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Output Feedback Control of a Class of Nonlinear Systems:
A Nonseparation Principle Paradigm

Chunjiang Qian and Wei Lin

Abstract—This note considers the problem of global stabilization by
output feedback, for a family of nonlinear systems that are dominated
by a triangular system satisfying linear growth condition. The problem
has remained unsolved due to the violation of the commonly assumed
conditions in the literature. Using a feedback domination design method
which is not based on the separation principle, we explicitly construct
a linear output compensator making the closed-loop system globally
exponentially stable.

Index Terms—Global robust stabilization, linear growth condition, non-
linear systems, nonseparation principle design, output feedback.

I. INTRODUCTION AND DISCUSSION

One of the important problems in the field of nonlinear control is
global stabilization by output feedback. Unlike in the case of linear
systems, global stabilizability by state feedback plus observability do
not imply global stabilizability by output feedback, and therefore, the
so-calledseparation principleusually does not hold for nonlinear sys-
tems. Perhaps for this reason, the problem is exceptionally challenging
and much more difficult than the global stabilization by state feedback.
Over the years, several papers have investigated global stabilization of
nonlinear systems using output feedback and obtained some interesting
results. For example, for a class of detectable bilinear systems [4] or
affine and nonaffine systems withstable-free dynamics[9], [10], global
stabilization via output feedback was proved to be solvable using the
input saturation technique [9], [10]. In [7], a necessary and sufficient
condition was given for a nonlinear system to be equivalent to an ob-
servable linear system perturbed by a vector field that depends only on
the output and input of the system. As a consequence, global stabiliza-
tion by output feedback is achievable for a class of nonlinear systems
that are diffeomorphic to a system in the nonlinear observer form [7],
[8], and [15].

In [12], counterexamples were given indicating that global stabi-
lization of minimum-phase nonlinear systems via output feedback is
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usually impossible, without introducing extra growth conditions on the
unmeasurable states of the system. Since then, much subsequent re-
search work has been focused on the output feedback stabilization of
nonlinear systems under variousstructural or growth conditions. One
of the common assumptions is that nonlinear systems should be in an
output feedback form [11] or a triangular form with certain growth con-
ditions [5], [3], [14], [1], [13]. The other condition is that the system
can nonlinearly depend on the output of the system but islinear in
the unmeasurable states[1]. The latter was relaxed recently in [13] by
only imposing the global Lipschitz-like condition on the unmeasurable
states.

In this note, we consider a class of single-input–single-output (SISO)
time-varying systems

_x1 =x2 + �1(t; x; u)

_x2 =x3 + �2(t; x; u)

...

_xn =u+ �n(t; x; u)

y =x1 (1.1)

wherex = (x1; . . . ; xn)
T 2 IRn, u 2 IR andy 2 IR are the system

state, input, and output, respectively. The mappings�i: IR�IRn�IR!
IR, i = 1; . . . ; n, arecontinuousand satisfy the following condition.

Assumption 1.1:For i = 1; . . . ; n, there is a constantc � 0 such
that

j�i(t; x; u)j � c(jx1j+ � � �+ jxij): (1.2)

Under this hypothesis, it has been shown in [14] that global exponen-
tial stabilization of nonlinear systems (1.1) is possible usinglinear state
feedback. The objective of this note is to prove that the same growth
condition, namely Assumption 1.1, guarantees the existence of alinear
outputdynamic compensator

_� =M� +Ny; M 2 IRn�n; N 2 IRn

u =K�; K 2 IR1�n (1.3)

such that the closed-loop system (1.1)–(1.3) is globally exponentially
stable (GES) at the equilibrium(x; �) = (0; 0).

It must be pointed out that systems (1.1) satisfying Assumption 1.1
represent an important class of nonlinear systems that cannot be dealt
with by existing output feedback control schemes such as those re-
ported in [14], [11], [1], and [13]. To make this point clearer, in what
follows we examine three seemingly simple but nontrivial examples.
The first example is a planar system of the form

_x1 =x2 +
ln(1 + u2x21x

2

2)

1 + u2x2
2

_x2 =u+ x2(1� cos(x2u))

y =x1 (1.4)

which obviously satisfies Assumption 1.1. However, it is not in an
output feedback form (see, e.g., [11]) nor satisfies the structural or
growth conditions in [14], [1], and [13]. Therefore, global stabiliza-
tion of the planar system (1.4) by output feedback appears to be open
and unsolvable by existing design methods. Notably, due to a non-
triangular structure, uniformly observability of nontriangular systems
like (1.4) cannot be guaranteed in general. In particular, the lack of a
lower-triangular structure makes the conventional observer-controller
based output feedback design not feasible.
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The next example illustrates that a nonlinear system (1.1) with
Assumption 1.1, e.g.,

_x1 =x2

_x2 =u+ x2 sinx2

y =x1 (1.5)

may fail to satisfy the global Lipschitz-like condition given in [13].
Consequently, global stabilization of (1.5) via output feedback cannot
be solved by the approach of [13]. In fact, it is easy to verify that
x2 sinx2 is not global Lipschitzwith respect to the unmeasurable state
x2, although Assumption 1.1 holds. For this type of nonlinear systems,
most of the existing results on output feedback stabilization are not ap-
plicable and a “Luenberger-type” observer, which consists of a copy
of (1.5) plus an error correction term, does not seem to work because
convergence of the error dynamics is hard to prove.

Finally, in the case when the system under consideration involves
parametric uncertainty, the problem of output feedback stabilization
becomes even more challenging. Few results are available in the
literature dealing with nonlinear systems with uncertainty that is
associated with the unmeasurable states. For instance, consider the
uncertain system

_x1 =x2 + d1(t)x1

_x2 =u+ d2(t) ln(1 + x42) sinx2

y =x1 (1.6)

which satisfies Assumption 1.1, wherejdi(t)j � 1, i = 1; 2, areun-
knowncontinuous functions with known bounds (equal to one in the
present case). Whend2(t) � 0, global stabilization of the uncertain
system (1.6) can be easily solved using output feedback. However,
whend2(t) 6= 0, all the existing methods cannot be used because the
presence ofd2(t) makes the design of a nonlinear observer extremely
difficult.

The examples discussed thus far have indicated that nonlinear
systems (1.1) with Assumption 1.1 cover a class of nonlinear
systems whose global stabilization by output feedback does not
seem to be solvable by any existing design method, and therefore
is worth of investigation. The main contribution of the note is the
development of a feedback domination design approach that enables
one to explicitly construct alinear dynamic output compensator
(1.3), globally exponentially stabilizing the entire family of nonlinear
systems (1.1) under the growth condition (1.2). It must be pointed
out that our output feedback control scheme is not based on the
separation principle. That is, instead of constructing the observer and
controller separately, we couple the high-gain linear observer design
together with the controller construction. An obvious advantage of our
design method is that the precise knowledge of the nonlinearities or
uncertainties of the systems needs not to be known. What really needed
is the information of the bounding function of the uncertainties, i.e., the
constantc in (1.2). This feature makes it possible to stabilize a family
of nonlinear systems using asingleoutput feedback compensator. In
other words, the proposed output feedback controller has a “universal”
property. In the case of cascade systems, our design method can deal
with an entire family of finite-dimensional minimum-phase nonlinear
systems whose dimensions of the zero-dynamics are unknown.

II. OUTPUT FEEDBACK DESIGN

In [14], it was proved that a class of nonlinear systems satisfying
Assumption 1.1 is globally exponentially stabilizable bylinear state

feedback. When dealing with the problem of global stabilization via
output feedback,stronger conditionssuch as lower-triangular structure,
differentiability of the vector field�(t; x; u) = (�1(�); . . . ; �1(�))

T

and the global Lipschitz condition were assumed [14].
In this section, we prove that Assumption 1.1 suffices to guarantee

the existence of a globally stabilizing output feedback controller. This
is done by using a feedback domination design which explicitly con-
structs alinear outputfeedback control law. In contrast to thenonlinear
output feedback controller obtained in [14], the dynamic output com-
pensator we propose islinear with a simple structure (1.3).

Theorem 2.1: Under Assumption 1.1, there exists a linear output
feedback controller (1.3) making the uncertain nonlinear system (1.1)
globally exponentially stable.

Proof: The proof consists of two parts. First of all, we design a
linearhigh-gain observer motivated by [2], [5], without using the infor-
mation of the system nonlinearities, i.e.,�i(t; x; u); i = 1; . . . ; n:
This results in an error dynamics containing some extra terms that
prevent convergence of the high-gain observer. We then construct an
output controller based on a feedback domination design to take care of
the extra terms arising from the observer design. This is accomplished
by choosing, step-by-step, the gain parameters of the observer and the
virtual controllers in a delicate manner. At the last step, a linear output
dynamic compensator can be obtained, making the closed-loop system
globally exponentially stable.

Part I—Design of a Linear High-Gain Observer

We begin with by designing the following linear observer

_̂x1 = x̂2 + La1(x1 � x̂1)

...
_̂xn�1 = x̂n + Ln�1an�1(x1 � x̂1)

_̂xn =u+ Lnan(x1 � x̂1) (2.1)

whereL � 1 is a gain parameter to be determined later, andaj > 0
andj = 1; . . . ; n; are coefficients of the Hurwitz polynomialp(s) =
sn + a1s

n�1 + � � � + an�1s + an.

Define"i = (xi � x̂i)=L
i�1, i = 1; . . . ; n. A simple calculation

gives

_" = LA"+

�1(t; x; u)

1

L
�2(t; x; u)

...
1

Ln�1
�n(t; x; u)

(2.2)

where

" =

"1
"2
...
"n

A =

�a1 1 � � � 0
...

...
. . .

...
�an�1 0 � � � 1

�an 0 � � � 0

:

Clearly,A is a Hurwitz matrix. Therefore, there is a positive–definite
matrixP = P T > 0 such that

ATP + PA = �I:
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Consider the Lyapunov functionV0(") = (n + 1)"TP". By As-
sumption 1.1, there is a real constantc1 > 0, which is independent of
L, such that

_V0(") =�(n+ 1)Lk"k2 + 2(n+ 1)"TP

�1(t; x; u)

�2(t; x; u)

L
...

�n(t; x; u)

Ln�1

��(n+ 1)Lk"k2

+ c1k"k jx1j + 1

L
jx2j + � � �+ 1

Ln�1
jxnj :

Recall thatxi = x̂i + Li�1"i. Hence

1

Li�1
xi � 1

Li�1
x̂i + j"ij; i = 1; . . . ; n:

With this in mind, it is not difficult to deduce that

_V0(") � � (n+ 1)L� c1
p
n k"k2

+ c1k"k jx̂1j + 1

L
jx̂2j + � � �+ 1

Ln�1
jx̂nj

� � (n+ 1)L� c1
p
n� n

2
c1 k"k2

+ c1
1

2
x̂21 +

1

2L2
x̂22 + � � �+ 1

2L2n�2
x̂2n : (2.3)

Part II—Construction of an Output Feedback Controller

Initial Step: Construct the Lyapunov functionV1("; x̂1) = V0(")+
(x̂21=2). A direct calculation gives

_V1 � � (n+ 1)L� p
n+

n

2
c1 k"k2

+ c1
1

2
x̂21 +

1

2L2
x̂22 + � � �+ 1

2L2n�2
x̂2n

+ x̂1(x̂2 + La1"1)

� � nL� p
n+

n

2
c1 k"k2

+ c1
1

2L2
x̂22 + � � �+ 1

2L2n�2
x̂2n

+ x̂1x̂2 +
1

4
La21x̂

2
1 +

c1
2
x̂21:

LetL � c1 and define�2 = x̂2 � x̂�2 with x̂�2 being a virtual control.
Observe that

c1
2
x̂21 � L

2
x̂21; c1

1

2L2
x̂22 � c1

1

L2
�22 + c1

1

L2
x̂�22 :

With this in mind, we have

_V1("; x̂1) � � nL� p
n+

n

2
c1 k"k2

+ c1
1

2L4
x̂23 + � � �+ 1

2L2n�2
x̂2n + c1

1

L2
�22

+ c1
1

L2
x̂�22 + x̂1�2 + x̂1x̂

�

2 + L
1

4
a21 +

1

2
x̂21:

(2.4)

Choosing the virtual controller

x̂�2 = �Lb1x̂1; b1 := n+ 1
4
a21 +

1
2
> 0

results in

_V1 � � nL� p
n+

n

2
c1 k"k2 � nL� c1b

2
1 x̂21

+c1
1

2L4
x̂23 + � � �+ 1

2L2n�2
x̂2n +

c1
L2

�22 + x̂1�2: (2.5)

Inductive Step:Suppose at stepk, there exist a smooth Lyapunov
functionVk("; �1; . . . ; �k) which is positive definite and proper, and
a set of virtual controllerŝx�1; . . . ; x̂

�

k+1, defined byx�1 = 0, �1 =
x̂1 � x�1 and

x̂�i = �Lbi�1�i�1 �i = x̂i � x̂�i ; i = 2; . . . ; k + 1

with bi > 0 beingindependent ofthe gain constantL, such that

_Vk � � (n+ 1� k)L� p
n+

n

2
c1 k"k2

�
k

j=1

1

L2j�2
(n+ 1� k)L� c1b

2
j �2j

+ c1
1

2L2k+2
x̂2k+2 + � � �+ 1

2L2n�2
x̂2n

+
c1
L2k

�2k+1 +
1

L2(k�1)
�k�k+1: (2.6)

Now, consider the Lyapunov function

Vk+1("; �1; . . . ; �k+1)

= Vk("; �1; . . . ; �k) +
1

2L2k
�2k+1; �k+1 = x̂k+1 � x̂�k+1:

Observe that

�k = x̂k + Lbk�1x̂k�1 + L2bk�1bk�2x̂k�2

+ � � �+ Lk�1bk�1bk�2 � � � b1x̂1:
Then, it is straightforward to show that

d

dt

1

2L2k
�2k+1

=
1

L2k
�k+1 x̂k+2 + Lk+1ak+1"1

+ Lbk

k

i=1

@�k
@x̂i

x̂i+1 + Liai"1

=
1

L2k
�k+1 x̂k+2 + Lk+1ak+1"1 +

k

i=1

Lk�i+1bk � � � bi

� �i+1 � Lbi�i + Liai"1

=
1

L2k
�k+1 x̂k+2 + Lk+1d0"1 + Lk+1d1�1 + Lkd2�2

+ � � �+ Ldk+1�k+1 (2.7)

whered0; . . . ; dk+1; are suitable real numbers that areindependent
of the gain constantL, anddk+1 > 0.

Putting (2.6) and (2.7) together, we have

_Vk+1 � � (n+ 1� k)L� p
n+

n

2
c1 k"k2

�
k

j=1

1

L2j�2
(n+ 1� k)L� c1b

2
j �2j

+ c1
1

2L2k+4
x̂2k+3 + � � �+ 1

2L2n�2
x̂2n

+
c1

L2k+2
�2k+2 +

c1
L2k+2

x̂�2k+2 +
1

L2k
�k+1�k+2

+
1

L2k
�k+1x̂

�

k+2 + �k+1
d0

Lk�1
"1 +

d1
Lk�1

�1

+
d2

Lk�2
�2 + � � �+ dk�1

L2k�3
�k�1 +

dk + 1

L2k�2
�k

+
dk+1 +

c

L

L2k�1
�k+1
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� � (n� k)L� p
n+

n

2
c1 k"k2

� (n� k)L� c1b
2
1 �21 � � � � � 1

L2k�2

� (n� k)L� c1b
2
k �2k

+ c1
1

2L2k+4
x̂2k+3 + � � �+ 1

2L2n�2
x̂2n

+
c1

L2k+2
�2k+2 +

c1
L2k+2

x̂�2k+2 +
1

L2k
�k+1�k+2

+
1

L2k
�k+1x̂

�

k+2 + �2k+1
1

L2k�1

� d20
4

+
d21
4

+ � � �+ d2k�1
4

+
(dk + 1)2

4
+ dk+1 + 1 :

(2.8)

From the previous inequality, it follows that the linear controller

x̂�k+2 = �Lbk+1�k+1

with

bk+1 = n�k+
d20
4

+
d21
4

+ � � �+ d2k�1
4

+
(dk + 1)2

4
+dk+1+1 > 0

being independent ofL, renders

_Vk+1 � � (n� k)L� p
n+

n

2
c1 k"k2

� (n� k)L� c1b
2
1 �21 � � � � � 1

L2k

� (n� k)L� c1b
2
k+1 �2k+1

+ c1
1

2L2k+4
x̂2k+3 + � � �+ 1

2L2n�2
x̂2n

+
c1

L2k+2
�2k+2 +

1

L2k
�k+1�k+2: (2.9)

This completes the inductive argument.
Using the inductive argument step by step,1 at thenth step one can

design the linear controller

u = � Lbn�n

= � Lbn(x̂n + Lbn�1(x̂n�1 + � � �+ Lb2(x̂2 + Lb1x̂1) � � �)
(2.10)

with bi > 0, i = 1; . . . ; n being real numbers independent of the gain
parameterL, such that

_Vn � � L� p
n+

n

2
c1 k"k2 � L� c1b

2
1 �21

� � � � � 1

L2n�4
L� c1b

2
n�1 �2n�1 � 1

L2n�2
L�2n (2.11)

whereVn is a positive–definite and proper function defined by

Vn("; �1; . . . ; �n) = V0(") +

n

i=1

1

2L2(i�1)
�2i :

If we choose the gain constantL > L� := maxf1; (pn +
(n=2))c1, c1b21; . . . ; c1b

2
n�1g, the right-hand side of (2.11) becomes

negative definite. Therefore, the closed-loop system is globally
exponentially stable.

Remark 2.2: The novelty of Theorem 2.1 is two-fold: on one hand,
in contrast to the common observer design that usually uses a copy
of (1.1), we design only alinear observer (2.1) for the uncertain non-
linear system (1.1). Such a construction, under Assumption 1.1, avoids
dealing with difficult issues caused by the uncertainties or nonlineari-
ties of the system. On the other hand, the gain parameterL of the ob-
server (2.1) is designed in such a way that it depends on the parameters

1At the last step, the design of the controlleru is slightly different from that
of inductive argument, because all the junk terms (e.g.,x̂ , 1 � j � n) in (2.6)
have already been canceled at Stepn � 1.

of the controller [i.e.,bi; i = 1; . . . ; n, in (2.10)]. In fact, the observer
and controller designs in Theorem 2.1 are heavily coupled with each
other. This is substantially different from most of the existing work
where the designed observer itself can asymptotically recover the state
of the controlled plant, regardless of the design of the controller, i.e.,
the controller design is independent of the observer design—known as
the separation principle.

Theorem 2.1 has an interesting consequence on output feedback sta-
bilization of a family of time-varying nonlinear systems in the form

_x =

a1; 1(t; y) 1 � � � 0
...

...
. . .

...

an�1; 1(t; y) an�1; 2(t; y) � � � 1

an; 1(t; y) an; 2(t; y) � � � an;n(t; y)

x+

0
...
0

1

u

y =x1 (2.12)

whereai; j(t; y), k = 1; . . . ; i, i = 1; . . . ; n, areunknown con-
tinuousfunctions uniformly bounded by aknownconstant. Obviously,
Assumption 1.1 holds for (2.12). Thus, we have the following result.

Corollary 2.3: For the uncertain time-varying nonlinear system
(2.12), there is a linear dynamic output compensator (1.3), such that
the closed-loop system (2.12) and (1.3) is globally exponentially
stable.

Note that this corollary has recovered the output feedback stabiliza-
tion theorem in [1], for the time-invariant triangular system

_x1 =x2 + a1; 1(y)y

_x2 =x3 +

2

k=1

a2; k(y)xk

...

_xn =u+

n

k=1

an; k(y)xk

y =x1 (2.13)

with globally boundedai; j(y)’s (see [1]).
In the rest of this section, we use examples to illustrate applications

of Theorem 2.1.
Example 2.4: Consider a continuous but nonsmooth planar system

of the form

_x1 =x2 + x1 sinx
2
2

_x2 =u+ x
2=3
1 x

1=3
2

y =x1: (2.14)

Due to the presence of�1(t; x1; x2) = x1 sinx
2
2, system (2.14) is not

in a lower-triangular form. Moreover,�2(t; x1; x2) = x
2=3
1 x

1=3
2 is

only anon-Lipschitz continuousfunction. Neither the differentiability
nor the global Lipschitz condition [14], [13] is fulfilled. As a result,
global output feedback stabilization of (2.14) cannot be solved by the
methods proposed in [14] and [13].

On the other hand, it is easy to verify that

j�1(x1; x2)j � jx1j j�2(x1; x2)j � jx1j + jx2j:
That is, Assumption 1.1 holds. By Theorem 2.1, the output feedback
controller

_̂x1 = x̂2 + L(y � x̂1)

_̂x2 =u+ L2(y � x̂1)

u =�Lb2(x̂2 + Lb1x̂1) (2.15)

with a suitable choice of the parametersL, b1 andb2 (e.g.,b1 = 11=4,
b2 = 20 andL � 100), globally exponentially stabilizes system
(2.14). The simulation shown in Fig. 1 demonstrates the GES prop-
erty of the closed-loop system (2.14) and (2.15).
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Fig. 1. Transient responses of (2.14) and (2.15) with(x (0); x (0), x̂ (0),
x̂ (0)) = (5; 50; 1; �200).

Example 2.5: Consider the three-dimensional system with uncer-
tainty

_x1 =x2 +
x1x

2
3

1 + u2 + x23
_x2 =x3 + x2 sinx2

_x3 =u+ d(t) ln(1 + jx2x3j)

y =x1 (2.16)

where the unknown functiond(t) is continuous,belonging to a
known compact set
 (e.g.,
 = [�1; 1]). Since�2(t; x1; x2; u) �
�2(x2) = x2 sinx2, j�2(x2)j � jx2j. Note that, however, there is no
smooth gain functionc(x1) � 0 satisfying

j�2(x2)� �2(x̂2)j � c(x1)jx2 � x̂2j; 8x2 2 IR; x̂2 2 IR

i.e., the global Lipschitz condition required in [13] does not hold and,
therefore, the existing output feedback control schemes such as [1],
[14], and [13] cannot be applied to (2.16). On the other hand, (2.14) is
globally exponentially stabilizable by the linear output feedback con-
troller (2.1)–(2.10) as Assumption 1.1 is obviously satisfied.

Example 2.6: Consider a single-link robot arm system introduced,
for instance, in [6]. The state-space model is described by

_z1 = z2

_z2 =
K

J2N
z3 �

F2(t)

J2
z2 �

K

J2
z1 �

mgd

J2
cos z1

_z3 = z4

_z4 =
1

J1
u+

K

J1N
z1 �

K

J2N
z3 �

F1(t)

J1
z4

y = z1 (2.17)

whereJ1; J2; K; N; m; g; d are known parameters, andF1(t) and
F2(t) are viscous friction coefficients that may vary continuously with
time. SupposeF1(t) andF2(t) are unknown but bounded byknown
constants. The control objective is to globally stabilize the equilibrium
(z1; z2; z3; z4) = (0; 0; mgdN=K; 0) bymeasurementfeedback. In
the current case,z1—the link displacement of the system is measurable
and, therefore, can be used for feedback design. To solve the problem,
we introduce a change of coordinates

x1 = z1; x2 = z2; x3 =
K

J2N
z3 �

mgd

J2
; x4 =

K

J2N
z4

and a prefeedback

v =
K

J2N

1

J1
u�

mgd

J2

to transform (2.17) into

_x1 =x2

_x2 =x3 �
F2(t)

J2
x2 �

K

J2
x1 �

mgd

J2
(cosx1 � 1)

_x3 =x4

_x4 = v +
K2

J1J2N2
x1 �

K

J2N
x3 �

F1(t)

J1
x4

y =x1: (2.18)

SinceF1(t) andF2(t) are unknown, most of the existing results are
not applicable to the output feedback stabilization problem of (2.18).
Observe that Assumption 1.1 holds for (2.18) because

j cosx1 � 1j � jx1j
F2(t)

J2
x2 � c1jx2j

F1(t)

J1
x4 � c2jx4j; for constantsc1; c2:

Using Theorem 2.1, it is easy to construct a linear dynamic output
compensator of the form (2.1)–(2.10), solving the global stabilization
problem for (2.18).

We end this section by pointing out when Assumption 1.1 fails to
be satisfied, global stabilization of (1.1) by output feedback may be
impossible. For instance, the nonlinear system

_x1 =x2

_x2 =x3

_x3 =u+ x23

y =x1 (2.19)

is not globally stabilizable by any continuous dynamic output compen-
sator. This fact can be proved using an argument similar to the one in
[12].

III. U NIVERSAL OUTPUT FEEDBACK STABILIZATION

From the design procedure of Theorem 2.1, it is clear that there is a
singlelinear output feedback controller (1.3) making the entire family
of nonlinear systems (1.1)simultaneouslyexponentially stable, as long
as they satisfy Assumption 1.1 with the same boundc. This is a nice
feature of our output feedback control scheme, due to the use of the
feedback domination design.

For example, it is easy to see that the output feedback controller
(2.15) designed for the planar system (2.14) also globally exponentially
stabilizes the following system:

_x1 =x2 +
1

4
(x1 + x1 sin(ux2))

_x2 =u+ x1 sin(ux2)

y =x1 (3.1)

which was proved to be globally stabilizable by linear state feedback
[14]. However, the problem of output feedback stabilization was not
solved in [14] because (3.1) violates the growth conditions (B1)–(B2)
of [14].

The universal stabilization idea above can be extended to a family of
C0 minimum-phase nonlinear systems. Specifically, considerm cas-
cade systems with the same relative degreer

_zk =F k(zk) +Gk(t; zk; xk; u)

_xk1 =xk2 + �k1(t; z
k; xk; u)

...

_xki =xki+1 + �ki (t; z
k; xk; u)

...

_xkr =u+ �kn(t; z
k; xk; u);

y =xk1 ; k = 1; . . . ; m (3.2)
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wherezk 2 IRs andsk is anunknownnonnegative integer.
Theorem 3.1:Suppose for each individual system (3.2),

_zk = F k(zk) is GES atzk = 0 and

jGk(t; zk; xk; u)j � c kjxk1 j
j�ki (t; zk; xk; u)j � ck(kzkk+ jxk1 j+ � � �+ jxki j);

k = 1; . . . ; m:

Then, there is auniversallinear output feedback controller

_� =M� +Ny; M 2 IRr�r; N 2 IRr

u =K�; K 2 IR1�r (3.3)

that simultaneously exponentially stabilizes them cascade systems
(3.2).

Proof: Since _zk = F k(zk) is globally exponentially stable, by
the converse theorem there is a positive definite and proper function
V k(zk) such that

@V k(zk)

@zk
F k(zk) � � kzkk2;

@V k(zk)

@zk
� ĉkkzkk with ĉk > 0:

This, in turn, implies

@V k(zk)

@zk
F k(zk) +Gk(t; zk; xk; u)

� � 3
4
kzkk2 + c kĉk

2

jxk1 j2; k = 1; . . . ; m: (3.4)

Now, one can construct asingler-dimensional observer (2.1) with
the gain parameterL to be determined later and a Lyapunov function

V0("
k) = (r + 1)("k)TP"k with "ki =

xki � x̂i
Li�1

; i = 1; . . . r:

Similar to the proof of Theorem 2.1, there is a real constant~ck > 0
satisfying

_V k(zk) + _V0("
k)

� � 3
4
kzkk2 + c kĉk

2

jxk1 j2 � (r + 1)Lk"kk2

+ ~ckk"kk kzkk+ jxk1 j+ jxk2 j
L

+ � � �+ jxkr j
Lr�1

: (3.5)

By the completion of squares, it is easy to see that

~ckk"kkkzkk � (~ck)2k"kk2 + 1
4
kzkk2 (3.6)

~ckk"kk jxkj j
Lj�1

� ~ckk"kk jx̂kj j
Lj�1

+ ~ckk"kk j"kj j

� ~ck

2
k"kk2 + ~ck

(x̂j)
2

2L2(j�1)
+ ~ckk"kk j"kj j: (3.7)

Substituting (3.6) and (3.7) into (3.5) yields

_V k(zk) + _V0("
k)

� � 1
2
kzkk2 � (r + 1)Lk"kk2

+ (~ck)2 + ~ck
p
r +

r

2
~ck k"kk2 + (c k ĉk)2x̂21

+ ~ck
1

2
x̂21 +

1

2L2
x̂22 + � � �+ 1

2L2r�2
x̂2r

� �1

2
kzkk2 � (r + 1)L� (c1)

2 � c1
p
r � r

2
c1 k"kk2

+ c1

r

j=1

1

2L2j�2
x̂2j (3.8)

wherec1 is a uniform constant defined as

c1 := max (c kĉk)2 + ~ck; k = 1; . . . ; m :

Observe that (3.8) is almost identical to inequality (2.3) in the proof
of Theorem 2.1. Using a recursive design procedure similar to the one
in Theorem 2.1, we can obtain at therth step the following globally
exponentially stabilizing controller:

u = �Lbr(x̂r + Lbr�1(x̂r�1 + � � �+ Lb2(x̂2 + Lb1x̂1) � � �) (3.9)

wherebi > 0, i = 1; . . . ; r, are real numbers independent of the
gain parameterL, andL > L� := maxf1; c21 + (

p
r + (r=2))c1;

c1b
2
1; . . . ; c1b

2
r�1g.

Because (3.8) holds uniformly for them systems with a common
constantc1 > 0, it is not difficult to prove that the feedback control law
(3.9) together with thesingler-dimensional observer (2.1) stabilizes
them systems (3.2) simultaneously.

IV. CONCLUSION

We have presented a new output feedback control scheme for a
class of nonlinear systems whose global stabilization problem via
output feedback cannot be handled by existing methods. The proposed
output dynamic compensator islinear and can stabilizesimultaneously
a family of nonlinear systems which are dominated by a chain of
integrators perturbed by a triangular vector field with linear growth
condition. Moreover, the result can also be applied to afinite number
of globally exponentially minimum-phase systems (say, for instance,
m controlled plants), in which the dimensions of the zero dynamics
can bedifferentandunknown.
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