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Abstract: 

Many important systems, such as turbomachinery, helicopters and wind turbines, must be modeled with 
linear time-periodic equations of motion to correctly predict resonance phenomena. Time periodic effects in wind 
turbines might arise due to stratification in the velocity of the wind with height, changes in the aerodynamics of the 
blades as they pass the tower and/or blade-to-blade manufacturing variations.  These effects may cause 
parametric resonance or other unexpected resonances, so it is important to properly characterize them so that 
these machines can be designed that achieve the high reliability, safety, and long lifetimes demanded to provide 
economical power.  This work presents an output-only system identification methodology that can be used to 
identify models for linear, periodically time-varying systems.  The methodology is demonstrated for the simple 
Mathieu oscillator and then used to interrogate simulated measurements from a rotating wind turbine, revealing 
that at least one of the turbine’s modes seems to be time-periodic.  The measurements were simulated using a 
state-of-the-art wind turbine model called HAWC2 that includes both structural dynamic and aerodynamic effects.  
Simulated experiments such as this may be useful both to validate dynamic models for a turbine or to obtain a set 
of time-periodic equations of motion from a numerical model; these are not readily available by other means due 
to the way that the aeroelastic effects are treated in the simulation code. 
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1. Introduction 
Linear time-periodic (LTP) differential equations are important for quite a wide range of systems including 

helicopters [1-7], turbomachinery [8-10] wind turbines [11-13] and virtually any system that can be linearized 
about a periodic trajectory (see, e.g. [14-17]).  Allen & Sracic have even proposed that a general nonlinear system 
might be more easily identified if excited such that an LTP model is appropriate [18].  Other researchers have 
sought to exploit LTP effects to detect defects, such as a cracked shaft, in a rotating system [8-10]. 

This work explores LTP identification for wind turbines.  Time-periodic models are necessary to model 
wind turbine dynamics if the turbine has only two blades, or if the blades of a 3+ blade turbine are not perfectly 
identical, since the turbine tower is always anisotropic.  In practice there are always differences between the 
blades but these are often not considered in design, analysis or even when performing tests.  Time-periodicity can 
also arise due to aeroelastic effects such as interaction between the flow around the blade and tower or variation 
in the wind speed with altitude.  Most of these effects are difficult to model and there is considerable uncertainty in 
the parameters that should be used, so experimental methods are needed both to validate existing models and to 
probe experimental measurements to see whether time-periodic effects should be included in future models. 

A few system identification strategies have been proposed for linear time-periodic systems.  Many of them 
are extensions of system realization methods (e.g. the Eigensystem Realization Algorithm [19].)  For example, Liu 
presented a discrete-time approach of this form in [20], Verhagen presented a subspace method [21], and others 
have investigated this as well [22, 23].  Peters and Fuehne independently developed a related approach that they 
call Generalized Floquet Theory [2, 7, 24, 25], which seeks to derive the Floquet exponents of the time-periodic 
system from measured time series.  Other researchers have explored optimization-based approaches [26, 27].   
While those works are valuable, frequency domain system identification approaches are preferred in many 
instances because one can more easily make sense of complicated measurements and averaging can be 
performed to reduce long, cumbersome time series to a compact representation of the system’s response.  
Wereley and Hall extended the concept of the frequency response function (FRF) to LTP systems [28-30], paving 
the way for frequency domain identification of LTP systems.  A number of other researchers subsequently 
presented many similar concepts [31], one group taking a complex frequency response approach [32].  However, 
to date only a few works have sought to implement these concepts experimentally and sometimes the results 
have been disappointing [3, 5, 33].  One exception is continuous-scan laser Doppler vibrometry (CSLDV), which 
can also be thought of as a special case of LTP system identification.  A number of effective methods have been 
developed for CSLDV and they have been used with real measurements demonstrating very good results in many 
cases [34-42].  On the other hand, many of those methods are specialized to CSLDV and not immediately 
applicable to time-periodic systems in general. 

This work uses the harmonic transfer function concept developed by Wereley [28] to create an output-
only system identification method for linear time-periodic systems.  The proposed method can be thought of as an 
extension of Operational Modal Analysis (OMA) [43-45] or Output-only modal analysis [46-48] to time-periodic 
systems.  One of the first OMA algorithms  in the structural dynamics community was Natural Excitation 
Technique (NExT) [49] by James & Carne, and in the intervening years there have been hundreds of papers on 
OMA  and there is even now a conference devoted to the topic.  As with OMA for time-invariant systems, the 
theory presented here can be used to extract the time-periodic mode vectors of a system from an (augmented) 
auto-spectrum of the response if the input obeys certain assumptions. 

The rest of this paper is organized as follows.  Section 2 derives the proposed output-only identification 
technique with particular emphasis on how to interpret the response spectra of an LTP system.  In Section 3 the 
proposed methodology is demonstrated by identifying a model for a simple time-periodic system (the Mathieu 
oscillator) from simulated measurements.  The method is then applied to simulated measurements from a wind 
turbine in Section 4, and Section 5 summarizes the conclusions. 

2. Theoretical Development 
The state space equations of motion of a linear time-periodic (LTP) system can be written as follows, 

 ( ) ( ) , ( ) ( )x A t x B t u y C t x D t u= + = +  (1) 



 

where A(t+TA) = A(t) and the other matrices are periodic as well with the same period.  The fundamental frequency 
of the time-periodic system is denoted ωA = 2π/TA.  The state transition matrix gives the free response of such a 
system at time t via the relationship, 

 0 0( ) ( , ) ( )x t t t x t= Φ . (2) 

One can also write the forced response of the system in terms of the STM as follows. 
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Floquet theory reveals that, in the absence of degenerate roots, the state transition matrix of an LTP system can 
be represented as a modal sum [9, 10], 
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where λr is the rth Floquet exponent of the state transition matrix, ψr is the rth time-periodic mode vector of the 

STM and Lr is the rth column of  [ ]1 2( ) ( ) Tt tψ ψ − .  The Floquet exponents of an LTP system are analogous 

to the eigenvalues of a Linear Time Invariant (LTI) system, which can be written in terms of the damping ratio ζr 

and natural frequency ωr as 21r r r r riλ ζ ω ω ζ= − + −  for an underdamped mode.  (Note that the eigenvectors 

of A(t) have not been mentioned here; the modal parameters of the STM are more useful for determining the 
stability of the system and understanding its response, and they are more convenient to identify experimentally, 
so we shall focus on them.  For an LTI system the STM and A(t) share the same eigenvectors.  Most system 
identification routines for LTI systems also seek to find the modal parameters of the STM, for example those 
based on a discrete-time representation, which is a special case of eq. (3) for a constant time step (see, e.g. [45, 
50].) 
 Since the eigenvectors of the STM are periodic, it is convenient to expand them in a Fourier series.  In 
practice the state vector is usually not measured but some vector of outputs (y(t) in eq. (1)), so we shall concern 
ourselves only with the observed mode vectors, C(t)ψr(t).  As is often the case for LTI systems, C(t) may simply be 
a matrix of ones and zeros indicating which of the states were measured, or one may have more measurement 
points than states and then C(t) has more rows than columns.  In any event the expansion is, 
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where ,r nC  is the nth vector of Fourier coefficients of the rth observed mode vector, C(t)ψr(t), and similarly for 

Lr(t)TB(t). 
It is well known that the response of a LTI system to a complex exponential input, u(t), results in a 

complex exponential output, y(t), although with different magnitude and phase.  In contrast, a linear time-periodic 
system may respond to a single sinusoid at an infinite number of frequencies, which caused some to believe that 
the concept of a transfer function couldn’t be extended to LTP systems [31].  Wereley addressed this difficulty 
using an exponentially modulated periodic (EMP) signal space, in which u and y are described as follows. 
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 These signals are useful because an EMP input signal causes an EMP output, although with different 
magnitude and phase at each frequency in the comb, so a concept that is completely analogous to the LTI 
transfer function can be derived.  This is done by defining vectors of the harmonics, yn, of output, 

1 0 1( )
TT T Ty y yω −⎡ ⎤= ⎣ ⎦y , and similarly for the input, then writing a transfer function relating input 

and output EMP signals, which is dubbed the Harmonic Transfer Function (HTF) [28]. 



 

 ( ) ( ) ( )ω ω ω=y G u  (7) 

One can also write y as, 
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where Y(ω) is the Fourier transform of y(t).  Hence, one can construct the EMP signals u and y from 
measurements of the input and response u(t) and y(t).  Theoretically, one must consider an infinite number of 
harmonics to characterize an LTP system, yet one would expect that most systems can be well approximated with 
a finite, perhaps even small number. 

For LTI systems, the FRF matrix has a well-known form with peaks near the natural frequencies of each 
mode, and with the FRF matrix approximating the shape of the corresponding eigenvector near that frequency.  A 
similar relationship must be derived for LTP systems.  This was done by substituting eq. (4) into eq. (3), dropping 
transient terms (assuming steady state) and using a Fourier series expansion to simplify the expression.  
Wereley’s thesis shows an example of this type of calculation.  After much algebra, one obtains the following 
expression for G in terms of the modal parameters of the STM. 
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where the nth term in the vector ,r lC , is ,r n lC − ,  the (n-l)th Fourier coefficient of C(t)ψr(t), ,r l mB −  is the (l-m)th 

Fourier coefficient of Lr(t)TB(t) and the(n,m)th element of D is the (n-m)th Fourier coefficient of D(t).  This 
expression has exactly the same mathematical form as the expression for the FRF matrix in terms of the modal 
parameters for a linear time-invariant system, so the same algorithms can be applied to identify the parameters of 
the LTP system and the same intuition that one uses to interpret FRFs can also be used to interpret HTFs.  There 
are, however, a few differences that must be noted: 

• An LTP system of order N can potentially have an infinite number of peaks in its HTF, depending on how 
many terms in ,r lC  and ,r lB  are nonzero.  Each peak will occur near the imaginary part of the Floquet 

exponent λr plus some integer multiple of the fundamental frequency ωA.  If the mode shapes of the 
system are constant in time, then ,r lC  and ,r lB  contain only one nonzero term and eq. (9) reduces to the 

familiar relationship for an LTI system. 
• Whereas the mode shapes of an LTI system describe the spatial pattern of deformation of a mode, the 

observed mode shapes of an LTP system, ,r lC , also reveal how that shape changes with time.  A single-

output LTP system still has a mode shape that is a vector, with each element in that vector being a 
Fourier coefficient describing how the mode shape at that one output point changes with time. 
In the applications that are of interest in this work the input is not known, so we desire to determine the 

modal parameters of the system from the output signal only.  To do this, we write the power spectrum of the 
output in terms of the HTF matrix and the input, resulting in the following, 
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where the power spectra can be found by applying the usual estimation algorithm to the EMP signals, 
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with ()H denoting the Hermitian or complex-conjugate transpose.  Replacing G with its modal representation in eq. 
(10), one obtains the following for the case where D(t) = 0, 
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where W(ω) is a function of the input spectrum and the input characteristics of the system.  This shows that the 
autospectrum of the output can be approximated by a sum of modal contributions if W(ω) is reasonably flat.  (For 
LTI systems this requires that the input spectrum Suu(ω) be flat.  Here the requirement is similar, yet perhaps more 
stringent.)  The dominant terms in the summation above are those for which ( )r Aj jlω λ ω− −  and 

( )s Aj jkω λ ω− −  are both minimum at the same frequency.  If the sidebands for mode r do not overlap with 
those for mode s, then this occurs when r = s and l = k and the expression becomes, 
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so the shape of the autospectrum is proportional to the dominant mode shape and a particular element of the 
autospectrum plotted versus frequency has the shape of an LTI mode squared.  The extension of these ideas to 
nonzero D(t) is straightforward.  As with operational modal analysis for LTI systems, there are additional scale 
factors that must be determined to find the response of the LTP system to an input or an initial condition, but the 
modal parameters are still useful for evaluating the response of the system qualitatively. 
 The proposed output-only system identification routine can be summarized as follows: 

1. Record the response, y(t), of an LTP system to a broadband input. 
2. Form a vector, y, of frequency shifted copies of the output as shown in eq. (8) by using the fact that Y(ω-

nωA)=FFT[y(t)*exp(-inωAt)]. 
3. Compute the autospectrum of y by averaging multiple blocks of the time history as shown in eq. (11). 
4. Use an LTI output only system identification routine to identify the modal parameters from the 

autospectrum, using eqs. (12) and (13) to interpret the results and reconstruct the modal parameters of 
the STM.  One of the simplest applicable identification methods is the peak picking method. 

5. Reconstruct C(t)ψr(t), using the identified Fourier coefficients, ,r lC , if desired. 

3. Simulated Application: Mathieu Oscillator 
A single degree-of-freedom Mathieu Oscillator was used to evaluate the proposed identification 

methodology on a very simple time-periodic system.  Figure  1 shows a schematic of the Mathieu Oscillator.   

 
 

Figure 1:  Mathieu Oscillator with a time varying spring stiffness. 

The spring stiffness for the system varies periodically with frequency ωA according to eq. (14).  

 ( )tkktk Aωcos)( 10 +=  (14) 

After normalizing by dividing out the oscillator mass, the system has the following equation of motion 
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The Mathieu oscillator was used to simulate an output-only response.  The parameters used for the 
oscillator were m=1, k0=1, k1=0.4, and ωA=0.8 rad/s.  A damping ratio of 0.02 was desired so the damping 
coefficient was set to c=0.4.  The system was subjected to wide-band random white noise input, which was 
generated by passing a vector of randomly generated numbers through an 8th-order low-pass Butterworth filter 
with a cutoff frequency of 10 rad/s.  Figure 2 shows a plot of the input signal.   
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Figure 2: Random white noise input signal. 

The response of the Mathieu oscillator was then determined by integrating the system’s state space 
equations from zero initial conditions with MATLAB’s adaptive Runge-Kutta (ode45) routine over the duration of 
the white noise input signal.  The input was then discarded and the output of the integration treated as a 
measurement.  The output measurement was then exponentially modulated with harmonics n=-2,-1,0,1, and 2 to 
form y in eq. (8), the EMP output signal.  The output power spectrum was then calculated according to eq. (11).  
Figure 3 shows a plot of all of the terms in the power spectrum matrix along the primary row (e.g. with m=0 and n 
= -2…2).  The legend gives the n-value for each term.  Each of the spectra show strong peaks near ω=1 rad/s, 
which would be the natural frequency of the Mathieu oscillator in the case where k1=0 (e.g. a time-invariant 
system).  The n=0 spectrum contains the largest peak and the remaining become progressively smaller for n=-
1,1,-2, and then 2.  Two other strong groups of peaks appear in all of the spectra at ω=0.2 rad/s, where the peaks 
have the following order of dominance, n=[1,0,-1,2,-2] and ω=1.8 rad/s with ordering n=[-1,-2,0,1,2].  The remaining 
groupings of peaks occur at ω=2.6 rad/s and ω=0.6 rad/s, and there is evidence of a peak in the n=-2 curve near 
ω=3.4 rad/s. 
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Figure 3: Harmonic PSD of the output for the Mathieu oscillator response computed using eqs. (8) and (11).  

Five curves are shown corresponding to the m,nth element of Syy for m = 0 and n = -2…2. 

 The peak picking method was used to find the shape of the power spectrum matrix at the peaks at ω=0.2, 
1, and 1.8 rad/s.  The values of the spectra from each of those peaks were normalized by dividing by the largest 
value so that the shape could be compared, and the result is shown in Table (1).  The analytical Fourier 
Coefficients for the Mathieu oscillator were also found by integrating the LTP equations of motion over the 
fundamental period, solving for ψ(t) and then expanding it in a Fourier series to obtain the vector ,r lC in eq. (9).   

Those Fourier coefficients were then normalized by the maximum and are also shown.  (Additional detail 
regarding how ,r lC  was derived is provided in Appendix A.) 

 

Fourier Coefficients of the Mathieu Oscillator Mode Shape:   
n 

Analytical 0.2 rad/s  1 rad/s  1.8 rad/s 
-3 0.0135 0.0047 + 0.014i - - 
-2 0.067    0.076 + 0.024i 0.064 + 0.015i - 
-1 -0.220   -0.26 + 0.0009i   -0.21 - 0.0021i  -0.24 + 0.0011i 
0 1 1 1 1 
1 0.092    0.097 + 0.0065i    0.095 + 0.0043i    0.10 + 0.0068i 
2 0.0032 -    0.0036 + 0.0006i    0.0044 + 0.0009i 
3 0.00004 - -   -0.0011 - 0.0014i 

 
Table 1  Identified mode shape coefficients at peaks occurring at ω=0.2, 1.0 and 1.8 rad/s for spectra 

corresponding to n=-3,-2,-1,0,1, 2 and 3.  The analytical Fourier coefficients of the Floquet mode shape of the 
Mathieu oscillator are also provided. 

Equations (12) and (13) revealed that each mode of an LTP system is manifest at multiple frequencies in 
the output PSD (i.e. for various l).   If the linear term in the mode shape is the largest, then one can surmise that 
the peak occurring in the primary (0,0) element of the PSD matrix will be at the true natural frequency.  
(Mathematically, it does not matter which peak is the primary, so this assumption can always be made and one 
will still obtain a valid model.)  Following this line of thinking, the dominant peak in Figure (3) occurs at ω=1.0 



 

rad/s, so the Floquet exponent is taken to be λ=1.0i, and the corresponding natural frequency is ω0 =1.0.  The 
remaining peaks in the spectra can be attributed to modulations of this Floquet exponent by the system’s 
fundamental frequency ωA=0.8 rad/s.  For example, the peaks 0.2 rad/s can be seen as ω0-1*ωA while the peaks at 
1.8 rad/s can be seen as ω0+1*ωA.  The peaks at 0.6 rad/s are due to the second harmonic of the conjugate of the 
Floquet exponent at -1.0 rad/s (i.e. 0.6 rad/s = -ω0+2*ωA).  Using this reasoning, the Fourier coefficients can be 
arranged in rows as shown in Table 1.  There are multiple estimates for the Fourier coefficients for n = -1…1, and 
all of the estimates agree quite well suggesting that the identification was successful.  Other coefficients were only 
estimated from a few of the frequencies (columns), but those are small so it appears that the Fourier series 
expansion is converging.  Comparing the Fourier coefficients identified by the output only technique with the 
analytical ones, one observes that the agreement is quite good.  One could now average the Fourier coefficients 
that were obtained, reconstruct C(t)ψ(t) and diagnose troublesome frequencies in the response.  All of the above 
was surmised from the output response and without any knowledge of the system except the fact that it was time-
periodic with period ωA.  If the scale factors on the mode shape C(t)ψ(t) could be estimated by some means, then 
one could also reconstruct the time-varying state matrix of the system using the procedure in [10]. 

4. Simulated Application: Wind Turbine modeled with HAWC2 
The proposed methodology was also applied to simulated measurements from a representative 5MW 

wind turbine (3-blade, 126 meter diameter, 100 meter tower height) [51] modeled using the HAWC2 simulation 
tool [52-54].  This same turbine and simulation code were used in a previous paper where Subspace Identification 
and Blind Source Separation were used to identify the modes of the turbine when it was in a parked condition 
[55].  That work identified the lower modes of the turbine, which had the following frequencies: 0.273 Hz (lateral 
tower bending), 0.275 Hz (longitudinal tower bending), 0.564 Hz (drive train torsion), 0.604 Hz (yaw), 0.635 Hz (tilt), 
0.698 Hz (symmetric flapwise bending), 0.951 Hz (edgewise vertical bending), 0.975 Hz (edgewise horizontal 
bending), 1.526 Hz, 1.655 Hz, 1.74 Hz.  Representative mode shapes are also shown in [55].  Here the rotating 
turbine will be studied.  The HAWC2 model includes a structural model based on Timoshenko beam elements for 
the bending of the blades and tower, aerodynamic excitation of the wind turbine from turbulence in the flow, 
dynamic inflow, dynamic stall, skew inflow, shear effects on the induction and effects from large deflections.  The 
wind speed for this model is 18 m/s at hub height with a logarithmic wind shear.  Because of the wind shear, the 
flow around each blade changes as the blade rotates, so one would expect that the system might exhibit time-
periodic dynamics due to the periodically changing aeroelasticity of the blades. 

Measurements were simulated from five points along each blade and ten points along the tower, in all 
three directions at each point for a total of 75 measurement locations.  The rotational speed of the turbine and its 
instantaneous angle were also “measured”, the former averaging 0.20157 Hz (12.1 rev. per minute) with a 
standard deviation of 0.000312 Hz.  The traditional power spectrum of the response was found using eight sensors 
as references: the lateral and longitudinal sensors at the tip of the tower and the edgewise and flapwise sensors 
at the tip of each blade, so the resulting PSD matrix was 75 by 8.  Figure 4 shows the average of all of these 
power spectra, as well as the average of only those elements of the PSD matrix corresponding to the blades and 
the tower individually. 
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Figure 4:  Average of Traditional Power Spectra of rotating wind turbine over all measurement points on the 

tower and over all of the blades.  The average rotational speed of the turbine is 0.20157 Hz. 

The effect of the rotation of the blades is readily apparent in the PSD, especially if one compare Figure 4 
with the power spectra shown in [55] for the parked condition.  There is a strong harmonic at the rotation 
frequency 0.2 Hz, and other significant ones at integer multiples of the rotation frequency.  There are also broad, 
triangular-shaped peaks in the blade spectra at 0.2, 0.4 and 0.6 Hz, as well as a weaker one at 0.8 Hz.  In the 
tower spectra there is only one such peak at 0.6 Hz, which is the frequency with which blades pass the tower.  
These peaks dominate the spectra at those frequencies, so none of the modes of the turbine are visible except for 
the peaks near 0.27 and 1.15 Hz in the tower response and the one near 0.95 Hz in the blade response.  
Comparing these frequencies with those from the parked condition, it seems reasonable to ascribe the peak near 
0.27 Hz to the tower bending modes and the peak near 0.95 Hz to the edgewise blade modes.  The parked turbine 
did not have any modes between 0.9 and 1.5 Hz, but the peak in the tower spectrum at 1.15 Hz can be understood 
to be a forward whirling mode due to the two edgewise blade modes at 0.95 Hz (0.95 Hz + ωA).  One would also 
expect to see the other of the two edgewise modes turn into a backward whirling mode as the blade rotates and 
appear at 0.95 Hz - ωA.  There is a very weak peak near 0.75 Hz so this is probably the case. 

There is one coherent peak in the PSD that is not explained by the linear time invariant system, the peak 
occurring at 1.35 Hz in the blade responses.  In the blade’s reference frame the edgewise modes should not shift 
in frequency due to the rotation of the propeller, and the fact that this peak is spaced from the 0.95 Hz modes by 
an integer multiple of the rotation frequency suggests that it might be due to time-periodic effects.  This warrants 
further investigation using the output-only identification presented in Section 2.  Before doing so the following 
filtering was performed to attempt to minimize the noise in the signal due to the harmonics of the rotation 
frequency.  First, the simulated measurement was resampled synchronous with the best-fit rotation frequency, 
which was found to be 0.20167 Hz.  Then the FFT was found and all of the harmonics of the rotation frequency 



 

were deleted from the FFT.  The inverse FFT of this signal was then found and used in the subsequent 
processing.  This is potentially a non-causal filtering process, but the harmonics were troublesome so such a 
drastic approach seemed justified. 

The edgewise response of blade 3 at the tip was expanded using eq. (8) with n = -2…2 (so y was a 5 by 1 
vector), and the power spectrum Syy was found using eq. (11).  The primary row in that matrix is shown in Figure 5 
from 0 to 1.6 Hz.  The largest peak in the spectrum occurs in the (0,0) term in the PSD matrix near 0.95 Hz, 
suggesting that the constant term in that mode’s time-periodic mode shape is dominant.  A coherent peak also 
occurs in the (0,2) element of the PSD at that same frequency, suggesting that a second harmonic is also 
important to that mode.  The peak picking method was used to estimate the Fourier coefficients for each mode at 
the 0.95, 1.15 and 1.35 Hz peaks.  Each Fourier coefficient was normalized by the maximum coefficient, which was 
ascribed to ,0rC , and the normalized coefficients are shown in Table 2.  The five coefficients estimated at each 

frequency are offset in the table so that the rows correspond to ,r nC for a certain n.  All three columns consistently 

give the real part of the n=2 coefficient as about 5% of the fundamental, with the imaginary part being a consistent 
proportion of the real part.  The second column (1.15 Hz) differs from the other two in the estimation of the n=1 
coefficient, but visual inspection of the data from which that coefficient was derived (the red (0,0) curve in Figure 
5) suggests that the true coefficient is buried in the response of the fundamental, so it should probably not be 
trusted.  The 1st and 3rd columns consistently give that Fourier coefficient as less than 2% of the fundamental. 

The coefficients for n < 0 are more problematic.  The spectra that these coefficients are derived from are 
very noisy, due to the harmonic response of the turbine that was discussed previously.  For example, the (0,-2) 
curve would yield the n=-2 coefficient near 0.95 Hz, but that peak is very noisy, so the coefficient doesn’t seem 
trustworthy.  The peaks below 0.95 Hz are incoherent due to the noise, so they cannot be used either.  It seems 
that an improved method must be devised for filtering out the harmonic contributions before the coefficients for 
n<0 can be confidently estimated.  Nevertheless, the peak at 0.95 Hz suggests that the n=-1 and n=-2 coefficients 
are less than 2% of the fundamental, so if that information is reliable, then perhaps they can be neglected. 
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Figure 5:  Harmonic PSD of the edgewise response of the tip of blade 3, computed using eqs. (8) and (11).  

Five curves are shown corresponding to the m,nth elements of Syy for m = 0 and n = -2…2. 

 



 

Fourier Coefficients of B3-Tip EW Mode Shapes: ,r nC  
n 

0.95 Hz 1.15 Hz 1.35 Hz 
-2 -0.0013 +   0.020i - - 
-1 -0.00052 +   0.015i 0.011 +   0.043i - 
0 1 1 1 
1 0.017 +  0.0041i 0.090 +   0.021i 0.015 +  0.0014i 
2 -0.053 -   0.033i -0.043 -   0.035i -0.066 -   0.041i 
3 - -0.0028 -   0.013i 0.0068 +  0.0056i 
4 - - 0.0039 +  0.0095i 

Table 2:  Normalized Fourier Coefficients for the mode shape at the tip of blade 3 in the edgewise direction.  
Each column gives an estimate of the same Fourier coefficients. 

4.1. Discussion 
In [55] it was noted that the turbulence box used in the wind turbine model had a finite length and was 

repeated several times during the course of the simulation, so for the parked turbine sharp harmonic content was 
observed at 1.354 Hz and its multiples.  It is possible that the peak in the blade response spectra at 1.35 in Figure 
4 might also be due to this effect, but there is considerable evidence to the contrary.  First, the turbine is rotating 
at ωA = 0.20157 Hz, and 1.354 Hz is not evenly divisible by 0.20157 Hz, so each time the turbulence box repeats the 
blades are in a different orientation causing them to see a non-periodic pattern of turbulence.  Second, the 
measurements from the rotating turbine do not show peaks at 2.708 Hz, 4.062 Hz or any other integer multiples of 
1.354 Hz, further confirming that the turbine’s response is not periodic due to the repeating turbulence box.  Third, 
the shape of the peak seen in Figure 4 at 1.35 Hz is not at all like the peaks due to the repeating turbulence box in 
the parked measurements [55].  Those peaks were sharp, nearly single-line peaks and the spectra around them 
had a strange character as well.  Finally, when the LTP identification method is applied to the turbine responses, 
the spectra of the exponentially modulated response in Figure 5 show numerous peaks at integer multiples of 
0.20157 Hz.  This means that the turbine’s response at distinct frequencies that are separated by 0.20157 Hz is 
coherent, evidence that the system is time periodic.  If the response at (ω±ωA) were not coherent then the spectra 
would be weak and have the appearance of noise at these frequencies.  For example, notice the peak in the (0,-2) 
element of the PSD matrix (blue).  At 0.95 Hz that element of the PSD matrix is the product of the response at 0.95 
Hz and that at 0.95-2*0.20157 = 0.55 Hz.  Figure 4 shows that the response at 0.55 Hz is large due to bleeding of 
the harmonics of the rotational frequency, yet this peak does not particularly stand out in the (0,-2) element of the 
PSD, presumably because the response at 0.55 Hz is not systematically related to that at 0.95 Hz. 

5. Conclusions 
A new output-only system identification routine was proposed that uses only the output spectra to 

estimate the modal parameters of a linear time-periodic system up to a scale factor.  The proposed method 
makes used of the theory developed by Wereley regarding Harmonic Transfer Functions, and an analytical 
expression for the output spectrum in terms of the modal parameters was developed and used to interpret the 
spectra.  The method was validated using simulated measurements from a Mathieu Oscillator, illustrating the 
simplicity of the approach and the similarity with familiar output-only identification approaches for linear time-
invariant systems.  The methodology was also applied to simulated measurements from a large, detailed model of 
a rotating wind turbine.  The results suggest that the first edgewise modes of the turbine were measurably time-
periodic.  The dominant term in the Fourier expansion of the mode shape for the mode in question was the 
second term, which seems reasonable considering that the boundary condition imparted by the tower changes its 
effective stiffness twice per revolution of the rotor (in the blade’s reference frame).  Further results were not yet 
available at the time this article was submitted to the conference, but future works will explore these issues in 
more detail and seek to better understand why this time-periodicity occurs and how it might affect the stability and 
fatigue life of the wind turbine. 
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Appendix A 

5.1. Analytical Fourier Coefficients of the Floquet Mode Shapes for the Mathieu Oscillator 
The Mathieu oscillator system can be easily represented in state space according to eq. (1), with the following 
system matrix, A(t), 
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Recalling the time derivative relationship of the STM to the A(t) matrix, 
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one can obtain the analytical STM by using initial conditions of [1; 0] and [0; 1] and integrating the equations of 
motion over one fundamental period.  The STM at the end of the fundamental period is also known as the Floquet 
transition matrix, and its eigenvalues are the Floquet multipliers of the system, λSTM,  which are related to the 
Floquet exponents λFl by λSTM=exp(λFl*TA).  After extracting the Floquet exponent, λFl the periodic Floquet mode 
vectors can be calculated by rearranging eq. (4) to get eq. (18),  

 ( ))(exp)(),()( 000 tttttt FlSTMFl −−Φ= λψψ  (18) 

where ψSTM(t0) is the eigenvector of the STM at t=TA.  Then, because the Floquet mode vectors are periodic, they 
can be expanded with a Fourier Series as given in eq. (5). 


