

definition shows the appropriate output condition:

∀o1 ∈ {o | o= ftd/s(mo)∧
mo ∈ {u.SOUND SOURCE 1 | movie(u) ∧ SCENE NR=1}} :

∃o2 ∈ {o | o= ftd/s(mo)∧
mo ∈ {u.SOUND SOURCE 1 | movie(u) ∧ SCENE NR=1}} :

∀t ∈ [1, 10]o1 : o1 west(4,0) o2

Both output objects (sound sources) have temporal dimensions as well as spatial di-

mensions. Therefore, we can use them in a spatiotemporal output condition. We define

that during the time units 1 to 10 of output object o1 this output object is exactly 4 space

units west of output object o2.

4.7 Notation of Output Constraints

To bring output constraints into a database system, we must define output constraints

in a data definition language. This section makes a proposal what such a definition for

output constraints could look like.

Our Proposal of a DDL Construct for defining output constraints is shown in figure

4.6. It is an enlargement of the ASSERTION-Definition known from SQL:99.

However, we have to determine whether the proposed specification language (sec-

tion 4.6) can be mapped to the proposed DDL construct. Elements of the specification

language are sets of output objects, temporal and spatial predicates, output functions,

and periods. Actually, our specification language must be mapped to that part of the

DDL that defines the output condition. As the example below shows, SQL is used for

defining the output condition. If we introduced output functions and temporal/spatial

predicates into SQL, sets of output objects could be generated by select queries. Some

output conditions deal with periods (e.g. equation 4.8). These periods are usually de-

fined on the media internal time of time dependent output objects. SQL:99 supports

interval-types which can be used for defining these periods.

66 CHAPTER 4. MODELLING OF OUTPUT CONSTRAINTS

CREATE OUTPUT CONSTRAINT name

CHECK output-condition

REASON checking-reason [,checking-reason]

[LENGTH length-condition [,length-condition]]

[REACTION MODIFICATION action]

[REACTION OUTPUT action]

Figure 4.6: Definition of Output Constraints

For example we want to define an output condition for the equal relation shown in

figure 4.5. We use the relation MOVIE for this example and define the output constraint

shown in figure 4.7.

CREATE OUTPUT CONSTRAINT outEqual

CHECK not exists (select * from movie

where scene nr=1 and

not (play(sound source 1) equal play(sound source 2)))
REASON modification

LENGTH play(sound source 1).setLength(select sound source 1.getLength()

from movie where scene nr=1)

play(sound source 2).setLength(select sound source 2.getLength()

from movie where scene nr=1)

REACTION MODIFICATION notification

Figure 4.7: DDL Construct for Output Constraint

The output constraint defined above has the name outEqual. We use an output

function called play() in the output condition. This function takes stored sound sources

and builds output objects from them. Furthermore, this functions plays the output

objects during the data output. In the output condition defined in the CHECK-clause

we define that no output object from sound source 1 exits in the first scene that cannot

be played equally to the output object of sound source 2. In the REASON-clause it

is defined that the output condition must be checked after modifications on the media

data. When the output condition is violated the system should notify the user. For

checking output conditions the temporal length of the output objects is needed. In the

LENGTH-clause we detect the duration of the required output objects with a SELECT-

statement and define this duration as length for the output objects used in the output

constraint. It is assumed that the sound source attributes have a complex data type that

provides the method getLength() to determine the temporal length of an audio.

Actually, in this example no LENGTH-definition is needed because the length is di-

rectly determined by the required audio data. Usually, no explicit LENGTH-definition

is done. However, the LENGTH-clause can be used for a hard length definition of an

output object (e.g. output object.setLength(10)).

4.8. CONCLUSION 67

An XML Based Approach for defining output constraints have been developed as

well. The advantage of this approach is its easy implementation because we can use

existing utilities for parsing and checking the XML syntax. The XML structure below

also defines the output constraint outEqual. All parts of the above DDL construct can

be found in the XML structure as well. The output objects o1 and o2 are defined by

selecting the attributes sound source 1 and sound source 2 and applying the output

function play on them. The conditions-clause specifies that both output objects must

be output equally. Furthermore, the temporal length of both output objects is defined.

The rest of the XML definition deals with the reason for constraint checking and the

reaction in case of constraint violations.

< OutputObject >
< Name > o1 < /Name >
< V alue > select play(sound source 1) from movie where scene nr=1 < /V alue >

< /OutputObject >
< OutputObject >

< Name > o2 < /Name >
< V alue > select play(sound source 2) from movie where scene nr=1 < /V alue >

< /OutputObject >
< Conditions >

< Constraint name = ”equals” >
< Object > o1 < /Object >
< Object > o2 < /Object >

< /Constraint >
< Constraint name = ”length” >

< Object > o1 < /Object >
< Parameter > select sound source 1.getLength() from movie where scene nr=1

< /Parameter >
< /Constraint >
< Constraint name = ”length” >

< Object > o2 < /Object >
< Parameter > select sound source 2.getLength() from movie where scene nr=1

< /Parameter >
< /Constraint >

< /Conditions >
< Reason > modification < /Reason >
< ReactionModification > notification < /ReactionModification >

4.8 Conclusion

The contribution of this chapter was the developing of formal specifications of output

constraints. The most important points from this chapter are the followings:

• A taxonomy for output constraints was built. In this work we use a classification

of output constraints which builds constraint classes according to the restricted

68 CHAPTER 4. MODELLING OF OUTPUT CONSTRAINTS

output feature. The main constraint groups in this classification are output con-

straints on output parameters and output constraints for synchronization.

• Each class of output constraints needs a formal specification. Constraints on out-

put parameters can be defined very easily by using normal inequalities. How-

ever, output constraints for synchronizations need special predicates. We use

Allen-Relations for defining temporal relationships between output objects. Al-

len-Relations must be enlarged for supporting quantitative relationships. There-

fore, we have introduced restricted Allen-Relations. We have seen that Allen-

Relations can also be applied on spatial synchronization constraints. Thus, we

got an unified method for defining temporal and spatial output constraints.

• We have proposed a formal constraint language for output constraints. This lan-

guage is based on first order logic and temporal logic. Beside the formal specifi-

cation we have proposed a DDL specification and an XML structure which can

be used in practice for defining output constraints.

Chapter 5

Internal Representation of Output

Constraints

For checking output constraint an adequate representation of output constraints inside

the database system is required (figure 5.1). The contribution of this chapter is devel-

oping this database internal representation of output constraints.

Building

Data

Modification

Data Output

Output Constraints

Modelling

C
h

ec
k

in
g

 O
u

tp
u

t
C

o
n

st
ra

in
ts

Representation

Constraint

Output Schedules
Multimedia

Figure 5.1: Processing of Output Constraints

By considering all aspects of managing output constraints in detail we will deduce

requirements on the database internal representation of output constraints. Based on

these requirements we will propose a database internal representation of output con-

straints. Furthermore, we will develop a transformation of our constraint specification

language into the database internal representation.

5.1 Process of Output Constraint Management

Output constraints must be taken into account during modelling, data modifications,

data output and for data organization. Figure 5.2 shows general process of the han-

dling output constraints. The boxes are new components which have to be integrated

into a multimedia database system, the arrows describe data flows.

69

70 CHAPTER 5. INTERNAL REPRESENTATION OF OUTPUT CONSTRAINTS

Modeling

Transformer

Constraint

Output
Multimedia Data

and

Output Constraints

Check Output Consistency

Organizer
Data

Transformer

Output

Output
Scheduler

Output

Constraints

Insert/Update

Media Data

Output

Data

Data Organization

Data Output

Data Input

Figure 5.2: Process of Using Output Constraints

The Modelling should be supported by an authoring tool. Defining output con-

straints must be very intuitive for the author. Usually, the authoring tool is a stand

alone software. This means, it is not integrated into the multimedia database system,

but the database system must be able to handle the results of the modelling process.

As mentioned before the result of the modelling process can be stored as an XML-file.

The database system must be able to import output constraints from various sources.

A transformer pre-processes the output constraints and stores them conveniently

into the database system. The internal representation of the output constraint must

allow an efficient constraint check. Sometimes the media data required by the output

constraints are already stored in the database system. In this case the transformer

must check whether the media data and output constraints are suitable or not. The

transformer must also check the output constraint sets for inconsistencies.

If we want to change output constraints, we cannot do this directly in the database

system. The transformer must extract the output constraints from the database system,

then they can be modified by the authoring tool.

Data Modifications means update or insert operation on media data. Usually, media

data like video data or audio data are edited with special software which is not part

of the database system. These programs do not have knowledge about the output

constraints. They produce media data (e.g. audio data or video data) without any

consideration of output constraints.

The media data produced by the editing software must be inserted into the database

system. During this data input process output constraints must be checked to avoid

inconsistencies of media data. Only if we check the output consistency on this point, it

can be guaranteed that an adequate data output is possible. It is important to note that

this check does not guarantee the output consistency for a certain output process. We

5.1. PROCESS OF OUTPUT CONSTRAINT MANAGEMENT 71

need an efficient consistency check, otherwise a delay occurs during insert and update

operations.

The Data Output of media data must be compatible to the output constraints. Thus,

an output order of output objects is needed that fulfills all output constraints. The

scheduler is the component that builds this orders, also named output schedules. When

temporal and spatial output constraints are defined, we have to produce output sched-

ules for the temporal and spatial output order as well.

A format independent storage of media data in a multimedia database system is

desired. Therefore, format transformation during the output process is necessary, that

is realized by the output transformer. Usually, the user wants to get a data stream, but

it is also possible that the transformer builds a SMIL-script with the output schedule.

In this case the database system replies the database query with a SMIL-script and

stores the required media data on the file system.

If we replay a database query with a multimedia data stream, we have to check the

output consistency during the output process. Mainly, this means that constraints on

output parameters must be checked permanently. There are two reasons for violating

this kind of output constraints. The first arises from a lack of resources. As an example

if the required bandwidth is not available, it is not possible to guarantee an appropriate

frame rate for a video. Requests to the database system are another chance to violate

output constraints. A user can define a certain frame rate for a video in a database

query that is not allowed from the data designer. Thus, database queries must be

checked considering output constraints.

The Data Organization must take the output schedule into account. The temporal

output schedule defines exactly which data we need at which point in time. For output

media data we need time for several operations. As an example we need some time for

searching the required media data. The time we need for reading data from hard disk

and time for transforming media data must also be taken into account.

The data organizer has some options to reduce the time required for data output. As

an example it can create useful index structures to find the required media data faster.

Partitioning is another possibility. We can increase the delivery rate if we store media

data on several hard disks. As an example if we want to output two audios equally, it

is useful to store them on different hard disks. Caching is also a way to make the data

output faster. Sometimes an audio is needed twice. In this case it could be useful to

cache that audio.

Requirements of a Database Internal Representation of Output Constraints

Considering the above process of handling output constraints we make the following

requirements on a database internal representation of output constraints:

72 CHAPTER 5. INTERNAL REPRESENTATION OF OUTPUT CONSTRAINTS

• There must be a possibility to produce the database internal representation based

on the constraint language which is used for modelling output constraints.

• Each class of output constraints needs a database internal representation.

• The database internal representation must allow efficient constraint checking in

case of manipulations on media data or constraints.

• An efficient check of output constraints during the data output process must be

supported.

• It must be possible to produce temporal and spatial output schedules based on

output constraints.

5.2 Representation of Output Constraints

This section shows how a database internal representation of output constraints can be

built for the several output constraint classes shown in chapter 4. To allow an efficient

checking of output constraints the predicates used in the output constraint must be or-

ganized in such a way that they can be evaluated easily. The main idea is transforming

output constraints into inequalities. These inequalities can be used for building a graph

representation of output constraints which allows an efficient consistency check.

5.2.1 Output Constraints on Output Parameters

As we know, these classes of output constraints restrict specific output parameters

which are properties of media object. The resolution of images or the frame rate of

a video are examples of output parameters. Usually, these parameters are stored as

metadata, belonging to media objects. Thus, the database internal representation is

equal to the definition of the output constraint. Take a look on the example used in

section 4:

∀o ∈ {o | o = fs(mo) ∧ mo ∈ {z.MOVIE SCENE | movie(z)}} :
hor resolution(o) ≥ 1365

The output constraint above restricts the horizontal resolution of a video. Resolution

is a typical example of metadata, belonging to a video. Therefore, this output con-

straint can be transformed in a constraint hor resolution(o) ≥ 1365 on the according

metadata. It is important to note that this constraint is no integrity constraint, it only

restricts the resolution during data output.

If we deal with periodic output constraints, the period is not of interest for the

database internal constraint representation. The period has only impact on the point in

time of checking output constraints. Thus, we need an adequate representation of the

period for example in the catalogue of the database system.

5.2. REPRESENTATION OF OUTPUT CONSTRAINTS 73

5.2.2 Output Constraints for Synchronization

This class of output constraints can be divided into two groups: one group uses tem-

poral predicates and the other group uses spatial predicates.

Temporal Output Constraints

We used Allen-Relations in our constraint language. However, these relations are

unsuitable if we want to check consistency, since checking consistency of a set of

Allen-Relations is NP-hard. Thus, we use Difference Constraints as database internal

representation for temporal predicates.

Difference Constraints

Difference constraints are a specific class of real valued linear constraints. While gen-

eralized linear constraints have the form

a1x1 + a2x2 + . . . + anxn ≤ c
where a1, . . . , an, b are relational numbers, and x1, . . . , xn range ofer the real num-

bers, difference constraints have the form

x1 − x2 ≤ c.

Thus, difference constraints are a special case of linear constraints where:

• There are only two variables (x1 and x2) and the constant c.

• One variable has coefficient 1 while the other has coefficient -1.

Due to the fact that difference constraints have a very tightly restricted syntactic form,

it turns out that they are very easy to solve. A set of difference constraints can be

solved in polynomial time [CLR00].

Actually, some authors [CPS96, CRS98] use different constraints to model tem-

poral or spatial relationships between media objects directly. The idea behind this

approach is to use start and end points of temporal or spatial intervals as variables for

the difference constraints.

How to use difference constraints can easily be exemplified on our movie example.

It is assumed that for a certain scene sound source 1 should play as long as sound

source 2. By using difference constraints this can be expressed as follows:

start(SOUND SOURCE 1) − start(SOUND SOURCE 2) ≤ 0

start(SOUND SOURCE 2) − start(SOUND SOURCE 1) ≤ 0

end(SOUND SOURCE 1) − end(SOUND SOURCE 2) ≤ 0

end(SOUND SOURCE 2) − end(SOUND SOURCE 1) ≤ 0

SOUND SOURCE 1 and SOUND SOURCE 2 are used here as temporal intervals that

represent temporal lengths of audio data. With start and end the start and end points

of these intervals are specified. The above example can be expressed by means of

74 CHAPTER 5. INTERNAL REPRESENTATION OF OUTPUT CONSTRAINTS

Allen-Relations as SOUND SOURCE 1 equal SOUND SOURCE 2. It is easy to see

that Allen-Relations can be handled by the user much more easily as difference con-

straints. A small set of Allen-Relations can lead to a very large and confusing amount

of difference constraints. Thus, we cannot confront the database manager or the pro-

ducer of the media data directly with such an unmanageable constraint set.

Transformation of Allen-Relations

To produce difference constraints from Allen-Relations a suitable transformation is

needed. The basic idea behind this transformation uses the fact that each temporal

interval involved in an Allen-Relation has a start and an end point. If we use Allen-

Relations, exact time points for intervals are never defined, only the interval length is

considered. Thus, start and end point of temporal intervals are variable. Therefore,

they can be used as variables in difference constraints.

Interval B

st(A) end(A)

st(B)

end(B)

Interval A

Figure 5.3: Allen-Relation A meets B

For example we want to demonstrate the transformation of the Allen-Relation A

meets B into a set of difference constraints. Figure 5.3 shows the intervals A and B

which are involved in the relation A meets B. The characteristics of this Allen-Relation

is that the start point of interval B is at the same time as the end point of interval

A, formally this can be expressed as end(A) − st(B) = 0. Because of the fact that

difference constraints always have the form x1−x2 ≤ c a set of inequalities: (end(A)−
st(B) ≤ 0) ∧ (st(B) − end(A) ≤ 0) must be used.

For each Allen-Relation a corresponding set of difference constraints can be found.

Table 5.1 shows our transformation of restricted Allen-Relations into difference con-

straints. Because of its strict form, x1 − x2 ≤ c, a constant c must be specified in

difference constraints. If we transform Allen-Relations into difference constraints,

this constant must originally come from Allen-Relations.

At least 1 unit overlap

A

B

Figure 5.4: Allen-Relation A overlaps B

5.2. REPRESENTATION OF OUTPUT CONSTRAINTS 75

In the example mentioned above we had the simple case that this constant was 0.

This is not a general fact but rather a special characteristic of some Allen-Relations

(meets, finishes, starts, equals). The modifications we made on Allen-Relations (table

4.2) allow quantitative definitions. The concrete quantitative values can be used as

constants for difference constraints. Take the restricted Allen-Relation A before(c1) B

as example. The constant c1 defines the minimum distance between the end of interval

A and the start of interval B. So, that constant can directly be used for the appropriate

difference constraint end(A) − st(B) ≤ −c1.

Allen-Relation Difference Constraints

A meets B (end(A) − st(B) ≤ 0) ∧ (st(B) − end(A) ≤ 0)
A finishes B (end(A) − end(B) ≤ 0) ∧ (end(B) − end(A) ≤ 0)
A starts B (st(A) − st(B) ≤ 0) ∧ (st(B) − st(A) ≤ 0)
A equals B (end(A) − end(B) ≤ 0) ∧ (end(B) − end(A) ≤ 0)

∧(st(A) − st(B) ≤ 0) ∧ (st(B) − st(A) ≤ 0)
A before(c1) B (end(A) − st(B) ≤ −c1)
A beforeV (c1, l) B (end(A) − st(B) ≤ −c1)∧

(st(B) − end(A) ≤ c1 + l)
A overlaps(c1, c2) B (st(A) − st(B) ≤ −c1) ∧ (end(A) − end(B) ≤ −c2)

∧(st(B) − end(A) ≤ −1)
A overlapsVs

(c1, l, c2) B (st(A) − st(B) ≤ −c1) ∧ (st(B) − st(A) ≤ (c1 + l))
∧(end(A) − end(B) ≤ −c2)
∧(st(B) − end(A) ≤ −1)

A overlapsVe
(c1, c2, l) B (st(A) − st(B) ≤ −c1) ∧ (end(B) − end(A)

≤ (c2 + l)) ∧ (end(A) − end(B) ≤ −c2)
∧(st(B) − end(A) ≤ −1)

A overlapsVse
(c1, l, c2, m) B (st(A) − st(B) ≤ −c1) ∧ (st(B) − st(A) ≤ (c1 + l))

∧(end(B) − end(A) ≤ (c2 + m))∧
(end(A) − end(B) ≤ −c2) ∧ (st(B) − end(A) ≤ −1)

A during(c1, c2) B (st(B) − st(A) ≤ −c1)
∧(end(A) − end(B) ≤ −c2))

A duringVs
(c1, l, c2) B (st(B) − st(A) ≤ −c1) ∧ (st(A) − st(B) ≤ (c1 + l)

∧(end(A) − end(B) ≤ −c2))
A duringVe

(c1, c2, l) B (st(B) − st(A) ≤ −c1) ∧ (end(A) − end(B) ≤
−c2) ∧ (end(B) − end(A) ≤ (c2 + l))

A duringVse(c1, l, c2, m) B (st(B) − st(A) ≤ −c1) ∧ (st(A) − st(B) ≤ (c1 + l)
∧(end(A) − end(B) ≤ −c2))∧
(end(B) − end(A) ≤ (c2 + m))

Table 5.1: Transforming Allen-Relations into Difference Constraints

Generally, the transformation of Allen-Relations into difference constraints is very

intuitive. Only the overlaps relation has an anomaly. Considering figure 5.4 we see that

it is necessary to define a difference constraint that guarantees a real overlap between

76 CHAPTER 5. INTERNAL REPRESENTATION OF OUTPUT CONSTRAINTS

the intervals. Therefore, we introduce the difference constraint st(B) − end(A) ≤ −1
for the overlaps relations.

(L 30)

3 sec.

exact

2 sec.

at least

5 sec.

Sound Source2

Sound Source3 (L 15)

(L 25)Sound Source1

exact

Figure 5.5: Temporal Conditions for a Sound Scene

To exemplify the transformation of Allen-Relations we want to use our movie ex-

ample. Figure 5.5 shows the relationships of sound sources in a sound scene that must

be modelled. The length of the intervals is denoted as (L x). For example, we can see

from (L 30) in the interval of Sound Source1 that it has a duration of 30 time units.

The following temporal output condition can be used for expressing the scene in our

output constraint language:

∀o1 ∈ {o | o = ftd(mo)∧
mo ∈ {u.SOUND SOURCE 1 | movie(u) ∧ SCENE NR=‘1’}} :

∃o2 ∈ {o | o = ftd(mo)∧
mo ∈ {u.SOUND SOURCE 2 | movie(u) ∧ SCENE NR=‘1’}} :

∃o3 ∈ {o | o = ftd(mo)∧
mo ∈ {u.SOUND SOURCE 3 | movie(u) ∧ SCENE NR=‘1’}} :

(o1 beforeV (2, 0) o2) ∧ (o2 overlapsVs
(3, 0, 5) o3)

It is easy to see that this output condition handles output objects which are pro-

duced from the audios stored as sound sources for the scene ‘1’ in the table MOVIE.

The following set of difference constraints are produced when we transform above

temporal output condition:

Temporal Condition Difference Constraints

o1 beforeV (2, 0) o2 (st(o2) − end(o1) ≤ 2 + 0) ∧(end(o1) − st(o2) ≤ −2)
o2 overlapsVs

(3.0.5) o3 (st(o3) − st(o2) ≤ 3 + 0) ∧(st(o2) − st(o3) ≤ −3)∧
(end(o2) − end(o3) ≤ −5) ∧ (st(o3) − st(o2) ≤ −1)

Table 5.2: Transformed Temporal Output Condition

Spatial Output Constraints

For defining spatial output constraints on salient objects we use the MBR’s of these

objects. As already mentioned we make projections of the MBR’s on each spatial

dimension and use Allen-Relations to define the spatial constraints for each spatial

5.2. REPRESENTATION OF OUTPUT CONSTRAINTS 77

dimension separately. Spatial output constraints on salient objects can be transformed

into difference constraints according to table 5.1.

Spatial relationships between point objects can be defined in the constraint lan-

guage by using basic spatial predicates like west, east, south, north. We assume that

each spatial point is 2-dimensional. We use the Euclidean metric and the Cartesian

coordinate system. Each spatial point has an X and a Y Coordinate. Therefore, the

transformation into difference constraints is obvious, we can see it in table 5.3.

Spatial-Relation Difference Constraints

pointA west(c,l) pointB (XA − XB ≤ −c)∧ (XB − XA ≤ (c + l))
pointA east(c,l) pointB (XA − XB ≤ (c + l))∧ (XB − XA ≤ −c)
pointA south(c,l) pointB (YA − YB ≤ −c)∧ (YB − YA ≤ (c + l))
pointA north(c,l) pointB (YA − YB ≤ (c + l))∧ (YB − YA ≤ −c)

Table 5.3: Transforming Spatial Relations for Point Objects into Difference Con-

straints

To give an example we use the following spatial output condition from section 4.3.4:

∀o1 ∈ {o | o= fs(mo)∧
mo ∈ {u.SOUND SOURCE 1 | movie(u) ∧ SCENE NR=‘1’}} :

∃o2 ∈ {o | o= fs(mo)∧
mo ∈ {u.SOUND SOURCE 2 | movie(u) ∧ SCENE NR=‘1’}} :

(o1 west(4.0) o2)

The transformation produces the following set of difference constraints:

Spatial Condition Difference Constraints

o1 west(4.0) o2 (Xo1
− Xo2

≤ −4) ∧(Xo2
− Xo1

≤ −4 + 0)

Table 5.4: Transformed Spatial Output Condition

5.2.3 Transforming Temporal and Spatial Lengths

Allen-Relations define relationships between intervals. Up to now we have only con-

sidered those predicates which describe relationships. For evaluating temporal or spa-

tial output constraints the lengths of the involved intervals must be taken into account.

This means an adequate representation of temporal and spatial interval lengths is nec-

essary (table 5.5). For achieving an uniform representation for all constraints we also

use difference constraints for these length constraints.

Considering the sound scene of figure 5.5 we have the intervals for Sound Source1,

Sound Source2 and Sound Source3 with the lengths 10, 15 and 25. We can transform

these lengths conditions into difference constraints as follows:

78 CHAPTER 5. INTERNAL REPRESENTATION OF OUTPUT CONSTRAINTS

Temporal /

Spatial Lengths Difference Constraints

A length(c) (end(A) − st(A) ≤ c) ∧ (st(A) − end(A) ≤ −c)

Table 5.5: Transforming Temporal and Spatial Lengths

Temporal Lengths Difference Constraints

o1 length(30) (end(o1) − st(o1) ≤ 30 ∧(st(o1) − end(o1) ≤ −30)
o2 length(15) (end(o2) − st(o2) ≤ 15 ∧(st(o2) − end(o2) ≤ −15)
o3 length(25) (end(o3) − st(o3) ≤ 25 ∧(st(o3) − end(o3) ≤ −25)

Table 5.6: Lengths Constraints for Figure 5.5

5.3 Storage Structure of Output Constraints

Traditional integrity constraints are managed by a database system by using special

system tables. For handling output constraints we have introduced special manage-

ment tables as well. These tables store different constraints produced by output condi-

tions as well as information required for checking consistency. In this section we will

only introduce the table that manages difference constraints:

Constraint Graphs(ID, start node, end node, weight, C ID)

The attribute ID is an identifier of difference constraints. The attribute start node

stores the second variable of a difference constraint while the first variable is stored as

end node. The constant c used in difference constraints is stored as weight.

The attribute C ID stores an identification for each restricted Allen-Relation. This

is necessary because a set of difference constraints belongs to an Allen-Relation. In

other words, all difference constraints produced by a specific Allen-Relation have the

same C ID value. We need this information for reconstructing the original restricted

Allen-Relations on the basis of these difference constraints. Furthermore, in case of

removing Allen-Relations, we have to delete all difference constraints belong to these

Allen-Relations.

The table entries of table Constraint Graphs are used for building a constraint

graph (chapter 6) as main memory data structure which is required for checking output

consistency.

As an example we want to show the table entries for the restricted Allen-Relation

o1 beforev(2, 0) o2 used in table 5.2. The difference constraints produced from this

Allen-Relation are:

end(o1) − st(o2) ≤ −2 st(o1) − end(o2) ≤ 2

The table entries which are inserted in the Constraint Graph table for these difference

5.4. CONCLUSION 79

constraints are shown in table 5.7. It is easy to see that the table entries are equal to the

ID start node end node weight C ID

1 st(o2) end(o1) -2 c1

2 end(o2) st(o1) 2 c1

Table 5.7: Table Entries in Relation Constraint Graph

defined difference constraints. It is important to note that both entries have the same

C ID value. In our example this value is c1. This is because both difference constraints

come from the restricted Allen-Relation o1 beforev(2, 0) o2.

5.4 Conclusion

The intention of this chapter was to propose a representation for output constraints

which allows an efficient constraint checking. We have seen that output constraints on

output parameters can easily be transformed into constraints on metadata.

Allen-Relations are used in the constraint language for defining output constraint

for synchronization. The method of transforming Allen-Relations into a database inter-

nal representation requires only two steps. First, Allen-Relations must be transformed

into difference constraints. This transformation is shown in table 5.1 and table 5.3.

In a second step difference constraints must be stored in a special management table

which we have introduced in section 5.3.

Chapter 6

Output Constraints and Data

Consistency

Checking output constraints is required during data input as well as during data output

(figure 6.1). The contribution of this chapter is proposing concepts for checking output

constraints. Especially, in case of modifications of stored media data as well as in case

of modifications of output constraints we should check output consistency. Otherwise

there is a risk that stored media cannot be output in the required manner.

Building

Data

Modification

Data Output

Output Constraints

Modelling

C
h

ec
k

in
g

 O
u

tp
u

t
C

o
n

st
ra

in
ts

Representation

Constraint

Output Schedules
Multimedia

Figure 6.1: Processing of Output Constraints

Especially, output objects involved in output constraints for synchronization should be

checked on output consistency. We can detect by these checks whether the temporal

and spatial lengths of the media data are adequate to the defined synchronization con-

straints. This is a necessary precondition to fulfill these output constraints during the

data output.

This chapter proposes two approaches for checking synchronization output con-

straints after database operations like insert, update and delete. Because of the fact

that the consistency check is part of the data modification transaction, the execution of

these consistency checks must be very fast. Therefore, some optimizations for consis-

tency check are proposed in this chapter as well.

80

6.1. EXECUTION MODEL OF OUTPUT CONSTRAINTS 81

6.1 Execution Model of Output Constraints

If we integrate output constraints into a multimedia database system, we have to de-

fine the processing of output constraints. Especially, we must integrate output con-

straints into query processing. Execution models for integrity constraints and triggers

are known form SQL:99 [CPM96]. Therefore, we propose in figure 6.2 a similar exe-

cution model for output constraints.

Error
(Using Bellmann&Ford Algorithm

or Analytical Approach)

Determining Invoved Media Objects

Before Insert Trigger on Media Objects

belonging to the Media Objects)

(Determine Output Constraints

Building Partial Constraint Graph

Action

Execute SQL Query

C
h

ec
k

in
g

 O
u

tp
u

t
C

o
n

st
ra

in
ts

SQL Query

Checking Consistency of Partial Graph

Figure 6.2: Execution Model for Output Constraints

First, we must parse the SQL query for determining the involved media objects. In

a next step output constraints must be checked. Thus, a before insert trigger is build on

media objects. This trigger checks whether output constraints exist affecting the media

object. In practice this can be determined by checking the table Constraint Graph of

entries concerning the media object.

Usually a graph representation of output constraints is used for managing output

constraints in main memory. However, this constraint graph potentially includes many

output constraints. Therefore, we build a partial graph that only includes the output

constraints we have to check.

The next step is to check the consistency of this partial graph. For checking consis-

tency we can use either a graph theoretical approach which is based on the Bellmann

and Ford Algorithm (section 6.2) or an analytical approach (section 6.4).

If the consistency check determines no inconsistencies the SQL query will be ex-

82 CHAPTER 6. OUTPUT CONSTRAINTS AND DATA CONSISTENCY

ecuted, otherwise the reaction specified in the output constraint definition will be exe-

cuted.

6.2 Consistency Check using Graph Theoretical Ap-

proach

As mentioned above a graph theoretical approach can be used for checking consis-

tency of sets of output constraints. Actually, we check the consistency of difference

constraint sets since we have transformed output constraints from its specification lan-

guage into a database internal representation.

Consistency of a Set of Difference Constraints

Now we want to check consistency of sets of difference constraints. One possibility to

check consistency is to solve a set of difference constraints. More precisely, solution

means computing a concrete number for each start and end point of an interval used in

a difference constraint. If there exists no solution, the set of difference constraints is

inconsistent.

If we want to use a graph theoretical approach for solving a set of difference con-

straints, we first must build a constraint graph based on difference constraints. Thus,

each variable of the constraint set becomes a node in a graph and each inequality be-

comes a directed edge with the weight of the constant c. It is a known fact in graph

theory that a set of difference constraints is solvable if a shortest paths can be found

from a start node to all the other nodes of the graph [CRS98].

Different algorithms are known to determine shortest paths in a graph. We use

the well known algorithm of Bellmann and Ford [CLR00, RSJM99]. This algorithm

is suitable for our problem because it can deal with negative edge weights and its

complexity is O(n ·m), where m is the number of edges and n is the number of nodes

in a graph. Applying to a set of difference constraints the complexity of Bellmann

and Ford depends on the number of output objects involved in this set of difference

constraints and on the number of difference constraints contained in the set.

The constraint graph on which the Bellmann and Ford algorithm works must be

built according to the following definitions.

Definition 7 (〈V, C〉). is a system of Difference Constraints. V is a set of variables

and C is a set of linear inequalities of the form:

vi − vj ≤ ck with vi, vj ∈ V, ck = constant, 1 ≤ i, j ≤ n, 1 ≤ k ≤ m
So, the system has m linear inequalities and n variables.

Definition 8 (G = 〈V, E〉). is a directed and weighted constraint graph. V is the set

of nodes and E is the set of weighted edges defined as follows:

V = {v0, v1, . . . , vn}

6.2. CONSISTENCY CHECK USING GRAPH THEORETICAL APPROACH 83

E ={(vj, vi) : vi − vj ≤ ck, 1 ≤ i, j ≤ n, 1 ≤ k ≤ m}∪
{(v0, v1), (v0, v2), . . . , (v0, vn)}

edge weight: w(vj, vi) = ck, j > 0
w(v0, vn) = 0, n > 0

It is important to note that the node v0 is introduced. Actually, the Bellmann and

Ford algorithm must take each node and determine the shortest paths to all other nodes.

To simplify matters, v0 has an edge with weight 0 to each other node. Thus, only v0 is

necessary as start node for Bellmann and Ford.

During computing shortest paths the Bellmann and Ford algorithm detects negative

cycles. A negative cycle has the effect that a path that is already detected as shortest

path becomes shorter with each run through the cycle. In other words, no shortest path

can be detected. Thus, the set of difference constraints has no solution because it is

inconsistent [CLR00]. In this case algorithm yields FALSE as return value otherwise

it returns TRUE.

As an example we will build a constraint graph for our movie example. The required

difference constraints have been defined in table 5.6 and table 5.2. Objects o1, o2, o3

are output objects for the stored audio data. The resulting constraint graph G = 〈V, E〉
is defined as follows:

V = {v0, st(o1), end(o1), st(o2), end(o2), st(o3), end(o3)}

E = { (st(o1), end(o1)), (end(o1), st(o1)), (st(o2), end(o2)), (end(o2), st(o2)),
(st(o3), end(o3)), (end(o3), st(o3)), (end(o1), st(o2)), (end(o2), st(o1))
(st(o2), st(o3)), (st(o3), st(o2)), (end(o3), end(o2)), (st(o3), end(o2))}
∪{(v0, st(o1)), (v0, end(o1)), (v0, st(o2)), (v0, end(o2)),
(v0, st(o3)), (v0, end(o3))}

edge weights:

w(st(o1), end(o1)) = 30, w(end(o1), st(o1)) = −30,
w(st(o2), end(o2)) = 15, w(end(o2), st(o2)) = −15,
w(st(o3), end(o3)) = 25, w(end(o3), st(o3)) = −25,
w(end(o1), st(o2)) = 2, w(end(o2), st(o1)) = −2,
w(st(o2), st(o3)) = 3, w(st(o3), st(o2)) = −3, w(end(o2), st(o3)) = −1,
w(end(o3), end(o2)) = −5, w(v0, st(o1)) = 0,
w(v0, end(o1)) = 0, w(v0, st(o2)) = 0,
w(v0, end(o2)) = 0, w(v0, st(o3)) = 0, w(v0, end(o3)) = 0

Figure 6.3 shows the corresponding graph. If we apply the Bellmann and Ford algo-

rithm on this graph, it returns TRUE because there is no negative cycle in the graph.

84 CHAPTER 6. OUTPUT CONSTRAINTS AND DATA CONSISTENCY

30 -30
15 -15

-5

-3

-2

V0

0

0

st(o)1

end(o)3end(o)2

st(o)3st(o)2

end(o)1

25 -252

3

-1
Figure 6.3: Constraint Graph for an Audio Scene

6.3 Building a Partial Constraint Graph

In the following we want to consider optimizations for consistency checking. We

assume that in an initial state all stored media data are consistent with regard to the

defined output constraints.

Generally, consistency must be checked either after media objects have changed or

after output constraints have changed. For optimizations we must consider modifying

the lengths of output objects and modifying the output constraints separately. The aim

of the optimization is to check only a partial constraint graph instead of the whole

graph.

Thus, a partial graph must be generated to which the effects of media or constraint

modifications are restricted. A basic approach of producing such a partial graph is to

determine the connected graph starting from the modified point in the original con-

straint graph. This technique often leads to a partial graph that is larger than necessary.

6.3.1 Restrictions on Constraint Graphs

Usually, the presentation of a multimedia document is designed in a structured way.

This means, media objects are arranged in a special graph structure. An adequate struc-

ture to define presentations of multimedia documents is a tree [BF98, BK99]. Since

a tree has no cycles, iterations cannot be defined in multimedia presentations based

on a tree structure. Thus, some authors [BK99] have introduced special constructs for

iterations into a multimedia presentation language.

In almost the same manner, which is used to define a presentation of a multimedia

document, the output condition is defined. Usually, iterations are not important for

output constraints. Output constraints only check if output objects can be output in a

defined order. How often this output occurs is not of interest. However, it is possible

to transform an iteration into a sequence of output objects and relationships. There-

fore, from a practical point of view a tree structure is adequate for the definition of

conditions in output constraints. Thus, the following restrictions are made:

6.3. BUILDING A PARTIAL CONSTRAINT GRAPH 85

• There is exactly one start object, called v0, it has no predecessor and no dimen-

sional expansion. This means, the output object v0 has neither a temporal length

nor a spatial size.

• With the exception of v0 each other output object has exactly one output object

as predecessor and an arbitrary number of output objects as successors. Further-

more, v0 is predecessor of each output object.

• Except for v0, each output object has at least one dimensional expansion (a tem-

poral or spatial length).

Output Objects

0

Relations

V

Figure 6.4: Structure of a Constraint Graph

Figure 6.4 shows the general structure of output objects and relations between them.

Output objects are depicted as single nodes in figure 6.4. This means the start and end

node of an output object are depicted together as one node. It is easy to see that v0 is

the root of the tree. This structure has the following advantages concerning constraint

checking:

• Only the node v0 is start node for the Bellmann and Ford algorithm.

• v0 is only a source for edges. This means, there is no cycle in the graph where v0

is involved. If we consider the graph in figure 6.4 without v0 and its edges, it is

a tree. Because a tree has no cycles, negative cycles can occur only between two

output objects which are neighbours in the tree. Thus, modifications of Allen-

Relations or of output objects can only produce a local negative cycle between

output objects that are neighbours.

6.3.2 Modifications of Allen-Relations

First we want to consider the optimization potential that comes from Allen-Relations.

So, this section only deals with output constraint modifications and not with modifica-

tions of output objects. In figure 6.5 we can see dashed edges between output objects

86 CHAPTER 6. OUTPUT CONSTRAINTS AND DATA CONSISTENCY

which comes from Allen-Relations. We want to investigate what impact modifications

on these edges have on the consistency of the constraint graph.

As mentioned above negative cycles on the shortest path between v0 and another

node can arise from modifications of the relations between output objects. However,

not each Allen-Relation can lead to a negative cycle. Thus, we introduce harmless and

critical Allen-Relations that we define as follows:

Harmless Allen-Relations cannot lead to negative cycles. In other words, a harmless

Allen-Relation can be modified in any way, negative cycles can never arise from

that modification. Therefore, modifications of harmless Allen-Relations cannot

lead to inconsistencies in the constraint set or between the stored media data and

the defined output conditions.

Critical Allen-Relations have a chance to produce negative cycles if they are mod-

ified. Thus, a modification can lead to inconsistencies, therefore, for critical

Allen-Relations, a consistency check after modifications must be done.

−t

1

v2

v3

v4

1
t

Output Object A Output Object B

1 t
22

−t

v

Figure 6.5: Basic Structure for Allen-Relations

Figure 6.5 shows the basic structure of Allen-Relations. The figure shows two output

objects, each one has a certain interval, so each output object has a start and an end

point. The interval length of the output objects is labelled as t1 and t2. These edges

cannot create a negative cycle on their own because they annul each other. The dashed

lines depict all possible connections between the start and end points of the output ob-

jects. These edges result from difference constraints.

To generate a negative cycle, the following conditions must be fulfilled:

• At least two edges with contrary directions exist between start and/or end points

of different output objects.

6.3. BUILDING A PARTIAL CONSTRAINT GRAPH 87

• At least one of these edges has a weight with c < 0.

Formally a necessary and sufficient condition for a negative cycle can be defined as

follows:

G = (V, E) is a graph with V = {v1, v2, v3, v4} and

E1 = {(v1, v3), (v1, v4), (v2, v3), (v2, v4)}, E2 = {(v3, v1), (v3, v2), (v4, v1), (v4, v2)}
E3 = {(v1, v2), (v2, v1), (v3, v4), (v4, v3)}, E = E1 ∪ E2 ∪ E3

The weight of all edges e ∈ E1 ∪ E2 is w(e) ≤ 0. The weight of edges e ∈ E3 is:

w(v1, v2) = t1, w(v2, v1) = −t1, w(v3, v4) = t2, w(v4, v3) = −t2.

It is important to note that the nodes v1 and v2 belong to an output object (A) and the

nodes v3 and v4 belong to another output object (B). In other words, these nodes are

the start and end points of the interval that belongs to an output object. The edges in

E1 are those which start in output object A and the edges in E2 start in B. In E3 are

only those edges which connect the nodes of an output object.

The necessary condition for negative cycles is:

∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0 (6.1)

The sufficient condition for a negative cycle is:

∃e1 ∈ E1 : ∃e2 ∈ E2 : w cycle(e1, e2) < 0 (6.2)

The necessary condition defines that an edge from output object A to B must exist as

well as an edge in the reverse direction. If an edge exists in E1 and in E2, a cycle must

exist that contains all nodes of the graph. This is because the edges in E3 define two

cycles, one for each output object. To make a negative cycle possible at least one of

the edges between the output objects must have a negative weight.

In the sufficient condition the weight of the cycle is computed. To do this a function

w cycle(e1, e2) is used, it takes the edges e1 and e2 and determines the weight of the

cycle in which these edges are involved.

This formalism can be applied to restricted Allen-Relations (Table 5.1). To check

the necessary condition no knowledge about quantitative properties of restricted Allen-

Relations is needed. Thus, a classification of restricted Allen-Relations into harm-

less and critical relation can be done easily. Harmless are all those restricted Allen-

Relations that do not fulfill the necessary condition for negative cycles. Critical re-

lations are all those which fulfill the necessary condition. Table 6.1 classifies all re-

stricted Allen-Relations as harmless or critical relation.

In the following examples we want to determine whether the restricted Allen-

Relations A meets B and A overlaps(o1, o2) B are harmless or not. A complete ex-

amination for each restricted Allen-Relation is given in appendix A.

88 CHAPTER 6. OUTPUT CONSTRAINTS AND DATA CONSISTENCY

harmless Relations critical Relations

A meets B A overlaps(c1, c2)
A starts B A overlapsVs

(c1, l, c2) B
A equal B A overlapsVe

(c1, c2, l) B
A before(c1) B A overlapsVse

(c1, l, c2, m) B
A finishes B A during(c1, c2) B

A duringVs
(c1, l, c2) B

A duringVe
(c1, c2, l) B

A duringVse
(c1, l, c2, m) B

A beforeV (c1, l) B

Table 6.1: Classification of Harmless and Critical Allen-Relations

A meets B is the first example, it means that the interval A meets the interval B.

The set of difference constraints for this Allen-Relation can be determined from table

5.1, it is: end(A) − st(B) ≤ 0, st(B) − end(A) ≤ 0. Furthermore, the intervals

A and B have defined lengths cA and cB. This fact is leading to the following set of

difference constraints: {end(A)−st(A) ≤ cA, st(A)−end(A) ≤ −cA, end(B)−st(B) ≤
cB, st(B) − end(B) ≤ −cB}

The next step is to build the constraint graph G = 〈V.E〉. To simplify matters the

node v0 is not part of this graph, because all edges from v0 have the weight 0. There-

fore, these edges do not need taken into account for checking the necessary condition.

Set of nodes:

V = {st(A), end(A), st(B), end(B)}

Set of edges:

E = { (st(A), end(A)), (end(A), st(A)), (st(B), end(B)), (end(B), st(B)),
(end(A), st(B)), (st(B), end(A))}

Edge weights:

w(st(A), end(A)) = cA, w(end(A), st(A)) = −cA,
w(st(B), end(B)) = cB, w(end(B), st(B)) = −cB,
w(end(A), st(B)) = 0, w(st(B), end(A)) = 0

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

those edges that connect the start and end points of A or B.

E1 = {(end(A), st(B))}
E2 = {(st(B), end(A))}
E3 = {(st(A), end(A)), (end(A), st(A)), (st(B), end(B)), (end(B), st(B))}

6.3. BUILDING A PARTIAL CONSTRAINT GRAPH 89

Now the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0 must

be checked. It is easy to see, that E1 and E2 have an element, thus a cycle must exist.

The weight of both edges is 0, therefore, the necessary condition is not fulfilled. This

means the Allen-Relation A meets B cannot produce a negative cycle. Therefore, it is

a harmless relation.

A overlaps(c1, c2) B has the meaning that interval A overlaps interval B by at least

one unit. The difference constraints assigned to this relations are: {st(A) − st(B) ≤
−c1, end(A) − end(B) ≤ −c2, st(B) − end(A) ≤ −1}. Furthermore, the output ob-

jects A and B have a length which must also be defined using difference constraints.

Thus, we have the following additional set of difference constraints: {end(A)−st(A) ≤
cA, st(A) − end(A) ≤ −cA, end(B) − st(B) ≤ cB, st(B) − end(B) ≤ −cB}. In the fol-

lowing we define a constraint graph G = 〈V.E〉 for this relation:

1

end(A)

st(A)

Output Object A

c
A

−cA

end(B)

st(B)

Output Object B

B
−cc−1

−c

B

−c

2

Figure 6.6: Constraint Graph for A overlaps(c1, c2) B

Set of nodes:

V = {st(A), end(A), st(B), end(B)}

Set of edges:

E = { (st(A), end(A)), (end(A), st(A)), (st(B), end(B)), (end(B), st(B)),
(end(B), end(A)), (st(B), st(A)), (end(A), st(B))}

Edge weights:

w(st(A), end(A)) = cA, w(end(A), st(A)) = −cA,
w(st(B), end(B)) = cB, w(end(B), st(B)) = −cB,
w(end(B), end(A)) = −c2, w(st(B), st(A)) = −c1w(end(A), st(B)) = −1

The edge sets E1, E2 and E3 are defined as follows:

E1 = {(end(A), st(B))}
E2 = {(end(B), end(A)), (st(B), st(A))}

90 CHAPTER 6. OUTPUT CONSTRAINTS AND DATA CONSISTENCY

E3 = {(st(A), end(A)), (end(A), st(A)), (st(B), end(B)), (end(B), st(B))}

The necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0 have to be

checked. It is easy to see, that E1 and E2 have an element, thus a cycle must exist.

This cycle could be negative because of the fact that we have negative edges in E1 as

well as in E2. The dashed lines in figure 6.6 show one cycle that could potentially be

negative. Thus, the relation A overlaps(c1, c2) B is a critical relation and it has to be

checked by evaluating the sufficient condition after a modification.

6.3.3 Modifications of Output Objects

In practice we probably have more modifications of output objects than of output con-

straints. For checking consistency of a constraint graph only those modifications are of

interest which change the lengths of the output objects. This is because these changes

can produce negative cycles in the constraint graph. Figure 6.5 clarifies this circum-

stance. The length of the output objects is depicted by solid lines within the output

objects. Not each modification on the interval of an output objects can lead to incon-

sistencies of the output constraints. As before, inconsistencies are detected by negative

cycles in the constraint graph. Hence, the following condition must be fulfilled to pro-

duce a negative cycle:

• An edge between the start and end point of an output object must be part of a

cycle.

• The weight of this cycle has a negative value.

Also for output objects we want to introduce harmless and critical output objects:

Harmless Output Objects cannot produce a negative cycle if their length changes.

Critical Output Objects can produce a negative cycle if their length changes.

If we can build such a classification, we must just check critical output objects after

modifications. To introduce a formal specification for harmless and critical output ob-

jects the graph G = (V, E) built from the constraint graph in figure 6.5 is used. Again

the following sets of edges are used:

E1 = {(v1, v3), (v1, v4), (v2, v3), (v2, v4)}, E2 = {(v3, v1), (v3, v2), (v4, v1), (v4, v2)}
E3 = {(v1, v2), (v2, v1), (v3, v4), (v4, v3)}, E = E1 ∪ E2 ∪ E3

The necessary condition for negative cycles where an output object is involved is:

∃e1 ∈ E1 :∃e2 ∈ E2 : ∃(x, y) ∈ E3 : w(e1) < 0 ∨ w(e2) < 0 ∨ w(e3) < 0

∧ cycle(e1, e2, (x, y)) ∧ ¬cycle(e1, e2, (x, y), (y, x))
(6.3)

6.3. BUILDING A PARTIAL CONSTRAINT GRAPH 91

The sufficient condition for a negative cycle is:

∃e1 ∈ E1 : ∃e2 ∈ E2∃e3 ∈ E3 : w cycle(e1, e2, e3) < 0 (6.4)

The condition 6.3 defines that we have two edges (e1 and e2) with opposite directions

between the output objects and one edge that comes from the length of an output

object. This edge is denoted as (x,y). All these edges must be involved in a cycle this

is modelled by the predicate cycle(e1, e2, (x, y)) which becomes true if such a cycle

exists. It is important to note that this cycle must not include both edges result form

the length of an output object, this is modelled with ¬cycle(e1, e2, (x, y), (y, x)). If a

cycle included both edges resulting from the output object length, the edge weight of

these edges would annul each other. Therefore, the length of the output object would

have no impact on the weight of the whole cycle. Furthermore, we define in condition

6.3 that at least one of the edge weights of the cycle must be negative if the whole

cycle should have a negative weight.

An output object is harmless if the edges produced by the length of the output

object are not involved in a potential negative cycle. In other words, modifications on

an output object are harmless if condition 6.3 is not fulfilled for this output object.

Now we can start to test whether an output object is harmless or not. To do this we

must check condition 6.3. We want to exemplify this on the output condition A equal

B. Figure 6.7 shows the constraint graph for this output condition.

−t

1

v2

v3

v4

Output Object A Output Object B

1 1 2
t t 2 −t

v

Figure 6.7: Constraint Graph for A equal B

The graph G = (V, E) in figure 6.7 has the following sets of edges:

E1 = {(v1, v3), (v2, v4)}, E2 = {(v3, v1), (v4, v2)}
E3 = {(v1, v2), (v2, v1), (v3, v4), (v4, v3)}, E = E1 ∪ E2 ∪ E3

We can find the following edges in the edge sets above: (v2, v4) ∈ E1, (v4, v3) ∈
E1,(v3, v1) ∈ E2 and (v1, v2) ∈ E3. Furthermore, we can see in figure 6.7 that there is

92 CHAPTER 6. OUTPUT CONSTRAINTS AND DATA CONSISTENCY

the cycle {(v4, v3), (v3, v1), (v1, v2), (v2, v4)} which includes all the edges mentioned

before. However, this cycle does not include the edge (v2, v1). Thus, the length of

output object A has impact on the weight of the whole cycle. Condition 6.3 is fulfilled

and output object A is critical and must be checked after modifications. We can do the

same test with the same result for output object B.

Considering the output condition A equal B again, we know from table 6.1 that

the relation equal is harmless. Formally, this means that modifications on this relation

itself cannot produce a negative cycle. In practice this relation cannot be modified

because it has no parameter. We can just delete this relation if it exists. This kind of

modifications cannot produce a negative cycle in the constraint graph and must not be

checked. On the other side if we know that the output objects that are involved in the

equal relation are critical. Thus, we must check the constraint graph on consistency

after modifications of these output objects.

6.3.4 Algorithm for Building a Partial Graph

Before we present an optimized algorithm for building a partial constraint graph, we

will summarize our findings in table 6.2. This table shows for each Allen-Relation if

Allen-Relation critical critical update update

Rel. Out. Obj. insert Rel. Out. Obj.

A starts B no no no no no

A finishs B no no no no no

A meets B no no no no no

A equal B no yes yes no yes

A before(c1) B no no no no no

A beforeV (c1, l) B yes no yes yes no

A overlaps(c1, c2) B yes yes yes yes yes

A overlapsVs(c1, l, c2) B yes yes yes yes yes

A overlapsVe(c1, c2, l) B yes yes yes yes yes

A overlapsVse(c1, l, c2, m) B yes yes yes yes yes

A during(c1, c2) B yes yes yes yes yes

A duringVs(c1, l, c2) B yes yes yes yes yes

A duringVe(c1, c2, l) B yes yes yes yes yes

A duringVse(c1, l, c2, m) B yes yes yes yes yes

Table 6.2: Checking for Output Constraints and Output Objects

it is a critical relation and if it includes at least one critical output object. As men-

tioned above checking consistency is sometimes needed after modifications on output

objects or after changes on Allen-Relations. The columns update Rel. and update Out.

Obj. define whether a consistency check is necessary after these modifications. Beside

6.3. BUILDING A PARTIAL CONSTRAINT GRAPH 93

modifications new Allen-Relations and output objects can be inserted in an existing

constraint graph. The column insert indicates whether we have to check this Allen-

Relation after insertion. The delete operation is not considered in table 6.2. Deleting

an Allen-Relation cannot lead to a negative cycle in the constraint graph. In fact, delet-

ing a relation makes the constraint set weaker. Thus, in this case no consistency check

is needed. Deleting an output object also cannot lead to inconsistencies. It is assumed

that all relations in which that output object is involved are also deleted. Thus, it is

possible that two separate constraint graphs are the result of deleting an output object.

If the original graph was consistent its two partial graphs must also be consistent be-

cause no negative cycle can arise from deleting relations.

Building a partial graph is essential for an efficient constraint checking. Therefore, we

propose in figure 6.8 an basic algorithm for producing a partial graph. The findings

from table 6.2 are the basics of this algorithm.

buildPartialGraph(INPUT condition, INPUT operation, IN/OUT partialGraph)

Input: Condition condition, Operation operation
Output: Graph partialGraph

1 if operation not DELETE {
2 if condition is Critical ALLEN Relation {
3 if condition is PartOfConstraintGraph {
4 oldCondition = getConditionFromGraph(condition.id)

5 if condition.value < oldCondition.value
6 partialGraph.addToPartialGraph(allenrelation)

7 }
8 else partialGraph.addToPartialGraph(condition)

9 }
10 }
11 else if condition is MODIFICATION ON OUTPUT OBJECT LENGTH {
12 if outputobject is CRITICAL OUTPUT OBJECT{
13 addToPartialGraph(allenrelation)}
14 }
15 }
16 return partialGraph

Figure 6.8: Algorithm for Building the Partial Graph

The algorithm (figure 6.8) needs the condition which is modified as input. A con-

dition is either an Allen-Relation according to column Allen-Relation in table 6.2 or a

length condition of an output object. With the parameter operation we can detect what

is done with the condition (inserted, updated or deleted). We can see from line 1 in

figure 6.8 that the algorithm only works for inserts or updates on conditions. In line 2

we check if a critical Allen-Relation is modified. In this case we check if we yet have

94 CHAPTER 6. OUTPUT CONSTRAINTS AND DATA CONSISTENCY

this condition in the partial graph. We include a new Allen-Relation only if it is harder

as that we have yet. In line 11 we check if the condition is a modification on an output

object length. If this output object is critical we must include this with the complete

Allen-Relation where it is involved.

To complete the consistency check after modifications we have to execute the Bell-

mann and Ford algorithm on the partial graph. If this algorithm does not detect nega-

tive cycles in the partial graph the modifications do not have produced inconsistencies.

6.4 Consistency Check using Analytic Approach

Another approach of checking consistencies directly deals with inequalities of differ-

ence constraints. We can transpose these sets of inequalities for several terms. So, we

can define upper and lower limits for lengths of output objects or we can determine

limits for the parameters used in Allen-Relations.

We will give an example to clarify this circumstance. Figure 6.9 shows the Allen-

Relation A during(c1, c2) B. The set of difference constraints that belongs to this Allen-

B

1 c2
A

c

Figure 6.9: A during(c1, c2) B

Relation is (st(B) − st(A) ≤ −c1) ∧ (end(A) − end(B) ≤ −c2)) (table 5.1). In this

example we want to determine limits for the length of the involved output objects.

Therefore, we introduce the following side conditions: LA = end(A) − st(A) and

LB = end(B) − st(B). With LA and LB we denote the length of the output object A
and B. Therefore, we have the following formulas:

st(B) − st(A) ≤ −c1 LA = end(A) − st(A)

end(A) − end(B) ≤ −c2 LB = end(B) − st(B)

We can make the following transformation:

end(A) ≤ −c2 + end(B)

−st(A) ≤ −c1 − st(B)

LA = end(A) − st(A) ≤ −c2 + end(B) − st(B) − c1

LA ≤ LB − c1 − c2

The interpretation of the result is very intuitive when we look at figure 6.9. The maxi-

mum for the length of interval A can only be the length of B reduced by the length of

c1 and c2, this is because c1 and c2 are minimum values.

6.5. AUXILIARY DATA STRUCTURE FOR CHECKING CONSISTENCY 95

Realization within a Database System

We can analyse each Allen-Relation in the same way we have demonstrated above.

Appendix B gives an overview of the results of this analysation. The advantage of

this analytical approach is its easy integration into a database system because we can

check consistency of output constraints by using existing features like traditional in-

tegrity constraints or simple triggers. Furthermore, these triggers and integrity con-

straints can be produced automatically according to our formal analysis. Because we

use traditional database features the consistency check is likely to be very fast.

6.5 Auxiliary Data Structure for Checking Consistency

We use the table Constraint Graphs for storing difference constraints (section 5.3).

The entries of this table can be used for building a constraint graph. However, if we

want to build a partial constraint graph, we need more information about the Allen-

Relations used in the constraint graph. Especially, we must know whether an Allen-

Relation is harmless or not. Thus, we introduce the table Constraint Orders as follows:

Constraint Orders(C ID, predecessor, successor, R ID)

The table Constraint Orders stores information which is necessary for an optimized

checking of output constraints. Especially, the attribute R ID is important because it

stores an identification for each Allen- Relation. This information is used to detect

whether a relation between output object is harmless or not.

The attributes predecessor and successor are used for storing the structure of an

Allen-Relation. Each Allen-Relation has the structure A relation B. We say that

A is the predecessor output object and B is the successor output object of this rela-

tion. The attributes predecessor and successor store references to output objects. This

information is needed for adapting output schedules.

As an example we want to show the table entries of the restricted Allen-Relation

o1 beforev(2, 0) o2 used in the example in section 5.3. The table entries which are

inserted in the Constraint Graph table for this output constraint are shown in figure

6.3.

C ID predecessor successor R ID

c1 o1 o2 6

Table 6.3: Table Entries in Relation Constraint Orders

Each kind of Allen-Relation from table 4.2 has a specific identifier stored in R ID.

So, the checking algorithm can detect whether an Allen-Relation is harmless or not. In

our implementation the relation A before(c1, l) B has 6 as identifier.

96 CHAPTER 6. OUTPUT CONSTRAINTS AND DATA CONSISTENCY

6.6 Conclusion

This section has introduced concepts for checking output consistency. A basic algo-

rithm for checking output constraints includes the following steps:

• Building a complete constraint graph based on difference constraints. For gen-

erating the constraint graph we can use the data structure proposed in section

5.3.

• Building a partial constraint graph in case of modifications of Allen-Relations or

of output objects. Auxiliary data structures can be used for building the partial

graph efficiently (sections 6.5, 5.3).

• Checking consistency of the partial graph by using either a graph theoretical

approach (section 6.2) or an analytical approach (section 6.4).

Both approaches for checking consistency have their rights depending on the require-

ments we have on the consistency check. We can summaries both approaches as fol-

lows:

The graph theoretical approach builds a constraint graph out of the a set of differ-

ence constraints. To check consistency we use the Bellmann and Ford algorithm

to determine the shortest paths from a start node to each other node in the graph.

The set of difference constraints is consistent if no negative cycles on these short-

est paths can be found. While computing shortest paths a solution of the set of

difference constraints is made by determining exact values for each start and end

point of the intervals involved in difference constraints. A disadvantage of this

approach is that e cannot use existing database features.

The analytic approach tries to find limits for the length of output objects or for the

parameters used in Allen-Relations. The advantage is that we can use database

features like integrity constraints or triggers to realize this approach in a database

system.

Chapter 7

Management of Output Schedules

Building an output order based on defined output constraints is essential for semantical

correct data output (figure 7.1). The contribution of this chapter is proposing concepts

for building and adapting output schedules. Adapting output schedules is necessary

after modifications of Allen-Relations or of output objects which are involved in an

existing output schedule.

Output Schedules

Data

Modification

Data Output

Output Constraints

Modelling

C
h

ec
k

in
g

 O
u

tp
u

t
C

o
n

st
ra

in
ts

Representation

Constraint

Output Schedules

Building
Multimedia

Figure 7.1: Processing of Output Constraints

According to our classification of output constraints we can build two kinds of sched-

ules. Considering output constraints on output parameters the scheduling of resources

like bandwidth is feasible. Especially, resource scheduling that considers quality of

service has been investigated [BGÖS97, GÖS98, GIÖ98b]. Therefore, we concentrate

on building temporal and spatial schedules according to the defined output constraints.

An output schedule is a temporal or spatial order of output objects in such a manner

that the output constraints for synchronizations defined for these output objects are

fulfilled.

7.1 Use Cases for Output Schedules

The need for building output schedules arise from two different uses. We must produce

output schedules based on output constraints that are defined in the database as well

97

98 CHAPTER 7. MANAGEMENT OF OUTPUT SCHEDULES

as output schedules based on constraints defined in a database query. Both cases are

considered in the following:

Output schedules based on output constraints represent the output order which

is defined by the data producer. In practice, this schedule is used for data output if a

database query does not define any output constraints. Considering our movie-example

of section 4.6, we can define the query ‘select * from movie where scene nr=1’. In this

case all sound sources of the first scene are output. An output schedule is built on the

basis of the output constraints defined by the data producer.

Output schedules based on database queries represent the output order which is

desired by the database user. Multimedia query languages like MOQL [LÖSO97]

support the specification of spatial and temporal constraints within a query. An output

schedule must be built based on these constraints.

If the data producer has not defined any output constraint, the user can define arbi-

trary output constraints. However, conflicts can occur if the user of media data specifies

output constraints which are not compatible with the output constraints defined by the

data producer. There are several possibilities for handling these conflicts. A basic ap-

proach ignores one of the defined constraint sets. Thus, an output schedule is produced

either based on the constraint defined by the data producer or based on the constraints

defined by the data user. With a view to semantical correctness the constraints defined

by the data producer should be used. However, in case of those conflicts the database

user must be informed by the database system.

7.2 Producing an Output Schedule

In section 6 we have introduced a graph theoretical approach for checking consistency

of difference constraint sets. This algorithm works in such a way that it takes the node

v0 as start node and computes shortest paths to all the other nodes in the constraint

graph. While computing the shortest path between v0 and another node, a weight of

this path is computed.

In this chapter we use the following example: It is assumed that we have the follow-

ing sound sources and lengths of sound sources in our audio scene where the sound

sources are named by oi: o1 length(15), o2 length(25), o3 length(20), o4 length(10).

The relations between these sound sources are: o1 before(2) o2, o2 overlaps(3,5) o3,

o3 before(5) o4.

Figure 7.2 shows the constraint graph for this example. The computed weight for

the shortest path between v0 and a node is displayed inside that node. If we take v0 as

temporal or spatial start point, we can use the weights of the shortest paths for building

an output schedule.

Figure 7.3 shows the values for the shortest paths according to figure 7.2. These

values are negative. Therefore, we cannot use them directly as temporal output sched-

7.2. PRODUCING AN OUTPUT SCHEDULE 99

-3

-5

-1

-20

-45

25 -25

end(o2)

st(o2)

-15

-35

20 -20

end(o3)

st(o3)

15

-47

-62

-15

end(o1)

st(o1)

0

v0

0

0

0

0

0

0

-2 -10

0

-10

10

end(o4)

st(o4)

-5

0

0

Figure 7.2: Constraint Graph with Shortest Paths for an Audio Scene

ule. Usually, we have to transform the shortest path values into a co-ordinate system

or into a timeline. A temporal output schedule based on the computed shortest path

0

2 sec.

at least

5 sec.

exact

5 sec

Shortest

Paths
0−10−15−20−35−45−47−62

temporal

Schedule

Sound Source2

Sound Source3

(L 25)Sound Source1

3 sec.

at least

(L 15)

(L 20) Sound Source4 (L10)

52 624742271715

exact

Figure 7.3: Output Schedule for Constraint Graph

weights is also shown in figure 7.3. For building this output schedule we shifted the

original values of the shortest path weights into positive numbers.

To achieve this transformation we first must determine the lowest path weight (la-

belled as k). The interval point that belongs to that value will be the start point of

the output schedule. Thus, we have to move it into the null-point of our time line.

Therefore, we must apply the following transformation to each path weight L:

L′ = L − k (7.1)

The values computed for L′ are the real start and end points of the intervals on the time

line.

100 CHAPTER 7. MANAGEMENT OF OUTPUT SCHEDULES

Usually, an output schedule is needed just before the data output process is started.

Because of the fact that building an output schedule means to run the Bellmann and

Ford algorithm on the whole constraint graph, an undesired delay can occur before

data output can start. To avoid this delay output schedules can be build and adapted

while checking consistency of media data after modifications. However, we have to

use the graph theoretical approach for checking consistency because it computes the

weights of the shortest paths additionally.

7.3 Structure of Output Schedules

For adapting output schedules we have to consider their structure in detail. Output

schedules are built based on constraint graphs. These constraint graphs have some

restrictions which we have already mentioned in section 6.3. For the sake of simplicity

we do not consider the temporal or spatial length of output objects in the following.

Thus, each output object in figure 7.4 is depicted as a node.

E
0

Edges from

Difference Constraints

Output Objects

0

0

0
0

0

<0

<0 <0
<0

ABC

DV

Figure 7.4: Structure of Shortest Paths in a Constraint Graph

The structure of the shortest paths between v0 and all other nodes is mainly in-

fluenced by special properties of restricted Allen-Relations. From table 5.1 we know

that all restricted Allen-Relations only have edges to their predecessor output objects

(section 6.5) with weights lower than or equal to zero, while all edges to the successor

output objects (section 6.5) have weights greater than or equal to zero.

Furthermore, the direct edges between v0 and all other nodes have a weight of zero

in a constraint graph. Therefore, all shortest paths between v0 and the other nodes

have the same structure. All these paths start at node v0 and go in direction of the

nodes which are the leafs of the constraint graph.

For instance, we want to consider the shortest path between v0 and the output object

C. In figure 7.4 this path is depicted with dotted lines. It is assumed that the weight

of the edge between output objects A and B is negative. So, it is easy to see that the

shortest path between v0 and C is {v0, A,B,C}. If we want to build the shortest path

between v0 and D we must consider the paths {v0, A,B,C, D} and {v0, E, D}. Thus,

7.4. CONSISTENCY OF OUTPUT SCHEDULES 101

if we want to output all modelled output objects, the output schedule must deal with

both output lines. An output line is a path from a leaf of an constraint graph to its root.

7.4 Consistency of Output Schedules

Consistency of an output schedule means that the order defined by this schedule is ad-

equate for the defined output constraints. We can produce a consistent output schedule

only if the stored media data are consistent to the output constraints. Hence, we have

to check this before an output schedule can be produced. In this section it is assumed

that an output schedule is produced once and must be adapted when media data or

output constraints are modified. If we want to adapt output schedules directly after

modifications, an efficient method for adapting the schedule is required.

As we have seen in section 7.3 output schedules have a definite structure. However,

a modification of an output object or of an Allen-Relations have different effects on

the output schedule. The position of the modified object or relation in the output line

is important for its effect. Thus, we have to consider the following cases:

• Modifications of output objects or Allen-Relations which stand at the start or

in the middle of an output line have impact to the rest. In other words, if we

change object length or relationships between output objects on the top of the

output line, the rest of the schedule must be adapted.

• Modifications of output objects or Allen-Relations which stand at the end of an

output line. In this case the modification has no impact on the rest of the output

schedule.

In addition to the cases mentioned above, we also have to consider output schedules

with one output line as well as output schedules with many output lines. For a better

understanding we will first start with a basic constraint graph that has only one output

line (figure 7.2). We will explain the adaptation of this output schedule considering

all possible kinds of modifications. Afterwards, we examine the adaptation of output

schedules consisting of many output lines.

7.4.1 Modifying Allen-Relations in the Front Section of the Output

Line

This sections considers the adaptation of an output schedule after changed Allen-

Relations that stand in front or in the middle of the output line. The algorithm for

adapting an output schedule in this case consists of the following steps:

• Building a partial constraint graph that only contains the modified Allen-Relation

and the predecessor output object as well as the successor output object of this

relation. Furthermore, the partial graph has a v0 node which is connected to all

other nodes as usual.

102 CHAPTER 7. MANAGEMENT OF OUTPUT SCHEDULES

• Executing the Bellmann and Ford algorithm on the partial constraint graph and

computing a correction value.

• Adapting the output schedule by this correction value.

We want to explain these steps using the example shown in figure 7.2. Because of

the fact that the output objects are modelled as a list the output schedule is equal to

the shortest path from v0 to o1. Thus, the output schedule has the following output

line: {v0, o4, o3, o2, o1}. We modify the relationship between o4 and o3 because it is

on the top of the output line. We want to define that the end of o3 is exact 8 time

units before the start of o4. Thus, we have to change the relation o3 before(5) o4 into

o3 before(8) o4.

For adapting the output schedule, we first have to build the partial graph. The

partial graph consists of the modified Allen-Relation and its predecessor and successor

output object. Figure 7.5 shows the partial graph which contains the output objects o3

and o4 as well as the edge caused by the before-Relation. This partial graph is based on

the constraint graph in figure 7.2. The modifications and the concerned output objects

are depicted with dashed lines.

-15

-35

20 -20

end(o3)

st(o3)

-10

0

-10

10

end(o4)

st(o4)

-8

v0

0

0

0

0

Figure 7.5: Modification in Front and in the Middle of an Output Schedule

The next step is executing the Bellmann and Ford algorithm on this partial graph

to determine the weight of the shortest path through that graph. In practice we can get

this weight of the shortest path by choosing the lowest weight of all paths. Figure 7.6

shows the partial constraint graph after computing the shortest paths. We can see that

the weight of the shortest path from v0 through the graph is -38.

The dashed boxes in figure 7.7 show the shortest paths for o3 and o4 before the

modification. The boxes that are drawn with solid lines depict the shortest path after

the modification of the before-Relation. In comparison with the old shortest path the

new shortest path is 3 units longer. Thus, we have to shift all the other output objects

which are behind o3 in the output line (i.e. o1, o2) by this value.

The value that is used for adapting the output line is called correction value. For-

mally, this correction value can be determined by the difference between the weights

7.4. CONSISTENCY OF OUTPUT SCHEDULES 103

-18

-38

20 -20

end(o3)

st(o3)

-10

0

-10

10

end(o4)

st(o4)

-8

v0

0

0

0

0

Figure 7.6: Modified Partial Constraint Graph

of the shortest path in the partial constraint graph after and before the modification.

Thus, we have:

correction value = w(shortest Pathafter B&F) − w(shortest Pathbefore B&F)

The correction value in our example is computed as follows: −38 − (−35) = −3.

Now we have to add this value to all weights of the shortest paths to output objects

which stand in the output line behind the modification. Thus, in our example the

output objects o2 and o1 are affected by the modification.

So, we have: end(o2) = −20 + (−3) = −23, st(o2) = −45 + (−3) = −48,

end(o1) = −47 + (−3) = −50 and st(o1) = −62 + (−3) = −65. The upper part

of figure 7.8 shows the whole output schedule. Compared with the original output

schedule in figure 7.3 we see, that o4 has the same position while all other output

objects have been shifted by 3 unites.

−38
Paths

Sound Source3 (L 20)

exact

5 sec

Sound Source4 (L10)
exact

8 sec

Sound Source4 (L10)Sound Source3 (L 20)

0−10−15−20−35−45 −18

Shortest

Figure 7.7: Modification on Output Schedule

As mentioned before, adapting shortest path weights affects all output objects

which stand behind the modification in the output line. Another possibility of adapting

an output schedule is to shift all output objects which stand before the modification in

the output line. If we remember our output line is {v0, o4, o3, o2, o1}. In our example

we have modified the relation between o4 and o3. Hence, we have to adapt the shortest

104 CHAPTER 7. MANAGEMENT OF OUTPUT SCHEDULES

path to o4. In contrast to the approach above, we now must subtract our correction

value from the weights of the considered shortest paths. For our example we have:

end(o4) = −10 − (−3) = −7, st(o4) = 0 − (−3) = 3. The lower part of figure 7.8

shows the complete output schedule.

−7

2 sec.

at least

5 sec.

Sound Source4 (L10)
exact

8 sec

Sound Source2

Sound Source3

(L 25)Sound Source1

3 sec.

at least

(L 15)

(L 20)

0−10−18−38 −23−48−50−65

adapt output schedule

behind modification

in output line

exact

2 sec.

at least

5 sec.

Sound Source4 (L10)
exact

8 sec

Sound Source2

Sound Source3

(L 25)Sound Source1

3 sec.

at least

(L 15)

(L 20)

0−10−23

adapt output schedule

before modification

in output line

−38−48−50 −18 3−15−20−45−47−62 −35

exact

Figure 7.8: Adapted Output Schedules

Except for output object o4 all other output object have the same position as in the

original output schedule in figure 7.3. However, for end(o4) we have a positive value

as weight for the shortest path. This is a contradiction to the definition of constraint

graphs. Because we have an edge with weight 0 from v0 to each other node, no shortest

path can be greater as zero. To solve this contradiction we shift the whole schedule 3

units to negative and get the same result as in the upper part of figure 7.8.

7.4.2 Modifying Allen-Relations at the End of the Output Line

As mentioned before, modifications at the end of an output line have no impact on the

rest of the output schedule. The output line of our example is {v0, o4, o3, o2, o1}. Now

we want to change the relation o1 before(2) o2 into o1 before(5) o2. Figure 7.9 shows

this modification and the affected nodes with dashed lines. Furthermore, we can see in

figure 7.9 the partial graph we have built in consequence of this modification.

After the Bellmann and Ford algorithm has been executed on this partial graph the

weight of the shortest path to the nodes of output object o1 is now st(o1) = −65 and

end(o1) = −50. In other words, the output object o1 has been shifted by -3 units.

7.4. CONSISTENCY OF OUTPUT SCHEDULES 105

-20

-45

25 -25

end(o2)

st(o2)

15

-47

-62

-15

end(o1)

st(o1)

v0

0

0

0

0

-5

Figure 7.9: Modification on the End of Output Schedule

7.4.3 Modifications on Output Objects

Up to now we have only considered modifications on Allen-Relations. However, mod-

ifications on the length of output objects also have impact on the output schedule. We

can handle this kind of modification very easily by an algorithm containing the follow-

ing steps:

• Checking output consistency considering the length modification of the output

object.

• Computing the value (correction value) by which the length of the output object

has been modified.

• Shifting all output objects that stand in the output line behind the modified output

object by using the computed correction value.

7.4.4 Output Schedules with Several Output Lines

Up to now we have focussed on output schedules for constraint graphs which have one

output line. Usually, output schedules consist of many output lines. Adapting these

output schedules in case of modifications of Allen-Relations or of output objects re-

quires more attention because potentially many output lines must be adapted. We will

start our explanations with an example that clarifies the problem. Afterwards, we sum-

marize the steps required for adapting the output schedule in an informal algorithm.

Exemplification of Adapting the Output Schedule

Inserting output objects into a constraint graph can lead to constraint graphs with sev-

eral output lines. We will take the constraint graph shown in figure 7.2 again as basis

for our example. Assuming a new output object o5 with length o5 length(70) must

106 CHAPTER 7. MANAGEMENT OF OUTPUT SCHEDULES

be inserted. The relation between o1 and o5 is defined as: o1 before(10) o5. Figure

7.10 shows the constraint graph that now contains output object o5 as well. The pro-

duced constraint graph has the output line {v0, o4, o3, o2, o1} and the new output line

{v0, o5, o1}

-3

-5

-1

-20

-45

25 -25

end(o2)

st(o2)

-15

-35

20 -20

end(o3)

st(o3)

15

-47

-62

-15

end(o1)

st(o1)

v0

0

0

0

0

0

0

-2 -10

0

-10

10

end(o4)

st(o4)

-5

0

070 -70

end(o5)

st(o5)

-10

0

0

Figure 7.10: Constraint Graph with Two Output Lines

After a new output object has been integrated into the constraint graph, consistency

must be checked. Considering our example we can see in table 6.2 that no consistency

check is necessary, because the added before-Relation is harmless and cannot produce

a negative cycle. However, an output schedule must be built. So, we take the new

introduced relation and the output objects o1 and o5 to build a partial graph which is

shown in figure 7.11. After we have computed the new shortest path for o1, nothing

v0
15

-80

-95

-15

end(o1)

st(o1)

70

0

-70

-70

end(o5)

st(o5)

-10

0

0

0

0

Figure 7.11: Output Schedule for new Output Line

else must be adapted in the new output line. However, output object o1 is involved

7.4. CONSISTENCY OF OUTPUT SCHEDULES 107

in the output line {v0, o4, o3, o2, o1} as well. Thus, we must check whether the new

shortest path for output object o1 is adequate for this output line as well. The upper

part of figure 7.12 shows the output schedule for the new output line, the lower part

shows the already known output schedule for the original output line. It is easy to see

that the new position of output object o1 is not adequate for the original output line

because the relationship o1 before(2,0) o2 cannot be fulfilled.

2 s
5 sec.

exact

5 sec

Sound Source1 (L 15)

Shortest

Paths
0

Sound Source2

Sound Source3

(L 25)

3 sec.

at least
(L 20) Sound Source4 (L10)

−10−15−20−35−45 −40−55 −30

Sound Source1

−47−62−70−80−95

new output line

Sound Source5 (L70)

(L 15)

previous output line
at le.

at least

Figure 7.12: Output Schedules for Both Output Lines

Thus, we have to shift all output objects of the original output line in such a way

that the output schedule becomes consistent. This generally means if the weight of

the shortest path of an output object is changed, all output lines in which this object is

involved must adapt their shortest path weights.

To adapt the weights of the shortest paths we again use a correction value which is

built as shown in section 7.4.1. In our example the weight for the shortest path to o1

before the modification was −62 (figure 7.10). After the modification we determine

a shortest path with a weight of −95 (figure 7.11). The correction value is −95 −
(−62) = −33. With this value we move all output objects in the original output

line. So, we get the following values: st(o2) = −45 + (−33) = −78, end(o2) =
−20+(−33) = −53, st(o3) = −35+(−33) = −68, end(o3) = −15+(−33) = −48,

st(o4) = −10 + (−33) = −43, end(o4) = 0 + (−33) = −33.

O

RelationsOutput Objects

1

Figure 7.13: Output Schedule with Sveral Output Lines

Figure 7.13 depicts possible consequences of a modification in a constraint graph.

We assume that we change the Allen-Relation depicted by the dotted line. The dashed

108 CHAPTER 7. MANAGEMENT OF OUTPUT SCHEDULES

lines show the required adaptations that are necessary in consequence of modifying

the Allen-Relation. As usual, all output objects which stand behind the modification

in the output line must be adapted. Furthermore, we have to check whether modifying

the weights of the output object that stands on top of two output lines (O1) leads to

inconsistencies in any of these output lines. In case of inconsistencies we have to

adapt the affected output line as well.

Algorithm for Adapting Output Schedules with Several Output Lines

For adapting output schedules consisting of many output lines the following steps are

required:

• Adapting the output line where the modification takes place (sections 7.4.1,

7.4.2, 7.4.3).

• If we must adapt the weights of an output object that is the predecessor output

object of more than one Allen-Relation, consistency must be checked for each

of these Allen-Relations.

• If inconsistencies occur, the affected output line must be adapted as well.

7.5 Checking Output Consistency During the Output

Process

Managing output schedules includes techniques to guarantee output constraints during

the output process. This means we have to check the output constraints on output pa-

rameter and synchronization constraints during the data output process. If these output

constraints are violated, an action defined in the output constraint will be executed.

We have done several work in this field. In [Gul05] an approach is proposed to

check output constraints defined on dynamic output parameters. Actually, output con-

straints which define the required bandwidth of a video are observed during the video

output by the database. For building this video database we use ORACLE and its

object-relational features. We enhanced the original video type. This enhancement can

handle special types of output constraints. We stored our videos in several versions

each of them optimized for a specific bandwidth. We made simulations for several

bandwidth and we changed the bandwidth during the output process. The bandwidth

was triggered and our output constraints react in such a way that always that video

was chosen which was optimized for the available bandwidth. We could show that the

video quality on the user side was much better as the normal video output. Especially

when many videos were output equally each user got a much better video quality.

Another work [Rus05] deals with spatial and temporal synchronization constraints

for audio data. We use this approach for wave field synthesis in cinemas. We have to

guarantee that a specific slice of audio data reaches the right renderer (spatial position)

7.6. CONCLUSION 109

in a certain time. So, we use the temporal and spatial output schedules for generating

a special data organization for audio data of movie scenes. It is shown in [Rus05] that

with this special data organization all spatial and temporal output constraints for wave

field synthesis can be guaranteed. An additional checking of output constraints during

the output process is not necessary.

7.6 Conclusion

Beside checking output consistency during data input and when manipulations occur

we must consider output consistency for the (real) data output. In practice this means

an output schedule must be built which defines a specific output order. This can be a

temporal or spatial order as well as an order based on resource requirements.

We introduced a method to build output schedules for temporal and spatial output

constraints. Our method is based on the algorithm of Bellmann and Ford. The advan-

tage of our approach is that we can use the same algorithm for checking consistency

during data input as well as for producing output schedules. Furthermore, the weights

of the shortest paths, which are required for producing output schedules, are computed

while checking consistency.

Modifications of output constraints or of output objects have an impact on the

output schedule. We have seen that the partial graph used for producing a new shortest

path only contains the modified relation and its output objects. A correction value must

be built based on the weights of the old and new shortest path. Weights of shortest

paths must be adapted using this correction value. The position of the modification in

the output line defines which other weights of the shortest paths must be adapted. If

we consider output schedules with several output lines correction of weights can be

run through different lines.

Chapter 8

Implementation and Evaluation

This section wants to prove the practical usage of the concepts proposed in this thesis.

We consider first qualitative properties concerning modelling and handling of output

constraints. Thus, a concrete implementation of output constraints for a wave field

system is considered [HSRG05]. We will check how the requirements specified in

chapter 2 can be satisfied with our approach.

Another part of this chapter deals with quantitative test. We have implemented the

proposed algorithms for checking output constraints and adapting output schedules.

We will prove with experiments that we can execute output constraint checking and

schedule building so fast that it can be used in a real database system.

8.1 Implementation of Output Constraints

for Wave Field Synthesis

Figure 8.1 shows the process of sound production for a wave field system. With this

process we want to produce spatial sounds for films. The depicted process comes from

today’s practice where film scenes and audio scenes are not linked. During the film

presentation several devices are used to play sound and movie synchronously.

The first step is the modelling of audio scenes. An audio scene is composed from

audio objects. Each audio object is parameterized by properties like name, loudness,

time of playing and further metadata. Output constraint on output parameters, like

loudness, can be used for restrictions during the data output. Spatial and temporal

synchronizations are another important point for modelling audio scenes.

Furthermore, modelling includes recording and storing audio objects. We store

meta data, output constraints and audio data together in a database system. Only audio

objects which are appropriate to our output constraints should be stored. This means

we have to check consistency between output constraints and audio data during the

data input or modifications.

During the output process sound sources are produced on specific places in the

listening room. Renderers are special components which control the loudspeakers in

110

8.1. OUTPUT CONSTRAINTS FOR WAVE FIELD SYNTHESIS 111

X-Dimension

Y
-D

im
en

si
o
n

T
im

e

Audio
Objects

Renderer

Loudspeaker ArrayConfiguration
(Listening room)

Audio RecordingModeling

D
at

a
In

p
u
t\

O
u
tp

u
t

Metadata,
Output Constraints

and
Audio Data

Scheduler
Storage
Manager

Realtime
Database

Streamer

D
at

a
M

an
ag

em
en

t

Ao2
Sl 1

Sl n

Ao1

Figure 8.1: Process of Sound Production

the cinema. Actually, the renderers build the wave filed. They need a certain amount of

audio data within a defined period. Hence, the spatial and temporal output schedules

are used to build a specific data organization. With it we can guarantee a data output

according to the defined output constraints.

8.1.1 Modelling of Output Constraints

During the modelling phase we want to define spatial and temporal output constraints

for sound sources. Beside the output constraints we have to store the required audio

data into the database. We use the following table for storing these audio objects:

CLIP(SCENE NR, SOUND SOURCE 1, SOUND SOURCE 2, SOUND SOURCE 3)

We used a similar relation schema for the examples in chapter 4. It is assumed that the

following row exists in the table CLIP:

SCENE NR SOUND SOURCE 1 SOUND SOURCE 2 SOUND SOURCE 3

1 violin trumpet saxophone

Table 8.1: Audio Objects for a Video Scene

We have a scene with SCENE NR = 1 and one audio object for each sound source.

All audio objects have a complex data type. Thus they are contains metadata, like the

audio length, as well.

For this basic example it is assumed that the stored audio data can be output without

any format transformation. However, we have to build output objects from the stored

audio data that have spatial dimensions which are generated by an output function.

112 CHAPTER 8. IMPLEMENTATION AND EVALUATION

Figure 8.2 shows the spatial output constraint we want to define. This output con-

straint should be defined only for the first audio scene. Therefore, we use in figure

8.2 the concrete audio objects violin and trumpet instead of the attribute names. The

spatial output constraint deals not with the audio object saxophone. Thus, it has no

defined spatial position in that audio scene. Its sound is constantly played by each

loudspeaker. Sound sources have no spatial dimension because they are point objects.

Trumpet

Listening Room

4 meters
Violin

Figure 8.2: Spatial Output Constraint

Thus, if we define a spatial output constraint, no LENGTH-clause is necessary. The

following definition can be made for the output constraint shown in figure 8.2:

CREATE OUTPUT CONSTRAINT ViolinWestTrumpet

CHECK not exists (select * from clip

where scene nr=1 and not

(play(sound source 1) west(4,0) play(sound source 2)))
REASON output

REACTION OUTPUT notification

The definition above uses the DDL notation for output constraints introduced in

section 4.7. The output condition uses the output function play() that takes a sound

source and plays it without any transformations. It is defined that the audio object

of trumpet must be exactly 4 units west of the audio object of violin. The output

condition must be checked only for data output and in case of a violation the user gets

a notification as reaction.

equal

2 sec.

Saxophone Trumpet

Violin

exact

Figure 8.3: Temporal Output Constraint

Figure 8.3 shows the temporal output constraint for the audio objects in the first

scene. We define no specific length for the audio objects. The length must directly be

determined by using the audio data stored in the database.

8.1. OUTPUT CONSTRAINTS FOR WAVE FIELD SYNTHESIS 113

Beside defining output constraints using a DDL statement, we can use a special

XML structure as well (section 4.7). Thus, we define the temporal output constraints

shown in figure 8.3 by using the following XML structure:

< OutputObject >
< Name > o1 < /Name >
< V alue > select sound source 3 from movie where scene nr=1 < /V alue >

< /OutputObject >
< OutputObject >

< Name > o2 < /Name >
< V alue > select sound source 2 from movie where scene nr=1 < /V alue >

< /OutputObject >
< OutputObject >

< Name > o3 < /Name >
< V alue > select sound source 1 from movie where scene nr=1 < /V alue >

< /OutputObject >
< OutputFunction > play < /OutputFunction >
< Conditions >

< Constraint name = ”length” >
< Objekt > o1 < /Objekt >
< Parameter > select sound source 3.getLength() from clip where scene nr=1

< /Parameter >
< /Constraint >
< Constraint name = ”length” >

< Objekt > o2 < /Objekt >
< Parameter > select sound source 2.getLength() from clip where scene nr=1

< /Parameter >
< /Constraint >
< Constraint name = ”length” >

< Objekt > o3 < /Objekt >
< Parameter > select sound source 1.getLength() from clip where scene nr=1

< /Parameter >
< /Constraint >
< Constraint name = ”beforev” >

< Objekt > o1 < /Objekt >
< Objekt > o2 < /Objekt >
< Parameter > 2 < /Parameter >
< Parameter > 0 < /Parameter >

< /Constraint >
< Constraint name = ”equals” >

< Objekt > o2 < /Objekt >
< Objekt > o3 < /Objekt >

< /Constraint >
< /Conditions > < Reason > modification < /Reason >
< ReactionModification > notification < /ReactionModification >

114 CHAPTER 8. IMPLEMENTATION AND EVALUATION

In the structure above we use select statements to detect the required audio data

and their temporal length. As in the DDL expression we use the output function play()

which simply plays the stored audio data without any modification. The real output

condition is realized by the restricted Allen-Relations beforev and equals. We check

this output constraint every time we modify one of the audio objects involved in the

output condition. The reaction in case of a constraint violation is to notify the user.

As a result of the modelling phase the data producer has defined output constraints

in a descriptive way. For our prototype implementation we use the XML structure

for defining output constraints. We made this decision from practical reasons, since a

syntactical and semantical checks can be implemented easily for an XML structure.

8.1.2 Integration of Output Constraints into a Database System

A special component called transformer takes the XML file from the modelling tool

and integrates the output constraints into the database system. Actually. the trans-

former parses the XML file and builds difference constraints for all defined relations

between output objects. Furthermore, the transformer fills these difference constraints

into special tables which are used for managing output constraints. Thus, these tables

are a form of ‘system tables’ which we require for our implementation of output con-

straints. We have introduced these tables in section 5.3 and section 6.5 as follows:

Constraint Graphs(ID, start node, end node, weight, C ID)

Constraint Orders(C ID, predecessor, successor, R ID)

However, the transformer must also support building an XML file containing descrip-

tive definitions of output constraints based on the table entries of the tables mentioned

before. The modelling tool must be able to import the XML file for further editing of

output constraints.

8.1.3 Checking Output Constraints

The wave field synthesis requires checking of output constraints after modifications

on audio data as well as after changes on output constraints. For checking output con-

straints after modifications the length of the audio data is triggered. Thus, before insert

triggers are produced for all audio data which are involved in output constraints. These

triggers fire whenever the duration of audio data is changed. As a result the length con-

straints in table Constraint Graphs are changed. Length modifications of audio data

lead to changes of weights in the corresponding difference constraints. Thus, the cor-

responding attribute weight in table Constraints Graph is changed. Furthermore, a

consistency check of the affected output constraints is started (chapter 6). If a data

modification violates an output constraint the reaction defined in the definition of the

output constraint is executed.

8.1. OUTPUT CONSTRAINTS FOR WAVE FIELD SYNTHESIS 115

8.1.4 Producing Data Output

For generating a specific wave field for a cinema, output schedules for each dimension

must be built. In our example a temporal output schedule and two spatial output sched-

ules are required. A specific characteristic for wave field synthesis is that the spatial

measures of the listening room are important for the spatial output schedule. For build-

ing the final spatial output schedule we must first generate an output schedule as usual.

This schedule must be modified considering the specific room properties. Therefore,

a generic sound production is not possible. The wave field must be rendered for each

cinema configuration to get an optimized wave field for the cinema.

For sound production we have to support audio output during the modelling phase

as well as the final data output of the whole movie sound. During the modelling phase

the sound designer must test several sound impressions. Therefore, database queries

are sent from renderers to the database system to get several parts of audio data. The

following query gives an example of such a query:

SELECT * FROM clip,position WHERE clip.scene nr=‘1’ and

position.renderer position=P1

The table position has the following structure:

POSITION(SCENE NR, SOUND SOURCE, RENDERER POSITION)

This table stores the spatial position of sound sources which are generated by the spa-

tial output schedule. The result of the query above are all sound sources from scene

‘1’ which belong to the renderer on position P1. The sound sources must be output

according to the temporal output schedule.

During the output of movie sound in a cinema processing database queries is im-

possible because of performance requirements. In practice a renderer needs 512 audio

samples in 10 ms for each sound source. Each audio sample is coded with 24 Bit,

thus, 12 KBit must be output for each sound source. Because an audio scene has many

sound sources a very high output rate is required. Therefore, we generate a special

output file on the basis of the output schedules.

By using the output schedules a scene graph can be built which shows the logical

structure of the audio scene. Figure 8.4 shows a scene graph for our example. In

addition to the time and space values determined from temporal and spatial output

constraints, values of output parameters like loudness are part of the scene graph as

well. These values can be restricted by output constraints on output parameters.

Database tables are used to store audio data corresponding to the scene graph.

Figure 8.5 shows the logical structure of a table for the temporal output schedule in

our example. Each sound source is divided into slots of 512 audio samples which is

equal to 10 ms audio output. Such sparse tables based on the spatial output schedules

are generated as well.

The rendering process of the movie sound for a specific cinema generates a phys-

ical data output file (Figure 8.6) based on the logical structure stored in the database.

116 CHAPTER 8. IMPLEMENTATION AND EVALUATION

x−pos: 0.25

loudness: 20

Saxophone

start: 0

end: 20

y−pos: −1.7

loudness: 15

Violin

x−pos: 2

start: 22

end: 30

y−pos: −0.4

loudness: 25

Trumpet

x−pos: 6

start: 22

end: 30

Audio Scene

y−pos: −0.4

Figure 8.4: Scene Graph for Audio Scene

Slot N

Slot 1

Saxophone Violin Trumpet

Figure 8.5: Sparse Table for Sound Sources

The data are stored in playtime order, thus at runtime the file can usually be chrono-

logically read without jumps in any direction.

Data Renderer 1

Main Header Subheader 1 ... Subheader n Data Section 1 ... Data Section n

Offset Size

...Data Rendeer 2 Data Renderer z

Active RendererBits per SampleRenderer

Figure 8.6: Physical Data Output File

The data output file has exactly one main header defines file-wide parameters like

bits per second or the maximum channel number. The several sub sections per file

define the data output for an output slot (fig. 8.5). A subheader provides section-

specific information that is a list of renderer the section stores data for as well as its

offset and size. The data section itself contains the slots of audio data (each slot is 512

audio samples), ordered by renderer number and playback time. Due to this structure,

the data can sequently be read during normal playback. The several audio slots must

just output to the corresponding renderers.

8.2. IMPLEMENTATION OF FURTHER SCENARIOS 117

8.2 Implementation of Further Scenarios

In addition to the wave field scenario we have introduced in chapter 2 application sce-

narios dealing with virtual universities and hospital database applications. We only

considered the implementation of the wave field scenario in detail because handling of

output constraints is similar in each application scenario. In contrast to wave field

synthesis the other application scenarios deal not only with audio data. However,

modelling, database internal representation, and checking of output constraints can

be implemented similarly. There is a difference between these application scenarios

considering data output. For wave field synthesis we have generated a special data

output file which is based on the output schedule. However, for the other application

scenarios we have to produce a data stream for data output.

8.3 Experiments

Main points in this work deal with efficient methods for checking output constraints

and producing output schedules. Therefore, we want to prove the efficiency of the

developed methods with experiments. All experiments have the same structure. We

use constraint graphs of different sizes and make modifications on these graphs. We

want to test how efficiently output consistency can be checked or how long it takes to

adapt the output schedule. We want to show that output constraints can be implemented

into a multimedia database system without any noticeable delay for query processing

or data output.

The constraint graphs used for the experiments have 50, 100, 250, 500, and 1000

source objects. These are media objects (e.g. sound sources) which can be seen as

temporal intervals with start and end points. These points are represented by nodes

in the constraint graph. Additionally the node v0 is needed in each graph. Therefore,

the graphs have 101, 201, 501, 1001, and 2001 nodes. The relationships between the

nodes are restricted Allen-Relations which are produced randomly. However, we used

the same constraint graphs for all experiments. For the experiments we modified each

constraint graph 1, 25, 50, and 100 times randomly.

The algorithm for checking output consistency and building output schedules are

implemented in Java and were run on an iBook G4 with 768 MB main memory. We

only considered the case that the constraint graph is already in main memory. Thus, no

access on hard-disk is necessary during constraint checking. We can make this prereq-

uisite because even the largest constraint graph, with 1000 source objects, only needs

100 MB of main memory. In practice the aforementioned tables Constraint Graphs

and Constraint Order must be read for building a constraint graph. However, this

time depends on the system used and has no impact on the real constraint checking

algorithm.

The range of our experimental results was very large. Thus, we must choose a

logarithmic scale for depicting the results. Some quantities could not be measured

118 CHAPTER 8. IMPLEMENTATION AND EVALUATION

directly because there are too small. Therefore, we took the time for 10.000 runs of

the experiments and computed the result for a single run.

Evaluation of Output Constraint Checking using the Analytical Approach

Nodes: 2001

 0.01

 0.1

 1

 10

 100

 1000

Sources:1000Sources: 500Sources: 250Sources: 100Sources: 50

T
im

e
in

 m
s

1
 C

h
an

g
e

 Testing Partial Graph with Analytic Approach

 Building Partial Graph

 Testing the Whole Graph with Analytic Approach

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

Edges: 291
Nodes: 101

Edges: 580
Nodes: 201

Edges: 1480
Nodes: 501

Edges: 2960
Nodes: 1001

Edges: 5951

 0.001

Figure 8.7: Checking Output Consistency with Analytic Approach

The first experiment is to investigate the efficiency of checking output constraints

using the analytic approach shown in section 6.4. This approach can check output

consistency by checking sets of inequalities (Appendix B) which deal with the length

of an output object. We want to show in this experiment that building a partial graph

and running the analytic consistency check on it is more efficient than running the

analytic consistency check on the whole constraint graph.

To realize this experiment we modified our constraint graphs and ran a complete

constraint check on each constraint graph and determined the required time. Further-

more, we determined the time for generating partial graphs on basis of the original

constraint graphs after their modifications. Thereafter, we executed the analytic con-

straint check on these partial graphs and took the time.

8.3. EXPERIMENTS 119

The analytic constraint check can be executed very fast. In contrast to this building

a partial graph is much more complex. However, we expected that building partial

graphs and running the analytic constraint check on it is faster than checking the whole

constraint graph.

Figure 8.7 shows the results of this experiment. We see that building a partial graph

and checking it for consistency is in any case faster than checking the whole graph. In

case of a single change on the constraint graph we cannot see the required time for

constraint checking in figure 8.7. This is due to the fact that for a single change just

a few inequalities must be checked which is so fast that it cannot be depicted in our

diagram.

Evaluation of Constraint Checking by using the Bellmann and Ford Algorithm

 Testing the Whole Graph with Bellmann and Ford Algor.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Sources:1000
Nodes: 2001
Edges: 5951

Sources: 500
Nodes: 1001
Edges: 2960

Sources: 250
Nodes: 501
Edges: 1480

Sources: 100
Nodes: 201
Edges: 580

Sources: 50
Nodes: 101
Edges: 291

T
im

e
in

 m
s

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

 Testing Partial Graph with Bellmann and Ford Algor.

 Building Partial Graph

 0.001

Figure 8.8: Constraint Checking with the Bellmann and Ford Algorithm

Another way of checking output consistency is using the Bellmann and Ford Al-

gorithm (section 6.2). This approach checks consistency of a constraint graph by de-

termining the shortest paths between v0 and each other node in the graph. For this

120 CHAPTER 8. IMPLEMENTATION AND EVALUATION

approach we also want to show that building a partial graph and checking it is faster

than checking the whole graph.

For realizing this experiment we modified our original constraint graphs as men-

tioned above. We took the time for running the Bellmann and Ford Algorithm on the

whole graph as well as executing it on the partial graph.

In contrast to building a partial graph, the Bellmann and Ford Algorithm is more

complex. Therefore, we expected that running the Bellmann and Ford Algorithm on

the whole graph is slower than building a partial graph and run the algorithm on it.

The results of this experiment have shown that building and checking the partial

graph is much more efficient as checking the whole graph (figure 8.8). In comparison

to the analytic approach for constraint checking the required time for the Bellmann

and Ford Algorithm exceeds the time of the analytic approach by several orders of

magnitude. However, the Bellmann and Ford Algorithm also brings acceptable results

because we can even check high numbers of changes in very large constraint graphs in

less than a second.

Evaluation of Adapting Output Schedules

C

0
DEF

GHI

AB

V

Figure 8.9: Parallel Structure of Constraint Graph

In addition to checking output consistency we have to adapt the output schedule.

In practice changes of the length of output objects or of Allen-Relations can make the

constraint graph inconsistent. Furthermore, the absolute output order can be changed

as well. A possibility for checking consistency as well as for producing an output

schedule is to run the Bellmann and Ford Algorithm on the whole constraint graph.

However, section 7.4 proposed another method which generates a partial graph, checks

its consistency, and adapts the output schedule using correction values.

The goal of this experiment is to determine whether our proposed method is more

efficient than generating a new output schedule after modifications on the constraint

graph.

8.3. EXPERIMENTS 121

 Testing the Whole Graph with Bellmann and Ford Algor.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Sources:1000
Nodes: 2001
Edges: 5951

Sources: 500
Nodes: 1001
Edges: 2960

Sources: 250
Nodes: 501
Edges: 1480

Sources: 100
Nodes: 201
Edges: 580

Sources: 50
Nodes: 101
Edges: 291

T
im

e
in

 m
s

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

 Computing Schedule Order

 Consistency Check with Bellmann&Ford on Partial Graph

 0.001

Figure 8.10: Adapting Output Schedules with Independent Output Lines

To realize this experiment we modified the constraint graphs as usual. For building

a completely new output schedule we run the Bellmann and Ford Algorithm on the

whole graph.

For adapting an output schedule using a correction value we need the original

schedule graph before the modifications were made. It is assumed that this sched-

ule is available. So, we can build an adapted output schedule by generating a partial

graph, check its consistency, and computing the correction value.

However, we have to consider the structure of the constraint graphs because it has

impact on the number of corrections we have to do for building a new output schedule.

For this experiments we use a graph structure with several parallel output lines. Figure

8.9 shows the output objects A to I which are arranged in three parallel output lines.

This graph structure has the advantage that the adaptation of an output schedule has no

impact on the output schedule of another output line. Thus, the correction of the output

schedule values is restricted on the output line where the modification takes place.

The adaptation of output schedules takes a long time, because it depends on the

position in the constraint graph where the modification is made. However, we expected

that adapting output schedules using correction values are more efficient than building

122 CHAPTER 8. IMPLEMENTATION AND EVALUATION

a completely new output schedule for the whole constraint graph.

Figure 8.10 shows the results of this experiment. Mostly, computing a new output

schedule by using correction values is much faster than producing a completely new

output schedule by using the Bellmann and Ford Algorithm. The advantage of using

correction values becomes very big if the constraint graph becomes larger. However,

there is a situation where computing a complete new output schedule brings better

results. We can see this on the values for 100 changes on a constraint graph with 101

nodes. If the number of changes is so high that nearly the whole graph is changed,

the partial graph is almost equal to the original constraint graph. Therefore, checking

output consistency takes a long time. Furthermore, we have to adapt the original output

schedule. All these facts lead to a loss in efficiency.

Adapting Output Schedules Considering their Structures

 Building Output Schedule for the Whole Graph with Bellmann and Ford Algor.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Sources:1000
Nodes: 2001
Edges: 5951

Sources: 500
Nodes: 1001
Edges: 2960

Sources: 250
Nodes: 501
Edges: 1480

Sources: 100
Nodes: 201
Edges: 580

Sources: 50
Nodes: 101
Edges: 291

T
im

e
in

 m
s

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

1
 C

h
an

g
e

2
5
 C

h
an

g
es

5
0
 C

h
an

g
es

1
0
0
 C

h
an

g
es

 Maintaining Output Schedule for Graph with Connected Output Lines

 Maintaining Output Schedule for Graph with Independent Output Lines

 0.01

Figure 8.11: Adapting Output Schedules Depending on Constraint Graph Structure

In the above experiment we used a constraint graph structure which is very suitable

for adapting output schedules by using correction values. Therefore, we want to make a

test with a graph structure that represents the worst case for adapting output schedules.

8.4. CONCLUSION 123

Figure 8.12 shows this structure. In contrast to figure 8.9 we have a central output

object named X which connects all output lines. Thus, we have no independent output

lines and adapting the values of an output schedule in any output line can lead to a

modification of any other output schedule value in the whole graph.

C

0
X DEF

GHI

AB

V

Figure 8.12: Constraint Graph with Connected Output Lines

We realized this experiment in the same way as the experiment previous, the only

difference is the graph structure. We expected that adapting output schedules is slower

than using a graph structure with independent output lines. However, adapting output

schedules by using correction values should be faster than building a completely new

output schedule by running the Bellmann and Ford Algorithm on the whole graph.

Figure 8.11 shows the results of this experiment. It is easy to see that the struc-

ture of the constraint graph has a huge influence on the efficiency of adapting output

schedules by using correction values. However, in most cases building a completely

new output schedule takes much more time than correct the existing schedule. This

effect is emerged if the constraint graph is large. However, we can see the same effect

as in the experiment above. If we modify large parts of a constraint graph, building

a completely new output schedule is more efficient. It is noticeable that this effect is

more distinctive than in the experiment above. The reason for this is that each single

adaptation of an output schedule needs more time because it has influence on larger

parts of the constraint graph.

8.4 Conclusion

The contribution of this chapter was to prove the practical usage of output constraints.

Thus, it is important to evaluate qualitative properties considering modelling and usage

of output constraints. So, we took the wave field synthesis as application scenario and

determined how output constraints can be modelled and implemented for this scenario.

124 CHAPTER 8. IMPLEMENTATION AND EVALUATION

For wave field synthesis some requirements have been defined in chapter 2. The main

points we had required were a synchronization which is defined relatively between

output objects and checking it during data input and output.

For modelling output constraints we defined the required synchronizations by using

a DDL definition as well as an XML structure. Furthermore, we transformed output

constraints from their descriptive definition into a database internal representation. We

used this representation for checking output constraints and producing a data output

file.

Experiments have been used for achieving quantitative results considering the effi-

ciency of the proposed methods for checking consistency and producing output sched-

ules. Considering checking output constraints we can see, that the analytic approach

is much faster than the Bellmann and Ford Algorithm. Nevertheless, we can check

output consistency of large constraint graphs in less than a second.

The experiments dealing with producing output schedules showed that the struc-

ture of the constraint graph has high impact on the time required for adapting output

schedules. We made an experiment to test the performance of building a new output

schedule by adapting an existing one in the worst case. The results show that our

algorithm performs quite well.

However, if we look at the absolute times, we see that checking output consistency

and adapting output schedules needs more than a second in many cases. If we consider

the situation that several data modifications are made in a transaction, we can adapt

output schedules after each modification or at the end of the transaction. If we assume

that usual constraint graphs deal with up to 250 output objects, we see that adapting

output schedules after each modification is not critical. However, if we adapt the output

schedule at the end of this transaction we will have a noticeable delay. Therefore, it is

proposed to use save points after 25 or 50 modifications.

Chapter 9

Conclusion and Future Work

This thesis introduced a new kind of constraints for maintaining the semantics of mul-

timedia data because the integrity concept of traditional database systems is not suf-

ficient for maintaining the semantics of complex media data. We have named these

new constraints ‘output constraints’ (figure 9.1) since they especially consider the cor-

rect data output of complex media data, like videos. This thesis provides all necessary

prerequisites for integrating output constraints into a multimedia database system. We

considered a constraint language for output constraints, the database internal represen-

tation of output constraints, methods for checking output constraints, and concepts for

producing an output order of media data based on the defined output constraints.

co
m

p
le

x

C
o

m
p

le
x

it
y

 o
f

In
te

g
ri

ty
 C

o
n

st
ra

in
ts

Complexity of Data

elementary complex

Traditional Database System Multimedia Database System

Output

Constraints

quality

constraints

synchronization

constraints

dynamic

constraints

static

constraints

el
em

en
ta

ry

Figure 9.1: Classification of Integrity Constraints

Output constraints are an enlargement of the traditional integrity concept provided

by database systems. A characteristic of traditional integrity constraints is their declar-

ative definition based on a constraint language. Thus, for modelling output constraints

we have introduced a constraint language which uses the same basics, i.e. first order

125

126 CHAPTER 9. CONCLUSION AND FUTURE WORK

logic, as traditional constraint languages. Our constraint specification language must

support temporal and spatial synchronization constraints. However, it is desired sup-

porting both kinds of synchronization in almost the same manner. Therefore, we used

Allen-Relations for defining temporal synchronization constraints as well as for defin-

ing spatial synchronization constraints. Originally, Allen-Relations define qualitative

relationships between intervals. For output constraints we also need a quantitative def-

inition of relationships between intervals. Thus, we have introduced restricted Allen-

Relations that allow for a quantitative definition of relationships between intervals.

Allen-Relations are suitable for defining output constraints, but they do not support

an efficient checking of output constraints. Thus, we need a representation of output

constraints that makes efficient constraint checking possible. Difference constraints

are a class of constraints that allows an very efficient checking. Therefore, we use

difference constraints as database internal representation of output constraints. Thus,

we have to introduced a transformation of our constraint language into difference con-

straints.

As methods for checking consistency of output constraints we used an approach on

the basis of graph theory as well as an analytical approach. Both approaches require

a constraint graph as data structure for working. Output constraints must be checked

in the following cases: modifications on stored media data, modifications on output

constraints, data output of media data. In order to avoid a delay during database trans-

actions or data output we need an optimized constraint checking. The main idea for the

optimization is to check only that part of the constraint graph that is affected by mod-

ifications or by data output. Therefore, we have developed a method that efficiently

computes the ‘partial graph’.

For data output we need an output order that is adequate to the defined output con-

straints. This ‘output schedule’ can be produced based an the output constraints. While

checking consistency by using the graph theoretical approach based on the Bellmann

and Ford Algorithm an output schedule is computed. However, we have seen that

an output schedule must be adapted in case of modifications on media objects or on

Allen-Relations. We have proposed a method that allows an efficient adaptation of

output schedules in case of modifications.

Our approach of output constrains has been evaluated on a practical application

scenario. We implemented output constraints for supporting the wave field synthesis.

By using output constraints for wave field synthesis we have achieved the following

improvements:

• The modelling process becomes much easier because relations between sound

sources can be defined in a relative and declarative manner.

• The database system checks consistency of output constraints after modifications

on audio data. This is very important because audio data are often modified by

different users,

• Based on output schedules, which were produced by output constraints, we have

127

built a special data organization of audio data. This data organization allows the

data output of up to a hundred sound sources at the same time whereas without

this data organization the system could only support 32 sound sources at the

same time.

We made experiments for testing the performance of checking output constraints

as well as for testing the performance of maintaining output schedules. These exper-

iments have shown that the approaches for checking output consistency and for pro-

ducing output schedules which are proposed in this thesis work very efficient. Thus,

we can execute output constraints checking in database transactions of multimedia

database systems without any noticeable delay of the transaction duration.

Future Work is required for a full integration of output constraints into database sys-

tems. Several aspects of output constraints are not considered in this thesis. However,

we have developed some additional ideas which were not introduced in this thesis. We

see a need of research especially for the following topics:

• Output constraints must be checked during the data output process. Especially,

quality constraints must be checked permanently or in certain intervals. Thus,

we need concepts for observing the data output stream. These mechanisms

should be similar to triggers, but instead of data modifications they must ob-

serve output parameters, like the frame rate of a video. [Gul05] deals with this

subject. In this work we have addressed the question of how a certain quality

for video output can be guaranteed. We used output constraints for defining the

desired video quality. Actually, we restricted the signal-to-noise ratio with an

output constraint. Using this constraint we can deduce a constraint for the re-

quired bandwidth during the output. We stored a video with different resolutions

in a database. The bandwidth was observed and an adequate resolution of the

video was chosen. Each time the bandwidth is changed the video is adapted.

However, we can only observe one output parameter for videos. Thus, we need

an generalization of this approach. The aim of this research is a general concept

of triggering several properties of data streams during the data output process.

These concepts must become parts of the database system.

• Another problem we have only considered partially is dealing with database

queries. Output constraints are usually defined by the producer of media data.

However, output constraints can also be defined in database queries by the user

of the data. Our proposed approaches of checking output constraints and produc-

ing output schedules can be used in both cases. However, we need techniques

for comparing the output constraints defined by the data producer with those de-

fined by the data user. This is necessary if we want to check whether a database

query is compatible with the output constraints defined by the data producer.

We have developed some ideas for checking compatibility between output con-

straints defined by the data producer and those that are included in a database

128 CHAPTER 9. CONCLUSION AND FUTURE WORK

query. However, this idea only deals with output constraints considering syn-

chronization. In a first pass we must check which media objects are involved

in both sets of synchronization constraints. If we have media data which are

involved in both sets, we must compute a solution (i.e. computing the output

schedule) for the synchronization constraints that are defined in the database

query. Now we have to determine whether this solution is also a solution for the

synchronization constraints defined by the data producer. We can check this by

applying the computed values into the difference constraints built by the other

group of synchronization constraints.

• Output constraints should become part of the usual database concepts. Most

commercial database systems support object-relational concepts, like class types.

Thus, it is necessary to integrate output constraints into object-relational con-

cepts. Usually, a class type defines a data structure in the structure schema and

methods in the behaviour schema. However, there is no possibility for defin-

ing the data output. Therefore, we have introduced an output schema [Hei04a]

which must be part of a class type. All output constraints concerning the at-

tributes of the class type are defined in the output schema of the class type. So

we can realize that each object in a class knows how it must be output.

However, this work is still on a very abstract level. Furthermore, it must be

considered how output schemes can be used in database queries. At the moment

only the conceptional level is considered. Further work is required to clarify

how we can implement output schemes.

Appendix A

Harmless and Critical Allen-Relations

We assume for the following:

The intervals A and B have defined lengths cA and cB. This fact is leading to the

following set of difference constraints: {end(A) − st(A) ≤ cA, st(A) − end(A) ≤
−cA, end(B) − st(B) ≤ cB, st(B) − end(B) ≤ −cB}

A meets B

Set of difference constraints:

{end(A) − st(B) ≤ 0, st(B) − end(A) ≤ 0}.

Constraint graph G = 〈V.E〉.

V = {st(A), end(A), st(B), end(B)}

E= {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B)),

(end(A),st(B)), (st(B),end(A))}

edge weights:

w(st(A),end(A))=cA, w(end(A),st(A))= − cA,
w(st(B),end(B))=cB, w(end(B),st(B))= − cB,
w(end(A),st(B))=0,w(st(B),end(A))=0

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

those edges that connect the start and end points of A or B.

E1 = {(end(A),st(B))}
E2 = {(st(B),end(A))}
E3 = {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B))}

129

130 APPENDIX A. HARMLESS AND CRITICAL ALLEN-RELATIONS

Checking the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0:

It is easy to see, that E1 and E2 have an element, thus a cycle must exist. The weight

of both edges is 0, therefore, the necessary condition is not fulfilled. This means the

Allen-Relation A meets B cannot produce a negative cycle. Therefore, it is a harmless

relation.

A starts B

Set of difference constraints:

{st(A) − st(B) ≤ 0, st(B) − st(A) ≤ 0}.

Constraint graph G = 〈V.E〉.

V = {st(A), end(A), st(B), end(B)}

E= {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B)),

(st(A),st(B)), (st(B),st(A))}

edge weights:

w(st(A),end(A))=cA, w(end(A),st(A))= − cA,
w(st(B),end(B))=cB, w(end(B),st(B))= − cB,
w(st(A),st(B))=0,w(st(B),st(A))=0

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

those edges that connect the start and end points of A or B.

E1 = {(st(A),st(B))}
E2 = {(st(B),st(A))}
E3 = {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B))}

Checking the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0:

It is easy to see, that E1 and E2 have an element, thus a cycle must exist. The weight

of both edges is 0, therefore, the necessary condition is not fulfilled. This means the

Allen-Relation A starts B cannot produce a negative cycle. Therefore, it is a harmless

relation.

A finishes B

Set of difference constraints:

{end(A) − end(B) ≤ 0, end(B) − end(A) ≤ 0}.

131

Constraint graph G = 〈V.E〉.

V = {st(A), end(A), st(B), end(B)}

E= {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B)),

(end(A),end(B)), (end(B),end(A))}

edge weights:

w(st(A),end(A))=cA, w(end(A),st(A))= − cA,
w(st(B),end(B))=cB, w(end(B),st(B))= − cB,
w(end(A),end(B))=0,w(end(B),end(A))=0

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

those edges that connect the start and end points of A or B.

E1 = {(end(A),end(B))}
E2 = {(end(B),end(A))}
E3 = {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B))}

Checking the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0:

It is easy to see, that E1 and E2 have an element, thus a cycle must exist. The weight

of both edges is 0, therefore, the necessary condition is not fulfilled. This means the

Allen-Relation A finishes B cannot produce a negative cycle. Therefore, it is a harmless

relation.

A equal B

Set of difference constraints:

{end(A) − end(B) ≤ 0, end(B) − end(A) ≤ 0, st(A) − st(B) ≤ 0, st(B) − st(A) ≤ 0}.

Constraint graph G = 〈V.E〉.

V = {st(A), end(A), st(B), end(B)}

E= {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B)),

(end(A),end(B)), (end(B),end(A)), (st(A),st(B)), (st(B),st(A))}

edge weights:

w(st(A),end(A))=cA, w(end(A),st(A))= − cA,
w(st(B),end(B))=cB, w(end(B),st(B))= − cB,
w(end(A),end(B))=0,w(end(B),end(A))=0,w(st(A),st(B))=0,w(st(B),st(A))=0

132 APPENDIX A. HARMLESS AND CRITICAL ALLEN-RELATIONS

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

those edges that connect the start and end points of A or B.

E1 = {(end(A),end(B)),(st(A),st(B))}
E2 = {(end(B),end(A)),(st(B),st(A))}
E3 = {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B))}

Checking the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0:

It is easy to see, that E1 and E2 have an element, thus a cycle must exist. The weight of

all these edges is 0, therefore, the necessary condition is not fulfilled. This means the

Allen-Relation A equal B cannot produce a negative cycle. Therefore, it is a harmless

relation.

A before(c1) B

Set of difference constraints:

{end(A) − st(B) ≤ −c1}.

Constraint graph G = 〈V.E〉.

V = {st(A), end(A), st(B), end(B)}

E= {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B)),

(end(A),st(B))}

edge weights:

w(st(A),end(A))=cA, w(end(A),st(A))= − cA,
w(st(B),end(B))=cB, w(end(B),st(B))= − cB,
w(st(B),end(A))= − c1

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

those edges that connect the start and end points of A or B.

E1 = {}
E2 = {(st(B),end(A))}
E3 = {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B))}

Checking the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0:

133

It is easy to see, that E1 has no element, thus a cycle cannot exist. This means the

Allen-Relation A before(c1) B cannot produce a negative cycle. Therefore, it is a harm-

less relation.

A beforeV(c1, l) B

Set of difference constraints:

{end(A) − st(B) ≤ −c1, st(B) − end(A) ≤ c1 + l}.

Constraint graph G = 〈V.E〉.

V = {st(A), end(A), st(B), end(B)}

E= {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B)),

(end(A),st(B)), (st(B),end(A))}

edge weights:

w(st(A),end(A))=cA, w(end(A),st(A))= − cA,
w(st(B),end(B))=cB, w(end(B),st(B))= − cB,
w(end(A),st(B))= c1 + l,w(st(B),end(A))=−c1

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

those edges that connect the start and end points of A or B.

E1 = {(end(A),st(B))}
E2 = {(st(B),end(A))}
E3 = {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B))}

Checking the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0:

The result of checking the necessary condition is that an edge exists in E1 and another

edge exists in E2. Thus, a cycle exist and because of the fact that the edge in E1 has

a negative weight a negative cycle is possible. Therefore, the relation A beforeV (c, l)
B is a critical relation and it has to be checked after a modification.

A overlaps(c1, c2) B

Set of difference constraints:

{st(A) − st(B) ≤ −c1, end(A) − end(B) ≤ −c2, st(B) − end(A) ≤ −1}.

Constraint graph G = 〈V.E〉.

V = {st(A), end(A), st(B), end(B)}

134 APPENDIX A. HARMLESS AND CRITICAL ALLEN-RELATIONS

E= {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B)),

(st(B),st(A)), (end(B),end(A)), (end(A),st(B))}

edge weights:

w(st(A),end(A))=cA, w(end(A),st(A))= − cA,
w(st(B),end(B))=cB, w(end(B),st(B))= − cB,
w(st(B),st(A))= −c1,w(end(B),end(A))=−c2, w(end(A),st(B))=−1

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

those edges that connect the start and end points of A or B.

E1 = {(end(A),st(B))}
E2 = {(st(B),st(A)), (end(B),end(A)) }
E3 = {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B))}

Checking the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0:

The result of checking the necessary condition is that an edge exists in E1 and another

edge exists in E2. Thus, a cycle exist and because of the fact that the edge in E1 has a

negative weight a negative cycle is possible. Therefore, the relation A overlaps(c1, c2)

B is a critical relation and it has to be checked after a modification.

A overlapsVs
(c1, l, c2) B

Set of difference constraints:

{st(A)− st(B) ≤ −c1, end(A)− end(B) ≤ −c2, st(B)− end(A) ≤ −1, st(B)− st(A) ≤
c1 + l}.

Constraint graph G = 〈V.E〉.

V = {st(A), end(A), st(B), end(B)}

E= {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B)),

(st(B),st(A)), (st(A),st(B)), (end(B),end(A)), (end(A),st(B))}

edge weights:

w(st(A),end(A))=cA, w(end(A),st(A))= − cA,
w(st(B),end(B))=cB, w(end(B),st(B))= − cB,
w(st(B),st(A))= − c1, w(st(A),st(B)) = c1 + l,
w(end(B),end(A))= − c2, w(end(A),st(B))= − 1

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

135

those edges that connect the start and end points of A or B.

E1 = {(end(A),st(B)), (st(A),st(B))}
E2 = {(st(B),st(A)), (end(B),end(A)) }
E3 = {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B))}

Checking the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0:

The result of checking the necessary condition is that an edge exists in E1 and an-

other edge exists in E2. Thus, a cycle exist and because of the fact that the edge

in E1 has a negative weight a negative cycle is possible. Therefore, the relation A
overlapsVs(c1, c2) B is a critical relation and it has to be checked after a modification.

A overlapsVe
(c1, c2, l) B

Set of difference constraints:

{st(A) − st(B) ≤ −c1, end(A) − end(B) ≤ −c2, st(B) − end(A) ≤ −1, end(B) −
end(A) ≤ c2 + l}.

Constraint graph G = 〈V.E〉.

V = {st(A), end(A), st(B), end(B)}

E= {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B)),

(st(B),st(A)), (end(A),end(B)), (end(B),end(A)), (end(A),st(B))}

edge weights:

w(st(A),end(A))=cA, w(end(A),st(A))= − cA,
w(st(B),end(B))=cB, w(end(B),st(B))= − cB,
w(st(B),st(A))= − c1, w(end(A),end(B))=c2 + l,
w(end(B),end(A))= − c2, w(end(A),st(B))= − 1

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

those edges that connect the start and end points of A or B.

E1 = {(end(A),st(B)), (end(A),end(B))}
E2 = {(st(B),st(A)), (end(B),end(A)) }
E3 = {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B))}

Checking the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0:

The result of checking the necessary condition is that an edge exists in E1 and an-

other edge exists in E2. Thus, a cycle exist and because of the fact that the edge

136 APPENDIX A. HARMLESS AND CRITICAL ALLEN-RELATIONS

in E1 has a negative weight a negative cycle is possible. Therefore, the relation A
overlapsVe(c1, c2, l) B is a critical relation and it has to be checked after a modifica-

tion.

A overlapsVse
(c1, l, c2,m) B

Set of difference constraints:

{st(A)−st(B) ≤ −c1, st(B)−st(A) ≤ c1+ l, end(A)−end(B) ≤ −c2, st(B)−end(A) ≤
−1, end(B) − end(A) ≤ c2 + m}.

Constraint graph G = 〈V.E〉.

V = {st(A), end(A), st(B), end(B)}

E= {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B)),

(st(B),st(A)), (st(A),st(B)), (end(A),end(B)), (end(B),end(A)), (end(A),st(B))}

edge weights:

w(st(A),end(A))=cA, w(end(A),st(A))= − cA,
w(st(B),end(B))=cB, w(end(B),st(B))= − cB,
w(st(B),st(A))= −c1,w(st(A),st(B))= c1 + l,
w(end(A),end(B))= c2 + m,w(end(B),end(A))=−c2, w(end(A),st(B))=−1

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

those edges that connect the start and end points of A or B.

E1 = {(end(A),st(B)), (end(A),end(B)), (st(A),st(B))}
E2 = {(st(B),st(A)), (end(B),end(A)) }
E3 = {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B))}

Checking the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0:

The result of checking the necessary condition is that an edge exists in E1 and an-

other edge exists in E2. Thus, a cycle exist and because of the fact that the edge

in E1 has a negative weight a negative cycle is possible. Therefore, the relation A
overlapsVse(c1, l, c2, m) B is a critical relation and it has to be checked after a modifi-

cation.

A during(c1, c2) B

Set of difference constraints:

{st(B) − st(A) ≤ −c1, end(A) − end(B) ≤ −c2}.

137

Constraint graph G = 〈V.E〉.

V = {st(A), end(A), st(B), end(B)}

E= {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B)),

(st(A),st(B)), (end(B),end(A))}

edge weights:

w(st(A),end(A))=cA, w(end(A),st(A))= − cA,
w(st(B),end(B))=cB, w(end(B),st(B))= − cB,
w(st(A),st(B))= − c1, w(end(B),end(A))= − c2

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

those edges that connect the start and end points of A or B.

E1 = {(st(A),st(B))}
E2 = {(end(B),end(A))}
E3 = {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B))}

Checking the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0:

The result of checking the necessary condition is that an edge exists in E1 and another

edge exists in E2. Thus, a cycle exist and because of the fact that the edge in E1 has

a negative weight a negative cycle is possible. Therefore, the relation A during(c1, c2)
B is a critical relation and it has to be checked after a modification.

A duringVs
(c1, l, c2) B

Set of difference constraints:

{st(B) − st(A) ≤ −c1, st(A) − st(B) ≤ c1 + l, end(A) − end(B) ≤ −c2}.

Constraint graph G = 〈V.E〉.

V = {st(A), end(A), st(B), end(B)}

E= {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B)),

(st(A),st(B)), (st(B),st(A)), (end(B),end(A))}

edge weights:

w(st(A),end(A))=cA, w(end(A),st(A))= − cA,
w(st(B),end(B))=cB, w(end(B),st(B))= − cB,
w(st(A),st(B))= − c1, w(st(B),st(A))=c1 + l, w(end(B),end(A))= − c2

138 APPENDIX A. HARMLESS AND CRITICAL ALLEN-RELATIONS

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

those edges that connect the start and end points of A or B.

E1 = {(st(A),st(B))}
E2 = {(end(B),end(A)), (st(B),st(A))}
E3 = {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B))}

Checking the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0:

The result of checking the necessary condition is that an edge exists in E1 and an-

other edge exists in E2. Thus, a cycle exist and because of the fact that the edge

in E1 has a negative weight a negative cycle is possible. Therefore, the relation A
duringVs(c1, l, c2) B is a critical relation and it has to be checked after a modification.

A duringVe
(c1, c2, l) B

Set of difference constraints:

{st(B) − st(A) ≤ −c1, end(B) − end(A) ≤ c2 + l, end(A) − end(B) ≤ −c2}.

Constraint graph G = 〈V.E〉.

V = {st(A), end(A), st(B), end(B)}

E= {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B)),

(st(A),st(B)), (end(A),end(B)), (end(B),end(A))}

edge weights:

w(st(A),end(A))=cA, w(end(A),st(A))= − cA,
w(st(B),end(B))=cB, w(end(B),st(B))= − cB,
w(st(A),st(B))= − c1, w(end(A),end(B))=c2 + l, w(end(B),end(A))= − c2

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

those edges that connect the start and end points of A or B.

E1 = {(st(A),st(B)), (end(A),end(B))}
E2 = {(end(B),end(A))}
E3 = {(st(A),end(A)), (end(A),end(A)), (st(B),end(B)), (end(B),st(B))}

Checking the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0:

The result of checking the necessary condition is that an edge exists in E1 and an-

other edge exists in E2. Thus, a cycle exist and because of the fact that the edge

139

in E1 has a negative weight a negative cycle is possible. Therefore, the relation A
duringVe(c1, c2, l) B is a critical relation and it has to be checked after a modification.

A duringVse
(c1, l, c2,m) B

Set of difference constraints:

{st(B) − st(A) ≤ −c1, st(A) − st(B) ≤ c1 + l, end(B) − end(A) ≤ c2 + m, end(A) −
end(B) ≤ −c2}.

Constraint graph G = 〈V.E〉.

V = {st(A), end(A), st(B), end(B)}

E= {(st(A),end(A)), (end(A),st(A)), (st(B),end(B)), (end(B),st(B)),

(st(A),st(B)), (end(A),end(B)), (end(B),end(A)), (st(B),st(A))}

edge weights:

w(st(A),end(A))=cA, w(end(A),st(A))= − cA,
w(st(B),end(B))=cB, w(end(B),st(B))= − cB,
w(st(A),st(B))= − c1, w(end(A),end(B))=c2 + m,
w(end(B),end(A))= − c2, w(st(B),st(A))=c1 + l

It is possible to divide the set E in a set E1 that contains all edges starting in output

object A and in a set E2 that contains all edges starting in output object B. E3 has all

those edges that connect the start and end points of A or B.

E1 = {(st(A),st(B)), (end(A),end(B))}
E2 = {(end(B),end(A)), (st(B),st(A)}
E3 = {(st(A),end(A)), (end(A),end(A)), (st(B),end(B)), (end(B),st(B))}

Checking the necessary condition ∃e1 ∈ E1 : ∃e2 ∈ E2 : w(e1) < 0 ∨ w(e2) < 0:

The result of checking the necessary condition is that an edge exists in E1 and an-

other edge exists in E2. Thus, a cycle exist and because of the fact that the edge

in E1 has a negative weight a negative cycle is possible. Therefore, the relation A
duringVse(c1, l, c2, m) B is a critical relation and it has to be checked after a modifica-

tion.

Appendix B

Analytical Constraints for

Allen-Relations

For defining analytical constraints for restricted Allen-Relations the length of the out-

put objects used in the Allen-Relations is required. In the following we denote the

length of output object A with LA and the length of output object B with LB. We can

compute both quantities as follows: LA = end(A) − st(A), LB = end(B) − st(B)

Restricted Allen Relations Analytical Constraints

A equal B LA = LB

A during(c1, c2) B LA ≤ LB − c1 − c2

A duringVs(c1, l, c2) B LA ≤ LB − c1 − c2

LA ≥ LB − (c1 + l) − c2

A duringVe(c1, c2, m) B LA ≤ LB − c1 − c2

LA ≥ LB − c1 − (c2 + m)
A duringVse(c1, l, c2, m) B LA ≤ LB − c1 − c2

LA ≥ LB − (c1 + l) − (c2 + m)
A overlaps(c1, c2) B LA ≥ c1 + 1
A overlapsVs(c1, l, c2) B LA ≥ c1 + 1

LA ≤ LB + c1 + l − c2

A overlapsVe(c1, c2, m) B LB ≥ c2 + 1
LB ≤ LA − c1 + c2 + m

A overlapsVse(c1, l, c2, m) B LA ≥ c1 + 1
LA ≤ LB + c1 + l − c2

LB ≥ c2 + 1
LB ≤ LA − c1 + c2 + m

A before(c,l) B c ≤ (c + l)

Table B.1: Analytical Constraints for Restricted Allen-Relation

140

Bibliography

[ABC+76] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran,

J. Gray, P. P. Griffiths, W. F. King III, R. A. Lorie, P. R. McJones,

J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson.

System R: Relational Approach to Database Management. ACM Trans.

Database Syst., 1(2):97–137, 1976.

[ABD+89] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and

S. Zdonik. The object-oriented database system manifesto. In Pro-

ceedings of the First International Conference on Deductive and Object-

Oriented Databases, pages 223–240, Kyoto, Japan, 1989.

[Adi96] M. Adiba. STORM: An object-oriented Multimedia DBMS. In Nwosu

et al. [NTB96], pages 47–84.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley Publishing Company, 1995.

[All83] J. F. Allen. Maintaining knowledge about temporal intervals. Commu-

nications of the ACM, 26(11):832–843, 1983.

[All84] J.F. Allen. Towards a general Theory of Time and Action. Artif. Intell.,

23:123–154, 1984.

[ASS00] S. Adali, M.L. Sapino, and V.S. Subrahmanian. An algebra for creating

and querying multimedia presentations. Multimedia Systems, 8(3):212–

230, 2000.

[AvBF+92] P.M.G. Apers, C.A. v.d. Berg, J. Flokstra, P.W.P.J. Grefen, M.L. Kersten,

and A.N. Wilschut. PRISMA/DB: A Parallel Mainmemory Relational

DBMS. IEEE Trans. Knowledge Data Engenieering, 4(6), 1992.

[BBH+02] H. Berthold, F. Binkowski, A. Henrich, S. Hollfelder, W. Lindner,

U. Merder, K. Meyer-Wegener, and G. Robert. Architektur Multime-

dialer Informationssysteme. Informatik Forschung und Entwicklung,

17:77–89, 2002.

141

142 BIBLIOGRAPHY

[BC98] E. Bertino and B. Catania. A Constraint-Based Approach to Shape Man-

agement in Multimedia Databases. Multimedia Syst., 6(1):2–16, 1998.

[BEH01] E. Bertino, A.K. Elmagarmid, and M.S. Hacid. Quality of Service in

Multimedia Digital Libraries. SIGMOD Record, 30(1):35–40, 2001.

[BEH03] E. Bertino, A.K. Elmagarmid, and M.S. Hacid. A Database Approach to

Quality of Service Specification in Video Databases. SIGMOD Record,

32(1):35–40, 2003.

[Ber02] H. Berthold. A Federated Multimedia Database System. PhD thesis,

University of Dresden, 2002.

[BF98] E. Bertino and E. Ferrari. Temporal Synchronization Models for Multi-

media Data. TKDE, 10(4):612–631, 1998.

[BGÖS97] J. L. Bruno, E. Gabber, B. Özden, and A. Silberschatz. Move-to-Rear

List Scheduling: A New Scheduling Algorithm for Providing QoS Guar-

antees. In ACM Multimedia, pages 63–73, 1997.

[BK99] S. Boll and W. Klas. ZYX - A Semantic Model for Multimedia Docu-

ments and Presentations. In DS-8, pages 189–209, 1999.

[BKL96] S. Boll, W. Klas, and M. Lohr. Integrated database services for multi-

media presentations, 1996.

[BKW99] S. Boll, W. Klas, and U. Westermann. Exploiting ORDBMS Technol-

ogy to Implement the ZYX Data Model for Multimedia Documents and

Presentations. In Datenbanksysteme in Buro, Technik und Wissenschaft,

pages 232–250, 1999.

[Bro78] M.L. Brodie. Specification and Verifiction of Data Base Semantic In-

tegrity. PhD thesis, University of Toronto, 1978.

[Bul01] D.C.A. Bulterman. SMIL 2.0, Part 1: Overview, Concepts and Structure.

IEEE MultiMedia, 8(4):82–88, 2001.

[BV94] M. Boone and E. Verheijen. The Wave Field Synthesis Concept Applied

to Sound Reproduction. AES Convention Paper presented at the 96th

AES Convention Februar 1994, Amsterdam, 1994.

[BW00] E. Baralis and J. Widom. An algebraic approach to static analysis of ac-

tive database rules. ACM Transactions on Database Systems, 25(3):269–

332, 2000.

[BZ93a] M.C. Buchanan and P.T. Zellweger. Automatic Temporal Layout Mech-

anisms. In ACM Multimedia, pages 341–350, 1993.

BIBLIOGRAPHY 143

[BZ93b] M.C. Buchanan and P.T. Zellweger. Automatically Generating Consis-

tent Schedules for Multimedia Documents. Journal of Multimedia Sys-

tems, 1(2), 1993.

[BZ93c] M.C. Buchanan and P.T. Zellweger. Scheduling Multimedia Documents

Using Temporal Constraints. In P.V. Rangan, editor, Network and Op-

erating System Support for Digital Audio and Video, pages 237–249.

Springer-Verlag, 1993.

[Cho92] J. Chomicki. History-less Checking of Dynamic Integrity Constraints.

In Proc. 8th IEEE International Conf on Data Engenieering, 1992.

[Cho94] J. Chomicki. Temporal query languages: a survey. In D. M. Gabbay and

H. J. Ohlbach, editors, Temporal Logic: ICTL’94, volume 827, pages

506–534. Springer-Verlag, 1994.

[CLR00] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-

rithms. Cambridge, Massachusetts: The MIT Press, 2000.

[CLS00] K. S. Candan, E. Lemar, and V.S. Subrahmanian. View Management in

multimedia databases. The VLDB Journal, 9(2):131–153, 2000.

[Cod70] E.F. Codd. The Relation Model for Large Shared Data Banks. Commu-

nication of the ACM, 13(6):377–387, 1970.

[Cod79] E.F. Codd. Extending the Database Relational Model to Capture more

Meaning. In ACM Trans. Database Syst., volume 4, 1979.

[Con98] S. Conrad. A logic primer. In Temporal Logic in Information Systems,

pages 5–30, 1998.

[CP84] S. Ceri and G. Pelagatti. Distributed Database Principles and Systems.

MCGraw-Hill, Engelwood Cliffs, 1984.

[CPM96] R. Cochrane, H. Pirahesh, and N. M. Mattos. Integrating Triggers and

Declarative Constraints in SQL Database Sytems. In VLDB’96, Pro-

ceedings of 22th International Conference on Very Large Data Bases,

September 3-6, 1996, Mumbai (Bombay), India, pages 567–578, 1996.

[CPS96] K.S. Candan, B. Prabhakaran, and V.S. Subrahmanian. CHIMP: A

Framework for Supporting Distributed Multimedia Document Author-

ing and Presentation. In ACM Multimedia, pages 329–340, 1996.

[CPS98] K.S. Candan, B. Prabhakaran, and V. S. Subrahmanian. Retrieval Sched-

ules Based on Resource Availability and Flexible Presentation Specifica-

tion. ACM-Springer Multimedia Systems Journal, 6(5):232–250, 1998.

144 BIBLIOGRAPHY

[CRS98] K. S. Candan, P.V. Rangan, and V. S. Subrahmanian. Collaborative Mul-

timedia Systems: Synthesis of Media Objects. IEEE Trans. Knowl. Data

Eng., 10(3):433–457, 1998.

[CT98] J. Chomicki and D. Toman. Temporal logic in information systems.

In J. Chomicki and G. Saake, editors, Logics for Databases and Infor-

mation Systems, chapter 3, pages 31–70. Kluwer Academic Publishers,

Boston, 1998.

[CW90] S. Ceri and J. Widom. Deriving Production Rules for Constraint Mainte-

nance. In D. McLeod, R. Sacks-Davis, and H. Schek, editors, Proceed-

ings of the 16th VLDB Conference, pages 566–577, Brisbane, Australia,

1990.

[Dat81] C.J. Date. Referential integrity. In Proc. 7th International Conf. on Very

Large Data Bases, 1981.

[Dat83] C. J. Date:, editor. An Introduction to Database Systems, Volume II.

Addison-Wesley, 1983.

[dB89] E.O. de Brock. De Grondslagen van Semantische Databases. Academic

Service, 1989.

[Deß93] S. Deßloch. Semantic Integrity in Advanced Database Management Sys-

tems. PhD thesis, Universität Kaiserslautern, 1993.

[DK95] A. Duda and C. Keramane. Structured temporal Composition of Multi-

media Data. In IW-MMDBMS, pages 136–142, 1995.

[EGPJ02] D.J. Ecklund, V. Goebel, T. Plagemann, and E.F. Ecklund Jr. Dy-

namic end-to-end QoS management middleware for distributed multi-

media systems. Multimedia Syst., 8(5):431–442, 2002.

[ELG84] H.D. Ehrich, U.W. Lipeck, and M. Gogolla. Specification, Semantics

and Enforcement of Dynamic Database Constraints. In Proc. ACM SIG-

MOD International Conf. on the Management of data, 1984.

[eS97] M.A.P. e Silva. Dynamic integrity constraints definition and enforce-

ment in databases: A classification framework. In IICIS, pages 65–87,

1997.

[ES02] M. Erwig and M. Schneider. Spatio-Temporal Predicates. IEEE Trans.

Knowl. Data Eng., 14(4):881–901, 2002.

[FGNS00] L. Forlizzi, R. Hartmut Güting, E. Nardelli, and M. Schneider. A Data

Model and Data Structures for Moving Objects Databases. In W. Chen,

J.F. Naughton, and P.A. Bernstein, editors, Proceedings of the 2000 ACM

BIBLIOGRAPHY 145

SIGMOD International Conference on Management of Data, May 16-

18, 2000, Dallas, Texas, USA, pages 319–330. ACM, 2000.

[GA91] P.W.P.J. Grefen and P.M.G. Apers. Integrity Constraint Enforcement

Through Transaction Modification. In Proc. 2nd International Conf. on

Database and Expert Systems Applications, 1991.

[GA93] P.W.P.J. Grefen and P.M.G. Apers. Integrity control in relational

database systems - An overview. Data & Knowledge Engineering,

10:187–223, 1993.

[GIÖ98a] M. N. Garofalakis, Y. E. Ioannidis, and B. Özden. Resource scheduling

for composite multimedia objects. In Proc. 24th Int. Conf. Very Large

Data Bases, VLDB, pages 74–85, 24–27 1998.

[GIÖ98b] M.N. Garofalakis, Y.E. Ioannidis, and B. Özden. Resource Schedul-

ing for Composite Multimedia Objects. In A. Gupta, O. Shmueli, and

J. Widom, editors, VLDB’98, Proceedings of 24rd International Con-

ference on Very Large Data Bases, August 24-27, 1998, New York City,

New York, USA, pages 74–85. Morgan Kaufmann, 1998.

[GKK+03] D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and M. Za-

kharyaschev. On the Computational Complexity of Spatio-Temporal

Logics. In I. Russell and S.M. Haller, editors, Proceedings of the

Sixteenth International Florida Artificial Intelligence Research Society

Conference, St. Augustine, Florida, USA, pages 460–464. AAAI Press,

2003.

[GL97] M. Gertz and U.W. Lipeck. An Extensible Framework for Repairing

Constraint Violations. In S. Jajodia, W. List, G.W. McGregor, and

L. Strous, editors, IICIS, volume 109 of IFIP Conference Proceedings,

pages 89–111. Chapman Hall, 1997.

[Gol81] B.S. Goldstein. Constraints on Null Values in Relational Database Sys-

tems. In Proc. 7th International Conf. on Very Large Data Bases, 1981.

[GÖS98] M. N. Garofalakis, B. Özden, and A. Silberschatz. On Periodic Resource

scheduling for Continuous-Media Databases. VLDB J., 7(4):206–225,

1998.

[GP99] V. Goebel and T. Plagemann. Mapping User-Level QoS to System-Level

QoS and Resources in a Distributed Lecture-on-Demand System. In

FTDCS, pages 197–206. IEEE Computer Society, 1999.

[Gre92] P.W.P.J. Grefen. Integrity Control in Parallel Database Systems. PhD

thesis, University of Twente, 1992.

146 BIBLIOGRAPHY

[Gre93] P. Grefen. Combining theory and practice in integrity control: A declar-

ative approach to the specification of a transaction modification subsys-

tem. In Proceedings of the 19th Conference on Very Large Databases,

Morgan Kaufman pubs. (Los Altos CA), Dublin, 1993.

[Gul05] C. Gulich. Überwachung von Ausgabequalität in einer Videodatenbank.

Master’s thesis, Technical University of Ilmenau, 2005.

[GV89] G. Gardarin and P. Valduriez. Relational Databases and Knowledge

Bases. Addison-Wesley, 1989.

[Ham97] C.-J. Hamann. On the Quantitative Specification of Jitter Constrained

Periodic Streams. In MASCOTS’97, 1997.

[Hei04a] T. Heimrich. An Output Schema for Multimedia Data in Multimedia

Database Systems. In 6th. Int. Baltic Conference on Databases and In-

formation Systems, pages 125–134, 2004. Riga, Latvia.

[Hei04b] T. Heimrich. Output Constraints in Multimedia Database Systems.

In S. Guler, A. G. Hauptmann, and A. Henrich, editors, Proceedings

MDDE ’04, 4th International Workshop on Multimedia Data and Doc-

ument Engineering, Washington, DC, USA, July 2nd 2004. IEEE Com-

puter Society, 2004.

[Hei05] T. Heimrich. Modeling of Output Constraints in Multimedia Database

Systems. In Y. P. Chen, editor, 11th International Conference on Multi

Media Modeling (MMM 2005), 12-14 January 2005, Melbourne, Aus-

tralia, pages 399–404. IEEE Computer Society, 2005.

[HK96] N.B. Hirzalla and A. Karmouch. A Multimedia Query Specification

Language. In Nwosu et al. [NTB96], pages 160–183.

[Hor85] W. Horak. Office Document Architecture and Office Document Inter-

change Formats: Current Status of International Standardization. IEEE

Computer, 18(10):50–60, 1985.

[HS90] F.G. Halasz and M. Schwartz. The Dexter Hypertext Reference Model.

In NIST Hypertext Standardization Workshop, 1990.

[HS94] F. Halasz and M. Schwartz. The Dexter Hypermidia Model. Commun.

ACM, 37(2):30–39, 1994.

[HSRG05] T. Heimrich, K.U. Sattler, K. Reichelt, and G. Gatzsche. Verwaltung

spatio-temporaler Audiodaten für die Wellenfeldsynthese. In G.Vossen,

F. Leymann, P.C. Lockemann, and W. Stucky, editors, BTW, volume 65

of LNI, pages 444–453. GI, 2005.

BIBLIOGRAPHY 147

[JLR+98] M. Jourdan, N. Layaida, C. Roisin, L. Sabry-Ismail, and L. Tardif. Au-

thoring Environment for Interactive Multimedia Documents. In ACM

Multimedia ’98, pages 267–272, 1998.

[KA97] W. Klas and K. Aberer. Multimedia and its Impact on Database System

Architectures. In Multimedia Databases in Perspective, pages 31–61.

1997.

[KB96] S. Khoshafian and A.B. Baker. MultiMedia and Imaging Databases.

Morgan Kaufmann Publishers, 1996.

[KBL05] M. Kiefer, A. Bernstein, and M. Lewis. Database Systems – An

Application-Oriented Approach Models. Pearson Education, Inc., 2005.

[KC96] V.S. Subrahmanian K.S. Candan, B. Prabhakaran. CHIMP: A Frame-

work for Supporting Distributed Multimedia Document Authoring and

Presentation. In Proc. of the ACM Multimedia Conference, pages 329–

340, 1996.

[KMMW93] R. Käckenhoff, D. Merten, and K. Meyer-Wegener. Concept and Imple-

mentation of a Multimedia-Object Storage System. In T. Kirsche and

H. Wedekind, editors, Data Management for Advanced Applications.

1993. Sonderforschungsbericht 182 ‘Multiprocessor- und Netzwerkkon-

figuration’.

[Krö88] G. Krönert. Genormte Austauschformate für Dokumente. Informatik-

Spektrum, 11(2):71–84, 1988.

[KS95] M.Y. Kim and J. Song. Multimedia Documents with Elastic Time. In

ACM Multimedia, 1995.

[LAE+04] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. X., and

D. J. DeWitt. Limiting Disclosure in Hippocratic Databases. In Proc.

of the Thirtieth International Conference on Very Large Data Bases,

Toronto, Canada, August 31 - September 3 2004, pages 108–119, 2004.

[LÖS96] J.Z. Li, M.T. Özsu, and D. Szafron. Modeling of Video Spatial Re-

lationships in an Object Oriented Database Management System. In

IW-MMDBMS, pages 124–132, 1996.

[LÖSO97] J.Z. Li, M.T. Özsu, D. Szafron, and V. Oria. MOQL: A Multimedia

Object Query Language. In The Third International Workshop on Mul-

timedia Information Systems, pages 19–28, 1997.

[LSI96] N. LAYADA and L. SABRY-ISMAIL. Maintaining Temporal Con-

sistency of Multimedia Documents Using Constraint Networks. In

148 BIBLIOGRAPHY

H. M. Vin M. Freeman, P. Jardetzky, editor, Multimedia Computing and

Networking, pages 124–135, 1996.

[Mar92] M. Marmann. Datenmodellierungskonzepte fuer Hypermedien und ihre

Abbildung auf Datenbanken. PhD thesis, Distance University Hagen,

1992.

[Mar03] U. Marder. Multimedia-Metacomputing in Web-basierten multimedialen

Informationssystemen. PhD thesis, Universität Kaiserslautern, 2003.

[MGSV99] M.Erwig, R.H. Guting, M. Schneider, and M. Vazirgiannis. Spatio-

temporal data types: An approach to modeling and querying moving

objects in databases. GeoInformatica, 3(3):269–296, 1999.

[MPS+00] I. Mirbel, B. Pernici, T.K. Sellis, S. Tserkezoglou, and M. Vazirgiannis.

Checking the temporal integrity of interactive multimedia documents.

VLDB Journal: Very Large Data Bases, 9(2):111–130, 2000.

[MPV99] I. Mirbel, B. Pernici, and M. Vazirgiannis. Temporal integrity constraints

in interactive multimedia documents. In ICMCS, Vol. 2, pages 867–871,

1999.

[MR97] U. Marder and G. Robert. The KANGAROO Project – Enhancing a

Media Server with Data Independence . In Proc. of the 3th Int. Workshop

on Multimedia Information Systems, 1997.

[MS96] S. Marcus and V. Subrahmanian. Foundations of Multimedia Database

Systems. Journal of the ACM, 43(3):474–523, 1996.

[MW03] K. Meyer-Wegener. Multimediale Datenbanken – Einsatz von Daten-

banktechniken für Multimedia-Systeme. B.G. Teubner, 2. edition, 2003.

[NTB96] K.C. Nwosu, B. Thuraisingham, and P.B. Berra, editors. Multime-

dia Database Systems – Design and Implementation Strategies. Kluwer

Academic Publishers, 1996.

[Ohm04] J.R. Ohm. Multimedia Communication Technologie – Representation,

Transmission and Identification of Multimedia Signals. Springer, 2004.

[OIÖ98] V. Oria, P. Iglinski, and M.T. Özsu. A Framework for Multimedia

Database Systems. In In Proc. 4th African Conference on Research in

Computer Science, Dakar, Senegal, pages 293–304, 1998.

[OIS+97] M.T. Özsu, P. Iglinski, D. Szafron, S. El-Medani, and M. Junghanns. An

Object-Oriented SGML/HyTime Compliant Multimedia Database Man-

agement System. In ACM Multimedia, pages 239–249, 1997.

BIBLIOGRAPHY 149

[Oom99] E. Oomoto. Integrity Constraints for Hyperlinks in a Hypermedia

Database System: AYATORI. IEICE Trans. Inf. & Syst., E82-D(1):165–

179, 1999.

[PTJ01] R. Price, N. Tryfona, and C.S. Jensen. Modeling Topological Constraints

in Spatial Part-Whole Relationships. In Hideko S. Kunii, Sushil Jajodia,

and Arne Sølvberg, editors, ER, volume 2224 of Lecture Notes in Com-

puter Science, pages 27–40. Springer, 2001.

[RSJM99] G. Ramalingam, J. Song, L. Joskowicz, and R.E. Miller. Solving Sys-

tems of Difference Constraints Incrementally. Algorithmica, 23(3):261–

275, 1999.

[Rus05] H. Rusch. Verwaltung von spatio-temporalen Audiodaten für die

Wellenfeldsynthese. Master’s thesis, Technical University of Ilmenau,

2005.

[SB00] G. Specht and M. Bauer. OMNIS/2: A Multimedia Meta System for

existing Digital Libraries. In Proc. of the 4th European Conference on

Research and Advanced Technology for Digital Libraries (ECDL 2000),

pages 180–189. Springer, LNCS 1923, 2000.

[SBM99] M. Stonebraker, P. Brown, and D. Moore. Object-Relational DBMS’s:

Taking the Next Great Wave. Morgan Kaufmann, 1999.

[SMMW04] M. Suchomski, A. Märcz, and K. Meyer-Wgener. Transformation of

Knowledge, Information and Data: Theory and Applications, chapter

Multimedia Conversion with The Focus on Continuous Media. Infor-

mation Science Publishing, 2004.

[Sno00] R.T. Snodgrass, editor. Developing Time-Oriented Database Applica-

tions in SQL. Morgan Kaufmann Publishers, 2000.

[Spe97] G. Specht. Complexity Analysis of Link Navigation in Dexter Based

Hypermedia Database Systems. Informatica, 8(1):23–42, 1997.

[Spe98] G. Specht. Multimedia-Datenbanksysteme: Modelle - Architekture -

Retrieval. professorial dissertation, Technical University of Munich,

1998.

[SST97] G. Saake, I. Schmitt, and C. Türker. Objektdatenbanken - Konzepte,

Sprachen, Architektur. International Thomson Publishing, 1997.

[Sto75] M. Stonbraker. Implementation of Integrity Constraints and Views by

Query Modification. In Proc. ACM SIGMOD International Conf. on the

Management of Data, 1975.

150 BIBLIOGRAPHY

[SV84] E. Simon and P. Valduriez. Design and Implementation of an Extendible

Integrity Subsystem. In B. Yormark, editor, SIGMOD’84, Proc. of An-

nual Meeting, Boston, Massachusetts, June 18-21, 1984, pages 9–17.

ACM Press, 1984.

[SWM95] R. Staehli, J. Walpole, and D. Maier. Quality of Service Specifications

for Multimedia Presentations. Multimedia Syst., 3(5-6):251–263, 1995.

[TG01] C. Türker and M. Gertz. Semantic integrity support in sql:99 and com-

mercial (object-)relational database management systems. VLDB Jour-

nal: Very Large Data Bases, 10(4):241–269, 2001.

[Tür99] C. Türker. Semantic Integrity Constraints in Federated Database

Schemata. PhD thesis, Otto-von-Guericke-Universität Magdeburg,

1999.

[Vaz96] M. Vazirgiannis. An object-oriented Modeling of Multimedia Database

Objects and Applications. In Nwosu et al. [NTB96], pages 160–183.

[VB97] M. Vazirgiannis and S. Boll. Events in interactive multimedia applica-

tions: Modeling and implementation design. In International Confer-

ence on Multimedia Computing and Systems, pages 244–251, 1997.

[VK86] M. B. Vilain and H. A. Kautz. Constraint propagation algorithms for

temporal reasoning. In Fifth National Conference on Artificial Intelli-

gence, pages 377–382, 1986.

[VKvBG95] A. Vogel, B. Kerhervé, G. v. Bochmann, and J. Gecsei. Distributed

Multimedia and QOS: A Survey. IEEE MultiMedia, 2(2):10–19, 1995.

[WBS00] R. Weber, K. Böhm, and H.J. Schek. Interactive-Time Similarity Search

for Large Image Collections Using Parallel VA-Files. In Research and

Advanced Technology for Digital Libraries, 4th European Conference,

ECDL 2000, Lisbon, Portugal, September 18-20, 2000, Proc., pages 83–

92, 2000.

[WGAK89] A.N. Wilschut, P.W.P.J. Grefen, P.M.G. Apers, and M.L. Kersten. Imple-

menting PRISMA/DB in an OOPL. In Proc. 6th International Workshop

on Database Maschines, 1989.

[WK87] D. Woelk and W. Kim. Multimedia Information Management in an

Object-Oriented Database System. In P.M. Stocker, W. Kent, and

P. Hammersley, editors, VLDB’87, Proceedings of 13th International

Conference on Very Large Data Bases, Brighton, England, pages 319–

329. Morgan Kaufmann, 1987.

Thesen

1. Bisherige Integritätskonzepte in Datenbanksystemen sind nicht ausreichend für

die semantisch korrekte Verwaltung von Mediendaten, wie z.B. Audiodaten.

Das Problem existierender Ansätze liegt darin, dass die Semantik der Daten

bei der Datenausgabe nicht überwacht wird. Durch fehlerhafte Synchronisation

zwischen Mediendaten oder durch falsche Ausgabeparameter für Mediendaten

können Fehler entstehen.

2. Multimedia Datenbanksysteme brauchen eine Erweiterung der bestehenden In-

tegritätskonzepte. Wir führen in dieser Arbeit daher das Konzept der Output

Constraints ein. Diese können vom Datenbankdesigner benutzt werden, um die

semantisch korrekte Ausgabe von Mediendaten zu definieren.

3. Um Output Constraints definieren zu können, muss eine Constraint Language

entwickelt werden. Diese Constraint Language muss auf der Prädikatenlogik

aufbauen, aber auch die Definition von räumlichen und zeitlichen Bedingungen

erlauben.

4. Die Output Constraints müssen vom Datenbanksystem effizient überprüft wer-

den können. Daher ist eine datenbankinterne Darstellung von Output Constraints

nötig, die eine effiziente Überprüfung unterstützt. Eine Abbilding der Constraint

Language auf diese interne Repräsentationsform ist daher nötig.

5. Auf Grundlage der definierten Output Constraints müssen Output Schedules

erzeugt werden. Diese definieren eine Ausgabeordnung für Mediendaten, die

den Output Constraints entspricht. Das Datenbanksystem muss sicher stellen,

dass die Mediendaten in dieser Ordnung ausgegeben werden.

6. Wenn Mediendaten in der Datenbank verändert werden oder vor der Ausgabe

von Mediendaten, müssen Output Constraints überprüft und Output Schedules

angepasst werden. Der von uns vorgestellte Algorithmus erlaubt es, diese Über-

prüfung und Anpassung ohne merklichen Zeitverlust durchzuführen.

7. Die von uns vorgestellten Output Constraints stellen eine erhebliche Verbesse-

rung bei der Verwaltung von Mediendaten durch Multimedia Datenbanksys-

teme dar. Die Verbesserungen haben wir anhand eines praktischen Anwen-

dungsszenarios (Wellenfeldsynthese) gezeigt.

