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This paper investigates the problem of output-feedback adaptive stabilization control design
for non-holonomic chained systems with strong non-linear drifts, including modelled non-
linear dynamics, unmodelled dynamics, and those modelled but with unknown parameters.
An observer and an estimator are introduced for state and parameter estimates, respectively.
By using the integrator backstepping approach and based on the observer and parameter
estimator, a constructive design procedure for output-feedback adaptive stabilization control
is given. It is shown that, under some conditions, the control design ensures the closed-loop
system is globally asymptotically stable when there is no non-linear drift in the first subsystem,
and semiglobally asymptotically stable, otherwise. An example is given to show the

effectiveness of the theory.

1. Introduction

Non-holonomic systems, 1i.e., systems with non-
holonomic or non-integrable constraints are quite often
encountered in practice (Astolfi 1996, Bloch ez al. 1992,
Do and Pan 2002, Ge et al. 2001, Jiang and Nijmeijer
1999 and Kolmanovsky and McClamroch 1995). The
representative examples of such systems are unicycle,
four-wheel car, n-level trailer systems, etc. Therefore, it
is important from the view point of applications to
study non-holonomic control systems. However, to
date, it has not yet been clear what control approaches
are more suitable for studying such systems (Huang
2002), since there exists no smooth (or even
continuous) state-feedback control for such systems
(Bloch et al. 1992 and Jiang and Nijmeijer 1999),
and the well-developed smooth non-linear control
theory and methodology can not be directly used to
such systems. During the past decade, the study of con-
trol problems for such systems has received consider-
able attention, and greatly initiated and accelerated
by the rapid development of other branches of control
theory, such as hybrid or switching technique, adaptive
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scheme, nonsmooth (or discontinuous) control and time-
varying control, etc. (Kolmanovsky and McClamroch
1995).

Astolfi (1996), Bloch et al. (1992), Ge et al. (2001)
and Jiang and Nijmeijer (1999) studied the control
problems of non-holonomic systems with standard
structure (i.e., drift-free non-holonomic systems).
Do and Pan (2002) investigated the adaptive stabiliza-
tion control design problem of non-holonomic systems
with non-linear drifts, and presented a constructive
control design procedure. The work of Do and Pan
(2002) is characterized by full-state feedback and the
overparametrized scheme which will increase the
dynamic order of the resulting adaptive controller
and the closed-loop systems, and so, is undesirable
(Kanellakopoulos 1995). More comments on the work
of Do and Pan (2002) are referred to Ge (2003), who
points out that there is a technical problem inherent in
the input based switching, which may cause unexpected
failure when the scheme is used in practice.

In this paper, the output-feedback adaptive stabiliza-
tion control design of non-holonomic systems with
strong non-linear drifts is considered. To our knowl-
edge, this problem is still open, since in general,
output-feedback-based control design of non-holonomic
systems is more challenging than that based on
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state-feedback, and the conventional observer design
methods in being cannot be directly used for state recon-
struction of the non-holonomic systems. To solve this
problem, in this paper, a new observer design method
is proposed, and based on the observer, the unmeasur-
able states of the system involved are reconstructed.
Unlike Do and Pan (2002), only one estimator is used
to estimate the unknown parameters. This avoids the
undesirable overparametrization estimate. By using
the integrator backstepping approach and based on the
observer and parameter estimator given, a constructive
design procedure of output-feedback adaptive stabiliza-
tion control is presented. It is shown that, under some
conditions, the control designed ensures the closed-
loop system is globally asymptotically stable when
there is no non-linear drift in the first subsystem, and
semiglobally asymptotically stable, otherwise.

This paper is organized as follows. In §2, some
notations and preliminary results are introduced. In
§3, the model and structure of the systems involved
are described, and the problem to be studied is formu-
lated. In §4, an observer and an estimator are proposed
for the reconstruction of the unmeasurable states and
the estimate of unknown parameters, respectively, and
then, a constructive design procedure of output-
feedback control is presented. Under some conditions,
the stability of closed-loop system is proved. Section 5
gives a simulation example to illustrate the theoretical
findings of this paper. Section 6 summarizes the paper.

2. Notations and preliminary results

In the sequel, we will use the following notations. For
a given vector or matrix X, X' denotes its transpose;
|IX|| denotes the Euclidean norm for vectors or the
corresponding induced norm for matrices. For a given
vector x = [x],...,x,,]T, X7 denotes [xl,...,xi]r; X
denotes its estimate associated with an observer, and
X denotes the estimation error, i.e., X =x —Xx. For a
given scalar number x, |x| denotes its absolute value.
I; denotes the identity matrix with i-dimension. C*
denotes the set of all infinitely differentiable functions.
For simplicity of expression, we sometimes drop the
arguments of functions when no confusion is caused.

Definition 1 (Battilotti 2001): Consider system x =
f(t,x) with f(z,0) =0. @ C R" denotes some compact
set including the origin x=0. If for any given initial
value x(0) € , the corresponding solution x(z) of the
system satisfies sup,.q [|x(?)|| < oo, then the system is
said semiglobally stable; if for any given initial value
x(0) € @, the corresponding solution x(z) of the system
satisfies lim;_, o ||x(?)]] =0, then the system is said
semiglobally asymptotically stable. Particularly, when

Q = R", the system is said globally stable and globally
asymptotically stable, respectively.

3. Problem formulation

3.1. System model
Consider the following non-holonomic system with
strong non-linear drifts

X0 = to +fo(») + @o(t, X0, X, o) + ¢ ()9,

X1 = xaup +/1(p, uo) + @1(2, X0, X, o) + @7 (», o),

Xn—1 = Xntto + fu—1 (¥, o) + i1, X0, X, u0) + P (¥,140)0,

).Cn =u “"fn(y, uo) + @n(ta X0, X, U()) + ¢n(ya uO)TGa
]T

¥ =1[x0, X1

>

(M

where [x0, X717 = [x0, x1,. .., x,]7 e R"L, u=
[uo, ul]Tele and ye[R{2 are the system state, control
input and system measurable output, respectively;
fi(h)eR, i=0,1,...,n are the modelled (known)
dynamics, depending on y and uy @i()eER,
i=0,1,...,n are the unmodelled (unknown) dynamics;
0 eR" is unknown time-invariant parameter; ¢;(-)€
R, i=0,1,...,n are known and depend on y and
uy only.

The functions f;, ¢; and ¢iT9, i=0,1,...,n are called
as the non-linear drifts of the system (1). If the non-
linear drifts do not exist, ie., f; =0, ¢; =0 and
#T0=0,i=0,1,...,n, then the system (1) degenerates
to the standard (or normal) form of non-holonomic
systems widely studied in the literature.

Suppose that the system (1) satisfies the following
assumptions, which will be the base of the coming
control design and performance analysis.

Al There is a known constant M >0 such that the
unknown parameter 6 satisfies: ||0] < M.

A2 The non-linear functions fi(-) and ¢;(), i=
0,1,...,n are smooth, and for some smooth
known functions fo(), @) @) Fol) F1():
¢i0(')v ¢il(')v @io(') and ail(’)v i:]w'"n’ the
non-linear functions f;(-) and ¢;(-), i=0,1,...,n
can be expressed as:

fo(») =x0 o3, filysuo) = x5 f10(0) + x1f 1 (v, up),

i=1,...,n (2
B0(¥) = x0B0(»), iy, uo) = xp (1) + X101 (y, o),
i=1,...,n, (3)
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and the non-linecar functions ¢;, i=0,1,....n
satisfy:

leo(t, X0, x, up)| < |x0|@o( 1),

@i, X0, x, uo)| < [x0l ' Bio(») + 1x11@: (1, o),
i=1,...,n

Remark 1: In the full-state feedback case, Assumption
A2 together with (2), (3) and (4) can be generalized to:

i u0) = xg ! F g0, x0) + Y i 33 (X0, X, o),
i=1
i=1,...,n, (%)

n
¢f(xa uo) = xg_l+l¢i0(x07 xl) + Z xi¢i1 (X(), x[i]a UO),
i=1

i=1....n 6)
|@i(t, X0, X, up)| < x0]" 1 @0(x0, x1) + llx7 1811 (0, X(13- o),
i=1,...,n. 7

This, compared with the existing work, includes more
non-linear drifts. For instance, in Do and Pan (2002),
it is implicitly assumed that ¢;, = 0 in the equality (6),
and that the modelled dynamics f; and unmodelled
dynamics ¢;, i=0,1,..., n, are not existent, i.e., f;=0
and ¢; =0,i=1,...,n In Xi et al. (2003), it is assumed
not only that @, =0 in the inequality (7), but also
that the modelled dynamics f; and the dynamics with
unknown parameters ¢! ()0 do not exist, i.e., f;=0 and
#T(y)8 =0, although the gains of wug, xaup, . .., X,_1to
and u on the right hand sides of the system (1) are not
assumed to be ones and allowed to be in some known
finite intervals.

Remark 2: Assumption Al implies that the unknown
parameter 6 belongs to a known hyperball in R" with
center 0 and radius M. Assumption A2 ensures the fea-
sibility of the state coordinates transformation below,
and implies that fy(0,x1) =0, ¢o(0,x;) =0, ¢y(t,0,0,
Ll()) =0 and ﬁ(oa Ll()) = 07 (pi(la 05 07 MO) = 0: ¢i(03 I/l()) =
0,i=1,...,n, that is, the origin (xo=x; =---=
x, = 0) is the equilibrium point of the open-loop system.

3.2. Control objective

The objective of this paper is to design an
output-feedback adaptive stabilization control in the
form:

T=0Ey). 0=«

®)

uo = pno(1.0),  u = wi(x.6. ),

so that the resulting closed-loop system is globally
asymptotically stable when there is no non-linear drift

(e, fo=0, o =0 and ¢/6 = 0) in the first subsystem,
and semiglobally asymptotically stable, otherwise.

4. Output-feedback adaptive stabilization
control design

According to the special structure of the system (1), the
design procedures of u, and u; are usually carried out
separately (Astolfi 1996, Bloch et al. 1992, Do and
Pan 2002, Ge et al. 2001, Jiang and Nijmeijer 1999,
and Kolmanovsky and McClamroch 1995): design uq
to asymptotically stabilize the subsystem x, first, and
then, design u; to stabilize the other subsystems
X1 ~ Xx,. However, as x, asymptotically converges to 0,
X1 ~ x, will become uncontrollable. This will cause dif-
ficulty when designing control ;. An effective method to
deal with this difficulty is to introduce a suitable coordi-
nate transformation (Do and Pan 2002 and Jiang
and Nijmeijer 1999) transforming the original system
into a new one (denoted by xo, x1,. .., xs). In this new
framework, the subsystems x; ~ x, can be stabilized
to zero faster than x, can. Then, we can design u, and
u; separately to realize the asymptotical stabilization
of xo and x; ~ x,, respectively.

4.1. State coordinate transformation

The state coordinate transformation is designed in form
(Do and Pan 2002 and Jiang and Nijmeijer 1999):

X1 Xp—

1
X1 =7 Xn—1 = >
X0 X0

X0 = X0, Xn = Xn-. (9)

Under this transformation, the system (1) becomes

Xo = o +fo + @0 + B¢ 0,

. u n—1
X=— o — x1 (1o + /o + @0 + ¢ 6)
X0 X0
1 .
+X8_1 (fl + ¢ +¢1T9),
. U n—2
Xo=—x— x2(uo + fo + @0 + ¢ 0)
X0 X0
1
+X”72 (ot +¢10). (10)
0

. Up 1
Xn1 = —Xn—— Xn1(lo + 1o + @0 + ¢3 6)
X0 X0

1
+— (fnfl + @n1 +¢Z_19)9
X0

Xn =u +f;1 + o+ ¢1{9
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The transformation (9) defines a diffeomorphism
excepting the origin, and if the state [xo, x1.. ... xn]"
of the system (10) converges to zero, so does the state
[x0, x1, . ..,xn]T of the system (1). Thus, we need only
to consider the control problem of the system (10).

Remark 3: It is worth pointing out that the transforma-
tion (9) has no definition at xo =0. In order to guarantee
the feasibility of the coming control design and perfor-
mance analysis, without loss of generality, we assume
that x¢(0) # 0.

If x0(0) =0, one can first set controls ug,u; in the
following form in an initial period of time, for
instance, [0, 7o] with some small 7, > 0,

uo = —fo(y) + 1+ [xoll@ ()| + Mlgo(p)l, w1 =0. (11)

Then, substituting (11) into the first subsystem of (1),
and by Assumptions A1-A2, we get, in the time interval

[Oa to]a

Xo = —/fo(y) + 1+ [xoll@o( )| + Mlgo(»)l (12)

+ /o) + @o(t, X0, X, 1) + ¢ ()0 = 1.
This together with x((0) =0 implies x¢(zy) > to > 0.
Thus, time ¢, can be regarded as the new initial
time of the control system with initial condition

xo(to) # 0.
Note that the control u, designed in the sequel (of this
paper) is of the form uy = —pBx, for all ¢ > ¢y, where S is

a smooth feedback gain function. Then, one can
conclude that x((7) is not equal to zero for all 1 > ¢.
This is because the closed-loop system is well-defined
in [0,00) and the solution of the first equation of the
closed-loop system can be expressed as

wo(t) = xolts) exp (J (“0 el

fo

+f0 + 509) ds))
which implies

" |uo + ¢o

ds)
Xo

(1B + o + 1 7ol + M1]) ds).
(13)

|xo(H)] > [x0(0)I eXP(—J + /o + dob

fo
t

> |xo(t0)] CXP<—J

)

By the smoothness of B, f, ¢ and ¢, guaranteed by
Assumption A2, it is easy to see that, for any given
finite time 7>, the integral f§0(|,3| + 0+
|fol + M|y ds is finite. This together with (13) implies

that |xo(z)] >0 for all > ¢, although x¢(f) may
converge to zero.

4.2. Observer design

We design the following observer associated with the
system (10)

~  up~ (m—Duy . kg ~ Ji

Xi=—X2— X1+ i =x)+ ==
X0 X0 X0 Xo

& Uy~ (n—=2uy . | koug ~ g

Xo=—X3— X2+ =X+ ==
X0 X0 X0 X0

Py Uy ~ (l’l — i)uo ~ k'L{() ~ f

Xi=— Xt ————Xi+—— (1 — X)) + =
X0 X0 X0 X0

PY kntto ~

Xn = U1 +%(X1 = X1) +fas

(14)

where ki, ..., k, are design parameters to be determined
later.

The estimation error ¥ = y — x satisfies the dynamical
equations

L ug~ (m=Dug~ kuo~ ¢ +¢l6
X1=_X2— X1 — X1+ .
X0 X0 X0 Xo
(n—Dxi
—T(fo+<ﬂo+¢oT@),
L Uy~ (n=2uy~ kg~ @r+¢l0
X2=_X3— X2 — X1 )
X0 X0 X0 Xo
n=2)00+x), .
-2 22 (fo+ w0 + ¢ 0),
X0
L Uy~ (n—iuy~ kg~ i+ ¢]0
Xi=—Xitl————Xi——Xx1+—=—
X0 X0 0
(n— (X + Xi)
— 222 (fo+ 90+ 9 0),
X0
~ ' knug ~
X = — L1+ on + L0
X0

(15)

The differential equations (15) can be rewritten into the
compact form

Uy -
:X—OAx+T+<I>9—(n— DB Fox1 — B2Fo(X + %),
0

(16)
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where Fy = £ + (¢0/x0) + 50T 0, and

[ —ky—n+1 1 0 0 0
—k> —n+2 1 0 0
0 -n+3 1 0
4= ) ) . :
0
—kn_1 : : I
i —k, 0 e 00|
(17)
- -
N o
X %o (1]
(%) ¢2T 0
X0 X0
T = . ®= . Bi=|0],
©On—1 ¢Z_1
Xo Xo L0
_§0n - T
[0 0 - 0 07
0 n-2
B, = (18)
1 0
0 0 0]

About matrix 4 defined by (17), there exists the
following lemma.

Lemma 1: The eigenvalues of the matrix A defined by
(17) can be arbitrarily assigned by a proper selection of
the design parameters ki, ..., k,.

Proof: For the sake of simplicity, we first introduce
some notations p;(m),i =0,1,2,...,m as follows:

po(m)=1,

m—1
pl(m):Zi,
i=1

(m—j)(m—j)---(m—ji),

pitm= >

Jisewsfi €11 sm=1},j1>ja> > i

Pm—1(m)=(m—1),
pm(m):()'

Then, the eigenpolynomial of the matrix A4 is

det(sI —A)=(s+ki+n—1)(s+n—=2)---(s+ 1)s

+ky(s+n—3)---(s+ s
+ k(s 4 Vs + k1 + ky

= 5"+ (po(n — Dk1 + pi(n)s"™!
+ o+ Ppa(n — Dky + pa_i(n))s
+ kapo(n — 2)s"* + kapi(n — 2)s" >
+ ot kopas(n = 2)s
+ o kn2po2)8” 4 knapi (2)s
+ kn—1po(1)s + ky

=s5"+ Pi(n, k“])s”*1 + P>(n, k[z])s”’2
+ P3(n, kpzp)s" ™
+ oo Pi(n, kpy)s" !
+ o Puca(, Kpp1))s + ko, (19)

where Pi(n, kpg) = pi(n) + >, kipij(n —j),i=1,...,n.
From the expressions of P;(:), i = 1,...,n, it can easily
be seen that each coefficient of the eigenpolynomial
(19) can be arbitrarily assigned by a proper selection
of the design parameters ki,..., k,, and so can the
eigenvalues of A. ]

By using Lemma 1, we can choose the design
parameters ki, ..., k, such that all the eigenvalues of 4
have positive real parts, i.e., the matrix —A4 is Hurwitz,
and then there exists a positive definite matrix P
satisfying

ATP+PA=1,. (20)

Remark 4: When the subsystem x, is without non-
linear drifts, that is, its dynamical equation degenerates
to xo = uy, we can take control u, in the form of
uy = —kxo, where k is a positive design parameter to be
specified later, and take a state observer in the form of

S1(y, uo)
8—1

X = —kx + +k(n— DX +ki1Go — X1)

~ o~ n— s U
Xn—1 = _an +fﬂ 1;); ) +k

Xn—1 + k1t — X0)s
Ko = 1+ (3 110) + k(1 — X0). 1)

In this case, the estimation error y satisfies:

X = AX+ Y + 06, (22)
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where
—ki+k(n—1) —k 0 0 - 0 7
—k> kn—=2) —k 0 - 0
0 k(n—=3) —k . 0
Ay =
0
—ky_y : : ok —k
—k, 0 ... 0 0

(23)

Comparing (16) with (22) shows that the latter has no
the non-linear terms —(n — 1)B; Fyx; and —B,Fy(X + X).
This reduces the difficulty to design an output-feedback
adaptive stabilization control. And so, it is easy to
design a globally asymptotical stabilization control.

Similar to matrix A4, we have the following lemma for
matrix Ay.

Lemma 2: The eigenvalues of matrix A, defined by (23)
can be arbitrarily assigned by a proper selection of the
design parameters k and ki, . .., k,.

Proof: The ecigenpolynomial of the matrix A is

det(sl —Ap)=(s+ ki —k(n—1D)s—k(n—2))---(s—k)s
+ (=1’ kka(s — k(n = 3)) -+ (s — k)s
o (D) TR k(s — K)s
+ (= 1)K ks + (=1,
="+ (po(n — Dky —kpi(n))s"~" + -+

+ (Pu—a(n— D)(=k)"" 2k + (k)" pu_i(n))s

+ (= 1’kkypo(n — 2)s" 2

+ (=D k(—k)kapr (n —2)5" 7 + -

+ (=D k(=K kapu-a(n = 2)s

+ o (=), apo(2)s7

— (=" K" kyapi(2)s

+ (= 1)'K" P kye1po(Ds + (1) k" ke
="+ Q1(n ke kpp)s™™" + Oa(n, ke, kipy)s™™2

+03(n. ke, kps)s™™

+ -+ Qiln, k, k)"

oo Quot (ke ks + (= 1)k,

24)

where  Qi(n, k. ki) = (—k)' pi(n) + (k)" > i1 Piej X
(n—)pk;,i=1,...,n. Notice that Q;(n, —1, k)=
Pi(n,kyy),i=1,...,n. Then from the expressions of
0i(),i=1,...,n, it is easy to see that for any fixed k,

each coefficient of the eigenpolynomial (24) can be
arbitrarily assigned by a proper selection of the
design parameters k, ..., k,, and so can the eigenvalues
of Ak. ]

4.3. Control design

Due to the existence of the non-linear drifts in the
dynamical equation of x(, a linear feedback control
with constant feedback in the form of wy= —kxg
(where k is a constant) is not adequate. The reason is
that the constant k£ may not be large enough to dominate
the uncontrolled non-linear terms, as will be clear later.
Therefore, in this paper, we will design the control
in the form

uo = —Bo( v, B)xo, (25)

where B is a positive smooth nonlinear function to be
specified later.
It follows from (10), (14), (16) and (25) that

¥ =—BoAX+ Y+ PO —(n—1)
x FoBix1 — FoBa(X + %),
o (n— 1)@0)(1)

)'(1:—,35(\—,37(24‘( —
oA 10 xo! X0

—1 T
N
X0 X0

(26)

X = —Boxz +(n—2)Box> — kaBoxi + Fo,

5(\11—1 = _ﬂ();(\n + ﬂOYn—l - kﬂ—l:BO)?l + F_1,
’)Zn =uy — knﬂo)?l + Fy,

where

_ S -
=t xo xe

1 i .
x1(uo +fo), FIZ% 2<i<n.

—i°

It is easy to see that when ¥ = 0, the system (26) has
the lower-triangular structure, and so, the integrator
backstepping approach can be used to design an
output-feedback adaptive stabilization control.

We start the design procedure with the nota-
tions ap =0, z,4,1 =0, and the following coordinate
transformations

{ZOZXO, Z1=x1, z2=x2 —1(x0,x1.9), @7

Zi:)ii_aifl(x(bxlo)iz:'"721'7136)9 i:39”'9n:



480 Y.-G. Liu and J.-F. Zhang

where oy,...,a,_;, called as virtual controls, are
smooth functions to be specified later; u =
—Boon(X0s X15 X2s- - -» Xu»0) 18 the actual control to be
specified later.

Under the new variable vector z, the system (26) is
transformed into

X=—BoAX+Y +®6—(n—1)FyBiz1 — FoBa(X+ %),
z1=—PBy(z2 +a1)+,80N15([2]+®1 +F1 +‘111T‘9’

: ~ —  Jdoy~
Zy=—Py(z3+@2) + By Na Xz +O2 + Fa _a_§16+ wl,

3
“’9‘9+ng

zi=—Po(zis1 + )+ ByNiXpz + O+ Fi —

] - —  Oay_ =~
Zn=u1+BoNu X+ On+Fn— ;»9\]94_\1];0?

(28)
where
aaz l 80‘1 1
Ny =[0, =1], Ni=|—-ki+
: [ Z Bx, a1
i=2,....nm
—1 oo oo
0 — (fll (n )900)(1’ 0=, g
X0 X0 dxo ax1
i=2,....m
—1 oot oo
W — <Ii1511 (n )X1¢0, p— X ! gy — iy,
X0 X0 9xo X
i=2,....m;

Fi=F, Fi=F+n—10)ByX —

o
5 (o)
0

8a,
8 LBoxa—F1)
— ootj_ 1 N o~
Z (BoXis1 —(n=)Bo%; = F),
= X

i:2, .

For the simplicity of notations, let Wy = ¢y, @y =

Lemma 3: There are non-negative smooth functions
;) i=0,1,...,n such that

1©0] < x01O0(x0- x1)» 1041 = || [x0. x11©i(x0. X1, 10),
i=1,2,....n

Proof: By Assumption A2, we have

1©0] = I@ol < 1%01©0(x0» x1),

where

O = {wo(1)}

X0=Xo
xi=x""x

is a non-negative smooth function. For i=1, by
Assumption A2, we have

1 (n—Deoxi

1O = | =5
Xo X0
|X0| 1o + X119
|xol"™"!
(n — D)xol®y x1
X0

< llxo, x111©1(x0, x1. o).
where
0 = {@10 + @11 + (n — Dy } Yo=10

n—1

X=Xy X1

is a non-negative smooth function. For i>2, by
Assumption A2 and the results for cases i = 0,1, we
have

daj oo
axo s X1

oo; 1 2 oo; 1 2
< leol 1+( 1) + 1O1]| 1+< l)
dxo ax1
305:’—1)2
+ -
<3Xo

— oo 1 2
+ X0, x111O1,/1+ ( al )
X1

Ol = ‘—

< %0199

< Ilxo» x1110:(x0» x1, o),

where ©; = é)m/ 1 +(aa,-,1/a;<0)2+ (:)1,/ 1 +(8a,-,1/8)(1)2
O

is a non-negative smooth function.

We now turn to the constructive design procedure of
the controls.

Step 0: This step can be regarded as the initial
assignation of the entire design procedure. At this step,
we introduce a Lyapunov function for the estimation
error

Vo = 80X PX,

where &y is a positive design parameter to be spe-
cified later, P is the positive definite solution of the
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Riccati equation (20). Then, taking time-derivation of through the estimation

V, along the solution of (16) and using (25), we have

Vo = =8By XI” + 280X" PY
+ 280X PO — 2(n — 1)8o X’ PFyBz
— 230)( PF()BQX — 250)( PF()BzX. (29)

By Assumption A2 and the expression of Y in (18),
we have

17117 < 2Xx3701(xos 1) + 20 T2(x0» X1 40),

where

n
and Y, = E 7
Xo=x0 i—1 Xo=xo0

xi=xg"' xi=xg"x

n
Ti=) 7
i=1

are non-negative smooth functions. Then, for the second
term on the right-hand side of (29), by completing the
square we have

280X PY = 8oeg | XII* + 80e > YT PPY — 80l || X — &5 > PY|I?
< SogdlIXII* — Aor + 2808y 11 PII?
x (x5 T1(x0. x1) + x1 T2(x0- X1, 10)). (30)

where Ag; = 80edl|X — ey >PY|?, and e, is a positive
design parameter to be specified later.

From Assumption A2 and the expression of ® of (18)
it follows that

(v, up) = ®1(20,21)z0 + P2(z0, 21, Uo)z1, (31)

where ®((-) and ®,(-) are known smooth functions
and available for feedback design. Then, for the 3rd
term on the right-hand side of (29), by using Assumption
Al we have

280%" PO = 8oedl| X1 + 8oy 20" ©T PPDE
— SoslIX — &5 POOII?
< SogglIXI° — Soeg X — &5 ° POO|
+ 250852M2(||61 P2 + | @ P||2z%). (32)

The non-positive term —8e2||X — &5 > PPH||* is preserved
to tackle the 4th term on the right-hand side of (29)

— 8082||% — £ P®O|” —260(n — 1)X" PBy Foz
= —dogy|| X — SOZPCDQH —280(n — DZTPB\(fy + & 0)1
—280(n— D)7TPB 222,
X0

— 5027 — g2 20 7 =T 2
= =8| X — &g " PPO+ gy~ (n — 1)PBi(f + ¢y 0)z1
_ — —T
+ 808y 2(n — 1)* BT PPB (fy + ¢, 0)*23
— 28025 2(n — )BT PPOO(fy + fy 0)1
—280(n — )57 PB, 22,
X0
< —Ag + 8gg*(n — )BT PP
N _
x (0= 1)B1 Fo(Fo + 285 021 — 27,®8)
+260e52(n — 1)BT PP, ((n —DBigpz1 — <I>>521
+ 8ogy “n(n — )M’ B] PPB\ ||y |°z7
_ —T —T
+ 28085 2(n — DM*(|®, P|I*23 + |, P|I*23)
+ 8oeg I XII> + (n — 1)*80[| PB: > @521, 33)
where L,
Agy = 8ogglIX — &2 PP + £5°(n — DPBI(f o + ¢y 0)21 1,
which is non-negative.

For the last term on the right-hand side of (29), by
completing the square we obtain the estimation

—280X" PFoBaX < 8oeg I XII” + Sogq *I1PIP 1 Fo 111 B2 11
< 8oeg | XII* + 2805 I PII*

n—1

- —T
X <<f0+¢0 ) +§00) Z(Vl—l)
_ 22 —
= Soeg I %11 + 2805 211 P12
— T \2 _
X <<f0+¢09) +</’(2))
n—1
X Z(n_i)2(2i+05i—1)2
< 8oeg %N + 28085 211 PII
X (2./70+2M2||$o||2+ @5)

n—1

X Z(n — i) zi(zi + 20t_1)
P

— _,2 e f—
+ 280521 PIP (275 + 202801 + 73

n—2
x Y (n—iye;. (34)
i=1



482 Y.-G. Liu and J.-F. Zhang

Substituting (32)—(34) into (29) leads to
Vo < —80X" AoX— Ag+8 W

+) 20+ 268085 (n— 1)B] PPf,,
i=0

x ((n=1)B1gg 21 — 4" )b, (33)
where
Ao = Byl — 4ell, — 2PFyBy; (36)
Ao = Ao + Ap; (37)

_ -2 — _
W= Mm2%yﬁmwwW+%)
X Z(n — i)Yo (38)
i=1
Qo = 28025 2| PII*T120 + 218025 2M> | ®] P|*zo, (39)
Q1 = 280e5 | P Taz1 + (n — 1)*80e5 > | PB1 25521
+80e7> ((n —1)BTPP
— — _TA
X ((” = DB fo(fo+2¢,0)z1
+20M2 ([, PI>+n(n— )M B] PPB 6y )1,
(40)

—2f,®9)

_ =2 — _
Qi =280, > | PIIP(2f o + 2M Iy I + @)z + 211 ),
i=2,....n. (A1)

This completes Step 0.

Step 1: Take V|, =V, + 8,676 + z? as the Lyapunov
function of this step, where §; is a positive design
parameter to be determined later, and (1/8;) is called
as the gain constant of the adaptive law. Then, by (28)
we have

Vi=Vo+2z <—,30(Zz +a1)+ BoNi X+ O1 + F +‘111T9)
25,676
<—80X" AoX— Ao+ W + i:ziQi
i=0
+28052(n— 1)BY PPf, ((n —1D)Bige 1 — @)521
42z (—ﬂo(zz +ap)+F +\1/1T§>

+221 By N1 X2 + 2210 +22, W16 —26,676. (42)

Choose the smooth virtual control as follows:

=2
1 (= ~ z1 n®jz; &z O
= |F+vio+—-4+—— 42 =
o =ﬁ0(1+ P45+ +75 +5
21N1N1

Bo ( — 1)z
e | IR
(27)

where ¢ € (0, 1) and &, € (0, 0o0) are design parameters to
be specified later. Notice that

221 BoN1 %2 = S0Bot X ll> + Body e 2zi Ni N

~ 1 2
— Bodoet | Xz — 85 &7 N{ 21

5

and by Lemma 3, that

22,0 < 20z1| [z0. 21101 = £3(22 + 22) + 67260 22

— &5 (llz0, 211l — €570 |21|) :
Then from (42) it follows that
Vi < —80X A% — Al + 80 W — 21 + 20(Qo + £320)

+ ZZlQl -

_mﬁﬂé_ig)—mﬂm, (44)

(=12 — (n— &0, 2

where Aj = Ag — Bye3l, and

~ 1 _ 2
Al = Ag+ /30508% “)([2] — 30 181 2N1T21 ”
-7~ 2
+ &3 (Ilz0, 211l — &52@11211) ",
Sy = WT + 8pe52(n — l)B]TPP((n —DBigpz1 — ¢T)f0.

This completes Step 1.

Stepi i=2,...,
we have

n—1): Assume at Step i— 1. Then,

i-1
Viei="Vo +519T9+ZZ_,2,
=

i1

Vit <=80X" Aio1X— Aot +8 W — ZZ,Z +20(Qo +8§ZO)
=

i1

n
2 . _
+2_50i =5 (1= Dz =) (1=))zf —(n=Dgy
J=i j=2

i—1 . i—1
- =~ 1
X Z 0,z —25,0" (9—5 E ] Zij) —2Byzi-1zi
= =

i—1 j—1 i—1 .
) - BN
+2e5 012102k | — E z; M6
j=2 k=1 j=2
i—1

1 2 T T
5, 4 zzj\/ 1+ M;Mj'S;S;
]=

1 i—1 j—1
2512212 (M MTS,ST+ MM S;ST )
J
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where A, = A4,

A, Si=v,j=2,...,i—1, M=
2(datj-1/00), j =2,

.,i—1, and

i1 2

~ -1 _-2 T
X —8'e? Y Nz

J=1

i1 2
+ 8%(”[20,21]” - 2822®i|2i|) -

i=1

A1 = Ao+ Bydoe]

Choose V; = V;_; +z§ as the Lyapunov function for
this step. Then, by (28) we have

Vi=Vi1+ 2Zi< — Bo(zix1 + @) + BoNiXpy + Fi

Ba, 1

+0;— = 9+wT9>

= (SOX A IX A1+ 6 W

—Zz —I—zo 0+5220 —i—Zz,Q,
. _ =2
- gZ(" O
j=2 J=1
o~ 1T
— 28,6 H—EZZ_,«S/ — 2Byzi-1Zi

J=1
i—1 j—1 i—1

Ojlz|Oxlzil — Yz M8
j=2

(n — 1)z

Jj=2 k=1
1 i—1
— 5 2 Gy 1+ MM]S;S
1=
1 i—1 j—1
—55 2.7 ( MTSST + MMT'S ST)
Vi3 k=2
+ 2By NiXpyzi

+ 22i<—ﬂo(2i+1 +a)+Fi+ 0+ ‘I’,Té\)

Natry =~
—z %9 12,979 (45)

Set S; =W/ and M, = 2(da;i_1/3), and choose the ith
smooth virtual control as

. T
N, i
0[,':{ Z,]—‘,-2 <NZ,+22NZ/>

=1

1 Q, I/l®~Z,'
Fi+9'o i
+ 0( + + 3 + 5 + 25% )

Z 1
! — )+ =y/1+MMTS;ST
Bob ((n l)+2 + ;SiS;

—1
ZZZ (MiM] SiST + MMl sis] )) } . (46)
fe=2 @7

ba

Notice that

i—1

~nf~ 1 ~
— 28,67 (9 -3 > z_,SjT> +22:5,6

J=1

~nf~ 1 /
— T T
j:

. 2

i—1

~ -1_.-2 T

X2 — 8y & ZN,- zj
=

—Boboe] —2ByNiXi2)2

2

i
= —Bodoet | X — 8 61> D N[z

J=1

i1 r
+ /303618;2N[ (N,'Z,‘ + 2ZN/Zj> Zi,

J=1

and

i—1 2
—e%(ﬂ[z(),zl]n — Zs;2®f|z,|> +22,0;

=

i~1 2
= _8§<||[20=21]|| - 282_2®j|2j|> +2|zilll(z0, 20)11©;

=1

. 2
1
= —eé(n[zO,am - Ze;2®/|zf|>
o 2
+2SZZZ®|Z,|® |z, 4 6520 2.
J=1

Then, we have

i
Vi< —80X AiX — Ai+ 8gW — ZZIZ +20(Qo + #320)
j=1

+ Z z;Q; + l)z%

Jj=i+1

i
. — =2
—5—2(” =)z —(1=Dey* ) 67
V=2 j=1
~f~ 1 i
- 2519T (9 - EZZ]SJT) - 2,3021'2,‘+1

j=1
i—1 B B i Y
> Olz|Olzil = Y ;M0
Jj=2 k=1 Jj=2
1 . 2 T T
~5, 2V T MMES;S,

i

+2£52

~

1 i Jj—1
(MM SeST+ MM s;sT), @7)
=3 k=

where A; = A; and A; _Ao—i—,Bo(Soe 1 X2

Z, 1 NTZj”z + 82(“[20» o]l = Zj 1 (® |Z]|)/(82))
This completes Step i.

(1 /80€)
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Step n: It is easy to see that the results of Step 1 hold
true also for i=n with u; = —py,. So, by (46) we
obtain the expression of «,, and then, design the actual
control as follows:

ul(XO) XlaX\Za L 75(\7176) = _ﬂOaH(XOa XlaX\Za L 75(\7176)'
(48)

Substituting (48) into (47) and noticing i = in this case,

n
Vn =< _(SOXTAn%_ An +80 W — 2212 +ZO(Q0 +8%ZO)
=1

1
- (n—1)z$
1 n n
——Z(n —j)z} —28,0" 9--2;,-5} Zz,Me
Lj=1 Jj=2
21+ M;MTS;ST

25122 Z( MM SeS]+Mm[S;ST ). (49)

k=

where 2377, S 0)1z)1Okzk| < (n — 1) P (:)lzz]2 has
been used.
This completes Step n.

The steps above are focused on the constructive
design of the control u; and with the hypothesis that
the control uy and adaptive law of 0 are known. The fol-
lowing step will be denoted to the design of the control
uy and adaptive law of 0.

Step n+1: Take V = V, + z3 as the Lyapunov function
of the whole design procedure. Then, we have

V=V, +2uo+fo + O + Wl 6)z

~T  ~ - 1
< —80XTAyX — A+ 8o W — E ij—a(li— 1)2%
=1
2 )
5 2=

—2519T(9——Zz, ) szMe
j=0

/1 +MMTSST

1 n ]71

2 T T T T
_2_51];2/‘ ;(M./'Mj SkSi + My M| S;S; )

— 1
+ 2(up + Fo)zo — 5 (n— 1)z, (50)
|

where So = \Ilo , and = fo + 2009 + \Ilort§+
Qo + €320) + 5 (n — 1)zo.
Choose the control uy and the adaptive law of )

as follows, respectively:

uo = —Bo(,8)zo, (51)

Py 1 &

0=—Y zS, 52
51; S, (52)

where By = Fo +/2k? + 2F, + I PB:[)/(1 — eD)(g +
M1+ [[¢glI%). Clearly, By is smooth and satisfies

Bo(,60) > k + ([Fol + Fo) > k > 0,
Bo(1.8) —Fo > N2k +1> 0, (53)
(1 —)Bo(1,6) — 2| FoPBy|| > (1 — e)k > 0.

Notice that
_im.i
=2 T
=3 ZZIZZ,IIIMII 18711+ 5 Zz 1Ml 1ST

i=2 j=0

+5 Z Z |zizil M 1S |

12/ i+1

=—ZZ zizi | IM ST+ — Zz 1M 1S]

1210

T
|ZiZj| I MGILILSS I
=0

n i—

1 1
+5 Z lzizj | M1 11ST |
=3 j=2

Si,l (};( (117 + )

21+ (1M 1T

+ Zl<4 (I8 18T 1)*+ ))

n—1

1 1 2 .
— E(n — 1)z +3, (n—1)z2 +8—12(n —i)z7?

i=2

n

1
+ Ezz;,m + M;MTS;ST

=2
i—1
4L Xn:zf Z(M MTS;ST + MMT'S; ST) (54)
28143 =2



Output feedback control for non-holonomic systems 485

Then, substituting (51)—(54) into (50) leads to

V< =80%" AX — B+ 8 = 2
j=1

— 2|PB —
_2(\/2k2+2F§+ 1”_ 2| <¢0+M 1+||¢o||2>)zg.

el
(55)

4.4. Design parameters choice

Before giving the selection of the design parameters, we
first present the following lemma.

Lemma 4:  For the function W defined by (38), there are
positive smooth functions W; (20, zZp—2, 0,%1,%,%3,84),
i=0,1,2,...,n—2, which is decreasing with respect to
& and &, and increasing with respect to & and &,
such that

n—2
W < Z Wi(20, Zin—21, 0, k. €0, 80, (£080) )22 (56)
=0

Proof: This lemma is proven by induction. By
Assumption A2 and the expressions of Fj, ¥, and O,
the «; given by (43) satisfies:

2 _ - ~ 12
o1 | < @i10(20, 21,0, k, €0, 80, (€080) ™ )z

+@11(20. 21, 6, k. £, 80, (8080) ")z,

where  @jo(z0, 21,6, &1,5,&3,&4) and  @(z0, 21,6, &,
&,&,&,) are positive smooth functions decreasing
with respect to & and &, and increasing with respect
to & and &,.

Suppose that for all k=1,...,i—1, there exist
positive smooth functions (2o, zjx, 0, &1, &>, &3, &4),
j=0,1,...,k, decreasing with respect to & and &,
and increasing with respect to &; and &, such that

k
— - —1
|Olk|252 (2o, z[i» 05 ke, €0, 80, (€060) )Zf-
j=0

Then, for «;,i=2,...,n—2, by (46), Assumption A2
and the expressions of F;, Q; and W, it is easy _to find
i+1 positive smooth functions (2o, 2, 0,41, &,
&,&4),j=0,...,1, decreasing with respect to & and &,
and increasing with respect to &; and &, such that

i
lo;|* < Z @;i(zo, z11, 0, k, €9, 80, (8050)_1)212.
Jj=0

Thus, from the definition (38) of W, (56) follows
for some positive smooth functions Wi(zo, zj—2, 6, &,
£,83,84), 1=0,1,...,n—2, decreasing with respect to
& and &,, and increasing with respect to & and &;. [

Let

Bo =22k +2—80Wo, By=1—8Wi,...,
Bir=1=8Wy2, Bo_i=B,=1.
Then, by (55) we have
. n —
V = _‘SOYTAHX - An - Z:Bzzzz (57)
i=0

From the design procedure above, we can see that for
given initial values, the key is how to choose the design
parameters &, &1, &, k, 8o and &; such that

_ _ (58)
‘31 zb] >O,...,/3”_2 an_z > 0,
where b, by, by, . ..,b,_» are some positive constants.
The following lemma gives the range and the selecting
methods of the design parameters.

Lemma 5: For given initial values, there exist always the
design parameters g, €\, &, k, 8y and &, such that the
inequalities (58) hold for some positive constants b, by,
bla LR bn—2'

Proof: Define V, = 8X" PX + 8676+ Y7 ,z2. For
given initial values, V() is finite. Then, for any given
e1€(0,1), &5 >0and 8§ > 0, let

~ o~ V.(t,
szlz{e: 1G—ol <1+ ‘;(0)},
1

Q= {[ZO,Z[E]]T Y g1+ Va(zo)}
i=0

and fori=0,1,...,n—2,

W (k. €0, 80, (£080) ")

= sup Wiz, 7u20.k. 80,80, (e080) ). (59)
e

20 2y )" € 2

Then,  Wo(k.0.8.(e080) "), Wi(k. &0, 8. (e080) ). ...
Wn_g(k,eo,Sg,(egSo)_l) are finite and positive, and by
Lemma 4, are decreasing with respect to k and &y, and
increasing with respect to 8, and (g98) .
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Let

O<50:£al

1 1
<-min{l, — y eees == s
2 wi(1,1,0.5,1) W,_(1,1,0.5,1)

and

k>max{1 4¢3 WO(1,1,0.5,1)_3}

1—¢}’ 42
Then we have

Wik, €0, 80, (8080) ") < Wi(1,1,0.5, 1),
i=0,1,...,n—2.

The design parameters specified above ensure the
inequalities (58) hold at initial time ¢, with
b=by=b =-=b, =1

We can prove that (58) holds for any 7> #,
since otherwise, by the continuity of ¥ there would
be two time instances ¢; and ¢, satisfying #; >t > 1
such that

V<0 Vie[to,n] and V >0, Vie(n,n]. (60)
The first inequality of (60) implies that for all €[z, 1],
V(t) < V(ty), which gives

ZZ%(’)SVa(fo) and 00| < @7
i=0 1

(61)

While the second inequality of (60), together with the
parameter design procedure stated above, leads to

n

either sz(l) > 14 V,(ty) or
i=0

~ V(1
180l > 1+ 5(1 o)

Vte(t, tr).

This together with (61) implies that either [zo,z[z]]T or
6 is discontinuous at ¢;. This contradicts the continuity

of [z0.z{]" and @ . Thus, (58) holds for all 1 > 1o.  [J

4.5. Main results

The following theorem summarizes the main results of
the paper.

Vtelty, ).

Theorem 1: Consider  system (1). Suppose  that
Assumptions Al and A2 hold. If the design parameters
£0, €1, &2, k, 8y and 8, are chAosen such that (58) is satisfied,
then, (1) the estimation 6 given by (52) is uniformly
bounded; (ii) the output-feedback adaptive stabilization
controls (uy, uy) given by (51), (48), (52) and (14) render
the closed-loop system semiglobally asymptotically stable.

Proof: Under the controls (i, u;) given by (51), (48),
(52) and (14), we have

n
V< =8uX AuX— Y Bizi, Y=t (62)
i=0

This together with 8, ; = B, = 1 and (58) gives 8,676 <
V(ty) < oo,Vt > ty, and together with Assumption Al,
gives

sup [|8]] < oo. (63)
=0
By (62) we have
n
sup |||l < oo, supZz? < 00, (64)

=0 =0 75,

and

00 n ¢}
Jo IX11* dt < o0, ZJO Zdt < o0. (65)
i=0

From (28), (63) and (64) it follows that the first deriva-
tives of ¥ and z; (i=0, 1, ...,n) are uniformly bounded.
This together with Barbilat’s Lemma (Khalil, 2002)
implies that ¥ and z; (i=0,1,...,n) are uniformly
continuous, and further, together with (65), implies that

lim ¥ =0,

limz =0, Vi=0,1,...,n.
1—00 1—00
So, the closed-loop system is semiglobally asymptoti-
cally stable. ]

If subsystem x, of (1) is without any nonlinear drifts,
ie.,fo=0,00=0,4l60=0,then, W =0 (so are W; =0,
i=0,1,...,n), and the choice of design parameters is
independent of the initial values. Thus, the closed-
loop system is globally asymptotically stable. This is
summarized by the following theorem.

Theorem 2: Consider the system (1), whose subsystem x
is without any nonlinear drifts. Suppose that Assumptions
Al and A2 are satisfied. Then, the output-feedback
adaptive stabilization controls (ug, uy) given by (51), (48),
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(52) and (14) render the closed-loop system globally
asymptotically stable.

5. Example

Consider the third-order non-holonomic system

X0 = U,

. 1

X1 = UpX2 —i—zx%—i-ex], (66)
Xy = up,

where 6 is the unknown constant parameter, and
assumed to be bounded by 1, i.e. |6] < 1. The purpose
is to design uo and u; based on only y = [x¢, x;]” such
that [xo(¢), x1 (1), x2(£)]7 — oo as t — oo.

If x0(0) = 0, controls uy and u; are set as in Remark 3
in interval [0, 7)) such that x((z) # 0, then we can
adopt the controls developed below. Therefore,
without loss of generality, we assume that xy(0) # 0.
Let xo = x0, x1 = (x1/X0), x2 = x2. Then by (66), we

have
Xo = U,
. Ugp 1 P
X1 Z*(Xz—X1)+§X0X1+9X1, (67)
X0
X2 = uj,

Design observer to reconstruct x; and x, of system (66)
as follows:

A~

Uy ~  ~ 1 kiug ~
X =—0— X1)+EXOX? +—(1—X1). ki=-4,
X0 i X0
Py u ~
X2=u1+7)2<0(X1—X1), ko = 2.
0

Then, the estimation error ¥ =[Xi — X1, %2 — X2]°

satisfies the equation

- —ky—2+1 1]~ X1
x= X0|: —k> O}HQ[O]'

In this case, we have

=[5 1]

Solving the matrix equation A7 P+ PA = I,, we obtain

p_ |:0.5000

0.5000
0.5000

0.1000 |

The ecigenvalues of P are 0.1910, 1.3090, and thus
1P|l = 1.3090. R

Define 20 = X0,Z1 = X1,23 = X0 — Ol]()((),A)(l,Q) and let
Uy = Ol()(y, 9)7 uy = _IBO(ya 9)(12()(09 Xla/)Zan)n where thi
expressions of oo, oy, By, 2 and the adaptive law of 0
are as follows, respectively:

with B, = Fo +/2k> + 2F,,

&g 1
F 2
o= (2+ 251)20,

ag = —Po(y, 0)z0,

o) = —z] +23081
0+0.5 + 1.60480e7 > M? + = ! +‘8—3+L
,80 XOXI 0¢€( 2 2 28] k]
o) = —Zj +—2(N222 + 2N121)T

2828

+ﬂl (Fo+ w2+ )+2;081,/1+M2S2

X ~2”%
0 2 a
My=2Z = g g, =
o Po dx

The design constants are chosen as k=4,8 =1,
81 =1,60 =04, =04, &, = 0.4, M = 1 and the initial
conditions are simply set to xo(0)=2, x(0)=
0.8, x2(0) = 0, x1(0) = 0.3, %2(0) = 1.5286,0(0) =

The simulation results are shown in figures 1-4 given
below. In particular, figure 1 is about system states;
figure 2 is about observer states; figure 3 is about para-
meter estimator state; figure 4 is about control inputs u
(solid) and u; (dashdotted). From figure 1 we can see all
the closed-loop system states are regulated to zero.

6. Conclusion

This paper investigates the problem of output-
feedback adaptive stabilization control design for non-
holonomic chained systems with strong non-linear
drifts, including modelled non-linear dynamics, unmo-
delled dynamics, and those modelled but with unknown
parameters. A new observer design method is proposed,
and based on the observer, the unmeasurable states of
the system involved are reconstructed. Unlike Do and
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Figure 1. System states: ——, xo; ———, x; and — -— -—, x,.
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Figure 2. Observer states: ——, ¥}; and — -— -—, X
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Figure 4. Control inputs: ——, ug and — -— - —, u;.
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Pan (2002), only one estimator is used to estimate
the unknown parameters. This avoids the undesirable
overparametrization estimate. By using the integrator
backstepping approach and based on the observer and
parameter estimator given, a constructive design proce-
dure of output-feedback adaptive stabilization control
is presented. It is shown that, under some conditions,
the control designed ensures the closed-loop system
is globally asymptotically stable when there is no non-
linear drift in the first subsystem, and semiglobally
asymptotically stable, otherwise.
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