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Abstract: The primary objective of this paper is to develop output only modal identifi cation and structural damage 

detection. Identifi cation of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time variant (LTV—due 

to damage) systems based on Time-frequency (TF) techniques—such as short-time Fourier transform (STFT), empirical 

mode decomposition (EMD), and wavelets—is proposed. STFT, EMD, and wavelet methods developed to date are reviewed 

in detail. In addition a Hilbert transform (HT) approach to determine frequency and damping is also presented. In this paper, 

STFT, EMD, HT and wavelet techniques are developed for decomposition of free vibration response of MDOF systems into 

their modal components. Once the modal components are obtained, each one is processed using Hilbert transform to obtain 

the modal frequency and damping ratios. In addition, the ratio of modal components at different degrees of freedom facilitate 

determination of mode shape. In cases with output only modal identifi cation using ambient/random response, the random 

decrement technique is used to obtain free vibration response. The advantage of TF techniques is that they are signal based; 

hence, can be used for output only modal identifi cation. A three degree of freedom 1:10 scale model test structure is used to 

validate the proposed output only modal identifi cation techniques based on STFT, EMD, HT, wavelets. Both measured free 

vibration and forced vibration (white noise) response are considered. The secondary objective of this paper is to show the 

relative ease with which the TF techniques can be used for modal identifi cation and their potential for real world applications 

where output only identifi cation is essential. Recorded ambient vibration data processed using techniques such as the random 

decrement technique can be used to obtain the free vibration response, so that further processing using TF based modal 

identifi cation can be performed.
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1    Introduction

Modal identifi cation of structural systems is a key 

step in the process of structural identifi cation, structural 

health monitoring and damage detection. It essentially 

requires an inverse problem to be solved from a measured 

or recorded response of the structure under ambient or 

dynamic loading such as earthquakes, wind and waves. 

The aim is to estimate properties of the structure such 

as natural frequencies, mode shapes, energy dissipation 

characteristics and strength and stiffness deterioration 

due to damage.

System identifi cation of structures has classically 

been performed in two different paradigms: (i) time 

domain analysis and (ii) frequency domain analysis. 

Several approaches to time domain system identifi cation 

have been developed like state estimation using a 

Kalman fi lter, stochastic analysis and modeling, 

recursive modeling and least squares method. Recently, 

system identifi cation and fault detection techniques are 

also being developed. The work of Nagarajaiah and 

coworkers has led to the development of a new interaction 

matrix formulation and input error formulation (Koh

et al., 2005a,b, 2008), based on the concept of analytical 

redundancy, to detect and isolate the damage/fault in 

structural members, sensors, and actuators in a structural 

system (Li et al., 2007; Chen and Nagarajaiah, 2007, 

2008a,b) . The new techniques can detect the presence of 

fault/damage in a structure (level 1), locate the member/

sensor/actuator where fault/damage is located (level 2), 

and determine the time instants of occurrence (level 3). 

The resulting error function would indicate real time 

failure/damage of a member, sensor or actuator. The 

interaction matrix technique allows the development 

of input-output equations that are only infl uenced by 
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one target input. These input-output equations serve 

as an effective tool to monitor the integrity of each 

member, sensor or actuator regardless of the status of 

the others. The procedure requires the knowledge of 

the analytical model of the healthy system being tested, 

so the analytical redundancy can be experimentally 

predetermined through input-output based system 

identifi cation. Additionally, the authors have developed 

an ARMarkov observer bank algorithm to detect the 

extent of damage—level 4 (Dharap et al., 2006). The 

authors have also shown experimentally that the proposed 

algorithms successfully identify failures of actuators or 

sensors that are attached to the truss structure in tests on 

the NASA 8-bay 4 meter long truss (Koh et al., 2005a; 

Li et al., 2007). Considering the limited number of 

measurements and the complexity of the structure, test 

results ensure the capability of the proposed procedure 

in detecting and isolating the simultaneously and 

arbitrarily occurring multiple failures. In addition, 

new time segmented system identifi cation techniques 

have been proposed (Nagarajaiah and Dharap, 2003; 

Nagarajaiah and Li, 2004)

Signal based identifi cation, based on analysis of 

response signals of structures, has also been developed. 

The classical method of frequency domain analysis 

is by means of Fourier transform, and its algorithmic 

implementation, the Discrete Fourier Transformation 

(DFT). Though DFT has been widely used for modal 

analysis and other system identifi cation tasks, it has 

several limitations. Fourier analysis is inherently global 

in nature and provides average information over time, 

ignoring the time varying nature of a nonstationary signal.

In parallel with the advances in sensing and data 

acquisition techniques, there has been a tremendous 

amount of development of signal processing techniques, 

which allows extraction of information from the available 

data sensed in the form of either signals or images. 

Several identifi cation techniques have been proposed for 

structural dynamic systems in the recent past (Worden 

and Tomlinson, 2001). Most of the techniques and 

algorithms proposed are based on the use of different 

integral transforms. Among the available techniques, 

those based on the use of Hilbert transform (HT) by 

Tomlinson (1987) and Feldman (1994a,b) have become 

popular. Time-frequency methods (Cohen, 1995; Huang 

et al., 1998), such as short-time Fourier transform (STFT) 

and wavelets, are used extensively for signal processing. 

New techniques such as Empirical Mode Decomposition 

(EMD) (Huang et al., 1998) have been developed for 

signal processing of non-stationary signals. STFT and 

EMD techniques, with Hilbert Transform, have played 

a key role in the development of new time-frequency 

based controllers for semiactive, smart tuned mass 

dampers (Nagarajaiah et al., 1999; Nagarajaiah and 

Varadarajan, 2001, 2005; Nagarajaiah and Sonmez, 

2007; Nagarajaiah, 2009; Narasimhan and Nagarajaiah, 

2005; Varadarajan and Nagarajaiah, 2004). Modal 

identifi cation using EMD and HT has been developed 

(Nagarajaiah and Varadarajan, 2001; Nagarajaiah, 2009; 

Yang ., 2003, 2004). Wavelets have played a key role 

in the development of new linear quadratic time varying 

controllers (Basu and Nagarajaiah, 2008) and modal 

identifi cation of time varying systems (Basu et al., 2008) 

by the authors. Wavelets, with HT, have also been used 

to estimate frequency and damping (Staszewski, 1997), 

modal and damage identifi cation (Staszewski et al., 

1998; Staszewski and Robertson, 2007; Basu 2007; 

Chakraborty et al., 2006; Basu and Nagarajaiah, 2008; 

Pakrashi ., 2007; Goggins et al., 2006).

Recently, several time-frequency analysis 

tools, particularly the wavelet analysis technique, 

have proved to be powerful for system assessment, 

structural health monitoring and fault monitoring 

(Staszewski and Tomlinson, 1994; Wang and 

McFadden, 1996; Al-Khalidy et al., 1997; Ghanem 

and Romeo, 2000; Addison et al., 2002), system 

identifi cation (Staszewski, 1997, 1998; Ruzzene

et al., 2000, Gurley and Kareem, 1999; Kitada, 1998; 

Kyprianou and Staszewski, 1999; Robertson et al., 

1998; Lardies and Gouttebroze, 2000; Piombo et al., 

2000; Ghanem and Romeo, 2001; Kijewski and Kareem 

2003, 2006, 2007) and damage detection (Naldi and 

Venini, 1997; Staszewski et al., 1998; Liew and Wang, 

1998; Okafor and Dutta, 2000; Wang and Deng, 1999; 

Hou et al., 2000; Patsias et al., 2002; Melhem and Kim, 

2003; Chang and Chen, 2003; Gentile and Messina, 

2003; Loutridis et al., 2004; Rucka and Wilde, 2006; 

Spanos et al., 2006) by analysing vibration signals. 

Some of the early researchers on analysis of vibration 

signals using wavelets include (Newland, 1993; 

1994a,1994b; Zeldin and Spanos, 1998; Basu and Gupta, 

1997,1998,1999a,b). These references are representative 

of the vast amount of literature available as a result of 

research in the past decade and a half. An overview 

on wavelet analysis with several different applications 

has been provided by Robertson and Basu (2008) and 

Staszewski and Robertson (2007).

The primary objective of this paper is to develop 

output only modal identifi cation and structural damage 

detection. Identifi cation of multi-degree of freedom 

(MDOF) linear time invariant (LTI) and linear time 

variant (LTV—due to damage) systems based on Time-

frequency (TF) techniques—such as short-time Fourier 

transform (STFT), empirical mode decomposition 

(EMD), and wavelets—is proposed. STFT, EMD, and 

wavelet methods developed to date are reviewed in 

suffi cient detail. In addition, a Hilbert transform (HT) 

approach to determine frequency and damping is also 

presented. In this paper, STFT, EMD, HT and wavelet 

techniques are developed for decomposition of free 

vibration response of MDOF systems into their modal 

components. Once the modal components are obtained, 

each one is processed using Hilbert transform to obtain 

the modal frequency and damping ratios. In addition, 

the ratio of modal components at different degrees of 

freedom facilitate determination of mode shape. In cases 
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with output only modal identifi cation using ambient/

random response, the random decrement technique is 

used to obtain the free vibration response.

The advantage of TF techniques is that they are 

signal based; hence, can be used for output only modal 

identifi cation. A three degree of freedom 1:10 scale 

model test structure is used to validate the proposed 

output only modal identifi cation techniques based 

on STFT, EMD, HT, wavelets. Both measured free 

vibration and forced vibration (white noise) response are 

considered. The secondary objective of this paper is to 

show the relative ease with which the TF techniques can 

be used for modal identifi cation and their potential for 

real world applications where output only identifi cation 

is essential. Recorded ambient vibration data processed 

using techniques such as the random decrement 

technique can be used to obtain the free vibration 

response, so further processing using TF based modal 

identifi cation can be performed.

2   Time-frequency methods: STFT, EMD, and 
     HT

2.1   Analytical signal and Hilbert transform

Signals in nature are real valued but for analysis, it 

is often more convenient to deal with complex signals. 

One wants the real part, s(t), of the complex signal, s
a
(t), 

to be the actual signal under consideration. How is the 

imaginary part, s t( ) , fi xed to form the complex signal? 

In particular, to write a complex signal, how is  s t( )  

chosen? the standard method is to form the “analytic” 

signal, s
a
(t), 

 s t s t s ta j( ) = ( ) + ( )                         (1)

where j = −1 . This can be achieved by taking the 

spectrum of the actual signal, s(ω), deleting the negative 

part of the spectrum, retaining only the positive part of 

the spectrum, multiply it by a factor of 2, and then form 

the new (complex) signal by Fourier inversion. More 

specifi cally if there is a real signal, s(t), calculate s(ω). 

Form the complex signal with the positive part of s(ω) 

only, 

 s t s t

a

j( ) = ( )
∞

∫2
1

2 0π
ω ωe dω                 (2)

The factor of two is inserted so that the real part of 

the complex signal will be equal to the real signal one 

started out with. Therefore, substituting for s(ω)

 s t s t tt t

a

j j( ) = ( )∫∫
∞ −1

0π
’ ’’

e e d dω ω ω           (3)

Using the fact that 

 e dj jω ω δx x
x0

∞

∫ = ( ) +π                   (4)

Results in

e d
j jω

ω δ
t t

t t
t t

−( )∞

∫ = −( ) +
−

’
’

’0
π              (5)

Hence 

s t s t t t
t t

ta

j( ) = ( ) −( ) +
−

⎛
⎝
⎜

⎞
⎠
⎟∫

1

π
π’ ’

’

’δ d            (6)

or

  s t s t
s t

t t
ta

j( ) = ( ) +
( )
−−∞

∞

∫π

’

’

’d                   (7)

The imaginary part turns out to be the Hilbert 

transform: 

 s H s t
s t

t t
t= ( )⎡⎣ ⎤⎦ =

( )
−−∞

∞

∫
1

π

’

’

’d                (8)

Hence, 

  s t s t H s t s t sa j j( ) = ( ) + ( )⎡⎣ ⎤⎦ = ( ) +           (9)

The complex signal thus formed, s
a
(t) , is called the 

analytic signal. Note that by defi nition analytic signals 

are signals whose spectrum consist only of positive 

frequencies. That is, the spectrum is zero for negative 

frequencies.

As per Eqs. (1) – (9), the analytic signal can be 

obtained by: (1) taking the Fourier transform of s(t); 

(2) zeroing the amplitude for negative frequencies and 

doubling the amplitude for positive frequencies; and (3) 

taking the inverse Fourier transform. The analytic signal 

s
a
(t) can also be expressed as

 s t A t
t

a

j( ) = ( ) ( )
e
ϕ

                     (10)

where, A(t) = instantaneous amplitude and ϕ t( )  = 

instantaneous phase 

2.2   Instantaneous frequency

 In the analytic signal given by Equation 1 and 10, 

A t s t s t( ) = ( ) + ( )2 2
 and  ϕ t

s t

s t
( ) =

( )
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟arctan , the

 instantaneous frequency ω
i
(t) is given by 

  ω ϕi t t
t

s t

s t
( ) = ( ) =

( )
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

d

d
arctan              (11)

where 

   

d

d

d

d
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t s t
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             (12)

and 

  
d

dt

s t

s t

s t s t s t s t

s t

( )
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

( ) ( ) − ( ) ( )
( )2
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From Eqs. (12) and (13) one gets 

  ω
ϕ

i t
t

t

s t s t s t s t

s t s t
( ) =

( )
=

( ) ( ) − ( ) ( )( )
( ) + ( )

d

d 2 2
     (14)

2.3   Short-fi me Fourier transform and spectrogram

The Fourier transform (FT) of a signal s(t) is given 

by s s t ttω ω( ) = ( ) −∫
1

2π
e dj . The short-time Fourier 

transform (STFT), the fi rst tool devised for analyzing 

a signal in both time and frequency, is based on FT 

of a short portion of signal s
h
(τ) sampled by a moving 

window h(τ-t ). The running time is τ and the fi xed time 

is t. Since the time interval is short compared to the 

whole signal, this process is called taking the STFT. 

 s sht

jω τ τωτ( ) = ( )
−∞

∞ −∫
1

2π
e d              (15)

where s
h
(τ) is defi ned as follows: 

 s s h th τ τ τ( ) = ( ) −( )                    (16)

in which h(τ-t) is an appropriately chosen window 

function that emphasizes the signal around the time t, 

and is a function τ-t, i.e., s sh τ τ( ) = ( )  for τ near t and 

sh τ( ) = 0  for τ far away from t. Considering this signal 

as a function of τ, one can ask for the spectrum of it. Since 

the window has been chosen to emphasize the signal at t, 

the spectrum will emphasize the frequencies at that time 

and hence give an indication of the frequencies at that 

time. In particular, the spectrum is,  

s s h tt

jω τ τ τωτ( ) = ( ) −( )
−∞

∞ −∫
1

2π
e d       (17)

which is the short-time Fourier transform (STFT).

Summarizing, the basic idea is that to fi nd the 

frequency content of the signal at a particular time, t, 

take a small piece s
h
(τ) of the signal around that time 

and Fourier analyze it, neglecting the rest of the signal, 

obtaining a spectrum at that time. Next, take another 

small piece, of equal length of the signal, at the next 

time instant and get another spectrum. Continue until 

the entire signal is sampled. The collection of all these 

spectrum (or slices at every time instant) gives a time-

frequency spectrogram that covers the entire signal, and 

captures the localized time varying frequency content 

of the signal. If one performs a FT, then the localized 

variations of frequency content are lost, since FT is 

performed on the whole signal; the result is an average 

spectrum of all those obtained by STFT.

The energy density of the modifi ed signal and the 

spectrogram is given by,  

 

P t s,ω ω( ) = ( )t

2

                         (18)

or

 P t s h tsp

j,ω τ τ τωτ( ) = ( ) −( )
−∞

∞ −∫
1

2

2

π
e d       (19)

 

By analogy with the previous discussion, it can 

be used to study the behavior of the signal around the 

frequency point ω. This is done by choosing a window 

function whose transform is weighted relatively higher 

at the frequency ω.

 

 H h t ttω ω( ) = ( )
−∞

∞ −∫
1

2π
e dj

               (20)

 s t s H t

ω
ωω ω ω ω( ) = ( ) −( )

−∞

∞

∫
1

2π
’ ’ ’’

e dj      (21)

s s h t sh

tτ τ τ ω ωω( ) = ( ) −( ) = ( )
−∞

∞

∫
1

2π
t

je d        (22)

where ω′ is running frequency and fi xed frequency is ω 

The spectrogram is given by 

P t s H t

sp

j, ’ ’ ’’

ω ω ω ω ωω( ) = ( ) −( )
−∞

∞

∫
1

2

2

π
e d       (23)

The limitation of STFT is its fi xed resolution (this 

is discussed in more detail in the section on wavelets), 

which can overcome multi-resolution analysis using 

wavelets. In STFT, the length of the signal segment 

chosen or the length of the windowing function h(t) 

determines the resolution: broad window results in 

better frequency resolution but poor time resolution, and 

narrow window results in good time resolution but poor 

frequency resolution, due to the time-bandwidth relation 

(uncertainty principle (Cohen, 1995)). Note h(t) and 

H(ω) are Fourier transform pairs (Eq.(20), i.e., if h(t) 

is narrow, more time resolution is obtained, however,  

H(ω)  becomes broad resulting in poor frequency 

resolution and vice versa.

2.4   STFT implementation procedure

The implementation procedure for the STFT in 

the discrete domain is carried out by extracting time 

windows of the original nonstationary signal s(t). After 

zero padding and convolving the signal with Hamming 

window, the DFT is computed for each windowed signal 

to obtain STFT, s
t
(ω), of signal s

h
(τ) . If the window width 

is n t.Δ (where n is number of points in the window, and 

Δt  is the sampling rate of the signal), the k-th element 

in s
t
(ω) is the Fourier coeffi cient that corresponds to the 

frequency, 

ωk

k

n t
n t= ⎛

⎝
⎜

⎞
⎠
⎟

2π
Δ

Δfor window width          (24)
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2.5   Empirical mode decomposition

For a multicomponent signal–as in a multimodal 

or multi-degree of freedom (MDOF) response--the 

procedure described in the previous section to obtain 

analytic signal and instantaneous frequency cannot 

be applied directly, as described earlier. The empirical 

mode decomposition (EMD) technique, developed by 

Huang (1998), adaptively decomposes a signal into 

“intrinsic mode functions” which can then be converted 

to an analytical signal using HT. The time-frequency 

representation and instantaneous frequency can be 

obtained from the intrinsic modes extracted from the 

decomposition, using HT. The principle technique is to 

decompose a signal into a sum of functions that (1) have 

the same number of zero crossings and extrema, and (2) 

are symmetric with respect to the local mean. The fi rst 

condition is similar to the narrow-band requirement for 

a stationary Gaussian process. The second condition 

modifi es a global requirement to a local one, and is 

necessary to ensure that the instantaneous frequency 

will not have unwanted fl uctuations as induced by 

asymmetric waveforms. These functions are called 

intrinsic mode functions (IMF denoted by imf
i
) and are 

obtained iteratively (Huang et al., 1998). The signal, 

x
j
(t), for example, jth degree of freedom displacement of 

a MDOF system, can be decomposed as follows 

  x t t r tj i n

i

n

( ) = ( ) + ( )
=
∑ imf

1

                 (25)

where imf
i
(t) are the "intrinsic mode functions" (note: 

dominant IMFs are equivalent to individual modal 

contributions to x
j
(t)-which will be demonstrated in a 

later section) and r
n
(t) is the residue of the decomposition. 

The intrinsic mode functions are obtained using the 

following algorithm:

1. Initialize; r x t ij0 1= ( ) =,

2. Extract the imf
i
  as follows:

(a) Initialize: h t r t ji0 1 1( ) = ( ) =− ,  

(b) Extract the local minima and maxima of  h
j−1

(t)

(c) Interpolate the local maxima and the local 

minima by a spline to form upper and lower envelopes 

of  h tj− ( )1 ,  emax t( ) and  emin t( )  respectively.

(d) Calculate the mean m
j-1

of the upper and lower 

envelopes = ( ) + ( )( )e emax min /t t 2

(e)    h t h t m tj j j( ) = ( ) − ( )− −1 1  .

(f) If stopping criterion is satisfi ed then set 

imfi jt h t( ) = ( )  else go to (b) with  j = j + 1

3.   r t r t ti i i( ) = ( ) − ( )−1 imf  

4.   If r
i
(t) still has at least 2 extrema then go to 2 

with i = i + 1 else the decomposition is fi nished and r
i
(t) 

is the residue.

The analytical signal, s
a
(t), and the instantaneous 

frequencies ω
i
(t), associated with each imf

i
(t) component 

can be obtained using Eqs. (1) - (14) by letting 

s t ti( ) = ( )imf  and s t s t H s ta j( ) = ( ) + ( )( )  for each 

IMF component.

To ensure that the IMF components retain the 

amplitude and frequency modulations of the actual 

signal, a satisfactory stopping criteria for the sifting 

process is defi ned (Rilling et al., 2003). A criteria for 

stopping is accomplished by limiting the standard 

deviation, SD (Huang et al., 1998), of h(t), obtained 

from consecutive sifting results as 

 SD =
( ) − ( )( )

( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−=
∑

h k t h k t

h k t

j j

jk

l
1

2

1

2
0

Δ Δ

Δ
           (26)

where l T t= / Δ  and T = total time. A typical value for 

SD is set between 0.2 and 0.3  (Rilling et al., 2003). 

An improvement over this criterion is based on two 

thresholds θ
1
 and θ

2
, aimed at globally small fl uctuations 

in the mean while taking into account locally large 

excursions. This amounts to introducing a mode 

amplitude a(t) and an evaluation function σ(t): 

  a t
t t( ) =

( ) − ( )⎛

⎝
⎜

⎞

⎠
⎟

e emax min

2
                  (27)

 

   σ t
m t

a t
( ) =

( )
( )                          (28)

Sifting is iterated until σ θt( ) < 1  for a fraction of 

the total duration while σ θt( ) < 2  for the remaining 

fraction. Typically θ1 0 05≈ .  and θ θ2 110≈  (Rilling

et al., 2003).

3   Modal identifi cation of LTI and LTV systems 
    using EMD/HT and STFT

EMD can be used to decompose a signal into its 

multimodal components (+ residual IMF components 

+ residue). In a lightly damped system with distinct 

modes, EMD can extract the multicomponent modal 

contributions [or IMFs] from the j th DOF displacement 

response of a MDOF system. Each of these IMF 

components can then be analyzed separately to obtain 

the instantaneous frequency and damping ratios. If the 

displacement of MDOF LTI system is represented by 

vector x = qΦΦ , where ΦΦ = modal matrix, q = modal 

displacement vector, then combining it with equation 25 

leads to the following equation for x
j
(t), the jth degree of 

freedom displacement of a MDOF LTI system, 

  
x t t r t q t t r tj i n

i

n

ji i

i

m

i

i m

n

n( ) = ( ) + ( ) = ( ) + ( ) + ( )
= = =
∑ ∑ ∑imf imf

1 1

ΦΦ

(29)

where m = number of modes of a MDOF system and 
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IMF's from m to n are treated as residual terms along 

with the actual residual and discarded.

The equation of motion of a MDOF is given by 

 Mx Cx Kx MR+ + = f                  (30)

substituting x = qΦΦ , 

ΦΦ ΦΦ ΦΦ ΦΦ ΦΦ ΦΦ ΦΦT T T T
M q + C q + K q = MRf     (31)

A proportionally damped system with orthonormal 

ΦΦ  leads to m uncoupled equations of motion with
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 q q q fk k k k k k k+ + =2 2ξ ω ω Γ                (32)

where Γ k k= ΦT
MR . With f as input and q

k
 as output, 

taking Laplace transform 

s s q s f sk k k k k

2 22+ +( ) ( ) = ( )ξ ω ω Γ             (33)

Dropping Γ
k
  for generality, the transfer function is 

then given by 

 H s
s s

k

k k k

( ) =
+ +

1

22 2ξ ω ω
               (34)

and the frequency response function (FRF) is given by 

  Hk

k k k

j
j

ω
ω ξ ω ω ω

( ) =
− + +

1

22 2
             (35)

Noting x
k k

=ΦΦ qk
 and x

jk
 as the jth component of the 

displacement contributed by the kth mode, and with f as 

input and x
jk
 as output, the transfer function             

H jk

k k k

jkj
j

ω
ω ω ξ ω ω

φ( ) =
−( ) +

1

22 2
         (36)

If the structure is lightly damped, the peak transfer 

function occurs at ω ω= k
with amplitude 

  H jk

k

k

jkjω
ξ

ξ
φ( ) =

+1 4

2

2

                     (37)

From Eq. (37) it is seen that magnitudes of the peaks 

of FRF at ω ω= k
are proportional to the components 

of the kth modal vector. The sign of these components 

can be determined by phases associated with the FRF's: 

if two modal components are in phase, they are of the 

same sign and if the two modal components are out-of-

phase, they are of opposite sign. With the knowledge of 

magnitude of peaks, the damping factor, ξ
k
 can be solved 

from Eq. (37). From Eq. (36), summing over all modes 

gives 

H ij

ik jk

k k kk

n

j
j

ω
φ

ω ω ξ ω ω
( ) =

−( ) +=
∑

φ
2 2

1 2
             (38)

which can be written as

H
A

ij

k ij

k k kk

n

j
j

ω
ω ω ξ ω ω

( ) =
−( ) +=

∑ 2 2
1 2

           (39)

where k ij ik jkA = φ φ  being the residues or modal 

components. Taking the inverse transform of Eq. (39) 

gives the general form of the impulse response function 

(IRF) 

 

h t
A

tij

k ij

k

t

dk

k

n

k k( ) = ( )−

=
∑ ω

ωξ ω

d

e sin
1

               (40)

where ω ω ξdk k k= − =1 2 damped frequency of the kth 

mode. It follows from Eq. (39) that MDOF linear time 

invariant system frequency responses are the sum of n 

single degree of freedom frequency responses, provided 

that well separated modes and light proportional 

damping are valid, and the residues and the modes 

are real. For non-proportionally damped systems, the 

residues and modes become complex.

Consider the function e
− +σ ωk k tj

 with σ ξ ωk k nk=  

and ω ωk k= d , and for a damped asymptotically stable 

system with σ > 0  , Eq. (36) for mode k can be rewritten 

by taking the inverse Fourier transform

 

  h t A tjk jk

t

k
k( ) = ( )−

e
σ ωsin d

                   (41)

 h t A tjk jk

t

k
k( ) = ( )−

e
σ ωcos d

                  (42)

 

where Ajk

jk

dk

=
φ
ω

 leading to the analytical signal 

  h t h t h tjk jk jk
a

j( ) = ( ) + ( )                 (43)

that can be written as 

 h t Ajk jk
t

a

j( ) = e ϕ
                        (44)
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The magnitude of this analytical signal is given by 

 

h t A h t h tjk jk jk jk
a a

a( ) = = ( ) + ( )2
2

          (45)

Substituting Eq. (3) and simplifying the results in 

 A Ajk jk

tk= −
e

σ
                           (46)

 

Taking the natural logarithm of this expression 

yields 

 log log logA t A t Ajk k jk k n jk= − + ( ) = − + ( )σ ξ ω     (47)

3.1  Modal identifi cation based on empirical mode 

        decomposition

Nagarajaiah and coworkers originally developed 

the EMD/HT modal identifi cation approach for tuning 

STMD in 2001 (Nagarajaiah and Varadarajan, 2001), 

based on their earlier work (Nagarajaiah et al., 1999) 

on variable stiffness systems. The advantage of this 

approach is that it is signal based and output only; 

hence, measured response at any one DOF can be used 

to make useful estimates of instantaneous frequency and 

damping ratio. However, the capability to estimate mode 

shape response signals at more degrees of freedom will 

be needed. Each signifi cant IMF component represents 

one modal component with unique instantaneous 

frequency and damping ratio.

Individual mode FRF and corresponding IRF can 

be extracted when band pass fi lters (Thrane, 1984) are 

applied to the system FRF. Equation (46) can be used to 

estimate damping in the kth mode, as suggested originally 

by Thrane in 1984 and adopted by Agneni in 1989. In 

2003, Yang and coworkers (Yang et al., 2003, 2004) 

extended this approach by using EMD/HT to decompose 

and obtain IMFs and perform modal identifi cation. In 

cases, when the inputs are white noise excitation and the 

output accelerations at a certain fl oor are available, the 

free vibration response from the stationary response to 

white noise can be obtained using the random decrement 

technique (Ibrahim, 1977) followed by instantaneous 

frequency and damping calculations.

The EMD/HT outlined below was developed 

independently by Nagarajaiah and coworkers 

(Nagarajaiah and Varadarajan, 2001): 

(1) Obtain signal x
j
(t), jth degree of freedom 

displacement of a MDOF system, from the feedback 

response.

(2) Decompose the signal x
j
(t) into its IMF 

components as described in Eqs. (29) and (25).

(3) Construct the analytical signal for each IMF/

modal component using Hilbert transform method 

described in Eq. (9).

(4) Obtain the phase angle of the analytic signal and 

then obtain the instantaneous frequency from Eq. (14).

(5) Obtain the log amplitude function of the 

analytic signal; perform least squares line fi t to the 

function (which will be a decreasing function fl uctuating 

about a line and not necessarily linear at all times). Then, 

using Eq. (47), compute the slope and damping ratio.

(6) The ratio of modal components at different 

degrees of freedom facilitate determination of mode 

shape.

(7)  In cases of output only modal identifi cation with 

ambient/random excitation, use the random decrement 

technique (Ibrahim, 1977) to obtain free vibration 

response.

3.2  Modal identifi cation based on STFT

After obtaining a spectrogram, a FRF at a given 

time can be extracted, and the individual mode FRF 

and corresponding IRF can be extracted when band 

pass fi lters (Thrane, 1984) are applied. The frequencies 

can be identifi ed by applying HT to the IRF as per Eq. 

(44). Equation (46) can be used to estimate damping in 

the kth mode, as suggested originally by Thrane in 1984 

and adopted by Agneni in 1989. The ratio of modal 

components at different degrees of freedom facilitate 

determination of mode shape. In cases of output only 

modal identifi cation with ambient/random excitation, 

the random decrement technique can be used to obtain 

the free vibration response.

4   Modal identifi cation of lTI and lTY systems 
     using wavelets

The wavelet function can be defi ned as 

  W x a b
a

x t
t b

a
tψ ψ( )( ) = ( ) −⎛

⎝
⎜

⎞
⎠
⎟−∞

∞

∫, *1
d            (48)

where b is a translation indicating the locality, a is a 

dilation or scale parameter, ψ t( )  is an analyzing (basic) 

wavelet and ψ * ⋅( )  is the complex conjugate of ψ ⋅( ). 
Each value of the wavelet transform W x a bψ( )( ),  is 

normalized by the factor 1/ a . This normalization 

ensures that the integral energy given by each wavelet 
ψ a b t, ( )  is independent of the dilation a. The function   

ψ t( ) qualifi es for an analyzing wavelet, when it satisfi es 

the admissibility condition 

 Cψ

ψ ω

ω
ω=

( )⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

< ∞
−∞

∞

∫
2

d                (49)

where ψ ω( ) is the fourier transform of ψ t( ) . This 

is necessary for obtaining the inverse of the wavelet 

transform given by 

x t
C

W x a b
a

t b

a

a b

a
( ) = ( )( ) −⎛

⎝
⎜

⎞
⎠
⎟−∞

∞

−∞

∞

∫∫
1 1

2

ψ
ψ ψ, * d d

   (50)
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The possibility of time-frequency localization arises 

from the ψ t( ) being a window function, which means 

that additionally 

  ψ t t( ) < ∞
−∞

∞

∫ d                           (51)

which follows from Eq. (45). One of the most widely 

used functions in wavelet analysis is the Morlet wavelet 

defi ned by 

  ψ t
f t

t

( ) =
−

e e
j2 20

2

π                          (52)

The Fourier spectrum of Morlet wavelet is a shifted 

Gaussian function 

ψ ( )
( )

f
f f= − −

2
2 2

0
2

π π
e                      (53)

In practice, the value of f
0 
> 5 is used. The wavelet 

transform is a linear representation of a signal. Thus it 

follows that for a given N functions x
i 
and  N complex 

values a i Ni ( , , , )= 1 2

( )( , ) ( )( , )W a x a b a W x a bi i

i

n

i i

i

n

ψ
= =
∑ ∑=

1 1

g       
(54)

The frequency localization is clearly seen when the 

wavelet transform is expressed in terms of the Fourier 

transform,

( )( , ) ( ) ( ),

*W x a b a X f af fa b

fb

ψ
πψ=

−∞

+∞

∫ e dj2       (55)

where ψ * ⋅( )  
is the complex cojugate of ψ ⋅( ) . This 

localization depends on the dilation parameter a . The 

local resolution of the wavelet transform in time and 

frequency is determined by duration and bandwidth of 

the analyzing functions given by

Δ = Δ Δ = Δt a t f f aψ ψ, /                   (56)

where Δtψ  
and Δfψ  are duration and bandwidth of the 

basic wavelet function, respectively. For the Morlet 

analyzing wavelet function, the relationship between the 

dilation parameter a
f
 and the signal frequency f

x 
at which 

the analyzing wavelet function is focused, can be given as

a f
f

f f
f

s

w x

= 0

1
( )( )                       (57)

where f
s 
and f

w 
are the sampling frequencies of the signal 

and the analyzing wavelet, respectively. The frequency 

bandwidth of the wavelet function for the given dilation 

a can be obtained using a frequency representation of the 

Morlet wavelet and expressed as

Δ =f
a

f

f
x

s

w

( )( )
1

π
                         (58)

this allows one to obtain a single element of the wavelet 

decomposition of the function for a given value of 

frequency (dilation) and frequency bandwidth.

The wavelets are scaled to obtain a range of 

frequencies. They are also translated to provide the time 

information in the transform. The wavelet transform 

works as a fi lter, allowing only a certain time and 

frequency content through. Any given atom in the time-

frequency map of the wavelet transform (see Fig. 1) 

represents the correlation between the wavelet basis 

function at that frequency dilation and the signal in that 

time segment. The frequency content of the wavelet 

transform is represented in terms of scales, which are 

inversely related to frequencies. The squared amplitude 

of the continuous wavelet transform (CWT) is therefore 

called the scalogram. The relationship between scales 

and frequencies can be used to form a time-frequency 

map from the scalogram.

Since the wavelet works in a manner similar to the 

STFT, by convolving the signal with a function that 

varies in both time and frequency, it suffers from similar 

limitations in the resolution of the time-frequency 

map. Both transforms are confi ned by the uncertainty 

principle, which limits the area of a time-frequency 

atom in the overall time-frequency map (see Fig. 1). The 

biggest difference between the two transforms is that the 

Fig. 1   Comparing STFT and wavelet transform resolution in time and frequency domain

(0, 0) t

ω ω=ω
0
/a

b
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atoms in the WT map are not a constant shape. In the 

lower frequencies, the atoms are fatter, providing a better 

resolution in frequency and worse resolution in time, 

whereas in the upper frequencies the atoms are taller, 

providing better time resolution and worse frequency 

resolution. This variable resolution can be advantageous 

in the analysis of structural time response data.

The continuous wavelet transform gets its name 

from the fact that the Mother wavelet is continuously 

shifted across the length of the data being analyzed. This 

smooth shifting means that the time/frequency atoms 

shown in Fig. 1 will overlap one another, providing 

redundant information.

The variable windowing feature of wavelet analysis 

leads to an important property exhibiting constant Q 

factor (defi ned as the ratio of the center frequency 

to bandwidth) analysis. For STFT, at an analyzing 

frequency ω0, changing the window width will increase 

or decrease the number of cycles of ω0  
inside the 

window. In the case of wavelet transforms, with the 

change in window width, mean dilation or compression 

of the wavelet function changes. Hence, the carrier 

frequency becomes  ω0 /a
 
, for a window width changing 

from T to aT. However, the number of cycles inside the 

window remains constant.

The frequency resolution is proportional to the 

window width both in the case of STFT and wavelet 

transform. However, for wavelet transform, a center 

frequency shift necessarily accompanies a window width 

change (time scaling). Thus, Q-factor is invariant with 

respect to wavelet dilation and these dilated wavelets 

may be considered as constant-Q bandpass fi lters giving 

rise to the frequency selectivity of the CWT.

Since the wavelet transform is an alternative 

representation of a signal, it should retain the 

characteristics of the signal including the energy content 

in the signal. Thus, there should exist a similar relation 

to the Parseval’s theorem which provides the energy 

relationship in the Fourier domain. The total energy of a 

signal in wavelet domain representation is:

E
c

WT u s
s u

s
f

d d
=

−∞

∞

−∞

∞

∫∫
1 2

2

ψ

( , )               (59)

where,
 

Cψ  
is a scalar constant related to the Fourier 

transform of the wavelet basis (called ‘admissibility 

constant’). The wavelet basis functions can be normalized 

in a way such that it can attain a value of unity. The 

differential energy of the signal in the differential 

tile of scale-translation plane in wavelet domain is 

WT u s
s u

s
( , )

2

2

d d

 
which leads to the construction of the 

scalogram.

4.1 Estimates of modal parameters in MDOF 

         systems

Since the analyzing wavelet function has compact 

support in the time and frequency domains, multi-

component signals can be written as 

( )( , ) ( ) ( )*W x x a b
a

x t
t b

a
dti

i

N

t a t

t a t

i

N

ψ
ψ

ψ ψ
=

− Δ

+ Δ

=∑ ∫∑=
−

1
1

1
    (60)

The response of an underdamped SDOF system can 

be expressed in the form

x t A t
w tn( ) ( )= ± −

e
j 1 2ξ                        (61)

Assuming the envelope A(t) is slowly varying, it 

follows (Staszewski, 1997; Chakraborty et al., 2006) 

ln ( , ) ln( ( ) )*W x a b w b A a wn nψ ξ ψ ξ≈ − + ± −0 0

21j

 
(62)

Subsequently, the response of the MDOF system can 

be obtained as 

( ( , ) ( )*W x x a b A a wi

i

N

i

w b

i n i

i

N
i ni

iψ
ξ ψ ξ

=

−

=
∑ ∑≈ ± −

1

2

1

1e j (63)

Due to the compact support of the analyzing wavelet 

functions in time and frequency, the wavelet transform of 

each separate mode i N= 1 2, , , becomes (Staszewski, 

1997; Chakraborty et al., 2006) 

( )( , ) ( ) ( )*W x a b A b a wi

w b

i n i

i ni

iψ
ξ ψ ξ≈ ± −−

e j 1 2

 

(64)

For the given value of dilation a
i
 related to the natural 

frequency fni
 of the system, the modulus of the wavelet 

transform plotted in a semi-logarithmic scale leads to

ln ( )( , ) ln( ( ) )*W x a b w b A a wi i i n i i n ii iψ ξ ψ ξ≈ − + ± −j 1 2

(65)

and forms the basis of identifying the damping.

The derivations so far are general and are applicable 

to any continuous wavelet basis with desired or suitable 

time-frequency characteristics. The next subsection 

provides the details of a wavelet basis used for 

identifying the modal parameters of an MDOF system.

4.2   Modifi ed littlewood-paley (L-P) basis

An equivalent of the Harmonic wavelet, when the 

basis function is real, is the Littlewood-Paley wavelet. 

This wavelet basis function is defi ned by

ψ ( )
sin( ) sin( )

t
t t

t
=

−1

2

4 2

π
π π

              (66)

A possible variation of the wavelet is one which 

retains the characteristics of the basis function (close to 

transient vibration signals, i.e., oscillatory and decaying) 

but could reduce the frequency bandwidth of the mother 
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wavelet. Hence, the derived modifi ed wavelet is called 

the modifi ed L-P wavelet and has been proposed and 

used by Basu and Gupta (1999a, b). The shifted and 

scaled version of this is called the baby modifi ed L-P 

wavelets. This wavelet basis has also been used by Basu 

(2005, 2007) for damage detection in structures.

The modifi ed L-P basis function is defi ned by

ψ
σ

σ
( )

sin( ) sin( )
t

t t

t
=

−
−1

1π
π π

            (67)

where σ (is a scalar) >1. In the frequency domain, the 

wavelet basis can be represented by

ψ σ
ω σ

( ) ( )t = −
≤ ≤

1

2 1

0

π
π π        

                          

for

eelsewhere

⎧

⎨
⎪

⎩
⎪

By choosing appropriate values for the bandwidth, 

the frequency content of the mother wavelet can be 

adjusted. If for numerical computation the scaling 

parameter is discretized as a j

j=σ  (in an exponential 

scale), then the scaled version of the mother basis 

function has mutually non-overlapping frequency 

bands and is also orthogonal. This property can be 

conveniently utilized to detect natural frequencies and 

modal properties for the dynamical systems as seen in 

the following sections.

4.3  Wavelet packets

While the constant Q-factor and coarser frequency 

resolution at high frequencies make the wavelet analysis 

computationally effi cient, this may be a disadvantage for 

analysis of some signals for system/modal identifi cation 

and structural health monitoring. Better resolution at 

high frequencies can be obtained by wavelet packet 

construction.

The discrete wavelet transform based on multi-

resolution analysis (MRA) splits the signal into two 

bands, a higher band (by using a high pass fi lter) and a 

lower band (by using a low pass fi lter). The lower band 

is subsequently again split in two bands. This concept 

can be generalized by splitting the signal into several 

bands each time. In addition, there could be further 

splitting of the higher bands too, not just the lower band. 

This generalization of MRA produces outputs called 

wavelet packets. This is a deviation from constant-Q 

analysis and achieves the desired frequency resolution at 

high frequency bands. Wavelet packets through arbitrary 

band splitting can choose the most suitable resolution to 

represent a signal.

The resolution of signals with wavelet packets is 

not only possible using MRA based frequency fi lters in 

the time domain (starting with Haar wavelets) but also 

in the frequency domain. For the arbitrary resolution 

using frequency domain based fi lters, the construction 

for wavelet packets should be based on a modifi ed 

Littlewood-Paley (L-P) wavelet basis. The application 

of wavelet packets is particularly useful in system 

identifi cation and damage detection for SHM, where 

fi ner resolution at higher frequency is desired.

4.4   Identifi cation of modal parameters

To detect the bands of frequencies in which the 

natural frequencies lie, the energy corresponding to each 

band is calculated for a particular state of response using 

equation 59. The bands, which do not contain the natural 

frequencies, lead to insignifi cant energy contribution. 

Hence, the fi rst ‘n’ bands with signifi cant energy content 

are the bands where the natural frequencies are located. 

These bands are in increasing order corresponding to the 

fi rst ‘n’ natural frequencies, i.e., the lowest frequency 

band has the fi rst natural frequency and so on.

However, the chosen bands may lead to bands 

with relatively broad intervals in which the natural 

frequencies lie. To refi ne the estimates into fi ner 

intervals, so that natural frequencies can be determined 

to a better precision, wavelet packets are used. This 

is an extension of wavelet transform to provide level 

by level time- frequency description and is easily 

adaptable for the modifi ed L-P basis. The wavelet 

packet enables extraction of information from signals 

with an arbitrary time-frequency resolution satisfying 

the product constraint in the time-frequency window. 

In this technique, to refi ne the estimation of the kth 

natural frequency, ωnk
, located in the j

k
th band, i.e., with 

frequency band π π/ , /a ajk jkσ⎡⎣ ⎤⎦ , further re-division is 

carried out. If it is required to further subdivide the band 

in 'M' parts, then again an exponential scale is used to 

divide the band so that the corresponding time domain 

function forms a wavelet basis function. In this approach 

(also sometimes, termed as sub-band coding), for theth 

band, the mother basis for the packet, ψ s t( )  is formed 

with the frequency domain description

ψ ω δ
ω δ

s ( ) ( )= −
≤ ≤

1

2 1

0

π
π π       

                        

 for

   elsewhere

⎧

⎨
⎪

⎩
⎪

where δ σM =  [with σ  (a scalar) >1]. The corresponding 

time domain description is given by

ψ
δ

δs t
t t

t
( )

( )

sin( ) sin( )
=

−
−1

1π
π π

           (68)

The frequency band for the pth sub-band within the 

original j
k
th band is the interval [ / , / ]δ δp

jk

p

jka a−1π π . 

The basis function for this is denoted by ψ a bjk
t, ( )sp

. 

The wavelet coeffi cient in this sub-band is denoted by 
W x a bm jkψ sp ( , ) . Using the wavelet coeffi cients in these sub-

bands and then applying similar expression as in Eq. (59)

to estimate the relative energies in the sub-bands, the 
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natural frequencies can be obtained more precisely.

Once the natural frequencies are obtained and 

the corresponding bands are identifi ed, the following 

expression corresponding to the sub-band containing 

the kth natural frequency with scale parameter  j
k 
and the 

sub-band parameter ‘p’ is considered to obtain the kth 

mode shape. 

W x a b W a b i Ni j i

k

jk

k

N

ψ ψ( , ) ( , ); , , ,= =
−

∑ΦΦ 1 2
1

       (69)

Considering the response or two states or DOF 

in a MDOF system, (with one arbitrarily chosen as 

i = 1, without loss of generality), the ratio of wavelet 

coeffi cients of the two considered degrees of freedom at 

any instant of time t = b, corresponding to band j
k
 

= =∏m

jk i jk

jk

m

k

k

W x a b

W x a b

ψ

ψ

( , )

( , )1 1

ΦΦ
ΦΦ

                 (70)

Thus it is seen that the computed ratio of the wavelet 

coeffi cients are invariant with “b”. These ratios for 

different states corresponding to different values of “m” 

and assuming ΦΦ1 1j =   (without loss of generality), the 

mode shape for the kth mode (in j
k
 band with further sub-

band division) can be obtained as 

ΦΦm

k

m

jk
m N= =∏ , , , ,1 2              (71)

4.5  Wavelet based online monitoring of LTV systems 

       with stiffness changes

Consider a linear time varying multi-degree-of-

freedom (MDOF) system with m degrees of freedom 

represented by the set of linear time varying ordinary 

differential equations with M, C(t) and K(t) as the 

mass, time varying damping and time varying stiffness 

matrices, respectively. The displacement response 

vector is denoted by X ( ) ( ) ( ) ( )t x t x t x tm= { }1 2

T
. Let 

us assume that the functions K t i j mij ( ); , = 1 in the 

stiffness matrix have discontinuities at a fi nite number 

of points. It is then possible to divide the time in several 

segments with indices arranged as t t t tn0 1 2< < < <
such that all K t i j mij ( ); , = 1 are continuous functions 

in t ti i−[ ]1, . Further, it is assumed that the variation of 

all the time varying stiffness functionsare K tij ( )  slower 

than the fundamental (lowest) frequency of the system 

(corresponding to the longest period). It subsequently 

follows that the variation of X(t) may be represented 

with a slowly varying amplitude ΦΦm

k
and a slowly 

varying frequency ωki t( ) at the kth mode, in the time 

interval t ti i−[ ]1, .

The modifi ed L–P function has been used as the 

wavelet basis for analysis for this problem and the basis 

is characterized by the Fourier transform 

    

ψ σ
ω σ

( ) ( )t F
F F

= −
≤ ≤

1

1

0

1

1 1        

                      

for

     otherwise

⎧

⎨
⎪

⎩
⎪

where, F
1 
is the initial cut off frequency of the mother 

wavelet. If this modifi ed L–P basis function is used, then
ψ ω( )a j is supported over σF a F aj j1 1/ , /⎡⎣ ⎤⎦ . It follows 

that if ωki
b( ) corresponding to the kth mode is in the 

j
k
th band, i.e., ωk j jki

b F a F a( ) / , /∈ ⎡⎣ ⎤⎦1 1 ,  then it can be 

approximated as 

ω ω
σ

k

jk
i jk

b
a

( ) ≈ =
+

⋅0

1

2

π
                  (72)

for a lightly damped system (with ηk = 1 ), where 
ω0 jk

is the central frequency of the j
k
th band. Let the 

parameters, ω1i
b( ) ,ω2i

b( ) ,... ωmi
b( ) , be contained in 

the bands with scale parameters identifi ed by indices, 

respectively. Since, the response, z
k
(t) in the kth mode, 

i.e., in j
k
th band is narrow banded with frequency around 

F a F aj jk1 1/ , /⎡⎣ ⎤⎦ , it follows that the bands not containing 

the natural frequency have insignifi cant energy which 

leads to the approximation 

W z a b if j j k mj k j kψ ( , ) ; , ,≈ ≠ =0 1 2              (73)

Thus, the 'm' bands with the 'm' natural frequency 

parameters ω ki b k m( ); , , = 1 2  correspond to m local 

maxima in the variation of temporal energy, E x bj r ( )  [or 

its proportional quantity ( / ) ( )1
2

a W x b bj j r
b

b

ψε

ε

−

+

∫ d ] (with 

the integral over b – ε to b + ε for the windowed data 

in case of online identifi cation) with different values 

of the band parameter 'j'. It may be noted that since the 

wavelet basis is localized in time, the integral over the 

window is acceptable with the parameter ε is dependent 

on the frequency scale corresponding to j. If the forcing 

function is assumed to be described by a broad banded 

excitation, then by calculating the relative energies in 

different bands and comparing, it may be concluded 

that 

E x b E x b E x b j j mj r j r j r k− +< > ∀ =1 1( ) ( ) ( ); ;         =1,2, ,k

(74)

if the modes are not too closely spaced. Once these bands 

are detected, the parameters ωki
b( ) can be obtained as 

ω
σ

k

jk
i

b
F

a
k m( ) ; , , ,≈

+
⋅ =

1

2
1 21               (75)

over the interval b b− +[ ]ε ε, . The sub-band coding 

with wavelet packets could be applied if the parameters
ωki

b( ) are desired to be obtained with better precision. 

Once the bands corresponding to the 'm' modes with 

the parameters ωki
b( )  are obtained, the time varying 
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mode shapes ΦΦ ( )t
j

k{ } can be found by considering the 

wavelet coeffi cients of x
r
(t) with the scale parameters, 

j
k 

and sub-band parameter p (for wavelet packets). 

Now, considering two different states of response of the 

MDOF system with one considered as r = 1 (without the 

loss of generality), the ratio of wavelet coeffi cients of the 

considered states at the time instant t = b, gives the rth 

component of the time varying kth mode as 

πr

jk r jk

jk

j

k

k
b

W x a b

W x a b

b

b
( )

( , )

( , )

( )

( )
= =

ψ

ψ

sp

sp 1 1

Φ
Φ

             (76)

5  Experimental and numerical validation of 
modal identifi cation of LTI and LTV 
systems using STFT, EMD, wavelets and 
HT

5.1 Modal identifi cation of 1:10 scale three story 

       model using free vibration test results and STFT

The 1:10 scale three story model with a total weight 

of 1000 lbs, shown in Fig. 2, is used for the modal 

identifi cation study based on the proposed STFT and 

EMD/HT algorithm. Time axis is scaled by from the 

prototype scale for this study. Measured third fl oor free 

vibration displacement response, shown in Fig. 2, is 

used for output only modal identifi cation. Tests were 

also performed with white noise excitation and the FRF 

was estimated—for further details refer to Nagarajaiah 

(2009). The identifi ed frequencies of the 3DOF structure, 

both from free vibration (output only) as well as forced 

vibration tests (input-output), are 5.5 Hz, 18.7 Hz, and 

34 Hz for the three modes, respectively. The identifi ed 

damping ratios are approximately 1.9%, 1.7% and 1.1% 

in the three modes, respectively, as shown in Table 1. At 

the prototype scale, the three modal frequencies are 1.75 

Hz, 5.9 Hz and 10.7 Hz, respectively.

STFT is applied to the free vibration displacement 

response of the three story scaled building model. 

Figure 3 shows the time history (lower right), 

frequency spectrum (upper left), and the time-

frequency spectrogram (upper right). The evolution of 

the frequency content of the displacement signal as a 

function of time can be seen in the spectrogram or time-

frequency distribution (upper right), shown in Fig. 3. If 

one examines the time history alone (lower right) the 

localized nature of the time varying frequency content 

is not evident. The modal free vibration response in the 

three separate modes and the time localization for each 

mode is clearly evident in the spectrogram, but not in the 

frequency spectrum or the time history—when examined 

independently. The three modal frequencies 5.5 Hz, 18.7 

Hz and 34 Hz (Nagarajaiah, 2009) are clearly evident in 

the spectrogram and the frequency spectrum (upper left) 

shown in Fig. 3. After the STFT spectrogram reveals 

the modal frequencies, further processing is essential 

using band-pass fi ltering to obtain modal components 

as described in Section 3.2. Next, the EMD/HT and 

wavelet/HT based methods are presented which can 

accomplish output only modal identifi cation without the 

use of band-pass fi lters.

5.2 Validation of EMD/HT technique using three 

       story model free vibration test results

The three story scaled model, with the fi rst mode 

frequency of 5.5 Hz, is subjected to free vibration tests. 

The measured third fl oor free vibration acceleration 

response signal (we use the acceleration signal since the 

third mode is dominant, while in the displacement signal 

it is not dominant) is then analyzed using EMD/HT to 

extract instantaneous frequency and damping ratios of 

Fig. 2   Three story 1:10 scale building model

Table 1   Frequencies and damping ratios estimated using EMD/HT

Mode

Free vibration tests White noise tests

Identifi ed 

frequency

 (Hz)

Identifi ed 

damping ratio 

(%)

Identifi ed 

frequency

 (Hz)

Identifi ed 

damping ratio 

(%)

1 5.5 1.9 5.5 1.5

2 18.7 1.0 18.7 1.0

3 34 1.1 33.7 1.0
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the three modes as per the procedure described earlier in 

Section 3.2. The free vibration acceleration response of 

the third fl oor is shown in Fig. 4. The fi rst three modes 

are not clearly evident in the time history as all three 

modes are present simultaneously and decay at different 

rates; hence, the need for time-frequency analysis exists 

to understand localization.

The EMD method is capable of extracting all the 

three vibration frequencies and damping ratios from a 

single measurement of the acceleration response time 

history based on the procedure outlined in Section 

3.1. The third fl oor acceleration is decomposed into 

IMFs; the fi rst three are shown in Fig. 5 and the rest 

are discarded as they are small and below the threshold. 

Based on the modal identifi cation procedure presented 

in Section 3.1, modal frequencies and damping ratios 

are identifi ed using linear least squares fi t applied to the 

Hilbert Transform; log amplitude and phase (Eqs. 14, 

43-47) of HT of IMF3 is shown in Fig. 6. The modal 

frequencies and damping ratios obtained are shown in 

Table 1. 

IMFs of all three fl oor accelerations are obtained. 

Magnitude/phase information of IMF3 of the three 

fl oor accelerations at a particular time, provides the fi rst 

mode. Similarly second and third modes are obtained. 

The identifi ed mode shapes (scaled to maximum of 1) 

are shown in Table 2. The analytical mode shapes are 

shown in Table 3. The EMD results are in agreement 

with the analytical results.

5.3 Validation of wavelet/HT technique using three 

       story model free vibration test results

The three story scaled model is subjected to free 

vibration tests. The measured third fl oor free vibration 

displacement response signal is then analyzed using 

wavelets to extract instantaneous frequency and damping 

ratios of the three modes as per the procedure described 

in Section 4. The scalogram of the free vibration 
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displacement response of the third fl oor is shown in 

Fig. 7 and relevant wavelet coeffi cients of the measured 

free vibration displacement response of all three fl oors 

and modes are shown in Fig. 8 (the wavelet coeffi cients 

have been normalized to have a peak value of 1 in mode 

1). All three modes and their decrement as a function 

of time are clearly evident in Figs. 7 and 8. The modal 

frequencies and damping ratios are identifi ed using 

linear least squares fi t applied to the Hilbert transform; 

log amplitude and phase (Eqs. (14), (43)–(47)) of HT of 

wavelet coeffi cient corresponding to mode 1 (Fig. 8 top) 

is shown in Fig. 9. The modal frequencies obtained are 

5.5 Hz, 18.8 Hz, and 34 Hz, and the damping ratio of the 

fi rst mode is estimated to be 1.9%; however, the damping 

in mode two and three are underestimated at 0.08%, as 

compared to the values shown in Table 1. Wavelet 

coeffi cients of all three fl oor displacements, shown in 

Fig. 8, are used to obtain the mode shapes. Magnitude/

phase information of wavelet coeffi cients of the three 

fl oor displacements at a particular time provides the fi rst 

mode. The ratio of the wavelet coeffi cients shown in Fig. 8 

remain nearly constant as a function of time. Similarly, 

the second and third modes are obtained.

The identifi ed mode shapes (scaled to maximum of 

1) are shown in Table 4. The analytical mode shapes are 

shown in Table 3. The wavelet results are in agreement 

with the analyatical results.

5.4 Validation of wavelet technique using numerical 

      simulation of a 5DOF LTI system

A MDOF model is used to simulate the displacement 

Table 2   Mode shapes estimated using EMD

    Mode-1  Mode-2  Mode-3 

Storey-3  1.0000  -0.7025  -0.3787 

Storey-2  0.6976  0.3265  1.0000 

Storey-1  0.4696  1.0000  -0.6185 

Table 3   Analytical mode shapes

    Mode-1  Mode-2  Mode-3 

Storey-3  1.0000  -0.6416  -0.3946 

Storey-2  0.6438  0.4299  1.0000 

Storey-1  0.3648  1.0000  -0.6831 

Fig. 9   First mode damping and frequency estimation using wavelet coeffi cient/Hilbert transform
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response and to show the application of the proposed 

identifi cation methodology. The MDOF system, as 

shown in Fig. 10, is considered. The displacement of the 

mass relative to the support is denoted x
i
(t). Simulation 

is carried out for a 5DOF system (n = 5). The masses are 

m
1
= 300 kg, m

2
= 200 kg, m

3
= 200 kg, m

4
= 250 kg and 

m
5
= 350 kg; and the spring stiffnesses are k

1
= 36 kN/m, 

k
2
= 24 kN/m, k

3
= 36 kN/m, k

4
= 20 kN/mm and k

5
= 

15kN/mm respectively. The damping ratio is assumed to 

be 5% for all modes. The system is subjected to initial 

displacement of x ii ( ) , , ,0 1 1 5= = for all the degrees of 

freedom. Using these, the ambient vibration response is 

simulated.

Table 4   Mode shapes estimated using wavelets

Mode-1 Mode-2 Mode-3

Storey-3 1.0000 -0.6930 -0.3247

Storey-2 0.6437 0.4106 1.0000

Storey-1 0.3647 1.0000 -0.7475

Fig. 10   MDOF system
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A modifi ed L-P wavelet is used to decompose 

the signals into different frequency levels. Initially, 

the response energy is calculated for each degree of 

freedom in frequency bands with σ = 21 4/
to broadly 

identify the bands that contain the natural frequencies. 

These bands are further divided into sub-bands using 

wavelet packets. Figures 8 and 10 represent the ratio of 

wavelet coeffi cients of displacements x t ii ( ), , ,= 2 5  

with respect to the wavelet coeffi cients of displacement 

x
1
(t) over time for the fi ve frequency sub-bands 

containing the fi ve natural frequencies, respectively. 

Since the response for different degrees of freedom 

attain the same phase during modal vibration, these 

ratios are practically constant over time. The natural 

frequencies are estimated as the central frequency of 

the corresponding sub-bands and the corresponding 

mode shapes are obtained by averaging the ratios. The 

results for the fi rst two modes are shown in Figs. 11 and 

12 using sub-band coding as discussed in Section 4. 

The results are summarized in Table 5. Figures 13 and 

14 show the mode shapes estimated using the proposed 

method and compared with the actual for the fi rst three 
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modes, respectively. From Figs. 13 and 14 and Table 5, 

it can be noticed that the modal frequencies along with 

other modal parameters are estimated satisfactorily, 

which proves the effectiveness of the proposed method.

Although the ratios of wavelet coeffi cients for higher 

modes are constant over time, the accuracy in estimation 

reduces for the higher modes. This is due to the fact that 

the energy content in bands containing the higher modal 

frequencies reduces as the mode number increases.

For the 5DOF system, the estimation accuracies 

start deteriorating from the third mode onwards and are 

poorer for the last two modes. This indicates that more 

numbers of modes and the associated modal properties 

can be identifi ed with greater accuracy, for systems with 

relatively greater number of degrees of freedom. Also, 

modal damping ratios can be estimated with reasonable 

accuracy, with the level of accuracy deteriorates with 

higher modes. The higher modal damping ratios tend to 

be underestimated.

5.5 Validation of wavelet technique using numerical 

       simulation of a 2DOF LTV system

To demonstrate the application of the tracking 

methodology, an example of a 2DOF system has been 

considered. The system considered is a shear-building 

model. The masses at the fi rst and second fl oors are 

m
1
=10 unit and m

2
=10 unit, respectively. The fl oor 

stiffness for the fi rst and second fl oor are k
1
=2500 unit 

and k
2
=4500 unit, respectively. These parameters lead 

to the fi rst and second natural frequencies, of ω
1
=9.04 

rad/s and ω
2
=30.30 rad/s, respectively. The fi rst and 

second mode shapes are Φ Φ11 21 1 1 137, .{ } = { }   and 
Φ Φ12 22 1 0 048, .{ } = −{ }  , respectively. A band limited 

white noise excitation has been simulated. The range of 

frequencies is kept wide enough to cover the frequencies 

of the system to be identifi ed. The excitation has been 

digitally simulated at a time step of Δ =t 0 0104. s. 

The response of the system is simulated with 5% of 

Fig. 13   First mode shape
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Table 6   Third mode shape estimated using wavelets

3*Mode

Normalized mode shape

x
1

x
2

x
2

x
3

x
3

x
4

x
4

x
5

x
5

Actual Estimated Actual Estimated Actual Estimated Actual Estimated

1 1.00 2.40 2.37 3.22 3.18 4.45 4.39 5.48 5.39

2 1.00 1.76 1.73 1.69 1.66 0.56 0.69 -1.49 -1.58

3 1.00 0.59 0.89 -0.18 -0.59 -1.30 -1.02 0.51 0.63

Fig. 14   Second mode shape
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Table 5   Second mode shape estimated using wavelets

2*Mode
Natural frequency (rad/s) Damping ratio (%)

Actual Estimated Actual Estimated

1 2.84 2.88 0.05 0.04

2 7.69 7.69 0.05 0.03

3 12.35 12.59 0.05 0.02
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Fig. 15   Time varying fi rst modal frequency
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Fig. 16   Time varying fi rst mode shape
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modal damping. For the frequency-tracking algorithm, 

a moving window of 400 time steps equal to 4.16 s 

has been chosen. For the identifi cation of the 2DOF 

system, the parameters F
1
 and σ are taken as 8.25rad/s 

and 1.2, respectively. To observe if the proposed method 

can track a sudden change in the stiffness of an MDOF 

system and follow the recovery to the original stiffness 

value(s), the stiffness k
1
 and k

2
 of the 2DOF are changed 

to 5000 unit and 5200 unit, respectively, at an instant of 

5.72 s in time. Subsequently, the stiffnesses are restored 

to their original value at 12.48 s. During the changed 

phase, the natural frequencies and the mode shapes 

are changed to ω
1
=11.57 rad/s; ω

2
=35.11 rad/s; and 

Φ Φ11 21 1 1 157, .{ } = { }t
  ; Φ Φ12 22 1 0 048, .{ } = −{ }t

  . 

Figures 15 and 16 show the tracked fi rst natural 

frequency and the ratio of the fi rst mode shape Φ Φ21 11
. 

As expected, there is a time lag in tracking the frequency 

and mode shape. The change in the frequency is tracked 

in (three) steps corresponding to the bands of frequencies 

considered. To investigate if a relatively small change 

in stiffness can be tracked, a case where the natural 

frequency of a SDOF representing the fi rst mode only 

changes from 9 rad/s to 9.5 rad/s is considered and the 

results for successful tracking are shown in Fig. 17 with 

a window width of 200 sampling points corresponding 

to a time delay of 2.08 s. For this, the parameters F1 

and σ are taken as 8.9 rad/s and 1.02, respectively. This 

indicates that the minimum change in stiffness that can 

be tracked is related to the value of σ, and to identify a 

small change a relatively smaller value will be required. 

5.6 Validation of wavelet & random decrement 

technique using three story model test results 

under white noise excitation: the case of 

structural damage detection

The three story scaled model was damaged 

intentionally to simulate structural deterioration 

(Nagarajaiah, 2009). The model was subjected to white 

noise tests before and after the structural damage. We 

choose 10 s of the measured acceleration record before 

damage and 10 s of the measured acceleration after 

damage. The measured third fl oor acceleration response 

signal is shown in Fig. 18, and the corresponding 

Fourier spectrum is shown in Fig. 19. From the 

Fourier spectrum, the fi rst mode frequency evident 

is ~5.5 Hz, second mode frequency at ~18.8 Hz and 

third mode frequency at ~34 Hz. The lower fi rst mode 

frequency after damage is evident. The scalogram of 

the acceleration response of the third fl oor is shown in 

Fig. 20 and relevant scaled wavelet coeffi cients of the 

measured third fl oor acceleration response are shown in 

Fig. 21. The fi rst two wavelet coeffi cent time histories in 

Fig. 21 are the most interesting as they correspond to the 

fi rst mode frequencies of 4.9 Hz (after damage) and 5.5 

Hz (before damage). The fi rst two wavelet coeffi cients 

in Fig. 21 detect the loss of stiffness at 10 s, as evident 

in the signifi cant change at 10 s in both coeffi cients. The 

third and fourth time histories in Fig. 21 correspond to 
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Fig. 19   Fourier spectrum of third fl oor acceleration
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Fig. 20   Scalogram of third fl oor acceleration response: note 

the shift in the fi rst mode frequency (ridge) of 5.5 Hz 
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the second and third mode, respectively. Even the second 

mode response reduces at 10 s, although the frequency 

of the second mode does not change signifi cantly. The 

third mode response does not indicate any change.

The modal frequency of the second wavelet 

coeffi cient in Fig. 21(b) is estimated using linear 

least squares fi t applied to the Hilbert Transform; log 

amplitude and phase (Eqs. (14), (43)–(47)) of HT of 

the second wavelet coeffi cient corresponding to mode 

1 before damage (Fig. 21(b)) is shown in Fig. 22. The 

change in frequency is clearly detected at 10 s; the 

frequency is ~5.5 Hz prior to damage and ~4.9 Hz after 

damage. 

The fi rst two wavelet coeffi cient time histories in 

Fig. 21 are processed further to extract the free vibration 
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Fig. 24   First mode frequency estimation after damage using 

               random decrement/HT

response using the random decrement technique. The 

third fl oor acceleration free vibration time history 

obtained from the random decrement technique before 

damage is shown in Fig. 23; also shown is the frequency 

estimation using HT—the estimated fi rst mode 

frequency before damage is ~5.5 Hz. The third fl oor 

acceleration free vibration time history obtained from 

the random decrement technique after damage is shown 

in Fig. 24; also shown is the frequency estimation using 

HT—the estimated fi rst mode frequency after damage 

is ~4.9 Hz. Damping ratios and mode shapes can be 

obtained as described in Section 4 (not shown due to 

space limitations).

5.7 Three story model test results under white noise 

excitation: STFT and EMD for structural 

damage detection

The third fl oor acceleration response was processed 

to white noise excitation using STFT and EMD. The 

spectrogram is shown in Fig. 25. The spectrogram 

detects the change in frequency from 5.5Hz to 4.9 Hz at 

10 s. However, the fi xed time-frequency resolution is a 

limitation that prevents robust detection when compared 

to the variable resolution of wavelets that enables more 

robust detection. In addition estimation of frequencies, 

damping ratios, and mode shapes would require further 

processing using band-pass fi ltering and Hilter transform 

apporach as described earlier in Section 3. 

The third fl oor acceleration response was processed 

to white noise excitation using EMD. The IMFs are 

shown in Fig. 26. The IMFs do detect change at 10 s

—particularly the IMF3 for the fi rst mode before 

damage at 5.5 Hz; however, the detection is not as 

robust as in the case of the wavelet coeffi cients shown in

Fig. 21. 
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6   Conclusions

The effectiveness of the developed time-frequency 

algorithms for output only modal identifi cation of 

MDOF LTI and LTV systems has been demonstrated 

by simulated and experimental results. The algorithms 

presented demonstrate the powerful capabilities of time-

frequency methods for output only modal identifi cation 

and ease of implementation. 

The STFT, EMD and wavelet, HT algorithms 

applied to MDOF LTI and LTV systems offer different 

advantages and limitations that can be summarized as 

follows.

(1)  STFT based identifi cation technique presented 

can detect the modal frequencies of LTI systems and 

their time localization very well; however, further 

processing using band-pass fi ltering is essential to obtain 

frequencies, damping ratios, and mode shapes. STFT can 

also detect changes in modal frequency of LTV systems 

due to structural damage. However, the fi xed time-

frequency resolution is a limitation that prevents robust 

detection when compared to the variable resolution of 

wavelets that enables more robust detection.

(2) The EMD based identifi cation technique 

presented is capable of decomposing the free vibration 

or force vibration output signal into its individual 

modal components—represented by individual IMFs. 

Frequencies, damping ratios, and mode shapes of LTI 

systems can be obtained using the IMFs and the Hilbert 

transform approach. In case of ambient response, the 

random decrement technique can be used to obtain the 

free vibration response, followed by the application of 

EMD/HT for modal identifi cation. The EMD technique 

is capable of detecting changes in frequency of LTV 

systems due to structural damage; however, the detection 

may not be as robust as wavelets.

(3) The wavelet based identifi cation technique 

presented is capable of extracting the modal components 

represented by wavelet coeffi cients obtained from 

the free vibration or forced vibration output response 

signals. Frequencies, damping ratios, and mode shapes 

of LTI and LTV systems can be obtained using wavelet 

coeffi cients and the Hilbert transform approach. In case 

of ambient response, the random decrement technique 

can be used to obtain the free vibration response, 

followed by the application of wavelet/HT for modal 

identifi cation. The wavelet technique is very effective 

in detecting changes in frequency of LTV systems due 

to structural damage. The wavelet technique can also 

detect closely spaced modal frequencies and detect real 

time changes in frequencies and mode shapes of LTV 

systems.
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