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ABSTRACT

In this paper, we consider output feedback stabilisation for a wave PDE-ODE system with Dirichlet
boundary interconnection and external disturbance �owing the control end. We �rst design a vari-
able structure unknown input type state observer which is shown to be exponentially convergent.
Then, we estimate the disturbance in terms of the estimated state, an idea from active disturbance
rejection control. These enable us to design an observer-based output feedback stabilising control
to this uncertain PDE-ODE system.

1. Introduction

In recent years, stabilisation for systems described by
partial di�erential equations (PDEs) subject to exter-
nal disturbance has attracted increasing attention. This
is because in many situations, the control is used not
only to guarantee the system to be normally operated
in an ideal operation environment but also to be nor-
mally operated in the environment with uncertainties
coming from either as internal or external disturbance.
The stability issue of system with disturbance is there-
fore signi�cant both theoretically and practically. To deal
with disturbances, many di�erent approaches have been
developed. The backstepping method which was origi-
nally applied to stabilise the PDEs without disturbance
in Krstic and Smyshlyaev (2008), Smyshlyaev and Krstic
(2004), together with the adaptive control method, is
designed in Guo and Guo (2013), Krstic (2010) to sta-
bilise one-dimensional (1D) wave equations where the
uncertainties are supposed to be unknown parameters in
disturbance. The internal model principle for output reg-
ulation has been applied in Byrnes, Lauko, Gilliam, and
Shubov (2000), Rebarber andWeiss (2003), among many
others, to in�nite dimensional systems to reject distur-
bance generated from exogenous system. The Lyapunov
functional approach is presented (Ge, Zhang, and He,
2011; He, Zhang, and Ge, 2012) for disturbance rejection,
where boundary feedbacks are designed for 1D Euler-
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Bernoulli beam with spatial and boundary disturbance.
Another powerful method in dealing with uncertainties
is based on active disturbance rejection control (ADRC)
which was �rst proposed by Han in 2009 . In Guo and
Zhou (2014, 2015), the boundary controls are designed by
ADRC for multi-dimensional wave equation and Kirch-
ho� plate equation with control-matched disturbance
that depends on both time and spatial variables. Recently,
the boundary slidingmode control (SMC) is designed for
1D heat, wave, Euler-Bernoulli, and Schrödinger equa-
tions with boundary input disturbance in Cheng, Radis-
avljevic, and Su (2011), Guo and Jin (2013a, 2013b), Guo
and Liu (2014), Pisano, Orlov, and Usai (2011). However,
there are a fewworks on coupled systems. In Krstic (2009,
Chapter 16), stabilisation for a cascade system of wave
equation with linear time invariant �nite-dimensional
system is considered, where the backstepping approach
is applied but no disturbance is concerned. In Wang,
Liu, Ren, and Chen (2015), boundary feedback stabilisa-
tion for a cascade system of heat PDE-ODE system with
Dirichlet/Neumann interconnection and external distur-
bance �owing the control end is discussed by the SMC
and the backstepping method.

Motivated mainly by Krstic (2009, Chapter 16) and
Wang et al. (2015)where only state feedback is concerned,
we are concerned with, in this paper, stabilisation for
the following wave PDE-ODE cascade system through
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PDE

ODE

utt(x, t) = uxx(x, t)
ux(0, t) = 0
ux(1, t) = U(t) + d(t)✲

u(x, 0)

ut(x, 0)

✲✲

U(t) + d(t () ut(0, t), u(1, t), ut(1, t))

Bu(0, t)

�

✲ ✲

CX(t)

Ẋ(t) = AX(t) + Bu(0, t)

X(0)

Figure . Block diagramof the coupledwave PDE-ODE system (.).

Dirichlet interconnection:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ (t ) = AX (t ) + Bu(0, t ), t > 0,
utt (x, t ) = uxx(x, t ), x ∈ (0, 1), t > 0,

ux(0, t ) = 0, t ≥ 0,

ux(1, t ) = U (t ) + d(t ), t ≥ 0,

yout (t ) = (CX (t ), ut (0, t ), u(1, t ), ut (1, t )),

(1.1)

where X ∈ R
n×1 and (u, u t ) � H 1(0, 1) × L 2(0, 1) are

the states of ODE and PDE, respectively,U ∈ L2loc(0, ∞)

is the control input of the entire system, A is an n × n

matrix,B ∈ R
n×1, and d(t) is the external disturbance. It is

supposed that�(A, B) is stabilisable, (C,A) is observable,
and d ∈ H1

loc(0, ∞) is uniformly bounded: |d(t)| � M for
someM > 0 and all t � 0.

The objective of the present paper is to design an
output feedback control that can stabilise system (1.1)
depicted in Figure 1 in the state space H = R

n ×
H1(0, 1) × L2(0, 1) by rejecting the disturbance d(t).

The inner product ofH is given by

〈(X1, f1, g1), (X2, f2, g2)〉

= X⊤
1 X2 + k f1(1) f2(1) +

∫ 1

0

f ′
1(x) f

′
2(x)dx

+
∫ 1

0

g1(x)g2(x)dx, (1.2)

for all (X1, f1, g1), (X2, f2, g2) ∈ H, and k > 0 is a posi-
tive constant.

We proceed as follows. In Section 2, we design a vari-
able structure unknown input observer for system (1.1)
and establish convergence of the observer. The exponen-
tial stability of the closed-loop system is presented. In Sec-
tion 3, we transform system (1.1) into an equivalent tar-
get system for which a state feedback is easily designed.
By ADRC approach, we design a disturbance estimator
to estimate the disturbance. The observer and estimator
based output feedback is then designed by compensating
the disturbance in feedback. The closed-loop system is

shown to be asymptotically stable, followed by conclud-
ing remarks in Section 4.

2. State observer

In this section, we �rst design an unknown type state
observer to recover the state of system (1.1) via the out-
put. By the estimated state, we can estimate the distur-
bance by an idea of extended state observer for ODEs.
The disturbance is then compensated in the feedback
loop.

We design a variable structure unknown input type
state observer for system (1.1) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂X (t ) = AX̂ (t ) + L(CX̂ −CX ) + Bû(0, t ), t > 0,
ûtt (x, t ) = ûxx(x, t ), x ∈ (0, 1), t > 0,

ûx(0, t ) = c1[ût (0, t ) − ut (0, t )], t ≥ 0,

ûx(1, t ) ∈ U (t ) − c2[ût (1, t ) − ut (1, t )]

− c3[û(1, t ) − u(1, t )] − M1sign(ût (1, t )

− ut (1, t )) − M2sign(û(1, t ) − u(1, t )),

t ≥ 0,

û(x, 0) = û0(x), ût (x, 0) = û1(x),

(2.1)

whereM 1 > M,M 2 > M +M 1, and c 1, c 2, c 3 are posi-
tive design parameters. The symbolic function is a multi-
valued function de�ned by

sign(x) =

⎧
⎨
⎩
1, x > 0,
[−1, 1], x = 0,
−1, x < 0.

To ensure the function on the right-hand side of the
fourth equation of (2.1) to be measurable, for any T > 0
and f � L 2(0, T), we restrict the set-valued composition
of the symbolic function as follows:

sign( f (t )) =
{
g(t )

∣∣∣∣ g(t )

=
{
sign( f (t )), f (t ) 	= 0,

f (t ) ∈ L2(�), | f (t )| ≤ 1, f (t ) = 0,

}
,

where � = {τ | f(τ ) = 0}. Introduce the variable

(X̃(t ), ũ(x, t ), ũt (x, t ))

= (X̂ (t ) − X (t ), û(x, t ) − u(x, t ), ût (x, t ) − ut (x, t )))

(2.2)
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to be the error. Then (X̃ (t ), ũ(x, t ), ũt (x, t )) satis�es

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

˙̃X (t ) = (A + LC)X̃ (t ) + Bũ(0, t ),
ũtt (x, t ) = ũxx(x, t ),

ũx(0, t ) = c1ũt (0, t ),
ũx(1, t ) ∈ −c2ũt (1, t ) − c3ũ(1, t )

−M1sign(ũt (1, t )) − M2sign(ũ(1, t )) − d(t ),

ũ(x, 0) = ũ0(x), ũt (x, 0) = ũ1(x).

(2.3)

For the error system (2.2), we have Theorem 2.1 which
shows that the observer (2.1) is convergent.

Theorem 2.1: For any initial value (X̃ (0), ũ0, ũ1)∈R
n ×

H2(0, 1) × H1(0, 1) satisfying compatible conditions:

⎧
⎨
⎩
ũ0(0) = c1ũ1(0),
ũ′
0(1) ∈ −c2ũ1(1) − c3ũ0(1) − M1sign(ũ1(1))
−M2sign(ũ0(1)) − d(0),

(2.4)

and d ∈ H1
loc(0, ∞), (2.1) admits at least one partial

di�erential inclusion solution (X̃ (t ), ũ(·, t ), ũt (·, t )) ∈
C(0, ∞; R

n × H2(0, 1) × H1(0, 1)). Moreover, any

partial di�erential inclusion solution (X̃ (t ), ũ(·, t ),
ũt (·, t )) ∈ C(0, ∞; R

n × H2(0, 1) × H1(0, 1)) is expo-

nentially stable in the sense that

E(t ) ≤ C1E(0)e−ω1t , (2.5)

for some positive constants C 1 and ω1, where E(t) is given
by

E(t ) := |X̃ (t )|2
Rn + ũ2(1, t ) +

∫ 1

0

ũ2x(x, t )dx

+
∫ 1

0

ũ2t (x, t )dx.

Proof: We �rst prove the ‘ũ part’ in (2.3). Actu-
ally, by Guo and Jin (2015, Theorem 1), the ‘ũ part’
in (2.3) has at least one solution (ũ(·, t ), ũt (·, t )) ∈
C(0, ∞;H2(0, 1) × H1(0, 1)), which satis�es

ũ2(1, t ) +
∫ 1

0

[ũ2x(x, t ) + ũ2t (x, t )]dx

≤ C2e
−C3t

[
ũ20(1) +

∫ 1

0

[ũ′2
0 (x) + ũ21(x)]dx

]
. (2.6)

Next we show the ‘X̃ part’ in (2.3). By the Sobolev
embedding H 1(0, 1)→֒C(0, 1),

ũ2(0, t ) ≤ C4

[
ũ2(1, t ) +

∫ 1

0

ũ2x(x, t )dx

]

for some constantC4 > 0, (2.7)

and ũ(0, t ) ∈ C(0, ∞). Using the constant variational
formula, the solution of ‘X̃ part’ is given by

X̃ (t ) = e(A+LC)t X̃ (0) +
∫ t

0

e(A+LC)(t−s)Bũ(0, s)ds. (2.8)

Since A + LC is Hurwitz, there are positive constants C 5

and C 6 > 0 such that

‖e(A+LC)t‖ ≤ C5e
−C6t . (2.9)

This together with (2.6), (2.7), and (2.8) yields

|X̃ (t )|Rn ≤|e(A+LC)t X̃ (0)|Rn+
∣∣∣∣
∫ t

0

e(A+LC)(t−s)Bũ(0, s)ds

∣∣∣∣
Rn

≤ C5e
−C6t |X (0)|Rn +C2C4C5‖B‖

×
[
ũ20(1) +

∫ 1

0

[ũ′2
0 (x) + ũ21(x)]dx

]

×
∫ t

0

e−C6(t−s)e−C3sds. (2.10)

Since

∫ t

0

e−C6(t−s)e−C3sds =

⎧
⎨
⎩

e−C3t − e−C6t

C6 −C3
, C6 	= C3,

e−C6tt, C6 = C3,

(2.11)

we obtain (2.5) from (2.6) and (2.10). �

3. Disturbance estimator and output feedback

control

In this section,we design an observer-based output stabil-
ising feedback for system (1.1). To this end, we �rst intro-
duce a transformation (X, u, u t )→ (X, v, v t ) as follows
(Krstic, 2009, Chapter 16):

X (t ) = X (t ),

v(x, t ) = u(x, t ) −
∫ x

0

μ(x − y)u(y, t )dy

−
∫ x

0

m(x − y)ut (y, t )dy − γ (x)X (t ),

vt (x, t ) = ut (x, t ) − KBu(x, t )−
∫ x

0

μ(x − y)ut (y, t )dy

−
∫ x

0

m′′(x − y)u(y, t )dy − γ (x)AX (t ),

(3.1)



INTERNATIONAL JOURNAL OF CONTROL 2399

where

μ(s) =
∫ s

0

γ (ξ )ABdξ, m(s) =
∫ s

0

γ (ξ )Bdξ,

γ (x) = KM(x), M(x) =
[
I 0

]
e

[
0 A2

I 0

]
x
[
I
0

]
. (3.2)

with I being ann×n identifymatrix. This transformation
brings system (1.1) into the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ (t ) = (A + BK)X (t ) + Bv(0, t ),
vtt (x, t ) = vxx(x, t ),

vx(0, t ) = 0, t ≥ 0,

vx(1, t ) = U (t ) + d(t ) −
∫ 1

0

μ′(1 − y)u(y, t )dy

−
∫ 1

0

m′(1 − y)ut (y, t )dy−γ ′(1)X (t ),

(3.3)

where K is chosen so that A + BK is Hurwitz. The trans-
formation (3.1) is invertible, that is

X (t ) = X (t ),

u(x, t ) = v(x, t ) −
∫ x

0

σ (x − y)v(y, t )dy

−
∫ x

0

n(x − y)vt (y, t )dy − ρ(x)X (t ),

ut (x, t ) = vt (x, t ) + KBv(x, t )−
∫ x

0

σ (x − y)vt (y, t )dy

−
∫ x

0

n′′(x − y)v(y, t )dy

−ρ(x)AX (t ), (3.4)

where

σ (s) =
∫ s

0

ρ(ξ )ABdξ, n(s) =
∫ s

0

ρ(ξ )Bdξ,

ρ(x) = −KN(x), M(x) =
[
I 0

]
e

[
0 (A + BK)2

I 0

]
x

×
[
I

0

]
. (3.5)

We further introduce (X, v, v t ) → (X, w, w t ) by

X (t ) = X (t ),

w(x, t ) = v(x, t ) + c

∫ x

0

vt (y, t )dy,

wt (x, t ) = vt (x, t ) + cvx(x, t ),

(3.6)

where c � 1 is positive. We then obtain the target system
following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ (t ) = (A + BK)X (t ) + Bw(0, t ), t > 0,
wtt (x, t ) = wxx(x, t ), x ∈ (0, 1), t > 0,
wx(0, t ) = cwt (0, t ), t ≥ 0,

wx(1, t ) = U (t ) + d(t ) −
∫ 1

0

μ′(1 − y)u(y, t )dy

−
∫ 1

0

m′(1 − y)ut (y, t )dy

−γ ′(1)X (t ) + cut (1, t ) − cKBu(1, t )

−c

∫ 1

0

μ(1 − y)ut (y, t )dy

−c

∫ 1

0

m′′(1−y)u(y, t )dy−cγ (1)AX (t ),

t ≥ 0.

(3.7)

The inverse of transformation (3.6) can be found as
follows

X (t ) = X (t ),

v(x, t ) = w(0, t ) +
∫ x

0

wx(y, t ) − cwt (y, t )

1 − c2
dy,

vt (x, t ) =
wt (x, t ) − cwx(x, t )

1 − c2
. (3.8)

For the target system (3.7), we can easily design a stabilis-
ing state feedback. Since we have state estimation through
the observer claimed by Theorem 2.1, we design naturally
an output feedback control as follows:

U (t ) = U0(t ) +
∫ 1

0

(
μ′(1 − y)+cm′′(1 − y))

)
û(y, t )dy

+
∫ 1

0

(
m′(1 − y) + cμ(1 − y)

)
ût (y, t )dy

+
(
γ ′(1) + cγ (1)A

)
X̂ (t ) + cKBu(1, t )

− cut (1, t )−k

{
u(1, t ) −

∫ 1

0

μ(1 − y)û(y, t )dy

−
∫ 1

0

m(1 − y)ût (y, t )dy − γ (1)X̂ (t )

+ c

∫ 1

0

[
ût (x, t ) − KBû(x, t )

−
∫ x

0

μ(x − y)ût (y, t )dy

−
∫ x

0

m′′(x − y)û(y, t )dy

]
dx

− c

∫ 1

0

γ (x)dxAX̂ (t )

}
, t ≥ 0, (3.9)
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where U 0(t) is an auxiliary control. Under feedback con-
trol (3.9), the closed-loop of target system (3.7) is

⎧
⎪⎪⎨
⎪⎪⎩

Ẋ (t ) = (A + BK)X (t ) + Bw(0, t ), t > 0,
wtt (x, t ) = wxx(x, t ), x ∈ (0, 1), t > 0,
wx(0, t ) = cwt (0, t ), t ≥ 0,
wx(1, t ) = −kw(1, t ) +U0(t ) + f (t ) + d(t ), t ≥ 0,

(3.10)

where

f (t ) =
∫ 1

0

(
μ′(1 − y) + cm′′(1 − y))

)
ũ(y, t )dy

+
∫ 1

0

(
m′(1 − y) + cμ(1 − y)

)
ũt (y, t )dy

+
(
γ ′(1) + cγ (1)A

)
X̃ (t )

+ k

{∫ 1

0

μ(1 − y)ũ(y, t )dy

+
∫ 1

0

m(1 − y)ũt (y, t )dy + c

∫ 1

0

γ (x)dxAX̃ (t )

+ γ (1)X̃(t ) − c

∫ 1

0

[
ũt (x, t ) − KBû(x, t )

−
∫ x

0

μ(x − y)ũt (y, t )dy

−
∫ x

0

m′′(x − y)ũ(y, t )dy

]
dx

}
, (3.11)

satis�es, by Theorem 2.1, that

| f (t )| ≤ C f e
−ω1t , ∀ t ≥ 0, (3.12)

for some positive constants C f and ω1.
The remaining is to design a continuous controlU 0(t)

to stabilise (3.10) in the presence of disturbances d(t) and
f(t). We write (3.10) as

d

dt

⎛
⎝

X (t )

w(·, t )
wt (·, t )

⎞
⎠ = A

⎛
⎝

X (t )

w(·, t )
wt (·, t )

⎞
⎠ + B(U0(t )

+ f (t ) + d(t )), (3.13)

where B = (0, 0, δ(x − 1))⊤, and A is a linear operator
de�ned in R

n × H1(0, 1) × L2(0, 1) by

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A

⎛
⎝
X

f

g

⎞
⎠ =

⎛
⎝

(A + BK)X + B f (0)
g

f ′′

⎞
⎠ , ∀

⎛
⎝
X

f

g

⎞
⎠ ∈ D(A),

D(A) = {(X, f , g)⊤ ∈ H ∩ R
n × H2(0, 1) × H1(0, 1) : f ′(0)

= cg(0), f ′(1) = −k f (1)}.
(3.14)

Lemma3.1: The operatorA de�ned in (3.14) generates an
exponential stable C 0-semigroup.

Proof: It su�ces to show that the following system

⎧
⎪⎪⎨
⎪⎪⎩

Ẋ (t ) = (A + BK)X (t ) + Bw(0, t ), t > 0,
wtt (x, t ) = wxx(x, t ), x ∈ (0, 1), t > 0,
wx(0, t ) = cwt (0, t ), t ≥ 0,
wx(1, t ) = −kw(1, t ), t ≥ 0,

(3.15)

is exponentially stable. Actually, it is well known that the
‘w-part’ is exponentially stable in H 1(0, 1) × L 2(0, 1),
that is, there are constants C 1, C 2 > 0 such that

w
2(1, t ) +

∫ 1

0

[
w

2
x(x, t ) + w

2
t (x, t )

]
dx

≤ C1e
−C2t

[
w

2(1, 0) +
∫ 1

0

[w2
x(x, 0) + w

2
t (x, 0)]dx

]
.

(3.16)

By embedding inclusion, H 1(0, 1)→֒C(0, 1),

w
2(0, t ) ≤ C3

[
w

2(1, t ) +
∫ 1

0

w
2
x(x, t )dx

]

for some constantC3 > 0. (3.17)

Hence w(0, ·) � C(0, �). Apply the constant variational
formula to obtain the solution of ODE part as

X (t ) = e(A+BK)tX (0) +
∫ t

0

e(A+BK)(t−s)Bw(0, s)ds.

(3.18)

Since A + BK is Hurwitz, there are positive constants C 4

and C 5 > 0 such that

‖e(A+BK)t‖ ≤ C4e
−C5t . (3.19)

Since

∫ t

0

e−C5(t−s)e−C2sds =

⎧
⎪⎨
⎪⎩

e−C2t − e−C5t

C5 −C2
, C5 	= C2,

e−C5tt, C5 = C2,

(3.20)

it follows from (3.17), (3.18), and (3.19) that ‘X part’ in
(3.15) is exponentially stable. This completes the proof of
the lemma. �

The following result is straightforward (Weiss,
Sta�ans, & Tucsnak, 2001) where for admissibility of
control operator, we refer to Weiss (1989).

Proposition 3.1: The operator A de�ned in (3.14) gen-
erates a C 0-semigroup of contractions eAt on H and

B is admissible to eAt . Therefore, for any initial value

(X (0), w(·, 0), ẇ(·, 0))⊤ ∈ H and control input U0 ∈
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L2loc(0, ∞) and ( f , d) ∈ (L2loc(0, ∞))2, (3.13) admits a

unique solution (X (t ), w(·, t ), ẇ(·, t ))⊤ ∈ H.

By Proposition 3.1, the (weak) solution of (3.10)
satis�es

d

dt

〈⎛
⎝

X

w

wt

⎞
⎠ ,

⎛
⎝
Y

f

g

⎞
⎠
〉

H

=
〈⎛
⎝

X

w

wt

⎞
⎠ , A

∗

⎛
⎝
Y

f

g

⎞
⎠
〉

H

+[U0(t ) + f (t ) + d(t )]B∗

⎛
⎝
Y

f

g

⎞
⎠ ,

∀ (Y, f , g)⊤ ∈ D(A∗),

(3.21)

where (Y, f , g)⊤ ∈ D(A∗) is called a test function. A sim-
ple computation shows thatA∗, the adjoint operator ofA,
is given by

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A
∗

⎛
⎝
X

f

g

⎞
⎠ =

⎛
⎝

(A + BK)⊤X

−g

− f ′′

⎞
⎠ , ∀

⎛
⎝
X

f

g

⎞
⎠ ∈ D(A∗),

D(A∗) =
{
(X, f , g)⊤ ∈ H ∩ R

n × H2(0, 1)
×H1(0, 1) : f ′(0) = −cg(0),
f ′(1) = −k f (1),B⊤X = 0

}
,

(3.22)

By (3.21),

d

dt

[
X⊤Y +

∫ 1

0

[wx(x, t ) f
′(x) + wt (x, t )g(x)]dx

+ kw(1, t ) f (1)

]

= X⊤(A + BK)⊤Y −
∫ 1

0

[wx(x, t )g
′(x)

+ wt (x, t ) f
′(x)]dx − kw(1, t )g(1)

+ g(1)[U0 + f (t ) + d(t )]. (3.23)

Choose (X, f (x), g(x)) = (0, 0, x) ∈ D(A∗) and substi-
tute into (3.23) to obtain

d

dt

∫ 1

0

wt (x, t )xdx = −(k + 1)w(1, t ) + w(0, t ) +U0

+ f (t ) + d(t ). (3.24)

Same as (X, u, u t ) → (X, w, w t ) by (3.1) and (3.6), we
have (X̂, û, ût ) → (X̂, ŵ, ŵt ). Replace (w, w t ) in (3.24)
by (ŵ, ŵt ) to have

d

dt

∫ 1

0

ŵt (x, t )xdx

=
d

dt

∫ 1

0

wt (x, t )xdx +
d

dt

∫ 1

0

w̃t (x, t )xdx

= −(k + 1)w(1, t ) + w(0, t ) +U0 + f (t ) + d(t )

+
d

dt

∫ 1

0

w̃t (x, t )xdx

= U0 + f (t ) + d(t ) − (k + 1)ŵ(1, t ) + ŵ(0, t )

+ (k + 1)w̃(1, t ) − w̃(0, t ) +
d

dt

∫ 1

0

w̃t (x, t )xdx.

Let

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z(t ) =
∫ 1

0

ŵt (x, t )xdx,

z1(t ) = −(k + 1)ŵ(1, t ) + ŵ(0, t ),
z2(t ) = (k + 1)w̃(1, t ) − w̃(0, t ) + f (t ),

z3(t ) =
∫ 1
0 w̃t (x, t )xdx.

Then

ż(t ) = U0 + d(t ) + z1(t ) + z2(t ) + ż3(t ), (3.25)

and by Theorem 2.1 and (3.12), there exists a constant
C z > 0 such that

|z2(t )| + |z3(t )| ≤ Cze
−ω1t , ∀ t ≥ 0. (3.26)

Now we are in a position to estimate the disturbance
d(t) by the active disturbance rejection approach devel-
oped in Guo and Zhao (2011) where the constant high
gain is used. The extended state observer with time vary-
ing high gain for system (3.25) is designed as

{
˙̂z(t ) = U0 + d̂(t ) + z1(t ) − r(t )[̂z(t ) − z(t )],
˙̂
d(t ) = −r2(t )[̂z(t ) − z(t )],

(3.27)

where r ∈ C(R̄+, R
+) is a time varying gain that is

required to satisfy

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ṙ(t ) > 0, lim
t→∞

r(t ) = ∞,
ṙ(t )

r(t )
≤ M, ∀ t ≥ 0

for someM > 0,

lim
t→∞

ḋ(t )

r(t )
= 0, lim

t→∞
r(t )e−ω1t = 0

for ω1 > 0 in (3.26).

(3.28)

Lemma 3.2: Let (̂z(t ), d̂(t )) be the solution of (3.27).
Then

lim
t→∞

[|̂z(t ) − z(t )| + |d̂(t ) − d(t )|] = 0. (3.29)

Proof: Let

z̃(t ) = r(t )[̂z(t ) − z(t )], d̃(t ) = d̂(t ) − d(t ). (3.30)
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Then (̃z(t ), d̃(t )) satis�es

⎧
⎪⎪⎨
⎪⎪⎩

˙̃z(t ) = −r(t )̃z(t ) + r(t )d̃(t ) +
ṙ(t )

r(t )
z̃(t )

−r(t )[z2(t ) + ż3(t )],
˙̃
d(t ) = −r(t )̃z(t ) − ḋ(t ).

(3.31)

Set η(t ) = z̃(t ) + r(t )z3(t ). Then (3.31) is equivalent to

⎧
⎪⎪⎨
⎪⎪⎩

η̇(t ) = −r(t )η(t ) + r(t )d̃(t ) +
ṙ(t )

r(t )
η(t )

− r(t )z2(t ) + r2(t )z3(t ),
˙̃
d(t ) = −r(t )η(t ) + r2(t )z3(t ) − ḋ(t ).

(3.32)

By the local Lipschitz condition of the right-hand side of
(3.32), we know that (3.32) has a local classical solution.
Now, we show that (3.32) has a global solution by the Lya-
punov function presented below. Actually, we can de�ne
a Lyapunov function for system (3.32) as follows:

V (x1, x2) = x21 + 1.5x22 − x1x2. (3.33)

Then V(x 1, x 2) is positive de�nite:

1

2
V (x1, x2) ≤ x21 + x22 ≤ 2V (x1, x2), ∀ x1, x2 ∈ R.

Di�erentiateV (η(t ), d̃(t )) along the solution of (3.32) to
obtain

V̇ (η(t ), d̃(t ))

= 2η(t )[−r(t )η(t ) + r(t )d̃(t ) +
ṙ(t )

r(t )
η(t ) − r(t )z2(t )

+ r2(t )z3(t )] − [−r(t )η(t ) + r(t )d̃(t ) +
ṙ(t )

r(t )
η(t )

− r(t )z2(t ) + r2(t )z3(t )]d̃(t ) − η(t )[−r(t )η(t )

+ r2(t )z3(t ) − ḋ(t )] + 3d̃(t )[−r(t )η(t )

+ r2(t )z3(t ) − ḋ(t )]

=
[
−r(t ) + 2

ṙ(t )

r(t )

]
η2(t ) − r(t )d̃2(t ) + ḋ(t )[η(t )

− 3d̃(t )] − η(t )d̃(t )
ṙ(t )

r(t )
+ r(t )z2(t )[−2η(t )+d̃(t )]

+ r2(t )z3(t )[η(t ) + 2d̃(t )]

≤ −
1

2
φ(t )V (η(t ), d̃(t )) + ‖(η(t ), d̃(t ))‖[3r(t )|z2(t )|

+ 3r2(t )|z3(t )| + 4|ḋ(t )|]

≤ −
1

2
φ(t )V (η(t ), d̃(t )) +

√
2[3r(t )|z2(t )|

+ 3r2(t )|z3(t )| + 4|ḋ(t )|]
√
V (η(t ), d̃(t )), (3.34)

where

φ(t ) = r(t ) − 3 sup
t≥0

∣∣∣∣
ṙ(t )

r(t )

∣∣∣∣ .

By assumption (3.28), lim t → �φ(t) = 0. Re-organising
(3.34) gives

d

√
V (η(t ), d̃(t ))

dt
≤ −

1

4
φ(t )

√
V (η(t ), d̃(t ))

+ [3r(t )|z2(t )| + 3r2(t )|z3(t )| + 4|ḋ(t )|], (3.35)

which shows that

√
V (η(t ), d̃(t )) ≤

√
V (η(0), d̃(0))e−

1
4

∫ t

0 φ(s)ds

+
∫ t

0 [3r(s)|z2(s)| + 3r2(s)|z3(s)| + 4|ḋ(s)|]e 1
4

∫ s

0 φ(τ )dτds

e
1
4

∫ t

0 φ(s)ds
.

(3.36)

Equation (3.36) implies that the local solution never
blows up, so the global solution of (3.32) exists. Since

e
1
4

∫ t

0 φ(s)ds → ∞ as t → �, we can apply the L’Hospital
rule to the second term of the right-hand side of (3.36),
to obtain

lim
t→∞

∫ t

0
[3r(s)|z2(s)| + 3r2(s)|z3(s)| + 4|ḋ(s)|]e 1

4

∫ s
0 φ(τ )dτds

e
1
4

∫ t
0 φ(s)ds

= 4 lim
t→∞

3r(t )|z2(t )| + 3r2(t )|z3(t )| + 4|ḋ(t )|
φ(t )

= 4 lim
t→∞

[
3|z2(t )|

r(t )

φ(t )
+ 3r(t )|z3(t )|

r(t )

φ(t )
+ 4

|ḋ(t )|
r(t )

|
r(t )

φ(t )

]
= 0,

(3.37)

where in the last equality of (3.37), we used (3.26) and
(3.28). It then follows from (3.36) and (3.37) that

lim
t→∞

√
V (η(t ), d̃(t )) = 0,

which implies

lim
t→∞

[|η(t )| + |d̃(t )|] = 0. (3.38)

Furthermore, since z̃(t ) = η(t ) − r(t )z3(t ), it follows
from (3.28) that limt→∞ |̃z(t )| = 0. By (3.28) and ẑ(t ) −
z(t ) = z̃(t )/r(t ), we �nally obtain

lim
t→∞

= |̂z(t ) − z(t )| = 0. (3.39)

Equation (3.29) then follows from (3.38) and (3.39). �

Sincewehave an estimation of disturbance and the sys-
tem (3.10) with (U 0(t), d(t)) = 0 is stable (f(t) is a small
perturbation by (3.12)), we compensate the disturbance



INTERNATIONAL JOURNAL OF CONTROL 2403

by designing

U0(t ) = −d̂(t ). (3.40)

It is seen that the term in the right-hand side of (3.40) is
used to cancel the e�ect of the disturbance. This is just the
estimation/cancellation nature of ADRC.

Under feedback control (3.40), the closed-loop of sys-
tem (3.10) becomes

⎧
⎪⎪⎨
⎪⎪⎩

Ẋ (t ) = (A + BK)X (t ) + Bw(0, t ), t > 0,
wtt (x, t ) = wxx(x, t ), x ∈ (0, 1), t > 0,
wx(0, t ) = cwt (0, t ), t ≥ 0,

wx(1, t ) = −kw(1, t ) + f (t ) − d̃(t ), t ≥ 0.

(3.41)

Lemma 3.3: For any initial value (X (0), w(·, 0),
wt (·, 0)) ∈ H. If | f (t ) − d̃(t )| → 0 as t → �, then

(3.41) admits a unique solution (X, w, ẇ)⊤ ∈ H

satisfying

lim
t→∞

[
|X (t )|2

Rn + w
2(1, t ) +

∫ 1

0

w
2
x(x, t )dx

+
∫ 1

0

w
2
t (x, t )dx

]
= 0. (3.42)

Proof: The existence and uniqueness of solution of sys-
tem (3.41) has been proved by Proposition 3.1. Since
| f (t ) − d̃(t )| → 0 as t→ �, for any given κ > 0, wemay
suppose that | f (t ) − d̃(t )| ≤ κ for all t > t 0 for some t 0
> 0. Now, we write the solution of (3.41) as

⎛
⎝

X

w(·, t )
wt (·, t )

⎞
⎠

= eAt

⎛
⎝

X (0)
w(·, 0)
wt (·, 0)

⎞
⎠ +

∫ t

0

eA(t−s)
B( f (s) − d̃(s))ds

= eAt

⎛
⎝

X (0)
w(·, 0)
wt (·, 0)

⎞
⎠ + eA(t−t0)

∫ t0

0

eA(t0−s)
B( f (s)

−d̃(s))ds +
∫ t

t0

eA(t−s)
B( f (s) − d̃(s))ds.

(3.43)

The admissibility ofB claimed by Proposition 3.1 implies
that

∥∥∥∥
∫ t

0

eA(t−s)
B( f (s) − d̃(s))ds

∥∥∥∥
2

H

≤ Ct‖( f − d̃)‖2L2(0,t ) ≤ Ctt
2‖( f − d̃)‖2L∞(0,∞), ∀ t > 0,

for some constantC t that is independent of f (s) − d̃(s).
Since by Lemma 3.1 eAt is exponentially stable, it follows

from Remark 2.6 of Weiss (1989) that

∥∥∥∥
∫ t

t0

eA(t−s)
B( f (s) − d̃(s))ds

∥∥∥∥
H

≤
∥∥∥∥
∫ t

0

eA(t−s)
B(0♦

t0

( f (s) − d̃(s))ds

∥∥∥∥
H

≤ L‖( f − d̃)‖L∞(t0,∞) ≤ Lκ,

where L is a constant which is independent of d̃(t ), and

(u♦
τ

v )(t ) =
{
u(t ), 0 ≤ t ≤ τ,

v(t ), t > τ.

Suppose that ‖eAt‖ ≤ L0e
−ω2t for some L 0, ω2 > 0. We

have

∥∥∥∥∥∥

⎛
⎝

X (t )

w(·, t )
wt (·, t )

⎞
⎠
∥∥∥∥∥∥
H

≤ L0e
−ω2t

∥∥∥∥∥∥

⎛
⎝

X (0)
w(·, 0)
wt (·, 0)

⎞
⎠
∥∥∥∥∥∥
H

+ L0Ct0t
2
0 e

−ω2(t−t0)‖d̃‖L∞(0,t0,L2(Ŵ))

+ Lκ. (3.44)

Passing to the limit as t→ � for (3.44), we �nally obtain

lim
t→∞

∥∥∥∥∥∥

⎛
⎝

X (t )

w(·, t )
wt (·, t )

⎞
⎠
∥∥∥∥∥∥
H

≤ Lκ. (3.45)

This proves (3.42). �

Combining (3.9) and (3.40), an output feedback con-
trol for the system (1.1) is designed as follows:

U (t ) = −d̂(t ) +
∫ 1

0

(
μ′(1 − y) + cm′′(1 − y))

)
û(y, t )dy

+
∫ 1

0

(
m′(1 − y) + cμ(1 − y)

)
ût (y, t )dy

+
(
γ ′(1) + cγ (1)A

)
X̂ (t ) + cKBu(1, t )

− cut (1, t ) − k

{
u(1, t ) −

∫ 1

0

μ(1 − y)û(y, t )dy

−
∫ 1

0

m(1 − y)ût (y, t )dy − γ (1)X̂ (t )

+ c

∫ 1

0

[
ût (x, t ) − KBû(x, t )

−
∫ x

0

μ(x − y)ût (y, t )dy

×
∫ x

0

m′′(x − y)û(y, t )dy

]
dx

−c

∫ 1

0

γ (x)dxAX̂(t )

}
t ≥ 0. (3.46)
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The closed-loop system of (1.1) then becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ (t ) = AX (t ) + Bu(0, t ), t > 0,
utt (x, t ) = uxx(x, t ), x ∈ (0, 1), t > 0,
ux(0, t ) = 0, t ≥ 0,
ux(1, t ) = U (t ) + d(t ), t ≥ 0,
˙̂X (t ) = AX̂ (t ) + L(CX̂ −CX ) + Bû(0, t ), t > 0,
ûtt (x, t ) = ûxx(x, t ), x ∈ (0, 1), t > 0,
ûx(0, t ) = c1[ût (0, t ) − ut (0, t )], t ≥ 0,
ûx(1, t ) ∈ U (t ) − c2[ût (1, t ) − ut (1, t )]

− c3[û(1, t ) − u(1, t )] − M1sign(ût (1, t )
− ut (1, t )) − M2sign(û(1, t ) − u(1, t )),
t ≥ 0,

˙̂z(t ) = z1(t ) − r(t )[̂z(t ) − z(t )],
˙̂
d(t ) = −r2(t )[̂z(t ) − z(t )],
û(x, 0) = û0(x), ût (x, 0) = û1(x), 0 ≤ x ≤ 1,

(3.47)

where U(t) is given by (3.46).

Theorem 3.1: With the output feedback control

(3.46), for any initial value (X (0), u(·, 0), ut (·, 0)) ∈
R

n × H2(0, 1) × H1(0, 1), (X̂(0), û(·, 0), ût (·, 0)) ∈
R

n × H2(0, 1) × H1(0, 1), ẑ(0), d̂(0) ∈ R, any partial

di�erential inclusion solution of closed-loop system (3.47)
satis�es

lim
t→∞

F(t ) = 0, (3.48)

where

F(t ) = ‖X (t )‖2
Rn + u2(1, t ) +

∫ 1

0

u2x(x, t )dx

+
∫ 1

0

u2t (x, t )dx + |X̂ (t )|2
Rn + |û(1, t )|2

+
∫ 1

0

û2x(x, t )dx +
∫ 1

0

û2t (x, t )dx

+ |̂z(t )| + |d̂(t ) − d(t )|.

Proof: By the error variables ũ(x, t ) = û(x, t ) − u(x, t )

in (2.2) and (̃z(t ), d̃(t )) = (r(t )[̂z(t ) − z(t )], d̂(t ) −
d(t )) in (3.30), the system (3.47) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ (t ) = AX (t ) + Bu(0, t ), t > 0,
utt (x, t ) = uxx(x, t ), x ∈ (0, 1), t > 0,
ux(0, t ) = 0, t ≥ 0,
ux(1, t ) = U (t ) + d(t ), t ≥ 0,
˙̃X (t ) = (A + LC)X̃ (t ) + Bũ(0, t ), t > 0,
ũtt (x, t ) = ũxx(x, t ), x ∈ (0, 1), t > 0,
ũx(0, t ) = c1ũt (0, t ), t ≥ 0,

(3.49)

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ũx(1, t ) ∈ −c2ũt (1, t ) − c3ũ(1, t ) − M1sign(ũt (1, t ))
−M2sign(ũ(1, t )) − d(t ), t ≥ 0,

˙̃z(t ) = −r(t )̃z(t ) + r(t )d̃(t ) +
ṙ(t )

r(t )
z̃(t )

− r(t )[z2(t ) + ż3(t )],
˙̃
d(t ) = −r(t )̃z(t ) − ḋ(t ).

The ‘(X̃, ũ) part’ of (3.49) is just the (2.3) and the ‘(̃z, d̃)

part’ of (3.49) is (3.31). By Theorem 2.1 and Lemma 3.2,

∫ 1

0

[ũ2x(x, t ) + ũ2t (x, t )]dx + ũ2(1, t ) + |̂z(t ) − z(t )|

+ |d̂(t ) − d(t )| → 0 as t → ∞. (3.50)

Now, we show convergence of the ‘(X, u) part’ of (3.49).
To this end, we rewrite ‘(X, u) part’ as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ (t ) = AX (t ) + Bu(0, t ),
utt (x, t ) = uxx(x, t ), x ∈ (0, 1), t > 0,
ux(0, t ) = 0,

ux(1, t ) = f (t ) − d̃(t ) +
∫ 1

0

(μ′(1 − y)

+ cm′′(1 − y)))u(y, t )dy +
∫ 1

0

(m′(1 − y)

+cμ(1 − y))ut (y, t )dy + (γ ′(1)
+ cγ (1)A)X (t ) + cKBu(1, t ) − cut (1, t )

−k

{
u(1, t ) −

∫ 1

0

μ(1 − y)u(y, t )dy

−
∫ 1

0

m(1 − y)ut (y, t )dy − γ (1)X̂ (t )

+c

∫ 1

0

[
ut (x, t ) − KBu(x, t )

−
∫ x

0

μ(x − y)ut (y, t )dy

−
∫ x

0

m′′(x − y)u(y, t )dy

]
dx

− c

∫ 1

0

γ (x)dxAX (t )

}
,

(3.51)

where f(t) is given by (3.11). However, (3.51) is exactly
the same as that in the closed-loop system (3.41) under
the transformations (3.1) and (3.6). The convergence of
(3.51) follows from (3.50), (3.11), and lemma 3.3. This
ends the proof of the theorem. �

4. Concluding remarks

In this paper, we consider stabilisation for a wave PDE-
ODE cascade system with boundary control and control
matched disturbance. We �rst design an unknown input
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type observer by variable structure controlmethod. Based
on the estimated state, we design, by an idea of extended
state observer, a disturbance estimator to estimate the
external disturbance. The disturbance is then compen-
sated in the feedback loop. This idea comes from ADRC
approach, an emerging control technology. The closed-
loop system is shown to be asymptotically stable. The
idea is potentially promising for treating other uncertain
PDEs.
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