
Vol.:(0123456789)1 3

Journal of Industrial Microbiology & Biotechnology (2018) 45:615–619 
https://doi.org/10.1007/s10295-017-1993-1

NATURAL PRODUCTS

Output ordering and prioritisation system (OOPS): ranking 
biosynthetic gene clusters to enhance bioactive metabolite discovery

Alejandro Peña1 · Francesco Del Carratore1  · Matthew Cummings1 · Eriko Takano1 · Rainer Breitling1

Received: 17 October 2017 / Accepted: 26 November 2017 / Published online: 18 December 2017 
© The Author(s) 2017. This article is an open access publication

Abstract
The rapid increase of publicly available microbial genome sequences has highlighted the presence of hundreds of thousands 
of biosynthetic gene clusters (BGCs) encoding valuable secondary metabolites. The experimental characterization of new 
BGCs is extremely laborious and struggles to keep pace with the in silico identification of potential BGCs. Therefore, the pri-
oritisation of promising candidates among computationally predicted BGCs represents a pressing need. Here, we propose an 
output ordering and prioritisation system (OOPS) which helps sorting identified BGCs by a wide variety of custom-weighted 
biological and biochemical criteria in a flexible and user-friendly interface. OOPS facilitates a judicious prioritisation of 
BGCs using G+C content, coding sequence length, gene number, cluster self-similarity and codon bias parameters, as well 
as enabling the user to rank BGCs based upon BGC type, novelty, and taxonomic distribution. Effective prioritisation of 
BGCs will help to reduce experimental attrition rates and improve the breadth of bioactive metabolites characterized.
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Introduction

Bioactive secondary metabolites are the major source for 
a diverse range of drugs. The growing wealth of genome 
sequence data revealed an unexpected diversity of biosyn-
thetic gene clusters (BGCs) potentially responsible for the 
production of an even larger range of biochemicals [8]. Bac-
terial and fungal genomes have historically been the source 
of many medicines; however, most low-hanging fruit has 
already been picked [1], and classical routes to natural 
product-based drug discovery generated little in the last 
two decades [9, 13]. A genome-driven approach, linking 
biosynthetic gene clusters to specialised metabolites and 
powered by synthetic biology, might provide a new impetus 

to natural product discovery [4, 5, 11, 13], enabling access to 
an unexplored pool of silent, cryptic, and poorly expressed 
BGCs [14]. Nowadays, BGCs can be systematically pre-
dicted from DNA sequence thanks to freely available cluster 
mining tools (antiSMASH [3], BAGEL [19], CASSIS and 
SMIPS [18], CLUSEAN [17], ClusterFinder [8], etc.). The 
widespread use of these tools has provided an unprecedented 
view of the global distribution of specialised metabolites [8] 
and is unveiling the complexity of eukaryotic and prokary-
otic secondary metabolism. Irrespective of the approach 
used to identify new BGCs of interest, shortlisting clusters 
to focus on in subsequent experimental work is a laborious 
but necessary task. There is no standardised way in which 
outputs from BGC prediction software can be visualised, 
filtered and prioritised based on molecular biological prin-
ciples. Here, we described a freely available and easy to use 
prioritisation pipeline for biosynthetic gene clusters which 
uses seven parameters describing the molecular biology of 
BGCs (number of genes, CDS length, G+C content, codon 
bias. similarity to known clusters, self-similarity, and phylo-
genetic diversity) to allow a flexible, user-specific prioritisa-
tion of large numbers of BGCs according to properties that 
are relevant for synthetic biology and secondary metabolite 
discovery.
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Materials and methods

The OOPS software is a stand-alone Java-based applica-
tion built with an embedded web server and accordingly 
is compatible with all operating systems. OOPS should be 
considered as an extension of the widely-used antiSMASH 
pipeline [3], and the input used for OOPS is BGCs obtained 
with the antiSMASH pipeline.

Prioritisation protocol

After optional filtering of the BGCs according to the cluster 
type, i.e., the predicted chemical class of the end compound, 
all seven prioritisation metrics are computed (or extracted 
from the antiSMASH output) for each BGC. The clusters 
can be easily ranked according to each metric in ascending 
or descending order according to the users choice. The final 
score associated with each BGC is then computed as the 
simple weighted sum of all the ranks obtained in the previ-
ous step. The weighted scoring system provides the user with 
complete control over which parameters enter the final prior-
itisation, and to which extent they dominate the results. This 
allows flexible adjustments of BGC prioritisation accord-
ing to the specific down-stream analysis envisaged (e.g., 
some users might search for novel chemistry, independent 
of the genetic structure of the BGC, while others are look-
ing only for clusters that are easy to manipulate using syn-
thetic biology tools and, therefore, would want to prioritise 
BGC with few ORFs and relatively short total protein coding 
sequences). By clicking on any BGC shown in the ranked list 
by OOPS, the user can also explore the original antiSMASH 
output related to it, including, for example, links to informa-
tion about the genomic context and domain architecture. The 
prioritisation by OOPS assumes that genomes have been 
correctly assembled, and when interpreting the output, the 
user should be aware of the possibility of assembly errors 
affecting the results, especially in the case of type I PKS and 
NRPS BGCs in unfinished genomes.

Guanine and cytosine content

The G+C content for each cluster is computed from the ant-
iSMASH output simply as the ratio of G+C DNA base pairs 
over the length of the predicted BGC. If no reference spe-
cies is selected by the user, BGCs are ranked by their total 
G+C content. Otherwise, the G+C content of the reference 
species is obtained from the Kazusa codon usage database 
(http://www.kazusa.or.jp/codon/), and the clusters are ranked 
according to the absolute difference between the G+C con-
tent in the cluster and the G+C content of the reference 

species. This allows, e.g., the prioritisation of BGCs that 
are maximally similar in G+C content to a prospective het-
erologous host species.

Codon bias

The codon bias parameter can only be used for the prior-
itisation if a reference species is selected. The codon usage 
table is computed by OOPS for each BGC, while the table 
for the species of interest, typically the intended heterolo-
gous expression host, is downloaded from the Kazusa web-
site (http://www.kazusa.or.jp/codon/). The clusters are than 
ranked according the BGC codon bias score computed as 
follows:

where xBGC,i and xspecies,i represent the usage percentage of 
the ith codon in the cluster and in the species, respectively. 
Similar to the G+C content, this allows the prioritisation of 
BGCs that have a codon bias similar to an intended host spe-
cies, but it could also be employed more creatively, e.g., to 
prioritise clusters that match the coding patterns of a particu-
lar group of organisms with interesting known bioactivities.

Similarity to known cluster

OOPS retrieves from the antiSMASH output the percent 
similarity (calculated analogously to MultiGeneBlast [12]) 
of the most similar BGC with a known end product. Then, 
the final score for this ranking parameter is calculated as the 
absolute difference between the similarity preference defined 
by the user ( %PS ) and the similarity of the most similar 
cluster ( %known cluster ) calculated by OOPS:

This enables users to prioritise BGCs that hit the “sweet 
spot” of similarity to known clusters, which will differ 
depending on the specific application scenario: some users 
will search minor, but important variations of established 
known compounds; others prefer clusters that are completely 
different from anything studied before and will have a %PS 
of zero.

Self‑similarity

This parameter is used to prioritise the clusters according 
to how similar they are to themselves in terms of nucleotide 
sequences. This metric is computed using a modified version 
of the Smith–Waterman algorithm [15] to find all suboptimal 
local alignments of length greater or equal to a user-defined 
minimum. This parameter allows to eliminate (or prefer) 

(1)BGCcodon bias score =

64∑

i=1

∣ xBGC,i − xspecies,i ∣

(2)Known cluster score = |%PS − %known cluster |.

http://www.kazusa.or.jp/codon/
http://www.kazusa.or.jp/codon/
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BGCs with a large number of internal repeats, which might 
be challenging to engineer genetically (or might be chemi-
cally particularly interesting, depending on the use case).

Phylogenetic diversity

OOPS uses the cluster blast output provided for each BGC 
by antiSMASH [3], which contains all the clusters that are 
substantially similar to the BGC of interest, to compute a 
phylogenetic diversity score. The taxonomic identity of 
the host species of all the associated clusters is obtained 
from the RESTful services provided by the EMBL–EBI 
databases [6, 7] and used to build a simplified phylogenetic 
tree comprising all clusters, using only the taxonomic ranks 
provided by the database, and collapsing all intermediate 
nodes. The metric chosen to represent the phylogenetic 
diversity is the number of nodes of the tree above the spe-
cies level. A high score indicates that similar clusters are 
very widespread across the tree of life, while low numbers 
indicate that similar clusters are found only in a small set 
of closely related species. Whether this parameter is used 
in ascending or descending order for the final prioritisation 
will again strongly depend on the envisaged application. All 

prioritisation options are accessible via a unified intuitive 
user interface (Fig. 1).

Availability

OOPS is available at https://github.com/alexcpa/ant-
iSMASH-OOPS. A user guide and tutorial is provided as 
supplementary material.

Precomputation of actinobacterial BGCs

To illustrate the potential uses of our software, we provide a 
precomputed data set containing all actinobacterial genomes 
present within the antiSMASH database [2], consisting of a 
total of 5903 predicted BGCs. Expression of heterologous act-
inobacterial BGCs in various Streptomyces coelicolor strains 
[10, 16] is a common first strategy when characterizing new 
secondary metabolites, and no S. coelicolor strain is present 
in the data set; thus, S. coelicolor A3(2) was chosen as our 
reference species for precomputation of codon bias and G+C 
content parameters. In addition, to provide good resolution of 
BGC self-similarity (detection of relevant internal repeats), a 

Fig. 1  OOPS graphical user interface. The weighing of each pri-
oritisation parameter can be adjusted using the slide bar, or ignored 
by checking the associated box. The sorting order (ascending or 
descending) is specified by clicking the blue arrow icon. The refer-

ence species is chosen by typing the species name in the “species” 
field and is relevant for codon bias and GC content parameters only. 
Multiple BGC types can be chosen using the “preferred cluster type” 
field by holding shift and selecting additional BGC classes

https://github.com/alexcpa/antiSMASH-OOPS
https://github.com/alexcpa/antiSMASH-OOPS
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threshold of 30 bp was used. Changing the reference species 
or self-similarity minimum match threshold, when using the 
large precomputed data set will result in lengthy prioritisation 
( > 4 days), and therefore, it is not allowed in this case. The 
precomputed data set here described is available for down-
load at https://doi.org/10.5281/zenodo.1000774. Applying 
OOPS prioritisation to the precomputed data set allows the 
user, e.g., to rapidly find out that the two gene clusters with 
the largest total coding sequence are CP005929.1-C12 from 
Actinoplanes sp. N902-109 (259002 bp) and CP002162.1-
C4 from Micromonospora aurantiaca (216780 bp; total 
run-time on a desktop computer: ∼ 5 sec). The antiSMASH 
outputs related to these two clusters can be found at http://
antismash-db.secondarymetabolites.org/output/CP005929/
index.html#cluster-12 and http://antismash-db.secondar-
ymetabolites.org/output/CP002162/index.html#cluster-4. 
The user could also find out that the cluster with the largest 
amount of self-similarity (internal repeats) is CP003899.1-C22 
from Mycobacterium liflandii (self-similarity score 218870; 
longest alignment 2000 bp, due to numerous near-identical 
internal domain duplications in one of its Type I polyketide 
synthases), which can be found at http://antismash-db.second-
arymetabolites.org/output/CP003899/index.html#cluster-22. 
However, one can also quickly find the answer to more com-
plex user-defined queries that combine a number of criteria in 
a custom-weighted manner. For instance, if an imaginary user 
decides that the optimal target for genetic engineering would 
be a cluster that has a G+C content and codon bias similar 
to that of Streptomyces coelicolor A3(2) (weight 20% each), 
shows the widest possible phylogenetic distribution (10%), has 
a minimum amount of internal repeats (20%), and is around 
40% similar to the most similar chemically characterized gene 
cluster (30%), she would within ∼ 7 s find out that the closest 
match to these criteria is CP011492.1-C21 from Streptomyces 
sp. CNQ-509 (found at http://antismash-db.secondarymetabo-
lites.org/output/CP011492/index.html#cluster-21), which has 
0.16% difference in G+C compared with Streptomyces coe-
licolor A3(2), a codon bias score of 107.12, a self-similarity 
score of 0 (i.e., contains no internal repeats above the user-
defined threshold), a phylogenetic diversity score of 112 and 
a known cluster score of 20.36% (i.e., its maximum similarity 
to a known cluster is 19.64%). At the same time, the user is 
provided with a long list of next-best matches from which to 
select potential target clusters, and the opportunity to adjust the 
prioritisation criteria to fine-tune the selection.

Processing commercially sensitive data

All input data remain offline and are hosted locally by the 
user, so that commercially sensitive sequences can be ana-
lysed and prioritised using the OOPS pipeline.
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