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Abstract 
In this paper a new frequency domain technique is introduced for the modal identification of output-only 

systems, i.e. for the case where the modal parameters must be estimated without knowing the input exciting 

the system. By its user friendliness the technique is closely related to the classical approach where the modal 

parameters are estimated by simple peak picking. However, by introducing a decomposition of the spectral 

density function matrix, the response spectra can be separated into a set of single degree of freedom systems, 

each corresponding to an individual mode. By using this decomposition technique close modes can be 

identified with high accuracy even in the case of strong noise contamination of the signals. Also, the 

technique clearly indicates harmonic components in the response signals. 

1.1ntroduction 

Modal identification of output-only systems is 

normally associated with the identification of modal 

parameters from the natural responses of civil 

engineering structures, space structures and large 

mechanical structures. Normally, in these cases the 

loads are unknown, and thus, the modal 

identification has to be carried out based on the 

responses only. Real case examples on some civil 

engineering structures can be found in Ventura and 

Horyna [1] or Andersen et al. [2]. 

The present paper deals with a new way of 

identifying the modal parameters of a structure from 

the responses only when the structure is loaded by a 

broad-banded excitation. 

The technique presented in this paper is an 

extension of the classical frequency domain 

approach often referred to as the Basic Frequency 

Domain (BFD) technique, or the Peak Picking 

technique. The classical approach is based on 

simple signal processing using the Discrete Fourier 

TransfolJil, and is using the fact that well separated 

modes can be estimated directly from the power 

spectral density matrix at the peak, Bendat and 

Piersol [3]. Other implementations of the technique 

make use of the coherence between channels, Felber 

[4]. 

The classical technique gives reasoQable estimates 

of natural frequencies and mode shapes if the modes 

are well separated. However, in the case of close 
modes, it can be difficult to detect the close modes, 

and even in the case where close modes are 

detected, estimates becomes heavily biased. Further, 

the frequency estimates are limited by the frequency 

resolution of the spectral density estimate, and in all 

cases, damping estimation is uncertain or 

impossible. 

Even though the classical approach has limitations 

concerning accuracy in the identification process, 

the classical approach has important advantages 

when compared to other approaches. It is natural to 

compare with classical two-stage time domain 
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approaches such as the Polyreference technique, 

Void et al [5], the Ibrahim Time Domain tehcnique, 

Ibrahim and Milkulcik [6], and the Eigensystem 

Realization Algorithm, Juang and Papa [7], or to 

compare with the new one-stage time domain 

identification tehcniques know as the Stochastic 

Subspace Identification algorithms, Van Overschee 

and De Moor [8]. The main advantages compared to 

these other techniques is that the classical approach 

is much more user-friendly, it is faster, simpler to 

use, and gives the user a "feeling" of the data he or 

she is dealing with. The fact that the user works 

directly with the spectral density functions helps the 

user in figuring out what is structural just by 

looking at the spectral density functions. This 

reinforces the users understanding of the physics 

and thus provides a valuable basis for a meaningful 

identification. 

The technique presented in this paper is a 

Frequency . Domain Decomposition (FDD) 

technique. It removes all the disadvantages 

associated with the classical approach, but keeps the 

important features of user-friendliness and even 

improves the physical understanding by dealing 

directly with the spectral density function. Further, 

the technique gives a clear indication of harmonic 

components in the response signals. 

In this paper it is shown that taking the Singular 

Value DeComposition (SVD) of the spectral matrix, 

the spectral matrix is decomposed into a set of auto 

spectral density functions, each corresponding to a 

single degree of freedom (SDOF) system. This 

result is exact in the case where the loading is white 

noise, the structure is lightly damped, and when the 

mode shapes of close modes are geometrically 

orthogonal. If these assumptions are not satisfied, 

the decomposition into SDOF systems is 

approximate, but still the results are significantly 

more accurate than the results of the classical 

approach. 

2. Theoretical background of 

frequency domain 

decomposition 

The relationship between the unknown inputs x(t) 

and the measured responses y(l) can be expressed 

as, Bendat & Piersol [9]: 

Gyy(jm) = H(jm)Gxx(jm)H(jml (1) 
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Where G xx (j m) is the r X r Power Spectral 

Density (PSD) matrix of the input, r is the number 

of inputs, GYY(jm) is the mxm PSD matrix of 

the responses, m is the number of responses, 

H (j m) is the m X r Frequency Response Function 

(FRF) matrix, and "-" and superscript T denote 

complex conjugate and transpose, respectively. 

The FRF can be written in partial fraction, i.e. 

pole/residue form 

n R R 
H (jm) = L . k + . k 

k=l ]W - Ak ]W - Ak 
(2) 

where n is the number of modes, Ak is the pole and 

Rk is the residue 

Rk = IPk r[ (3) 

where IPk> r k is the mode shape vector and the 

modal participation vector, respectively. Suppose 

the input is white noise, i.e. its PSD is a constant 

matrix, i.e. Gxx(jm) = C, then Equation (1) 

becomes 

n n 

GYY(jm) = L L 
k=l s=l 

where superscript H denotes complex conjugate 

and transpose. Multiplying the two partial fraction 

factors and making use of the Heaviside partial 

fraction theorem, after some mathematical 

manipulations, the output PSD can be reduced to a 

pole/residue form as follows 

Gyy(jm)= 

-f Ak Ak Bk Iik 
£....---+ + + --"-=--
k=l jm-A.k jm - A.k - jm - A.k - jm-2k 

(5) 
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where Ak is the k th residue matrix of the output 

PSD. As the output PSD itself the residue matrix is 

an mXm hermitian matrix and is given by 

(6) 

The contribution to the residue from thek th mode 

is given by 

(7) 

whereak is minus the real part of the pole 

Ak = -ak + jmk . As it appears, this term becomes 

dominating when the damping is light, and thus, is 

case of light damping, the residue becomes 

proportional to the mode shape vector 

- T T 
Ak oc RkCRk = fPkYk Cykrpk 

= dkrpkrp[ (8) 

where d k is a scalar constant. At a certain 

frequency m only a limited number of modes will 

contribute significantly, typically one or two modes. 

Let this set of modes be denoted by Sub( m). Thus, 

in the case of a lightly damped structure, the 

response spectral density can always be written 

d T d- -T 
G ( . ) = L krpkrpk + k{/Jkrpk (9) 

YY }UJ keSub(w) jm - Ak jm - Ak 

This is a modal decomposition of the spectral 

matrix. The expression is similar to the results one 

would get directly from Equation (I) under the 

assumption of independent white noise input, i.e. a 

diagonal spectral input matrix. 

3.1dentification algorithm 

In the Frequency Domain Decomposition (FDD) 

identification, the first step is to estimate the power 

spectral density matrix. The estimate of the output 
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PSD Gyy(jm) known at discrete frequencies 

m = m; is then decomposed by taking the Singular 

Value Decomposition (SVD) of the matrix 

(10) 

where the matrix U; = [uil,ui2, ... ,u;m] is a 

unitary matrix holding the singular vectors uij, and 

S; is a diagonal matrix holding the scalar singular 

values sij. Near a peak corresponding to the k th 

mode in the spectrum this mode or may be a 

possible close mode will be dominating. If only the 

k th mode is dominating there will only be one term 

in Equation (9). Thus, in this case, the first singular 

vector u il is an estimate of the mode shape 

(11) 

and the corresponding singular value is the auto 

power spectral density function of the 

corresponding single degree of freedom system, 

refer to Equation (9). This power spectral density 

function is identified around the peak by comparing 

the mode shape estimate if> with the singular 

vectors for the frequency lines around the peak. As 

long as a singular vector is found that has high 

MAC value with if> the corresponding singular 

value belongs to the SDOF density function. 

From the piece of the SDOF density function 

obtained around the peak of the PSD, the natural 

frequency and the damping can be obtained. In this 

paper the piece of the SDOF PSD was taken back to 

time domain by inverse FFT, and the frequency and 

the damping was simply estimated from the crossing 

times and the logarithmic decrement of the 

corresponding SDOF auto correlation function. 



720 

Figure 1. Geometry of2 storey-building model. 

Measurement points are indicated by arrows 

m the cas~ two modes are dominating, the first 

singular vector will always be a good estimate of 

the mode shape of the strongest mode. However, in 

case the two modes are orthogonal, the first two 

singular vectors are unbiased estimates of the 

corresponding mode shape vectors. 

m case the two modes are not orthogonal, typically 

the bias on mode shape estimate of the dominant 

mode will be small, but the bias on the mode shape 

estimate of the weak mode will be strong. Thus, one 

has to estimate the mode shapes for the two close 

modes at two different frequency lines, one line 

where the first mode is dominant, and another 

frequency line where the second mode is dominant. 

4. Example, simulation of a 2-

storey building 

m this example the response of a two-storey 

building is simulated used a lumped parameter 

system with 6 degrees of freedom. The 

measurements are assumed to be taken so that the 

rigid body motions of the floor slaps can be 

estimated. The geometry and the measurement 

points are shown in Figure I . 

·-SYOolPSO 
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12! ~------,--------.-------.--------. 

Figure 2. Singular values of the power spectral 

density matrix of the response 

This structure has two sets of close modes. The first 

two modes are bending modes, and the model was 

calibrated in such a way, that these two bending 

modes were close, but not very close. The third 

mode is a torsion mode, and the fourth and fifth 

modes are again close bending modes. The model 

was calibrated in such a way that the fourth and 

fifth modes were very close, nearly repeated poles. 

The response was simulated using a vector ARMA 

model to ensure that the simulated responses were 

covariance equivalent, Andersen et al. [10]. The 

model was loaded by white noise, and the response 

was analysed using the identification technique 

introduced above. The simulated time series had a 

length of I 0000 data points and three cases were 

considered: no noise, I 0 % noise and 20 % noise 

added. 

The singular values of the spectral density function 

matrix are shown in Figure 2. As it appears, the 

close modes are clearly indicated in this plot. Using 

the FDD identification procedure described above, 

the natural frequencies and damping ratios were 

identified with 
high accuracy, se Table I for the natural frequencies 

and Table 2 for the damping values. As it appears, 

the.technique is not sensitive to the noise. Also the 

mode shape estimates were very close to the exact 

results. Note especially the mode shapes for the two 

i 
I 
l 
I 
I. 

\ 
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Figure 3. Estimated mode shapes for the first and 

the second mode (building bending). 

Figure 4. Estimated mode shape for the third 

mode (building torsion). 

Figure 5. Estimated mode shapes for the fourth 

and the .fifth mode (building bending). 

bl Ta e l. Estimated Natural Frel: uenc1es 

Exact Without 10 % 20% 

noise noise noise 

(Hz) (Hz) ' (Hz) (Hz) 

18.686 18.676 18.661 18.665 

21.054 20.930 20.927 20.938 

38.166 38.188 38.188 38.206 

55.055 55.036 55.01 1 54.999 

55.121 55. 129 55.133 55.125 

72 1 

T bl 2 E . a e sttmate dD all!£I~ R' atws 

Exact Without 10 % 20 % 

noise noise noise 

(%) (%) (%) (%) 

2.13 2.22 2. 19 2.33 

1.89 1.97 1.98 1.97 

1.04 1.12 1.11 1. 13 

0.72 0.61 0.61 0.55 

0.72 0.76 0.76 0.77 

nearly repeated modes (the fourth and the fifth) in 

Figure 5. 

5. Identification of harmonics, 

plate loaded by engine 

As explained earlier, the frequency domain 

decomposition (FDD) technique presented in this 

paper decomposes the spectral density into a set 

auto spectral density functions each one 

corresponding to one of the single degree of 

freedom system representing the corresponding 

mode. If a harmonic is present, this corresponds a 

local amplification of the auto spectral density 

function of all the SDOF systems, i.e. all - or nearly 

all - of the singular values in the spectral plot will 

show a peak at the frequency where the harmonic is 

present. This result holds also in the case of a quasi

stationary harmonic, i.e. in the case of a harmonic 

with a slowly varying frequency. 

Thus, if one observes, that not only the first singular 

value has a peak at a certain frequency, but most of 

the other singular values also have a peak at that 

same frequency, then this is strong indication, that 

the peak does not represent a structural response, 

but a harmonic. 

If a structural mode is close to the harmonic, the 

harmonic does not destroy the mode shape estimate. 

However, one should be careful not using the 

amplified values of the SDOF bell (amplified by the 

harmonic) when using the inverse Fourier transform 

to estimate frequency and damping in the time 

domain. This will heavily bias the frequency and 

damping estimate. 
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Figure 6. Decomposed spectral density for the plate 

loaded by rotating engine only 

The example .presented here is the response of a 

rectangular plate to the oscillations of an engine. 

The engine rotates with a quasi-stationary speed 

corresponding to a frequency of about 100 Hz, but it 

also excites the plate by a broad-banded loading due 

to noise generated by the bearing etc. The out-of

plane deformations of the plate were measured 

using 16 accelerometers, and the signals were 

acquired by a Brtiel & Kjrer PULSETM multi

analyser system where time recording takes place by 

throughput to disk. The response signals were 

sampled at a sampling rate of 8192 data points per 

second, and 81920 data points were acquired 

corresponding to a total measurement time of 10 

seconds. For the modal analysis the raw time data 

were exported into the ARTeMIS software from 

SVS using the Universal File format. The test is 

described in detail in M\'lller et al. [ 15]. 

The decomposed spectrum shown in figure 6 clearly 

indicates that the first 2 peaks are harmonics (all 

singular values are influenced). The 3ro harmonic is 

not so clearly indicated by the singular values. 

However, it can also be identified as a harmonic 

from the fact that it is an over-harmonic to the first 

and that the mode shape estimated from the peak is 

nearly the same as the mode shape estimated for 

the first structural mode, see figure 7. 

OPERATING MODAL ANALYSIS 

Figure 7. Upper left: Harmonic 304 Hz. Upper 

right: ]"' mode 368 Hz. Lower left: 2"d mode 480 

Hz. Lower right: 3ro mode 704 Hz. 

Conclusions 

In this paper a new frequency domain identification 

technique denoted Frequency Domain Decomposi ~ 

tion (FDD) has been introduced. 

The technique is based on decomposing the power 

spectral density function matrix using the Singular 

Value Decomposition. It has been shown that this 

decomposes the spectral response into a set of 

single degree of freedom systems, each 

corresponding to one individual mode. 

The technique has been illustrated on a simulation 

example with noise and close modes. The results 

clearly indicate that the present technique is able to 

estimate close modes with high accuracy and that 

the technique is not sensitive to noise. 

In the case of close modes that are not orthogonal, 

the mode shape of the dominant mode is still well 

estimated. However, if the other mode is not 

dominating a any frequency, other ways of 

estimating the mode shape for such a mode must be 

introduced. 

The technique has been applied successfully to 

several civil engineering cases, Brincker et al. [11], 

[12] and to several cases of identification in 

mechanical engineering where the the structure was 

loade.d by rotating machinery, Brincker et al. [13], 

M\'lller et al. [14] and [15]. 
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The technique clearly indicates the presence of 

harmonics in the response signal, i.e. without 

further indication the user directly separates 

harmonic peaks from structural response peaks. 
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