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SUMMARY

We present an output feedback stabilization scheme for uniformly completely observable nonlinear MIMO
systems combining nonlinear model predictive control (NMPC) and high-gain observers. The control
signal is recalculated at discrete sampling instants by an NMPC controller using a system model for the
predictions. The state information necessary for the prediction is provided by a continuous time high-gain
observer. The resulting ‘optimal’ control signal is open-loop implemented until the next sampling instant.
With the proposed scheme semi-global practical stability is achieved. That is, for initial conditions in any
compact set contained in the region of attraction of the NMPC state feedback controller, the system states
will enter any small set containing the origin, if the high-gain observers is sufficiently fast and the sampling
time is small enough. In principle the proposed approach can be used for a variety of state feedback NMPC
schemes. Copyright # 2003 John Wiley & Sons, Ltd.

KEY WORDS: output feedback; nonlinear predictive control; NMPC; semi-global practical stability

1. INTRODUCTION

Model predictive control for systems described by nonlinear ODEs or difference equations has
received considerable attention over the past years. Several schemes that guarantee stability in
the state feedback case exist by now, see for example References [1–3] for recent reviews. Much
fewer results are available in the case when not all states are directly measured. To overcome this
problem, often a state observer together with a stabilizing state feedback NMPC controller is
used. However, due to the lack of a general nonlinear separation principle, the stability of the
resulting closed loop must be examined.

Observer-based output feedback NMPC has been considered by a number of researchers. In
Reference [4] an optimization based moving horizon observer combined with the NMPC scheme
proposed in Reference [5] is shown to lead to (semi-global) closed-loop stability. The approach
in Reference [6] derives local uniform asymptotic stability of contractive NMPC in combination
with a ‘sampled’ state estimator. In Reference [7, 8], see also Reference [9], asymptotic stability
results for observer based discrete-time NMPC for ‘weakly detectable’ systems are given.
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For the approaches [7–9] it is in principle possible to estimate a (local) region of attraction of the
resulting output feedback controller from Lipschitz constants of the system, controller and
observer. However, it is in general not clear which parameters in the controller and observer
should be changed to increase the region of attraction, or how to recover (in the limit) the region
of attraction of the state feedback controller. This problem has been part-wise overcome in
References [10] and [11]. In Reference [10] semi-global practical stability of instantaneous
NMPC using high-gain observers has been established. These results are expanded in Reference
[11] to sampled-data NMPC, and further expanded herein to MIMO uniformly completely
observable systems.

With respect to the general output feedback stabilization problem for nonlinear systems,
significant progress has been achieved recently. Based on Reference [12], different versions of the
so-called nonlinear separation principle for a wide class of systems have been established
[13–15]. All these approaches use a high-gain observer for state recovery. While the initial results
cover control laws that are locally Lipschitz in the state, recently output feedback stabilization
of systems that are not uniformly completely observable and that cannot be stabilized by
continuous feedback have been achieved.

The results derived in this work are inspired by the ‘general’ nonlinear separation principles
results as presented in References [13, 15], i.e. we propose to use continuous time high-gain
observers in combination with NMPC. The main difference to the ‘general’ separation results
[13, 15] is that we want to employ an NMPC controller that only recalculates the optimal input
signal at sampling instants, as is customary in the NMPC literature. Between the sampling
instants, the input signal is applied open-loop to the system. For uniformly completely
observable nonlinear MIMO systems we achieve semi-global practical stability: For any desired
subset of the region of attraction of the state feedback NMPC and any small region containing
the origin, there exists a sampling time and an observer gain such that in the output feedback
case, all states starting in the desired subset will converge in finite time to the small region
containing the origin.

The results obtained are not focused on one specific NMPC approach. Instead, they are based
on a series of assumptions that in principle can be satisfied by several NMPC schemes, such as
quasi-infinite horizon NMPC [18], zero terminal constraint NMPC [19] and NMPC schemes
utilizing control Lyapunov functions to obtain stability [20, 21].

The paper is structured as follows: In Section 2 we briefly state the considered system class
and the assumed observability assumption. Section 3 introduces the proposed output feedback
NMPC scheme, and the stability properties are established in Section 4. We conclude the paper
in Section 5.

2. SYSTEM CLASS AND OBSERVABILITY ASSUMPTIONS

We consider nonlinear continuous time MIMO systems of the form:

’xx ¼ f ðx; uÞ; y ¼ hðx; uÞ ð1Þ

where the system state x 2 X � Rn is constrained to the set X; and the measured output is
y 2 Rp: The control input u is constrained to u 2 U � Rm: We assume that the functions
f : Rn �U ! Rn and h : Rn �U ! Rp are smooth, and that f ð0; 0Þ ¼ 0 and hð0; 0Þ=0. The
control objective is to derive an output feedback control scheme that practically stabilizes the
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system while satisfying the constraints on the states and inputs. With respect to X and U we
assume that

Assumption 1
U � Rm is compact, X � Rn is connected and ð0; 0Þ 2 X�U:

NMPC requires full state information for prediction. Since not all states are available via output
measurements, we utilize a high-gain observer to recover the states. The assumed observability
properties of the system (1) are characterized in terms of the observability map H; which is
defined via the successive differentiation of the output y:

Y :¼ ½y1; . . . ; y
ðr1Þ
1 ; y2; . . . ; yðrpÞ

p �T

¼ ½h1ðx; uÞ; . . . ;c1;r1ðx; u; ’uu; . . . ; u
ðr1ÞÞ; h2ðx; uÞ; . . . ;cp;rp ðx; u; ’uu; . . . ; u

ðrpÞÞ�T

¼:Hðx;U Þ

Here
Pp

i¼1 ðri þ 1Þ ¼ n; and U ¼ ½u1; ’uu1; . . . ; u
ðm1Þ
1 ; u2; ’uu2; . . . ; um; ’uum; . . . ; uðmmÞ

m �T 2 RmU where the
mi denote the number of really necessary derivatives of the input i with mU :¼

Pm
i¼1 ðmi þ 1Þ: The

ci;j’s are defined via the successive differentiation of y

ci;0ðx; uÞ ¼ hiðx; uÞ; i ¼ 1; . . . ;p ð2aÞ

ci;jðx; u; . . . ; u
ðjÞÞ ¼

@ci;j�1

@x
f ðx; uÞ þ

Xj

k¼1

@ci;j�1

@uðk�1Þ u
ðkÞ; i ¼ 1; . . . ;p; j ¼ 1; . . . ; rp ð2bÞ

Note that in general, not all derivatives of the ui up to order maxfr1; . . . ; rpg appear in ci;j:
Given these definitions we can state the uniform complete observability property assumed,
compare References [15] and [22].

Assumption 2 (Uniform complete observability)
The system (1) is uniformly completely observable in the sense that there exists a set of indices
fr1; . . . ; rpg such that the mapping defined by Y ¼ Hðx;U Þ is smooth with respect to x and its
inverse from Y to x is smooth and onto for any U :

The inverse of H with respect to x is denoted by H�1ðY ;U Þ; i.e. x ¼ H�1ðY ;U Þ:
No explicit stabilizability assumption is required to hold. The stabilizability is

implicitly ensured by the assumption on the NMPC controller to have a non-trivial region of
attraction.

3. OUTPUT FEEDBACK NMPC CONTROLLER

The output feedback control scheme consists of a state feedback NMPC controller and
a high-gain observer for state recovery. While the optimal inputs are only recalculated at the
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sampling instants and are applied in-between open-loop, the high-gain observer operates
continuously.

3.1. NMPC ‘Open-loop’ state feedback

In the frame of predictive control, the input is defined via the solution of an open-loop optimal
control problem that is solved at the sampling instants. In between the sampling instants the
optimal input is applied open-loop. For simplicity we denote the sampling instants by ti; with
ti � ti�1 ¼ d; d being the sampling time. For a given t; ti should be taken as the nearest sampling
instant ti5t: The open-loop optimal control problem solved in the considered NMPC set-up at
any ti is given by

min
%uuð�Þ

J ð %uuð�Þ; xðtiÞÞ subject to : ’%xx%xxðtÞ ¼ f ð %xxðtÞ; %uuðtÞÞ; %xxðt ¼ 0Þ ¼ xðtiÞ ð3aÞ

%uuðtÞ 2 U; %xxðtÞ 2 X t 2 ½0; Tp� ð3bÞ

%xxðTpÞ 2 E ð3cÞ

The cost functional J is defined over the control horizon Tp by J ð %uuð�Þ; xðtiÞÞ :¼
R Tp
0 F

ð %xxðtÞ; %uuðtÞÞ dtþ Eð %xxðTpÞÞ: The bar denotes internal controller variables, %xxð�Þ is the solution of (3a)
driven by the input %uuð�Þ : ½0; Tp� ! U with the initial condition xðtiÞ: The solution of the optimal
control problem is denoted by %uu$ð�; xðtiÞÞ: It is applied open-loop to the system until the next
sampling time tiþ1;

uðt; xðtiÞÞ ¼ %uu$ðt � ti; xðtiÞÞ; t 2 ½ti; ti þ dÞ ð4Þ

The control uðt; xðtiÞÞ is a feedback, since it is recalculated at each sampling instant using new
state measurements. Typically, the role of the end penalty E and the terminal region constraint E
is to enforce stability of the state feedback closed loop. We do not go into any details about the
different existing state feedback NMPC schemes that guarantee stability, see for example
References [1, 3]. Instead we state the set of assumptions we require to achieve semi-global
practical stability in the output feedback case.

Assumption 3
There exists a simply connected region R � X � Rn (region of attraction of the state feedback
NMPC) with 0 2 R such that:

1. Stage cost is lower bounded by a K function: The stage cost F : R�U ! R is continuous,
satisfies F ð0; 0Þ ¼ 0; and is lower bounded by a class K function* aF : aF ðjjxjj þ jjujjÞ4F
ðx; uÞ 8ðx; uÞ 2 R�U:

2. Optimal control is uniformly locally Lipschitz in terms of the initial state: The optimal
control %uu$ðt; xÞ is piecewise continuous and locally Lipschitz in x 2 R; uniformly in t: That
is, for a given compact set O � R: jj %uu$ðt; x1Þ � %uu$ðt; x2Þjj4Lujjx1 � x2jj 8t 2 ½0; TpÞ; x1; x2 2
O; where Lu denotes the Lipschitz constant of %uu$ðt; xÞ in O:

3. Value function is locally Lipschitz: The value function, which is defined as the optimal value
of the cost for every x 2 R: V ðxÞ :¼ J ð %uu$ð�; xÞ; xÞ is Lipschitz for all compact subsets of R
and V ð0Þ ¼ 0; V ðxÞ > 0 for all x 2 R=f0g:

*A continuous function a : ½0;1Þ ! ½0;1Þ is a K function, if it is strictly increasing and að0Þ ¼ 0:
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4. Decrease of the value function along solution trajectories: Along solution trajectories
starting at a sampling instant ti at xðtiÞ 2 R; the value function satisfies

V ðxðti þ tÞÞ � V ðxðtiÞÞ4�
Z tiþt

ti

F ðxðsÞ; uðs; xðsiÞÞÞ ds; 04t

Assumptions 3.1 and 3.4 are satisfied by various NMPC schemes, such as quasi-infinite horizon
NMPC [18, 23], zero terminal constraint NMPC [19] and NMPC schemes utilizing control
Lyapunov functions to achieve stability [20, 21]. Assumption 3.1 is a typical assumption in
NMPC, often quadratic stage cost functions F are used. Assumption 3.4 implies that R is
invariant under the state feedback NMPC for all trajectories starting at ti in R: It also implies
convergence of the state to the origin for t ! 1 [18, 24] and allows the use of suboptimal
NMPC schemes [3, 25]. The strongest assumptions are Assumptions 3.2 and 3.3. For existing
NMPC schemes Assumption 3.2 is often satisfied near the origin. In words, this (quite
frequently made) assumption requires that two ‘close’ initial conditions must lead to ‘close’
optimal input trajectories. However, for example, it excludes systems that can only be stabilized
by discontinuous feedback (as state feedback NMPC can stabilize [26]). Checking Assumptions
3.2 and 3.3 is in general difficult.

To establish the semi-global practical stability result in Section 4 it is necessary that for any
compact subset S � R we can find a compact outer approximation OcðSÞ that contains S and
is invariant under the NMPC state feedback.

Assumption 4
For all compact sets S � R there is at least one compact set OcðSÞ ¼ fx 2 RjV ðxÞ4cg such
that S � OcðSÞ:

In general more than one such set exists, since c can be in the range supx2R V ðxÞ > c >
maxx2S V ðxÞ: Assuming that such a set OcðSÞ exists for all compact subsets S of R is strong.
If it is not fulfilled, the results are limited to sets S that are contained in the largest level set
Oc � R:

3.2. State recovery by high-gain observers

The NMPC state feedback controller requires full state information. In this paper we propose to
recover the states from the output (and input) information via a high-gain observer. We briefly
outline the basic structure of the high-gain observer used. Furthermore, we present two
possibilities to avoid the need for analytic knowledge of the inverse of the observability map
H�1ðY ;U Þ; for which an analytic expression is often difficult to obtain. Since explicit knowledge
and boundedness of the u derivatives that appear in the observability map are necessary, we also
briefly comment on this issue at the end of this section.

Basic high-gain observer structure: As is well known, application of the co-ordinate
transformation z :¼ Hðx;U Þ to the system (1) leads to the system in observability normal form
in z co-ordinates

’zz ¼ Azþ Bfðz; *UUÞ; y ¼ Cz
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Here A; B; C and f are given by

A ¼ blockdiag½A1; . . . ;Ap�; B ¼ blockdiag½B1; . . . ;Bp�

Ai ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
.

0 � � � � � � 0 1

0 � � � � � � � � � 0

2
6666666664

3
7777777775
ri�ri

Bi ¼

0

� � �

0

1

2
666664

3
777775
1�ri

C ¼ blockdiag½C1;C2; . . . ;Cp�; Ci ¼ ½1 0 � � � 0�1�ri

fðz; *UUÞT ¼ ½c1;r1þ1ðH
�1ðz;U Þ; u; . . . ; uðr1þ1ÞÞ; . . . ;cp;rpþ1ðH

�1ðz;U Þ; u; . . . ; uðrpþ1ÞÞ�

ð5Þ

The functions ci;rjþ1; j ¼ 1; . . . ;p are defined analogously to (2). The vector *UU contains,
similarly to U in the mapping H; the input and all necessary derivatives. It is necessary to
distinguish between *UU and U ; since, as can be seen from (5), *UU might contain more u derivatives
than U :Note that f is locally Lipschitz in all arguments since f ; h andH are smooth. The high-
gain observer

’#zz#zz ¼ A#zzþ Heðy � C#zzÞ þ B #ffð#zz; *UUÞ ð6Þ

allows recovery of the states z from yðtÞ (and *UU) [13, 22]. The function #ff is the ‘model’ of f used
in the observer. The key assumption we need on #ff is that

Assumption 5
#ff is globally bounded.

Ideally one would like to use #ff ¼ f; if f is bounded and known, since one can expect good
observer performance in this case. If f is not globally bounded one can generate at suitable #ff by
bounding f outside of a region of interest. In the extreme case, i.e. if f is not or only very
roughly known, Assumption 5 also allows to choose #ff ¼ 0:

The observer gain matrix He is given by He ¼ blockdiag½He;1; . . . ;He;p�; with HT
e;i ¼ ½aðiÞ1 =e;

aðiÞ2 =e2; . . . ; aðiÞri =e
ri �; where e is the so-called high-gain parameter since 1=e goes to infinity for

e ! 0: The aðiÞj s are design parameters and must be chosen such that the polynomials sri þ
aðiÞ1 sri�1 þ � � � þ aðiÞri�1sþ aðiÞri ¼ 0; i ¼ 1; . . . ;p are Hurwitz. The state estimate used in the NMPC
controller is obtained at the sampling instants ti by

#xxðtiÞ :¼ H�1ð#zzðt�i Þ;U ðti; #xxðti�1ÞÞÞ ð7Þ

Here U ðti; #xxðti�1ÞÞ contains the input and its derivatives obtained by the NMPC controller at
time ti�1 for the time ti: The variable t�i denotes the left limit of the corresponding trajectory for
ti: It is necessary to distinguish between the left limit t�i and the value at ti since H depends on u
and its derivatives leading to possible discontinuities in the state estimate, as discussed in some
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more detail in Section 3.3. Note that the high-gain observer allows to recover the full state
information. However, the inverse mapping H�1 must be known explicitly. Furthermore the
expanded input vector *UU must always, not only at sampling instants, be known.

Avoiding the necessity to know H�1 analytically: One way to avoid the explicit knowledge of
H�1 and *UU is to set #ff ¼ 0 in (6). Then the inverse of the observability map H; as well as
information on U is only necessary at (just before) the sampling instant, and the equation
#zzðt�i Þ ¼ Hð #xxðtiÞ;U ðti; #xxðti�1ÞÞÞ can be added to the dynamic optimization problem (3) that is
solved in the NMPC controller at time ti: This does not change the solution of (3), since the
value of #xx is, due to the uniform complete observability assumption, uniquely defined. Another
possibility to avoid explicit information on H�1 is to rewrite the observer equations in terms of
the original co-ordinates as proposed in References [14, 27].

Obtaining the necessary u derivatives: To obtain a state estimate via the high-gain observer the
applied input and the derivatives appearing in *UU must be known. Furthermore, if u derivatives
appear they must be bounded. Since the input is determined via an open-loop optimal control
problem at the sampling instants, the NMPC set-up can be modified to provide the necessary
information and guarantee the well behavedness of u and its derivatives. Different possibilities
to achieve this exist: One can (a) augment the system model used in the NMPC state feedback by
integrators at the input side, or (b) parameterize the input uðtÞ in the optimization problem such
that the input is sufficiently smooth with bounded derivatives. In the approach (a), adding the
integrators leads to a set of new inputs and the NMPC controller must be designed to stabilize
the expanded model. Furthermore, to guarantee boundedness of the inputs and its derivatives,
constraints on the new inputs must be added. In the following we assume that the NMPC
controller is designed such that it guarantees that the input is sufficiently often differentiable and
that it provides the full *UU vector.

Assumption 6
The input given by the NMPC controller is continuous over the first sampling interval,
sufficiently often differentiable and bounded, i.e. the NMPC open-loop optimal control problem
provides a continuous ‘input’ vector U ð�; xðtiÞÞ with U ðti þ t; xðtiÞÞ 2 UH; t 2 ½0; dÞ with UH ¼
U�UHd � Rpþ *mmU ; where UHd � R *mmU is a compact set and *mmU is the number of derivatives
in *UU:

This assumption does not exclude a piecewise constant (over the sampling interval)
parameterization of the input, as often used in NMPC for the numerical solution of the
open-loop optimal control problem (3) [28, 29]. Note that in the special case that the input and
its derivatives do not appear in H no modification in the NMPC controller to achieve
continuity of the input (and its derivatives) is necessary.

3.3. Overall output feedback set-up

The overall output feedback control is given by the state feedback NMPC controller and a high-
gain observer. The open-loop input is only calculated at the sampling instants using the state
estimates of the observer. The observer state #zz is initialized with #zz0 which, transformed to the
original co-ordinates, satisfies #xx0 2 Q: The set Q � Rn with 0 2 Q is a compact subset of possible
observer initial values. The closed-loop system with the observer specified in observability
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normal form can be described by

system : ’xxðtÞ ¼ f ðxðtÞ; uðt; #xxðtiÞÞÞ; xð0Þ ¼ x0

yðtÞ ¼ hðxðtÞ; uðt; #xxðtiÞÞÞ

observer :
’#zz#zzðtÞ ¼ A#zzðtÞ þ B #ffð#zzðtÞ; *UUðt; #xxðtiÞÞÞ þ HeðyðtÞ � C#zzðtÞÞ

with #zzðtiÞ ¼
Hð #xxðtiÞ;U ðti; #xxðtiÞÞÞ if #xxðtiÞ ¼ H�1ð#zzðt�i Þ;U ðti; #xxðti�1ÞÞÞ 2 Q

#zz0 if #xxðtiÞ ¼ H�1ð#zzðt�i Þ;U ðti; #xxðti�1ÞÞÞ =2 Q

8<
:

NMPC : defined via ð3Þ; provides uðt; #xxðtiÞÞ;U ðt; #xxðtiÞÞ; *UUðt; #xxðtiÞÞ

using #xxðtiÞ ¼ H�1ð#zzðt�i Þ;U ðti; #xxðti�1ÞÞÞ as state estimate

ð8Þ

Remark 3.1
While the observer itself operates continuously, it might be necessary to reinitialize the observer
state z at the sampling instants, as defined in Equation (8). This is a consequence of the fact that
H in general depends on u and its derivatives, which might be discontinuous at the sampling
instants. While at a first glance the reinitialization seems to be unnecessary, it avoids the
possibility that the observer ‘initial’ state #xxðtiÞ ¼ H�1ð#zzðt�i Þ;U ðti; #xxðti�1ÞÞÞ at the sampling instant
is, due to the possible discontinuity in u; outside of the compact set Q: This is also the reason
that one must differentiate between #zzðt�i Þ (the left limit) and #zzðt�i Þ: A similar reinitialization is
used in Reference [16].

Figure 1 shows the time sequence of the overall output feedback scheme. The arrows in Figure 1
pointing from the trajectories of y to #zz illustrate that the high-gain observer is a continuous time
system and continuously updated with the output measurements in between sampling instants.
In contrast to the high-gain observer, the NMPC open-loop optimal control problem is solved
only at the sampling instants ti and the input is open-loop implemented in between.

Note that the observer estimate is not bounded to the feasibility region R of the NMPC
controller. Since the open-loop optimal control problem will not have a solution outside R; we
define the input in this case to an arbitrary, bounded value.

Figure 1. Time sequence of the overall output feedback control scheme.
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4. PRACTICAL STABILITY

In this section the main result, semi-global practical stability of the closed-loop system state, is
established. In the first step we show that for any compact subset of R for the system initial
states and any compact set of initial conditions of the observer initial states, the closed-loop
states stay bounded for small enough e and d: Furthermore, at least at the end of each sampling
interval the observer error has converged to an arbitrarily small set. In a next step it is
established that for a sufficiently small e the closed loop system state trajectories converge in
finite time to a (arbitrarily) small region containing the origin. In principle we use similar
arguments as in Reference [13]. However, since we consider a sampled-data feedback employing
open-loop input trajectories between the sampling instants, we cannot make use of standard
Lyapunov and converse Lyapunov arguments. Instead we utilize the decrease-properties of the
NMPC state feedback value function along solution trajectories.

In the following we suppress most of the time the (known) ‘input’ U ðt; xðtiÞÞ and *UUðt; xðtiÞÞ in
the notation, e.g. HðxÞ should be read as Hðx;U Þ: Furthermore, it is convenient to work in
scaled observer error co-ordinates based on the observability normal form, i.e. we consider the
scaled observer error Z which is defined as Z ¼ ½Z11; . . . ; Z1r1 ; Zprp �; with Zij ¼ ðzij � #zzijÞ=eri�j:
Hence we have that #zz ¼ z� DeZ with De ¼ blockdiag½De;1;De;2; . . . ;De;p�; De;i ¼ diag½eri�1; . . . ; 1�:
Then the closed-loop system in between sampling instants is given by

’xxðtÞ ¼ f ðxðtÞ; uðt; #xxðtiÞÞÞ

e’ZZðtÞ ¼A0ZðtÞ þ eBgðt; xðtÞ; xðtiÞ; ZðtÞ; Zðt�i ÞÞ

where the matrix A0 ¼ eD�1
e ðA� HeCÞDe is independent of e and where the function g is defined

as the difference between #ff and f;

gðt; xðtÞ; xðtiÞ; ZðtÞ; Zðt�i ÞÞ ¼ fðzðtÞ; *UUðt; #xxðtiÞÞÞ � #ffð#zzðtÞ; *UUðt; #xxðtiÞÞÞ

Here the estimated system state #xxðtiÞ and z; #zz are given in terms of Z; x and u by

#xxðtiÞ ¼ H�1ðHðxðtiÞÞ � DeZðt�i ÞÞ; zðtÞ ¼ HðxðtÞÞ; #zzðtÞ ¼ HðxðtÞÞ � DeZðtÞ

We often compare, over one sampling interval, the state trajectories of the output feedback
closed loop with the trajectories resulting from the application of the state feedback NMPC
controller starting at the same initial condition. The state feedback trajectories starting at xðtiÞ
are denoted, with slight abuse of notation, by %xxðt; xðtiÞÞ: ’%xx%xxðt; xðtiÞÞ ¼ f ð %xxðt; xðtiÞÞ; uðt; xðtiÞÞÞ; %xxðti;
xðtiÞÞ ¼ xðtiÞ; t 2 ½ti; ti þ d�: For simplicity we furthermore assume, without loss of generality, that
05e41: This implies that jjDejj41:

4.1. Preliminaries

Before we move to the practical stability and boundedness results we establish some properties
of the observer and controller. In the following the set Q � Rn is a fixed compact set for the
observer initial state #xx0; whereas Ge :¼ fZ 2 RnjW ðZÞ4re2g defines a set for the scaled observer
error Z that depends on e: The constant r appearing in the following lemma is defined as
r :¼ 16ðjjP0jj

4=lminðP0ÞÞk2g where kg is an upper bound on g; and W ðZÞ is defined by W ðZÞ ¼ ZTP0Z;
where P0 is the solution of the Lyapunov equation P0A0 þ AT

0 P0 ¼ �I : The following lemma is
similar to a result obtained in Reference [13], and hence stated without proof.
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Lemma 1 (Convergence of the scaled observer error)
Given any time 05T such that *UU is continuous over ½0; T �; two compact sets Oc � R and
Q � Rn; and let Assumptions 2 and 5 hold. Furthermore suppose that the system state satisfies
xðtÞ 2 Oc; 04t4T : Then there exists an e$1 ; a constant r; and a time TQðeÞ4T such that for any
#xx0 2 Q and for all 05e4e$1 the scaled observer states ZðtÞ are bounded for t 2 ½0; T � and that
ZðtÞ 2 Ge; t 2 ½TQðeÞ; T �: Furthermore, TQðeÞ ! 0 as e ! 0:

Remark 4.1
Note that the size of the set Ge and the time TQðeÞ depend on e: Decreasing e leads to a shrinking
Ge while also shrinking the time TQðeÞ needed to reach Ge: Furthermore, note that an upper
estimate of the error in the original co-ordinates for Z 2 Ge is given by

jjx� #xxjj ¼ jjH�1ðz;U Þ �H�1ð#zz;U Þjj4kGe for Z 2 Ge

where kG is a constant that depends on the Lipschitz constant LUH of H�1 (and hence on UH;
Oc and Q). Thus decreasing e also decreases the observer error in the original co-ordinates after
the time TQðeÞ: This, together with robustness properties of the state feedback NMPC controller
are the key elements for proving the output feedback stability result.

The next lemma establishes a bound on the difference between the trajectories resulting from the
NMPC controller with exact state information and the NMPC controller using an incorrect
state estimate. From now on, Oc will denote level sets of V ðxÞ defined by Oc :¼ fx 2 RjV ðxÞ4cg;
and the set OcðSÞ denotes a level set Oc that contains the (assumed compact) set S � R; i.e.
c > maxx2 S V ðxÞ:

Lemma 2 (Bounding state and output feedback trajectories)
Let Assumptions 1–4 hold. Given three compact sets Q � Rn; S � R and OcðSÞ � R with
S � OcðSÞ: Consider the system (1) driven by the NMPC open-loop control law (4) using the
correct state x0 (state feedback) and the state estimate #xx0 2 Q (output feedback)

’xxðtÞ ¼ f ðxðtÞ; uðt; #xx0ÞÞ; ’%xx%xxðtÞ ¼ f ð %xxðtÞ; uðt; x0ÞÞ; xð0Þ ¼ %xxð0Þ ¼ x0 ð9Þ

Then there exists a time TS4Tp such that for all #xx0 2 Q; x0 2 S; we have xðtÞ; %xxðtÞ 2 OcðSÞ and

jjxðtÞ � %xxðtÞjj4
LfuLu
Lfx

jjx0 � #xx0jjðeLfxt � 1Þ; t 2 ½0; TS�

Here Lfx and Lfu are the Lipschitz constants of f in OcðSÞ �U; and Lu is the ‘Lipschitz
constant’ of u as defined in Assumption 3.2.

Proof
Since S � OcðSÞ; u piecewise continuous and bounded there always exists a time TS4Tp such
that xðtÞ; %xxðtÞ 2 OcðSÞ for all t 2 ½0; TS� and that the solutions are continuous. This follows from
the fact that for xð�Þ in OcðSÞ jjxðtÞ � x0jj4

R t
0 jjf ðxðsÞ; uðsÞÞjj ds4kOt; (and the same for %xxðtÞ)

where kO is a constant depending on the Lipschitz constants of f and the bounds on u: The
solutions to (9) for any t 2 ½0; TS� can be written as: xðtÞ ¼ x0 þ

R t
0
f ðxðsÞ; uðs; #xx0ÞÞ ds;

%xxðtÞ ¼ x0 þ
R t
0 f ð %xxðsÞ; uðs; x0ÞÞ ds: Thus jjxðtÞ � %xxðtÞjj4

R t
0 jjf ðxðsÞ; uðs; #xx0ÞÞ � f ð %xxðsÞ; uðs; x0ÞÞjj ds:

Since f is locally Lipschitz in R (and hence in OcðSÞ) and uðt; xÞ is uniformly locally
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Lipschitz in x we obtain

jjxðtÞ � %xxðtÞjj4LfuLujjx0 � #xx0jjtþ
Z t

0

LfxjjxðsÞ � %xxðsÞjj ds

where Lfu; Lfx are the Lipschitz constants of f in OcðSÞ �U; and Lu is the ‘Lipschitz constant’
of u as defined in Assumption 3.2. Using the Gronwall–Bellman inequality we obtain for all
t 2 ½0; TS� jjxðtÞ � %xxðtÞjj4LfuLu=Lfxjjx0 � #xx0jjðeLfxt � 1Þ; which proves the lemma. &

In proving the main results, we make use of the following fact that gives a lower bound on the
first ‘piece’ of the NMPC state feedback value function:

Fact 1
For any c > a > 0; Tp > d > 0 the lower bound Vminðc; a; dÞ on the value function exists and is
non-trivial for all x0 2 Oc=Oa: 05Vminðc; a; dÞ :¼ minx02Oc=Oa

R d
0
F ð %xxðs; x0Þ; uðs; x0ÞÞ ds51:

4.2. Boundedness of the states

As a first result we establish that the closed-loop states are bounded for sufficiently small e and d:

Theorem 1 (Boundedness of the states, invariance of OcðSÞ)
Assume that the Assumptions 1–6 are fulfilled. Given arbitrary compact sets Q; S and OcðSÞ
with Q � Rn and S � OcðSÞ � R: Then there exists d$

2 > 0 such that for d4d$

2 ; d > 0; there
exists an e$2 > 0; such that for all 05e4e$2 and all initial conditions ðx0; #xx0Þ 2 S� Q; the observer
error ZðtÞ stays bounded and converges at least at the end of every sampling interval to the set
Ge: Furthermore, xðtÞ 2 OcðSÞ 8t50:

Proof
The proof is divided into two parts. In the first part it is shown that there exists a sufficiently
small d and a sufficiently small e such that the observer error converges to the set Ge at least at
the end of the first sampling interval, starting with #xxð0Þ 2 Q and xð0Þ 2 S; and that xðtÞ in the
sampling time does not leave OcðSÞ: In a second step we establish that xðtÞ remains in OcðSÞ
while ZðtÞ stays bounded and converges (at least) at the end of each sampling interval ðt�i Þ to Ge:
Note that Z might jump at the sampling instants ti due to the discontinuities in U and the
possible reinitialization (8). This is the reason why we cannot establish that Z enters the set Ge

and stays there. However, this is not a problem for the control, since the state estimate is only
needed at the end of each sampling interval. Figure 2 is an attempt to sketch the main ideas of
the proof. We denote the smallest level set (Figure 3 clarifies some of the regions occurring in the
proofs) of V that covers S by Oc1 ðSÞ; where the constant c15c is given by c1 ¼ maxx2S V ðxÞ:

First sampling interval, existence of e; d such that Zðt�1 Þ 2 Ge and xðtÞ 2 OcðSÞ; t 2 ½0; t1�: Since
S is strictly contained in OcðSÞ; there exist a time Tc such that trajectories starting in S do not
leave OcðSÞ on the interval ½t; t þ Tc�: The existence is guaranteed, since, similar to the proof of
Lemma 2, as long as xðtÞ 2 OcðSÞ; jjxðtÞ � x0jj4

R t
0 jjf ðxðsÞ; uðsÞÞjj ds4kOt: We take Tc as the

smallest possible (worst case) time to reach the boundary of OcðSÞ from a point x0 2 Oc1*S;
allowing uðsÞ to take any value in U: Due to the compactness of Q we know from Lemma 1 that
ZðtÞ 2 Ge for t5TQðeÞ: Since TQðeÞ ! 0 as e ! 0; there exists an e1 such that for all 05e4e1;
TQðeÞ4Tc=2: Let d$

2 be such that for all 05d4d$

2 ; the first sampling instant t1 ¼ d satisfies
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TQðeÞ5t15Tc=2: Choose one such d for the rest of the proof. Then ðxðt1Þ; Zðt�1 ÞÞ 2 OcðSÞ � Ge;
and the same hold for the next sampling instant, (since we used Tc=2 for choosing d$

2 ). We will in
the following refer to the smallest level set covering all points that can be reached from points in
Oc1ðSÞ in the time Tc=2 applying any admissible control by OcTc=2ðSÞ: Note that by the
arguments given above, xðt1Þ 2 OcTc=2 ðSÞ; with cTc=25c:

Invariance of Oc for x at sampling instants, convergence of Z to Ge for each t�i : Consider a
sampling instant ti (e.g. t1) for which we know that xðtiÞ 2 OcTc=2ðSÞ and that xðti þ tÞ 2 OcðSÞ for
04t4d and Zðt�i Þ 2 Ge: Note that we do not have to consider the case when xðti þ tÞ 2 Oc1ðSÞ
for some 04t4d; since the reasoning in the first part of the proof ensures in this case that the
state will not leave the set OcTc=2 ðSÞ in one sampling time (considering the worst case input).
Hence we assume in the following that xðti þ tÞ 2 OcðSÞ=Oc1 ðSÞ:

Now consider the difference of the value function for the initial state xðtiÞ and the state
xðti þ tÞ;

V ðxðti þ tÞÞ � V ðxðtiÞÞ

4V ð %xxðti þ t; xðtiÞÞÞ � V ðxðtiÞÞ þ jV ðxðti þ tÞÞ � V ð %xxðti þ t; xðtiÞÞÞj

4�
Z tiþt

ti

F ð %xxðs; xðtiÞÞ; uðs; xðtiÞÞÞ dsþ jV ðxðti þ tÞÞ � V ð %xxðti þ t; xðtiÞÞÞj ð10Þ

Since V is Lipschitz in compact subsets of R*OcðSÞ we obtain:

V ðxðti þ tÞÞ � V ðxðtiÞÞ4 �
Z tiþt

ti

F ð %xxðs; xðtiÞÞ; uðs; xðtiÞÞÞ ds

þ LV jjxðti þ tÞ � %xxðti þ t; xðtiÞÞjj

where LV is the Lipschitz constant of V in OcðSÞ: The integral contribution is only a function of
the predicted open-loop trajectories of the NMPC state feedback controller. Fact 1 and Lemma
2 give:

V ðxðti þ dÞÞ � V ðxðtiÞÞ4� Vminðc; a; dÞ þ LV
LfuLu
Lfx

jjxðtiÞ � #xxðtiÞjjðeLfxd � 1Þ ð11Þ

for any fixed a5c1 and xðtiÞ =2 Oa: From Remark 4.1 we know that there exists an e250 such that
for all 05e5e2; V ðxðti þ dÞÞ � V ðxðtiÞÞ4� 1

2
Vminðc; a; dÞ ¼: �k1; where k1 > 0 is a constant given

Figure 2. Sketch of the main ideas behind the proof of Theorem 1.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:211–227

R. FINDEISEN ET AL.222



by the right-hand side of (11). Hence the state at the next sampling instant is at least within
OcTc=2 ðSÞ again, and thus also in OcðSÞ: Since xðtiþ1Þ 2 OcTc=2ðSÞ; it will by the reasoning in the
first part not leave OcðSÞ during the next sampling interval, and hence the arguments in the
second part holds for this interval as well. By induction, the state will not leave OcðSÞ; and
xðtiþ1Þ 2 OcTc=2ðSÞ: Setting e$2 :¼ minfe1; e2g concludes the proof. &

4.3. Semi-global practical stability of the systems states

In this section it is established that for any small ball around the origin, there exists an observer
gain and a sampling time such that the state trajectory converges to the ball in finite time and
stays inside the ball.

Theorem 2 (Practical stability)
Given arbitrary compact sets Q; S and OcðSÞ with Q � Rn and S � OcðSÞ � R:
Furthermore, let the Assumptions 1–6 hold. Then, for any set Oa with c > a > 0; there exists
d$

3 > 0 such that for d4d$

3 ; d > 0; there exists e$3 > 0; such that for all 05e4e$3 and all ðx0; #xx0Þ 2
S� Q; the observer error ZðtÞ stays bounded and the state xðtÞ converges in finite time to the set
Oa and remains there.

Proof
First we show that there exists an e sufficiently small, such that for any 05b5a; Ob � Oa;
trajectories originating in Ob at a sampling instant do not leave Oa (Figure 3 clarifies some of the
regions occurring in the proof.) Then we establish that the states starting at #xx0 2 Q and x0 2 S
enter Ob in finite time. In the first part we consider any fixed d4d$

2 :
‘Invariance’ of Oa for xðtiÞ originating in Ob: For xðtiÞ 2 Ob and t4d; by Lemma 2, the value

functions of the state feedback and output feedback trajectories satisfy the bound

jV ðxðti þ tÞÞ � V ð %xxðti þ t; xðtiÞÞÞj4LV
LfuLu
Lfx

jjxðtiÞ � #xxðtiÞjjðeLfxt � 1Þ: ð12Þ

Furthermore, the state feedback trajectory satisfies %xxðti þ t; xðtiÞÞ 2 Ob for t 2 ½0; d� by
Assumption 3.4. So one can choose an e1 such that for 05e4e1; V ðxðti þ tÞÞ4a for t 2 ½0; d�;
for all xðtiÞ 2 Ob: Thus the trajectory xðti þ tÞ does not leave the set Oa for t 2 ½0; d�: Now we

Figure 3. Regions involved in the practical stability proof.
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define an additional level set Og inside of Ob given by 05g5b: We proceed considering two
cases, xðtiÞ 2 Og and xðtiÞ 2 Ob=Og:

xðtiÞ 2 Ob=Og: Similar to Equation (11) in the proof of Theorem 1, we can show for xðtiÞ =2 Og;

V ðxðti þ dÞÞ � V ðxðtiÞÞ4� Vminðc; g; dÞ þ LV
LfuLu
Lfx

jjxðtiÞ � #xxðtiÞjjðeLfxd � 1Þ

Choose e2 such that for 05e5e2;

V ðxðti þ dÞÞ � V ðxðtiÞÞ4�
1

2
Vminðc; g; dÞ ¼: �k2 ð13Þ

Hence xðti þ dÞ 2 Ob for xðtiÞ 2 Ob=Og: Additionally, we know from the first part of the proof
that also the states between the sampling instants ti and ti þ d do not leave Oa: The bound (13)
implies that xðtiÞ reaches the set Og in finite time, for which (13) is not valid anymore.

xðtiÞ 2 Og: To show that we can find an e such that xðti þ tÞ 2 Ob; we use again Equation (12)
and note that the state feedback trajectory satisfies %xxðti þ t; xðtiÞÞ 2 Og for t 2 ½0; d�: Choosing an
e34minfe1; e2g sufficiently small, we know that for all 05e4e3; V ðxðti þ tÞÞ4b for t 2 ½0; d�; and
for all xðtiÞ 2 Og: From the given arguments it follows that xðti þ dÞ 2 Ob for all xðtiÞ 2 Ob and
xðti þ tÞ 2 Oa for all t 2 ½0; d�: Thus it is clear that once xðtiÞ enters the set Ob; the trajectories stay
for all times in Oa*Ob:

Finite time convergence to Ob: It remains to show that for any ðx0; Z0Þ 2 S� Q; there exists a
(finite) sampling instant tm with xðtmÞ 2 Ob: We know from Theorem 1 that for sufficiently small
d and e; xðtÞ 2 OcðSÞ 8t > 0: Set d$

3 ¼ d$

2 ; and choose a d5d$

3 : Set e
$

3 ¼ minfe$2 ; e3g; where e$2 ;
depending on d; is specified as in Theorem 1. Furthermore, note that Theorem 1 guarantees
boundedness of ZðtÞ 8t > 0; and that Z is at least at the end of all sampling intervals inside of Ge:
Hence, to show convergence to Ob; note that (13) is valid for all xðtiÞ 2 Oc=Og: Therefore, for any
initial state in S the state enters Ob in a finite time less than or equal to ððc� bÞ=k2Þd: &

Theorem 2 implies practical stability of the system state xðtÞ: Choosing a and e small enough, we
can guarantee that x converges to any set containing a neighborhood of the origin. Thus the
closed-loop system state is semi-globally practically stable with respect to the set R; in the sense
that for any S � R and any ball around the origin there exists an observer gain and a sampling
time, such that the system state reaches the ball from any point in S in finite time and stays
therein afterwards.

4.4. Discussion

The derived results are mainly based on the fact that NMPC is to some extent robust to
measurement errors. This robustness is restricted by the integral contribution on the right-hand
side of Equation (10). Utilizing this robustness in the output feedback case has some direct
consequences. For example the level sets of the value function, which are invariant in the state
feedback case, are in general no longer invariant in the output feedback case. Furthermore, the
following points are important to note:

Satisfaction of constraints: The satisfaction of the input constraints is guaranteed by the
NMPC scheme and the boundedness of the input for #xx =2 R: The state constraints are satisfied
since S � R � X; and since a sufficiently high observer gain and a sufficiently small sampling
time is chosen, such that even initially the state does not leave the set R � X:
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Limited required sampling time: The sampling time must only be small enough to guarantee
that the trajectory during the initial phase, for which the observer error is often significant, does
not leave the desired region of ‘attraction’ OcðSÞ: Beyond this, only e must be decreased, while d
can be kept constant. This follows from the use of a predictive control scheme that uses a system
model. The open-loop input signal applied to the system (which is not fixed to a constant value
in general) corresponds to the predicted behavior. In comparison, the general output feedback
approach presented in References [16, 17] requires a sufficient decrease in the sampling time to
achieve practical stability, since the input during the sampling time is fixed to the constant value
uðtÞ ¼ kðxðtiÞÞ given by a state feedback controller kðxÞ:

Need to reinitialize the observer: We only establish that the observer error stays bounded and
converges to Ge at the end of each sampling interval. This is a toll for allowing a general
observability map that can depend on u and its derivatives. Since in NMPC the input is often
discontinuous at the sampling instants, this means the scaled observer error Z in general also is
discontinuous at these points. To avoid that Z might ‘jump’ out of Ge at the sampling time, we
have to enforce #xxðtiÞ inside of Q to guarantee that Z converges again to the set Ge for t�iþ1: In the
case that H is independent of u or that the inputs are continuous, e.g. due to added input
integrators, the reinitialization is not necessary. In this case it is easy to show that the observer
error converges in one sampling time to Ge and stays there indefinitely, thus the whole closed
loop including the observer states is practically stable.

5. CONCLUSIONS

It is a widespread intuition that NMPC, which inherently is a state feedback approach, can be
applied to systems where only output measurements are available, if an observer with ‘good
enough’ convergence properties is used. In this paper a new output feedback NMPC scheme for
the class of uniformly completely observable systems is derived, using a high-gain observer to
obtain ‘fast enough’ estimates of the states. It is shown that under certain assumptions on the
NMPC controller, the approach confirms the intuition. To be more precise the derived output
feedback scheme achieves semi-global practical stability, i.e. for a fast enough sampling
frequency and fast enough observer, it recovers up to any desired accuracy the NMPC state
feedback region of attraction (semi-global) and steers the state to any (small) compact set
containing the origin (practical stability). The semi-global stability result obtained is the key
difference to previous output feedback NMPC schemes, delivering direct tuning knobs to
increase the resulting region of attraction of the closed loop. No specific state feedback NMPC
scheme is considered during the derivations. Instead a set of assumptions are stated that the
NMPC scheme must fulfil. In principle these assumptions can be satisfied by a series of NMPC
schemes [18–21]. If the input does not appear in the observability map, the NMPC controller
need not be modified to guarantee that the input is sufficiently smooth. Thus, in this case the
derived results can be seen as a special separation principle for NMPC. Still, several open
questions for output feedback NMPC remain. For e.g., one of the key assumptions on the
NMPC controller is that the applied optimal open-loop input is locally Lipschitz in terms of the
state. This assumption is in general hard to verify. Thus future research will focus on either
relaxing this condition, or to derive conditions under which an NMPC scheme does satisfy this
assumption.
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