
Output Feedback Active Suspension Control
With Higher Order Terminal Sliding Mode

Jagat Jyoti Rath, Student Member, IEEE, Michael Defoort, Hamid Reza Karimi, Senior Member, IEEE, 
and Kalyana Chakravarthy Veluvolu, Senior Member, IEEE

Abstract—The control of an automotive suspension 
system using hydraulic actuators is a highly complex 
nonlinear control task dealing with system nonlinearities, 
external disturbances, and uncertainties. In this work, 
an output feedback active suspension control scheme is 
proposed to achieve a ride comfort while maintaining the 
road holding for the vehicle. To design the controller, the 
states of the nonlinear system are first estimated using a 
highgain observer where the suspension stroke is the only 
measurable output. The controller is then designed using 
a recursive derivative nonsingular higher order terminal 
sliding mode approach that avoids singularity. The practical 
stability for the closed-loop observer–controller pair is es-
tablished. Simulation results for the quarter-wheel vehicle 
over various road conditions demonstrate the effective-
ness of the proposed control in improving the suspension 
performance in both the time and frequency domains.

Index Terms—Active suspension control, higher order 
sliding mode, output feedback, terminal sliding mode.

I. INTRODUCTION

A
CTIVE suspension control [1], [2] has been a widely im-

plemented control procedure, leading to significant devel-

opments in improving the passenger comfort while maintaining

good road holding capabilities for commercial vehicles [3]–[5].
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Apart from improving the ride quality, suspension control is

also employed to maintain vehicle stability, avoid rollover con-

ditions, etc. [6]. Various robust control approaches such as back-

stepping control [2], [7], [8], sliding mode control [9], [10], H∞
control [1], [11], fuzzy control [12], etc., have been deployed

to provide active suspension control. The analysis of the sus-

pension performance under the influence of such controllers has

been one of the most complex and interesting nonlinear control

problems in automotive vehicle research.

The advancement in active suspension control has led to the

inclusion of various actuators such as hydraulic [3], [4], elec-

tromagnetic [5], etc., for providing effective control over vari-

ous road conditions and driving scenarios. Hydraulic actuators

involve severe nonlinear dynamics, but have been widely im-

plemented due to their small bandwidth, reliability, and ease of

control [13]. In [11], two active control strategies based on the

model reference adaptive control and H∞ control were proposed

for a quarter car suspension equipped with hydraulic actuators.

Similarly, in [7] and [2], robust H∞ based control approaches

were proposed for full vehicle suspension systems controlled

using hydraulic actuators. The use of sliding mode control for a

suspension system actuated by a hydraulic actuator is discussed

in [9].

The backstepping technique [14]–[16] has been established as

one of the significant approaches widely employed for suspen-

sion control. Various works have considered the backstepping

approach [2], [7], [8] for the design of robust controllers for

active suspension control. In [8], a saturated adaptive robust

control approach was proposed for active control of a half-

car nonlinear suspension system affected by road bumps in the

presence of uncertainties and actuator saturation. These works,

consider state feedback based approaches where, it is generally

assumed that the suspension forces are measured while the road

inputs act as exogenous inputs. Overcoming this assumption,

robust output feedback approaches were proposed in [1] and [9]

to provide active control of the suspension system. In [1], a dy-

namic H∞ controller was employed while in [9] a sliding mode

controller was employed to deal with the active suspension con-

trol problem. Sliding mode based controllers [17]–[19] and ob-

servers [20]–[24] have been employed for robust performance

of dynamic systems in the presence of disturbances and un-

certainties. Sliding mode control as a robust control strategy for

active suspension control has been widely analyzed in the works

of [10], [25] and [9] amongst others. In [25], a proportional–

integral (PI) sliding mode control scheme was proposed for the

active control of a linear quarter car suspension system. In [10],



an adaptive sliding mode control was proposed for a nonlinear

active suspension system using a Takagi-Sugeno (T-S) fuzzy

approach. Recently, in [27] a nonlinear extended state observer

based approach was designed for the control of hydraulic ac-

tuators. Employing this concept, a high gain observer (HGO)

based integral sliding mode control, designed using the back-

stepping approach was discussed in [30]. The previous works

on backstepping-based design for pure feedback systems such

as the active suspension system [9], [10], [25], employed first-

order sliding mode (FOSM) controllers. The FOSM controllers

are subject to chattering and necessitate the use of low-pass

filters. The problem of singularity in the controller design as

a result of the backstepping design procedure restricts the use

of higher order sliding mode (HOSM) controllers such as the

super-twisting algorithm (STA) [18], [19]. In this paper, a recur-

sive structure is developed to avoid the singularity problem in the

controller design and it also facilitates the use of HOSM to fur-

ther improve the robustness properties. In the previous works on

output feedback control for active suspension systems, multiple

outputs such as tire deflection [1], sprung and unsprung mass dis-

placements, [25], etc., were considered. However, in this study,

we consider the suspension stroke which is easily measurable

as the only output. The necessity of providing a robust output

feedback suspension control, in the presence of the system non-

linearities and exogenous road inputs while ensuring practical

stability, forms the focus of the work proposed in this paper.

In this work, we present a robust output feedback active

suspension control approach for the nonlinear quarter car

suspension system actuated by nonlinear hydraulic actuators.

To develop the observer-based control, we initially formulate

the nonlinear suspension and actuator dynamics. The developed

model is affected by spring, damper, and actuator nonlinearities

and exogenous road inputs in the form of various road profiles

and road defects. To estimate the states [26] of the nonlinear

system an HGO [27]–[29] is employed, which establishes

practical bounded stability of the error dynamics under the as-

sumptions of bounded exogenous road inputs. Employing these

estimated states, a robust HOSM controller based on STA [31],

[32] is then proposed. Further, a recursive derivative integral

structure [33] based on a nonsingular terminal sliding mode

(NSTSM) procedure is formulated to develop the controllers.

Under this procedure, an NSTSM-integral sliding surface is

designed for the quarter vehicle system. The contributions of

this work can be listed as follows.

1) The HGO for the suspension-hydraulic actuator system

affected by exogenous road inputs in the presence of

suspension spring, damper, and actuator nonlinearities is

developed. The practical stability of the estimation error

is established.

2) An output feedback controller, employing the recursive

derivative NSTSM, is proposed. This procedure, similar

to the backstepping technique, ensures the ease of design

and robustness.

3) The singularity problem in the design of the nonlinear

controller is avoided and an HOSM controller based on

STA is developed to reduce the chattering phenomenon.

4) Closed-loop stability of the observer–controller pair is

established to ensure practical bounded stability.

Employing the designed output feedback controller, the per-

formance of the controller is evaluated for various scenarios such

as road conditions, driving velocities, parametric uncertainties,

and sensor noise. The performance of the active control in en-

hancing passenger comfort while maintaining good road holding

is demonstrated through extensive simulations conducted on the

quarter vehicle model.

A. Dynamics: Suspension and Actuator

The suspension system of a vehicle is responsible for ensuring

passenger comfort while maintaining the vehicle tires on the

ground. The dynamics of the suspension system are governed

by the motion of the vehicle mass, i.e., the sprung mass and the

tire body along with the suspension mass, henceforth, referred to

as the unsprung mass. The unsprung mass under the influence of

exogenous road inputs generates continuous excitations that are

damped out by the suspension unit to ensure passenger comfort.

The dynamics of the sprung and unsprung masses for a quarter

vehicle model can be given as [34], [35]

{

ms z̈s = −kszsu − bs żsu − ϕ + Us

mu z̈u = kszsu + bs żsu + ϕ − Us − fu (zu , t)
(1)

where ms is the sprung mass, mu is the unsprung mass, ks

is the spring stiffness, bs is the spring damping constant, ϕ is

suspension nonlinearities, fu is the exogenous road input, and

Us is the active controlled force to be provided by the hydraulic

actuator. The suspension deflection, i.e., stroke is defined as

zsu = zs − zu (2)

where zs and zu are the sprung mass and unsprung mass dis-

placements, respectively. The nonlinearity in the suspension

dynamics is given as [35]

ϕ = knz3
su + bn

√

|żsu |sign(żsu) (3)

where kn and bn denote the nonlinear coefficients of the spring

and damper units of the suspension system, respectively. The

road input affecting the unsprung mass can be modeled as a

function of the tire deflection zuξ as [36]

fu (zu , t) = mu (ktzuξ + bt żuξ ) (4)

where kt and bt are the tire stiffness and damping, respec-

tively. The tire deflection zuξ is given as zuξ = zu − ξ(t), where

ξ constitutes the road inputs. The road input responsible for

continuous excitation of the suspension unit can be given as

ξ = zr + zdef , where zr is the road roughness profile [1], [35]

determined on the basis of the ISO standards given as

ξ̇(t) = −2πnovxξ(t) + 2π
√

σrvxwo (5)

where vx is the longitudinal velocity in m/s, σr is the road

roughness coefficient for different road classes, no is the refer-

ence space frequency, and wo is a white Gaussian noise with a

zero mean. The road defects zdef correspond to road conditions,

such as bumps, potholes, etc., act as shocks to the suspension

system, and are often modeled as sinusoidal inputs [1], [2]. The

dynamics of the hydraulic actuator necessary to provide the



active control Us can be given as [27], [34]

U̇s = λU

√

Ps − sign(U)
Us

Ap
− A2

pαżsu − Cd

Ap
Us (6)

where λ =
A p Cd wα√

ρ , Ps is the supply pressure of fluid, Ap is the

piston area, Cd is the discharge coefficient, w is the valve width,

α is a function of the bulk modulus of the fluid, and U is the

spool valve input that can be the controlled voltage or current.

B. Active Control Objectives

The performance objectives of the active suspension control

are twofold: ensuring increased passenger comfort and main-

taining road holding. Passenger comfort is achieved by the re-

duction in the acceleration of the sprung mass. Similarly, road

holding refers to the ability of the suspension control to keep the

wheel and consequently the vehicle on the ground through the

reduction of tire deflection. To achieve these control objectives,

the following system requirements are complied with:

1) Road holding must be maintained at all times for the

active suspension control to ensure ride safety. To en-

sure road holding, the root mean square (RMS) value of

the wheel load is bounded by

max(||fu ||) ≤
(ms + mu )g

3
(7)

where || · || refers to the 2-norm and g is the gravity accel-

eration. This bound of the dynamic wheel load requires

that its maximum value is less than the static wheel load,

to ensure that the wheel remains on the ground [37].

2) The maximum possible suspension stroke is fixed to

±0.05 m to ensure practical feasibility. Similarly, the

maximum active force is bounded by ±1000 N with its

peak magnitude at ±2500 N.

The reduction in RMS amplitudes of z̈s and zuξ over time in

comparison with the passive suspension can be expressed as a

measure of the efficacy of an active suspension control scheme.

With the above-mentioned system requirements complied with,

the performance of the suspension system is then analyzed by

the following performance measure:

Pob j = 1 − ||objact||RMS

||objpas||RMS

(8)

where obj refers to the entity measured, i.e., suspension de-

flection, sprung mass acceleration or tire deflection. The active

measure is denoted by objact while the passive measure is de-

noted by objpas. The improvement in passenger comfort and

road holding capabilities can be then determined by a positive

increase in their respective performance measures. The active

control of a suspension system must also be analyzed from its

frequency domain perspective. Specifically it was discussed in

[13], that to improve the passenger comfort, the applied active

suspension control must account for motion sickness (0–1 Hz)

and head toss (2–8 Hz). It has been established by the analysis

of various suspension configurations that the range of inter-

est for passenger comfort and road holding is between 0 and

10 Hz [13].

In order to achieve the above-mentioned objectives, we de-

sign an observer-based output feedback controller to reduce the

sprung mass acceleration and suspension deflection while en-

suring good road holding for the vehicle. The efficiency of the

designed controller is analyzed by the performance measure

(8) for ensuring that the time domain objectives are complied 
with. Further, the improvement of the frequency response of the 
actively controlled system is also shown.

II. CLOSED-LOOP OBSERVER–CONTROLLER

In this section, we propose an HGO to estimate the states

of the nonlinear system and then design an NSTSM controller

employing the estimated states to achieve the control objec-

tives. To develop the observer–controller approach, a nonlinear

model integrating the suspension dynamics (1) and the actuator

dynamics (6) is formulated as follows:
{

ẋ = Ax + G(x,U)U + Φ(x, t) + Θ(t)
y = Cx

(9)

where the states of the system are

x =
[

x1 x2 x3

]T
=

[

zsu żsu MUs

]T

where the superscript “T” stands for the matrix transpose. The

system matrices are given as

A =

⎡

⎣

0 1 0
0 0 1
0 0 0

⎤

⎦, G(x,U) =

⎡

⎣

0
0

Mg(x3 , U)

⎤

⎦,

Φ(x, t) =
[

0 ϕa ϕb

]T
,Θ(t) =

[

0 fu 0
]T

with M = m s +m u

m s m u
, g(x3 , U) = λ

√

Ps −sign(U )
x 3

M A p

ρ ,

ϕa = −Mϕ − ksMx1 − bsMx2 , ϕb = −MA2
pαx2 − C t

A p
x3 .

The output matrix is given as

C =
[

1 0 0
]

. (10)

The displacement/velocity measurements for the suspension

system in practical scenarios are generally relative measure-

ments such as the suspension stroke which measures the relative

motion between sprung and unsprung masses. Other significant

measurements are sprung mass and unsprung accelerations. To

develop an observer-based controller in this work, we only con-

sider the suspension stroke as the measurable output, which can

be easily measured by linear voltage differential transducers,

potentiometers, etc., in practice.

A. High Gain Observer

The following HGO [27], [38] is proposed to estimate the

states of the nonlinear suspension system (9)

˙̂x = Ax̂ + G(x̂, U)U + Φ(x̂, t) + L(y − x̂1). (11)

The observer gain matrix is designed as L = [4µ 6µ2 4µ3 ],
with µ > 0 being the only tuning parameter for the observer. The

scaled estimation error eo = [ eo1 eo2 eo3 ] can be defined as

eoi =
1

µ(i−1)
(xi − x̂i) (12)



with i = 1, 2, 3. To establish the convergence of the HGO,

the following assumptions on the system dynamics need to be

satisfied.

Assumption 1: The considered vehicle suspension system

(9) is bounded-input bounded-state (BIBS) stable.

Assumption 2: The exogenous road input fu and its deriva-

tive are bounded.

Assumption 3: The maximum permissible input to the sys-

tem is limited by a practical constrain

U ≤ |u|m
where |u|m is the maximum permissible value of the active

force.

The vehicular suspension system operates under practical lim-

its in the presence of active control U to improve the system

performance. Hence, it fulfills the BIBS stability in the oper-

ating region with its bounded states and bounded inputs. The

road input is a practical entity that affects the vehicular system

dynamics (9) and, hence, it is bounded. For a practical design,

there exist limits on the active force output of the hydraulic

actuator, which is a physical system. In such a scenario, the no-

tion of bounded input with a maximum bound of |u|m has been

considered. This assumption of bounded input is generally con-

sidered in the hydraulic [27], [41] and active suspension control

[1], [8], [14] designs to ensure stable operations in practice.

Lemma 1: For the nonlinear suspension system (9) satisfying

Assumptions 1–3, the hydraulic actuator nonlinearity is invert-

ible for practical operating conditions.

Proof: The hydraulic actuator nonlinearity is given as

g(x3 , U) = λ

√

Ps − sign(U) x3

M A p

ρ
. (13)

It is nonsingular except when Ps = x3

M A p
sign(U) i.e., when the

supply pressure is equivalent to the pressure difference across

the actuator valves. However, for physical operating conditions

of the hydraulic actuator, the pressure difference across valves

does not exceed the supply pressure [34]. �

Theorem 1: For system (9) satisfying Assumptions 1–3 and

employing observer (11), if for a positive parameter µ > 0, there

exists a positive definite matrix P such that

(A − LC)T P + P (A − LC) = −2I (14)

then the estimation error eo is practically asymptotically sta-

ble since all error trajectories converge to an arbitrarily small

neighborhood around the origin.

Proof: The estimation error dynamics from (9) and (11) can

be written as

ėo =

⎡

⎣

ėo1

ėo2

ėo3

⎤

⎦ = µÃeo + G1
ϕ̃a + fu

µ
+ G2

Mg̃U + ϕ̃b

µ2

(15)

with

Ã =

⎡

⎣

−4 1 0
−6 0 1
−4 0 0

⎤

⎦, G1 =

⎡

⎣

0
1
0

⎤

⎦, G2 =

⎡

⎣

0
0
1

⎤

⎦.

The nonlinear terms are given as ϕ̃a = ϕa(x, t) − ϕa(x̂, t), ϕ̃b

= ϕb(x, t) − ϕb(x̂, t), and g̃ = g(x,U) − g(x̂, U). Consider

the following Lyapunov function:

Vo =
1

2
eT
o Peo . (16)

The time derivative of the Lyapunov function Vo similar to [27],

[38] can be written as

V̇o = −µ||eo ||2 +
1

µ
eT
o PG1 ϕ̃a +

1

µ
eT
o PG1fu

+
1

µ2
eT
o PG2ϕ̃b +

1

µ2
eT
o PG2 g̃U.

For the nonlinear functions ϕa and ϕb , the states x1 , x2 , and

x3 are BIBS stable within operating limits as per Assumption1
and, hence, bounded. The Lipschitz continuity of the nonlinear

function ϕa depends on ϕ. From (3), it can be seen that ϕ is

differentiable everywhere except at x2 = 0. For all x2 �= 0
{ |ϕa(x1 , x2) − ϕ̂a(x̂1 , x̂2)| ≤ lp1 |eo1 | + lp2 |eo2 |
|ϕb(x2 , x3) − ϕ̂b(x̂2 , x̂3)| ≤ lp3 |eo2 | + lp4 |eo3 |

(17)

where lpj , j = 1, 2, . . . , 4 are the Lipschitz constants. Similarly,

for the input nonlinearity g(x3 , U) it can be seen from (13) that

|g(x3 , U) − ĝ(x̂3 , U | ≤ lp5 |eo3 | (18)

with the Lipschitz constant lp5 . For details refer to the Appendix.

Considering Lp = 1
µ2 [µ(lp1 + lp2)η1 + (lp3 + lp4)η2 ]

+ 1
µ2 [lp5η2 |u|m ], with ηk = ||PGk || for k = 1, 2. Then we can

write

V̇o ≤ −(µ − Lp)||eo ||2 +
1

µ
η1fu ||eo ||. (19)

Consequently, we can, thus, write that the error eo converges to

an ultimate bound as

||eo || ≤
1

µ(µ − Lp)
η1fu . (20)

A proper selection of µ such that the condition µ > Lp is sat-

isfied ensures the ultimate boundedness (20) of the estimation

error around the origin [27]. Further, by selecting a large µ, the

bound (20) can be effectively reduced. Although the estima-

tion error convergence is asymptotic stable, the estimation error

converges to the known bound (20) in finite-time. �

Remark 1: For the nonlinear system (9), the solution is un-

derstood in Filippov sense due to the presence of discontinuity

in the nonlinear functions ϕ and g(x3 , U). Consequently, the

Lipschitz bounds for ϕa can be computed locally as discussed

earlier. Further, it can be analyzed that similar to the work in

[20], the case x2 = 0 appears locally or at the end due to the

proposed HOSM controller in the following section.

Remark 2: For the designed HGO (11), with the estimation

error dynamics (15), the solution of the Lyapunov equation (14)

is dependent on the eigenvalues of the matrix (A − LC). From

the estimation error dynamics, the matrix (A − LC) is given as

A − LC =

⎡

⎢

⎣

−4µ 1 0

−6µ2 0 1

−4µ3 0 0

⎤

⎥

⎦
.



For the design of the observer gain µ > 0, it can be ensured

that the matrix (A − LC) is Hurwitz with stable eigenvalues.

In such a scenario, the solution of the Lyapunov equation (14)

exists.

B. Recursive Derivative Terminal Sliding Mode

The estimated states of the suspension system (9) are now

employed to design an output feedback controller based on the

recursive derivative terminal sliding mode [33] approach. The

design of the controller is initiated by considering the estimated

tracking error for the suspension stroke x1 as

ǫ0 = x̂1 − xd (21)

where xd is the desired reference trajectory. It can be deduced

from the system dynamics (9), that the relative degree of the

output error ǫ0 w.r.t. to the control input U is 3. Consequently,

we design the following recursive derivative terminal sliding

mode [33] variables as

{

ǫ1 = β1ǫ0 + ǫ̇γ1

0

ǫ2 = β2ǫ1 + ǫ̇γ2

1

(22)

with ǫ̇1 = γ1 ǫ̇
(γ1 −1)
0 ǫ̈0 + β1 ǫ̇0 . To obtain higher order deriva-

tives of ǫ0 , i.e., ǫ̇0 and ǫ̈0 , a second-order robust higher order

sliding mode differentiator [39] is employed. The integral ter-

minal sliding surface can be then designed as

σ = ǫ2 + Γ

∫ t

0

ǫ
1

γ 3
2 dt (23)

where γi = p i

q i
and pi > qi > 0 are positive odd integers for

i = 1, 2, 3. The gains βi and Γ are positive constants to be

designed. The dynamics of the terminal sliding surface (23) is,

thus, dependent on derivative of the error surface ǫ2 . Further-

more, the dynamics of ǫ2 can be obtained by differentiating ǫ1 ,

and that of ǫ1 by differentiating ǫ0 . Hence, the design follows a

recursive procedure, where successive derivatives are required.

It can be deduced that ǫ1 needs to be differentiated twice while

ǫ2 needs to be differentiated once for obtaining the sliding dy-

namics σ̇. As the designed error surfaces ǫ1 and ǫ2 are nonlinear

with exponential terms γ1 and γ2 , it is mandatory to ensure that

successive differentiations do not result in singularity. To ensure

that there is no singularity problem when the controller is de-

signed, the gains γi are chosen such that the following condition

is satisfied:

γi > 3 − i (24)

where i = 1, 2. Employing this condition, it can be seen that

γi must be selected such that γ1 > 2 and γ2 > 1. Thus, even

with successive differentiations of ǫ1 and ǫ2 , singularity in the

controller design would not arise. The control task is now to

design a nonlinear robust output feedback control law which

forces the sliding surface σ to converge to the equilibrium point

in finite time.

Theorem 2: For the suspension system (9) satisfying As-

sumptions 1–3, employing the estimated states using (11), we

consider the following nonlinear control law

U =
1

ΛMg(x̂3 , U)

[

−Γǫ
1

γ 3
2 − Ξ(x̂, t) − Ψxd + ζ(σ)

]

(25)

where Λ, Ψxd , and Ξ(x̂, t) are discussed later. The robust control

ζ(σ) given by

ζ(σ) = −κ1 |σ|
1
2 sign(σ) − κ2

∫ t

0

sign(σ) dt (26)

with positive gains κ1 and κ2 ensures the convergence of the

sliding dynamics to a practically bounded region around the

equilibrium point in finite time.

Proof: The dynamics of the sliding surface σ can be written

as

σ̇ = ǫ̇2 + Γǫ
1

γ 3
2

= Γǫ
1

γ 3
2 + β2 ǫ̇1 + γ2 ǫ̇

(γ2 −1)
1 ǫ̈1

= Γǫ
1

γ 3
2 + β1β2 ǫ̇0 +

[

β2γ1 ǫ̇
(γ1 −1)
0 + β1γ2 ǫ̇

(γ2 −1)
1

]

ǫ̈0

+ γ2 ǫ̇
(γ2 −1)
1

[

γ1(γ1 − 1)ǫ̇
(γ1 −2)
0 (ǫ̈0)

2 + γ1 ǫ̇
(γ1 −1)
0

...
ǫ 0

]

= Γǫ
1

γ 3
2 + β1β2 ǫ̇0 + Ψ1 ǫ̈0 + Ψ2(ǫ̈0)

2 + Ψ3
...
ǫ 0

with Ψ1 = β2γ1 ǫ̇
(γ1 −1)
0 + β1γ2 ǫ̇

(γ2 −1)
1 , Ψ2 = γ2γ1(γ1 − 1)

ǫ̇
(γ2 −1)
1 ǫ̇

(γ1 −2)
0 , and Ψ3 = γ1γ2 ǫ̇

(γ2 −1)
1 ǫ̇

(γ1 −1)
0 . From the ob-

server dynamics (11) and (21), the following can be obtained:
⎧

⎪

⎨

⎪

⎩

ǫ̇0 = x̂2 − ẋd + δ1

ǫ̈0 = x̂3 + ϕa(x̂, t) − ẍd + δ2
...
ǫ 0 = ϕb(x̂, t) + Mg(x̂3 , U)U − ...

xd + δ3

(27)

where the perturbation terms δi are given as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

δ1 = 4µeo1

δ2 = 4µ2eo2 − 10µ2eo1

δ3 = 4µ3eo3 − 10µ3eo2 + 16µ3eo1 + ϕ̇a(x̂, t)

+4µϕ̃a + 4µfu + 4µḟu .

(28)

Substituting for ǫ̇0 , ǫ̈0 , and
...
ǫ 0 , the sliding dynamics can be

expressed as

σ̇ = Γǫ
1

γ 3
2 + Ξ(x̂, t) + Ψ3Mg(x̂3 , U)U + β1β2δ+Ψ1δ2

+ Ψ2f(δ2 , x̂) + Ψ3δ3 (29)

with Ξ(x̂, t) = β1β2f1(x̂2 , t) + Ψ1f2(x̂, t) + Ψ2f3(x̂, t) +
Ψ3f4(x̂, t), Ψxd = −β1β2 ẋd − Ψ1 ẍd − Ψ3

...
xd , f1(x̂2 , t) =

x̂2 , f2(x̂, t) = x̂3 + ϕa(x̂, t), f3 = [x̂3 + ϕa(x̂, t) − ẍd ]
2 ,

and f4(x̂, t) = ϕb(x̂, t) and with f(δ2 , x̂) being a nonlinear

function of the estimated states and the perturbation δ2 . In

the above-mentioned expression, the sliding dynamics are a

function of the error surface ǫ2 , the estimated state term Ξ(x̂, t),
the nonlinearities g(x̂3 , U) and Ψ3 , the control input U , the

reference trajectory, and the terms which are functions of the

perturbations δ1 , δ2 , and δ3 . The terms which are functions of

δ1 , δ2 , and δ3 can be then lumped together in terms of a single



perturbation as

∆c = β1β2δ1 + Ψ1δ2 + Ψ2f(δ2 , x̂) + Ψ3δ3 . (30)

The sliding dynamics can be, hence, written as

σ̇=Γǫ
1

γ 3
2 +Ξ(x̂, t)+Ψ3Mg(x̂3 , U)U+Ψxd+ ∆c . (31)

From Lemma 1, it can be established that g(x̂3 , U) is invertible.

Let us consider similar to [33]

Ω ≡

⎧

⎨

⎩

∏2
j=1 ǫ̇

p j
q j

−1

j−1 , for

∣

∣

∣

∣

∏2
j=1 ǫ̇

p j
q j

−1

j−1

∣

∣

∣

∣

≥ ν

ν, otherwise

(32)

with ν > 0. For the control law (25), we set

Λ = γ1γ2Ω. (33)

Condition (32) can be seen as a saturated function for Ψ3 and

results in two scenarios. In the first case when |∏2
j=1 ǫ̇

p j
q j

−1

j−1 | ≥
ν, the nonlinear function Ψ3 is not approximated and directly

employed for Λ. Therefore, applying the control law (25), the

sliding dynamics can be expressed as

σ̇ = ζ(σ) + ∆c (34)

when |∏2
j=1 ǫ̇

p j
q j

−1

j−1 | ≥ ν. In this scenario, to design the gains

κ1 and κ2 which ensure the practical convergence of the sliding

surface, the bound of ∆c is required. It can be seen from (30) that

the perturbation ∆c is a function of the estimated states of the

system and the perturbations δ1 , δ2 , and δ3 . The perturbations

δ1 and δ2 are the functions of the observation errors eo1 and

eo2 as established in (28). Since the estimated states of the

system are bounded by practical constraints, the derivative of

δ1 and δ2 is bounded. Similarly, the nonlinear function f(δ2 , x̂)
is a function of the bounded estimated states and the bounded

perturbation δ2 . The perturbation δ3 is a function of estimation

errors, the exogenous road input fu , and the estimated state

dynamics. Under boundedness assumptions of the estimated

state dynamics and the road input as discussed in Assumptions

1 and 2, the bound of the time derivative of the perturbation can

be established. Hence, we can establish, that bound of the time

derivative of the perturbation ∆c can be given as

|∆̇c | ≤ ρd

where ρd > 0 is the cumulative bound of the all the compo-

nents of ∆c as discussed earlier. Now, consider the following

Lyapunov function:

Vc = ΣT PcΣ (35)

where ΣT = [|σ| 1
2 sign(σ) σ̇] and Pc is a positive definite matrix

defined as

Pc =
κ1

2

[

4κ2 + κ2
1 −κ1

−κ1 2

]

.

The time derivative of the Lyapunov function can then be

computed similar to [31] and [32] as

V̇c ≤ − 1

|σ| 1
2

ΣT QΣ

where Q is a positive definite matrix given as

Q =
κ1

2

[

2κ2 + κ2
1 − 2ρd ⋆

−(k1 + 2ρd

κ1
) 1

]

.

To ensure that matrix Q is positive definite, the gains κ1 and κ2

are selected as

κ1 > 0, κ2 >
6ρd + 4(ρd/κ1)

2

2
. (36)

Employing the fact that |σ| 1
2 ≤ ||Σ||2 , V̇c can be written as

[31], [32]

V̇c ≤ −λmin(Q)||Σ||. (37)

It can, thus, be established that the sliding surface converges

to a bound |σ| ≤ ξ1 while the dynamics converge to a bound

|σ̇| ≤ ν̄1 . The computation of these bounds are dependent on

the magnitude of the saturation constant ν discussed in (32).

In the second scenario when |∏2
j=1 ǫ̇

p j
q j

−1

j−1 | < ν, the saturated

value of Ψ3 , i.e., ν is considered. In such a scenario, the sliding

dynamics can be approximated as

|σ̇| ≤ f(x̂, ρd , ν) = ν̄2 .

The sliding variable σ enters the bound |σ| ≤ ξ2 in a finite time.

However, with the evolution of the dynamics of the sliding

surface, the sliding variable ultimately leaves this bound. It can

always be guaranteed that the sliding variable then stays in the

larger domain of |σ| ≤ ξ1 , where ξ1 > ξ2 resulting in a practical

sliding mode. Thus, integrating both scenarios, we can express

that

|σ̇| ≤ max(ν̄1 , ν̄2) = ν2 .

Hence, the convergence of the sliding dynamics to the ultimate

bound in finite-time is established. �

C. Closed-Loop Stability Analysis

As the ultimate boundedness of the observer in (20) and the

sliding dynamics in (37) are established in finite-time, the prac-

tical stability of the combined observer and controller dynamics

is established based on these bounds. Similar to [42]–[44], the

closed-loop stability is established in two phases as follows.

1) In the first phase, based on initial conditions of the ob-

server and states, the estimation error converges to an

ultimate finite bound as shown in (20) in Theorem 1.

During this phase, under BIBS assumptions, Assump-

tion 1 and boundedness of the road disturbances, it can

be shown easily that the closed-loop system states remain

bounded.

2) After the observer has converged to the ultimate bound

in finite-time, one can then establish the practical bound-

edness of the sliding surface σ, with the estimated states

as discussed in Theorem 2.



3) In the second phase, after the observer and sliding sur-

faces converge to their respective ultimate bounds in

finite-time sequentially, the practical stability of the com-

bined observer–controller dynamics is then established.

To establish the closed-loop stability, consider the following

Lyapunov candidate function:

V =
1

2
eT
o Peo + ΣT PcΣ

= Vo + Vc . (38)

Considering the case when |
∏2

j=1 ǫ̇

p j
q j

−1

j−1 | ≥ ν, from (19) and

(37) V̇ can, thus, be written as

V̇ ≤ −(µ − Lp)||eo ||2 − λmin(Q)||Σ|| + 1

µ
η1fu ||eo ||.

Now, consider the new vector Z = [||eo || ||Σ|| 1
2 ] and define

a = (µ − Lp) and b = λmin(Q), V̇ can be written as

V̇ ≤ −(a1 ||eo || − b1 ||Σ|| 1
2 )2 − (a − a2

1)||eo ||2 − (b − b2
1)|Σ|

+
1

µ
η1fu ||eo || − 2a1b1 ||eo |||Σ|| 1

2

with a1b1 = 1
2 . Now selecting a = (κ + a2

1) and b = (κ + b2
1),

V̇ can be written as

V̇ ≤ −(a1 ||eo || − b1 ||Σ|| 1
2 )2 − κ

[

||eo ||2 + ||Σ|| 1
2

]

+
1

µ
η1fu ||eo || − 2a1b1 ||eo |||Σ|| 1

2

≤ −κ
[

||eo ||2 + ||Σ|| 1
2

]

+
1

µ
η1fu ||eo ||

−2a1b1 ||eo |||Σ|| 1
2

≤ −κ||Z||2 + κp ||Z||

where κ > 0 is a positive constant. To show that the term

−κ||Z||2 dominates the function V̇ , we can write for 0 < θ < 1

V̇ ≤ −κ(1 − θ)||Z||2 − κ||Z||2 + κp ||Z||.

Consequently, for ||Z|| ≥ κp

κθ , it can be shown that

V̇ ≤ −κ(1 − θ)||Z||2 . (39)

Thus, the radius to which the closed-loop system converges can

now be obtained as α =
√

κp

κθ . For a large value of the observer

gain µ, the radius of convergence α can be effectively reduced

by tuning the parameters ν, κ1 , and κ2 . Hence, local practical

stability [19], [20] of the closed-loop system holds.

Remark 3: With the convergence of σ to a practical bound,

it can be established that ǫ0 is also practically stable using

the derivative terminal sliding mode. Further, for the controlled

plant (x1 − xd ) is also practically stable.

III. SIMULATION RESULTS AND DISCUSSION

To evaluate the effectiveness of the proposed output feedback

controller, the quarter vehicle parameters of a Class D Sedan

were considered and simulation was performed.

TABLE I
QUARTER VEHICLE AND HYDRAULIC ACTUATOR PARAMETERS

Parameter Value

Sprung mass (m s ) 342.5 kg

Unsprung mass (m u ) 40 kg

Quarter Suspension spring stiffness (ks ) 153 000 N/m

Vehicle Suspension damper (bs ) 1000 N&middot;s/m

Tire damping (k t ) 14.6 N/m

Tire stiffness (bt ) 268 000 N/m

Supply pressure (Ps ) 1.034 ×107 N/m2

Piston area (A p ) 3.35 ×10−4

Hydraulic Discharge coefficient (Cd ) 0.61

Actuator [34] Density of oil (ρ) 858 kg/m3

w 1.436 ×10−2 m

α 1.9143 ×101 3

A. Parameter Selection

The quarter vehicle suspension system with the vehicular and 
hydraulic actuator parameters given in Table I was considered 
in this work.

The initial conditions of the plant (9) and the de-

signed HGO (11) were chosen as x = [0 0 0 ]
T 

and x̂ =
[ 0.001 0 0.0001 ]T 

, respectively. The nonlinearity in the sus-
pension, spring, and stiffness coefficients are considered as 10%

of their linear values. Thus, for simulation purposes kn = 0.1ks 
and bn = 0.1bs were selected. For the HGO, the gain bandwidth 
was selected as µ = 380. The selected µ is high enough to en-

sure the practical asymptotic stability of the observer. In the 
suspension system analysis, there has been no established refer-

ence trajectory employed as all measurements are relative. For

the controller design, we consider the reference to be xd = 0. 
Since the established controller converges to a bound, hence 
the controlled suspension stroke is never zero and is within the 
design requirements. For the design of the recursive derivation 
subsystems (22), the gains were selected as β1 = 0.1, β2 = 1, 
γ1 = 0.33, and γ2 = 1.66, with p1 = 7, p2 = 5, q1 = 3, and 
q2 = 3. It can be seen that these parameters obey (24), thus en-

suring that there is no singularity in the design of the control. For 
the design of the NSTSM sliding surface, Γ = 0.01, p3 = 3, and 
q3 = 1  were chosen. The gains of the robust HOSM controller 
(26) were selected as κ1 = 50 and κ2 = 500.

B. Simulations: Road Conditions, Uncertainties, and 
Sensor noise

Simulations were carried out for various road conditions, 
parametric uncertainties, and sensor noise. For illustration 
purposes, the results for the vehicle traveling at a speed of 
72 km/h, i.e., vx = 20 m/s under poor road (Class C, σr = 
256 × 10−6m3 ) [35] have been presented. To simulate the effect 
of road defect, we consider the following input [2]:

zdef =

{

h [1−cos8πt]
2 , 1 ≤ t ≤ 1.25

0, otherwise
(40)

where the height of the road bump is given as h = 4 cm. Under 
such road and driving conditions, the performance of the state 
estimation employing the HGO (11) is presented in Fig. 1.



Fig. 1. Estimated states using the HGO (a) zsu  and (b) żsu  (c) MUs .

Fig. 2. Sliding surfaces (a) ǫ1 , (b) ǫ2 , and (c) σ.

In Fig. 1, along with the estimated states, the corresponding 
errors are also plotted to show the effectiveness of the proposed 
HGO in estimating the states in the presence of nonlineari-

ties. It can be seen that all the estimation errors converge to a 
finite bound around the origin, leading to a practical stability. 
Employing the estimated states, the proposed NSTSM controller 
was designed and the convergence of the sliding states to a finite 
bound is shown in Fig. 2. Further, the closed-loop stability of the 
system is shown in Fig. 3. For the considered simulation 
conditions, the Lipschitz constants for the nonlinear functions

Fig. 3. Norm of (a) estimation error ||eo ||, (b) sliding surface ||σ||, and 
(c) closed-loop system ||Z ||.

Fig. 4. Suspension stroke zsu  for the passive system, active backstep-
ping feedback [27], controlled ARC [40], and controlled NSTSM.

were computed and the parameter Lp (19) was computed as 
141.9. Consequently, the ultimate bound of the estimation error 
(20) was computed as 4.9261. It can be seen that the estima-

tion error converges to this bound in a finite time of 0.006 s, as 
shown in Fig. 3(a). During this phase, under BIBS assump-

tions the states are bounded and the sliding surface converges 
in finite-time, as shown in Fig. 3(b). Consequently, after the 
estimated states converge to the finite bound, the closed-loop 
system also converges to the finite bound, as shown in Fig. 
3(c). Thus, the closed-loop system’s practical stability is 
established as discussed earlier.

With the convergence of the sliding surface established, the 
performance of the proposed controller was then compared to 
the passive suspension, backstepping approach based on the 
feedback gains (BS-F) active controlled suspension system and 
adaptive robust controlled (ARC) active suspension system. 
The improvement in suspension stroke, sprung mass 
acceleration, and tire deflection due to the applied NSTSM 
control is shown in Figs. 4–6.

It can be deduced from Figs. 5 and 6 that with the provided 
output feedback control there is a significant improvement in 
the passenger comfort and road holding as indicated by the 
reduction in the sprung mass acceleration and tire deflection, 
respectively. Employing the measure (8), the performance of



Fig. 5. Sprung mass acceleration z̈s for the passive system, active 
backstepping feedback [27], controlled ARC [40], and controlled NSTSM.

Fig. 6. Tire deflection zu ξ  for the passive system, active backstepping 
feedback [27], controlled ARC [40], and controlled NSTSM.

Fig. 7. FFT of sprung mass acceleration z̈s for the passive system, 
active backstepping feedback [27], controlled ARC [40], and controlled 
NSTSM.

the active suspension was improved by 73.59% in regards with 
passenger comfort and by 69.37% in regards with road holding. 
The improvement in the suspension performance in the desired 
range of frequency, i.e., 0–8 Hz is shown in Figs. 7 and 8. It 
can be seen from Figs. 4–8 that the proposed NSTSM–HOSM 
controller in this paper outperforms the backstepping-feedback 
gains control approach and the adaptive robust control approach 
in both time and frequency domains. To evaluate the perfor-

mance under the effect of uncertainties, the suspension system 
parameters, i.e., sprung mass, spring stiffness, and damping co-

efficient were considered to have variable values under the effect 
of random uncertainties. Sensor noise was added to the mea-sured 
suspension stroke and performance was evaluated. The 
performance measure for suspension deflection (Pzsu ), sprung

Fig. 8. FFT of tire deflection zu ξ  for the passive system, active back-
stepping feedback [27], controlled ARC [40], and controlled NSTSM.

TABLE II
PERFORMANCE EVALUATION OVER VARIOUS CONDITIONS

Case Conditions P z̈ s Pz s u Pz u ξ

Parametric 5% 0.7051 0.2996 0.6828

Uncertainty 7.5% 0.6817 0.3199 0.6667

Sensor 1.1 ×10−5 0.7230 0.3596 0.6876

Noise 3.3 ×10−5 0.7005 0.4454 0.6729

Varying 60 km/h 0.7405 0.4201 0.7040

Velocity 100 km/h 0.7244 0.4186 0.6721

(Class C-Road) 150 km/h 0.7057 0.3840 0.6405

Road Class A 0.7466 0.2790 0.7530

Class Class B 0.7467 0.3441 0.7427

(vx = 20 m/s) Class C 0.7359 0.4237 0.6937

Class D 0.6845 0.4418 0.5673

mass acceleration (Pz̈s
), and tire deflection (Pzu ξ

) for each of

the above scenarios is presented in Table II.

It can be deduced from Table II that the proposed output

feedback controller provides efficient active suspension control

performance under various road as well as driving conditions.

C. Discussion

The implementation of the proposed output feedback control 
to improve passenger comfort on a practical suspension has to 
comply with several issues such as road holding, sensor noise, 
robustness, observer–controller stability, etc. The performance 
analysis of the proposed controller has indicated improvement 
in both passenger comfort and road holding as deduced from 
Table II. The RMS value of the dynamic wheel load was ob-

tained as 616.4 N, which is less than one third of the static load 
1071.6 N, thus satisfying the road holding criterion (7). Further, 
from Fig. 1(a) it can be seen that the provided control action 
maintains the suspension deflection below the required limit of

± 0.05 m. The bounds on the maximum permissible control 
input can be computed as 550 N with a peak value of 2200 N, 
which is a practical value similar to the work discussed in [34]. 
With regards to the sensor noise and parametric uncertainty, the 
robustness of the proposed controller is shown in Table II. In 
this work, we consider the HGO to estimate the states of the 
system. The significant aspects of the observer gain selection 
can be decided on the basis of (1) the peaking phenomena and 
(2) estimation, when there is sudden disturbance due to road 
defects. The choice of the observer gain affects the estimation 
performance, which ultimately affects the controller design. In



Fig. 9. Effect of different µ (a) peaking phenomena and (b) when road 
defects appear.

with respectFig. 10. Variation in performance indexes Pz̈s and Pz u ξ  to 
the observer gain µ.

ξ

Fig. 9(a), the estimation error norm ||eo || for different values of 
the observer gain µ is shown. It can be seen that by increasing 
the observer gain µ the peaking initial estimation error norm 
increases, i.e., the peaking effect is more pronounced. However, 
if we consider the estimation error when sudden disturbance, 
i.e., road inputs appear then it can be seen that the selection of 
a high  µ is more effective as shown in Fig. 9(b).

With the increase of the observer gain, the performance of the 
closed-loop observer–controller system increases. This perfor-

mance enhancement is reflected in the passenger comfort (Pz̈ s ) 
and road holding (Pzu  ) indexes as seen in Fig. 10. However,

after value of µ = 380, there is no significant improvement in

the performance of the controlled system. Although a high value

of the observer gain µ provides better performance, it also re-

sults in peaking phenomena that adversely affect the controller

performance. Further, in the presence of the sensor noise, a very

high value of µ would result in high chattering for the sliding

surface. Thus, the observer gain has to be tuned such that the

control performance is maintained while ensuring that adverse

effects of the peaking phenomena, chattering in sliding surface,

and sensitivity to sensor noise are accounted and minimized.

with respectFig. 11. Variation in performance indexes Pz̈s and Pz u ξ  to 
the STA gain κ2 .

We consider the suspension stroke sensor as the only output

while designing the HGO in this work. Thus, the effect of the

sensor noise on the HGO is greatly reduced in comparison to

approaches where more noisy sensors such as accelerometers

are employed. The implementation of the HGO-type observer in

[27] for a hydraulic actuator further supplements the real-time

applicability of this observer to the suspension control problem.

The uncertainty in parameters discussed in this paper are related

to mass and suspension parameter variations that arise due to

various operating scenarios. These variations can be reflected

in real-time suspension control as the effect of variable mass

loading, effect of shocks, nonlinearity in spring, etc.

The proposed observer-based output feedback control ap-

proach in this paper also stresses on the aspects of ease of design

and practical convergence. Similar to the backstepping, which

is widely accepted as one of the most feasible approaches for

active suspension control, a recursive derivative terminal sliding

mode technique was discussed in this work. The influence of the

ξ
)controller gain κ2 on the performance indexes (Pz̈ s ) and (Pzu 

is shown in Fig. 11.

It can be seen that with the increase of κ2 , there is a minimal

change in the passenger comfort as reflected from Pz̈s
. However,

the road holding capability, i.e., Pzu ξ
is better when κ2 is larger.

This is in accordance with the suspension system, where both 
the objectives of the passenger comfort and road holding cannot 
be simultaneously enhanced. The influence of the gain κ1 on the 
performance indexes is similar to that of κ2 . However, with high 
gain selection, the chattering effect around the sliding surface

increases. Hence, the gains κ1 and κ2 are selected to ensure a 
good compromise between chattering phenomenon, robustness, 
and performances.

IV. CONCLUSION

In this paper, an output feedback active control approach was 
proposed for the suspension control of a nonlinear quarter car 
model. An HGO was designed to estimate the states of the 
nonlinear system and practical stability was established. The 
controller was designed using the recursive derivative NSTSM-

based approach employing a robust STA-based control. To es-

tablish robustness of the controller, performance of the con-

troller was evaluated under effect of uncertainties and sensor 
noise. Based on the performance analysis, it can be deduced 
that the proposed controller enhanced the ride comfort while 
ensuring that the road holding was maintained, thus increasing



the performance of the suspension system. Moreover, an ex-

perimental verification of the proposed approach would be an

interesting future work.

APPENDIX

LIPSCHITZ CONTINUITY FOR ϕa , ϕb AND g(x3 , U)

The nonlinear functions ϕa and ϕb , the states x1 , x2 , and x3

are BIBS stable within the operating limits as per Assumption 1

and, hence, bounded. The Lipschitz continuity of the nonlinear

function ϕa , thus, depends on ϕ, i.e., the suspension nonlinear-

ity. From (3), it can be seen that ϕ is differentiable everywhere

except at x2 = 0. Consequently, the Lipschitz constants for the

nonlinear function ϕa can be computed as discussed in [35].

On a similar analogy, with BIBS stability for the states of the

system (9), the Lipschitz constants for the nonlinear function

ϕb can be easily computed as lp3 and lp4 . The differentiation of

the input nonlinearity g(x3 , U) can then be given [41] as

ġ(x3 , U) =
λ

2
√

MρAp(Ps − sign(U) x3

M A p
)
U

+
λ

2
√

MρAp(Ps − sign(U) x3

M A p
)

sign(U̇).

It can be seen that due to the presence of the sign(U) function,

the above-mentioned expression of g(x3 , U) is not differentiable

when U = 0. Typically, when the magnitude of the supply pres-

sure is equivalent to the pressure difference across the actuator,

i.e., when Ps = x3

M A p
, the Lipschitz property of the nonlinearity

is lost. Based on the differentiability of this nonlinearity [41],

we can further establish that this nonlinearity is differentiable

everywhere except at U = 0. Thus, the local Lipschitz property

of the nonlinearity g(x3 , U) can be computed as lp5 similar to

[27], [41].
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