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ABSTRACT 

This dissertation is concerned with the solvability of the output regulation 

problem for infinite-dimensional linear control systems with bounded control and 

observation operators. By output regulation we mean a control design problem 

in which the objective is to achieve tracking, disturbance rejection and internal 

stability. Two versions of output regulation are considered: the state feedback 

regulator problem, in which we look for a static state feedback control law and 

the error feedback regulator problem in which a dynamical controller is sought for 

which only the tracking error is available to the controller. Under the standard 

assumption of stabilizability necessary and sufficient conditions are given for the 

solvability of the state feedback problem and under the additional assumption 

of detectability necessary and sufficient conditions are given for the solvability of 

the error feedback problem. The solvability of both problems are characterized in 

terms of the solvability of a pair of linear regulator equations. This characterization 

represents an extension of the results obtained by B. Francis for multivariable linear 

control systems. The approach follows the lines of the geometric theory of output 

regulation developed by C. I. Byrnes and A. Isidori for finite-dimensional nonlinear 

systems. The solvability of the regulator equations is shown to be equivalent to 

the property that the zero dynamics of the composite, formed from the plant 

and the exosystem, contains isomorphic copies of the exosystem and the plants' 

zero dynamics. Examples of periodic tracking are presented for parabolic and 

hyperbolic systems. 
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CHAPTER I 

INTRODUCTION 

1.1 Output Regulation Problem - Generic Description 

We shall outHne here the problem that is usually referred to in the control 

Hterature as output regulation problem. For the sake of simplicity we will use 

the finite-dimensional hnear control system model to describe the various control 

objectives that are collected under the name of output regulation. We assume that 

the controlled system (or controlled plant) can be modeled by a first order system 

of linear ordinary differential equations 

—x{t) = Ax{t) -h Bu{t) + d{t), 

y{t) = Cx{t), 

(1.1) 

where x{t) e IR^, u{t) E IR^, y{t) G IRP for t > 0, represent the state, the input and 

the output of the system respectively, and where A, B and C are linear operators 

(in this case matrices) between the corresponding spaces. d{t) in (1.1) represents 

a disturbance. 

In the following we describe some common control design objectives for such a 

system. By tracking we mean that the control input u{t) is designed in such a way 

that each output variable is tracking a preassigned reference signal: 

Viit) -^ ylit), 

as t —> oo for every 1 < « < p, or simply y{t) —> y^{t)- We will assume that the 

reference output y^ is generated as the output of another linear finite-dimensional 

system, 

at 

f{t) = Riw\t), 

(1.2) 

To achieve another important design objective, namely disturbance rejection, 

the designed control has to be such that the disturbance effects on the output are 

attenuated. A standard assumption which we adopt is that d{t) can be generated 



by a finite-dimensional linear system 

d 
fw\t) = S2w'{t), (1.3) 

d{t) = R2w'{t), 

for some initial condition. It is convenient, and customary, to combine system 

(1.2) with system (1.3), to obtain a single finite-dimensional system 

^^w{t) = Sw{t), (1.4) 

y'{t) = Qw{t), 

d{t) = Pw{t), 

S e C{M^), Q e C{]R\]R^) and P e C{1R\M''), that produces both the signal 

to be tracked and the disturbance to be rejected. This system represents the 

outside world for the controlled plant and is refered to as the exogenous system, 

or exosystem for short. With the choice of a suitable initial condition for the 

exosystem a specific tracking and disturbance rejection task can be initiated and 

the control problem then is to produce the control input u that carries out this task. 

In practice, the asymptotic requirements of tracking and disturbance rejection are 

replaced by that of reaching a certain error level in a given time interval. 

An additional, natural requirement for the control design is usually referred to 

as internal stability. It requires the system comprising the plant and the controller 

to be stable when there is no tracking or disturbance rejection assignment present. 

We note that the exosystem itself is typically not stable. For example it is often 

required to produce periodic, quasiperiodic or constant signals. 

By output regulation we mean the problem of designing a controller so that the 

output of the resulting closed loop system tracks the reference signal regardless of 

the plants' initial conditions while maintaining internal stability. 

The problem described above, in terms of control objectives is not restricted 

to the linear finite-dimensional model of (1.1), (1.2) and (1.3). We can formulate 

the problem similarly when the controlled plant is modeled by nonlinear ordinary 

differential equations, or for infinite-dimensional models as partial or delay dif-

ferential equations. We expect however, that the exosystem is chosen to be the 

simplest system that can produce the perturbations and the required reference 

signal, and that it is finite-dimensional. 



Generally two versions of the output regulation are considered. In the first one, 

it is assumed that the controller is provided with full information on the state of the 

plant and exosystem. We will refer to this as the state feedback regulator problem. 

For the multivariable hnear state feedback problem the solution is expected to be 

a linear feedback controller of the form 

u = Kx -f- Lw. 

For the second version, only the tracking error 

(1.5) 

e = y-y 

is available for the controller, and in this case the problem is called the error 

feedback regulator problem. The solution in the linear multivariable case consists 

in finding a finite-dimensional linear error feedback controller 

X = FX-{-Ge 

u = HX. 

(1.6) 

1.2 Outline of the History of the Problem 

The regulator theory for finite-dimensional systems is well developed. Among 

the contributors are Smith and Davison [23], Francis and Wonham [12], Francis 

[11], Wonham [24], Hautus [14], Hepburn and Wonham [16], Byrnes and Isidori [3]. 

A characterization of the solvability of the multivariable linear problem was given 

by Francis in [11] in terms of the solvability of a pair of linear matrix equations, 

the so called regulator equations. This theory is based on the following hypotheses: 

h i cr(5) is contained in the closed right half plane, 

h2 the pair {A, B) is stabilizable, 

h3 the pair 

Q 
A P 

0 S 

is detectable. 



The following results (due to Francis) give necessary and sufficient conditions for 

the solvability of both the state feedback and error feedback problems. 

Theorem 1.1 Let h i and h2 hold. The multivariable linear state feedback regu-

lator problem is solvable if and only if there exist matrices H and T that solve the 

equations 

US = AU-\-BT-\-P, (1.7) 

cn - Q = 0. 

Theorem 1.2 Le^hl andh2 and h.3 hold. The multivariable linear error feedback 

regulator problem is solvable if and only if there exist matrices H and T that solve 

the equations 

US = AU + Br-\- P, 

CU-Q = 0. 

This shows that under the assumptions h l -hS the state feedback regulator problem 

is solvable exactly when the error feedback problem is solvable. The solvability of 

the regulator equations in turn has been characterized in terms of the transmission 

polynomials of the systems 

x = Ax-{-Bu-\-Pw, (1.8) 

w = Sw 

e = Cx — Qw 

and 

x = Ax + Bu, (1.9) 

w = Sw 

e = Cx, 

with input u and output e. This characterization was proved by Hautus in [14]. 

Theorem 1.3 The matrix equations are solvable if and only if the systems (1.8) 

and (1.9) have the same transmission polynomials. 



These results were generalized to nonlinear multivariable systems by Byrnes 

and Isidori [3]. In their results the solvabihty conditions introduced by Francis 

correspond to the local solvability of a pair of nonlinear equations. Byrnes and 

Isidori introduced a geometric interpretation of the regulator equations: they point 

out that the solvability of the regulator equations corresponds to the existence of 

an error zeroing local manifold (in the hnear case a subspace) that is rendered 

invariant by feedback. 

Byrnes and Isidori also generalized Hautus' result given in Theorem 1.3. They 

express the solvability of the regulator equations in terms of the relationship be-

tween the zero dynamics of the plant and the zero dynamics of the composite 

system (formed from the plant and the exosystem), that has the tracking error as 

its output. They proved that the regulator equations are solvable exactly when 

the zero dynamics of the composite system can be decomposed to the exosystem 

and the zero dynamics of the plant. The Byrnes-Isidori nonlinear theory relies on 

the center manifold theory as its main tool. 

1.3 A Finite Dimensional Example 

To illustrate the finite-dimensional regulator theory we will consider a simple 

example. Let the controlled plant be given by the following system: 

Xi = Xi+X2-\-U 

X2 = 3x i — 3X2 

y = X2. 

(1.10) 

With the output we want to track the constant reference signal y'' = Q, but we do 

not consider any disturbance. With 

A = 
' 1 

3 

1 

- 3 
, B = 

' 1 

0 
c= [o 1 

and d(t) = 0 (1.10) can be written in the form of of (1.1). To produce the reference 

signal we can use a trivial exogenous system of the form of (1.4), with w e IR, 

S = 0, Q = l, P = 0 and initial condition K;(0) = 6. We note that for this system 

the hypotheses of the linear finite-dimensional regulator theory are satisfied: 



h i : a(5) - O, 

h2: it is easy to check that {A, B) is stabihzable, indeed with K = [ -2 - 1 

a{A + BK) = {-2i,-l}, 

h3: the detectability of the pair 

C -Q 
A P 

0 S 

8 5 1 , and compute that the eigenval-

ues of 
'' A P 

C -Q 0 S 
-G 

are —1,-2 and —3. 

The regulator equations 

US = AU-hBr-\- P, 

CU-Q=0 

are also solvable for H and F. A quick computation shows that the pair H = 

(1.11) 

1 

1 
and r = — 2 is a solution. Theorem 1.1 and Theorem 1.2 then shows that both the 

state feedback and the error feedback regulator problems are solvable. 

Solutions for both problems can also be found. In the state feedback case the 

feedback 

u = —2x1 — ^2 + 6 

will result in tracking for any initial condition 

case the controller (1.6) with 

:ri(0) 

:r2(0) 

(1.12) 

In the error feedback 

F = 

-1 

3 

0 

- 8 9 • 

- 8 5 

- 1 1 

, H = = - 2 - 1 1 ,G = 8 5 1 



2.5 
x10 

1.5 

0.5 

initial cond.: [1,0] 

— initial cond.: [1,2] 

initial cond.: [1,9] 

Figure 1.1: Output of the uncontrolled system 

i.e., the system 

^ 1 

X2 

Xs 

u = 

= -Xi - 8X2 + 9X3 + 8e 

= 3X1 - 8X2 + 5X3 + 5e 

= -X2 + X3 + e 

—2X1 — X2 + X^ 

will be a solution. 

Figure 1.1 shows a numerical approximation of the uncontrolled output X2 for 

various initial conditions of the plant. Numerical results for the output y = X2 for 

the same initial conditions are shown on Figure 1.2 for the state feedback solution. 

In Figure 1.3 we can see the tracking with the error feedback solution, starting 

the plant from the same initial conditions as before, but setting different initial 

conditions for the controller for each case. This indicates the fact, that for this 

particular solution for the error feedback problem, the tracking is not sensitive to 

the initial conditions of the controller, in other words, irrespective of its initial 

conditions the above controller will solve the tracking problem. 
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initial cond.: [1,0] 

— initial cond.: [1,2] 

initial cond.: [1,9] 

1 1 1 

-

-

1 

10 

Figure 1.2: Tracking with state feedback controller 

35 •T 1 1 r -| r 

Initial cond.: [1,0,0,0,0] 

— initial cond.: [1,2,0,3,-2] 

initial cond.: [1,9,2,3,0] 

J i_ 

0 1 2 3 4 5 6 7 8 9 10 

Figure 1.3: Tracking with error feedback controller 

1.4 Outline of the Dissertation 

In this work we give the generalization of the results outlined above for infinite-

dimensional linear control systems Eissuming that the control and observation oper-
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ators are bounded. In particular, we obtain results characterizing the solvability of 

both the state and the error feedback regulator problems in terms of the solvability 

of certain equations which we again refer to as the regulator equations. We need 

to address certain difficulties that arise in extending the Byrnes-Isidori approach 

to the distributed parameter case. Now the phase space is infinite-dimensional, 

the state operator is unbounded and consequently, only densely defined. There is 

no direct analog of the Jordan decomposition, so care must be exercised in dealing 

with the spectra of composite systems. The error zeroing invariant subspace com-

plementary to the plant must be contained in the domain of the state operator, 

and the resulting regulator equations now become distributed parameter equa-

tions. Except for the technical problems, the proofs parallel the development in 

[3]. Chapter 2 contains a formulation and discussion of basic assumptions, and the 

presentation of the state and error feedback regulator problems. We give necessary 

and sufficient conditions for the solvability of both the state and error feedback 

regulator problems in terms of the solvability of a pair of linear operator equations 

- the regulator equations. Once a solution of these equations is available, an ap-

propriate state feedback control in the case of the full information problem, or an 

explicit dynamical controller in the case of error feedback, is obtained that provides 

the solution to the regulator problem. In Chapter 3, Theorem 2.2 is applied to two 

specific examples. The first example is the problem of finding a feedback control 

law for a controlled heat equation so that the output of the closed loop system will 

track a prescribed periodic trajectory. In the second example we solve the same 

regulator problem for a damped wave equation. For these examples the regulator 

equations reduce to a system of linear ordinary differential equations subject to 

certain constraints. These systems are readily solved off-line. In particular, ap-

proximate solutions are easily obtained numerically. In Chapter 4, motivated by 

Byrnes-Isidori [3], we extend the concept of zero dynamics for hnear distributed 

parameter systems and give a characterization of the solvability of the regulator 

equations in terms of the structure of the zero dynamics of the system formed from 

the plant and the exogenous system with the tracking error as output. 



CHAPTER II 

SOLVABILITY AND THE REGULATOR EQUATIONS 

2.1 Definitions, Auxihary Results and Introductory Comments 

To solve the two output regulation problems, the solvabihty criteria given in 

terms of the solvability of the regulator equations gives a practical approach. In-

deed, once a solution of the regulator equations in Theorems 1.1 and 1.2 is found 

and the stabiHzing feedback and output injection, that appear in the conditions 

h2 and h3, are available, the controllers that solve the two types of output reg-

ulation problems can be exphcitly constructed. For the finite-dimensional hn-

ear example in the Introduction the state feedback controller was constructed as 

u = Kx + (r - KIl)w, and the error feedback solution was found as 

H = K {T-KYi) 

F = 
{A-hBK- GiC) {P -\- B{T - KU) -\- GiQ) 

-G2C {S -f- G2Q) 

where Gi = 
8 

5 
and G2 = 1 were parts of the output injection G acting on the 

state space of the plant and the exosystem, correspondingly. We expect that similar 

equations give solvability conditions and explicit schemes to construct solutions for 

distributed parameter systems. In this chapter we will obtain the analog of the 

finite-dimensional linear theory, but the problem of solving the regulator equations, 

which was a problem of solving linear matrix equations in finite dimensions, now 

turns into the solvability problem of linear operator equations frequently involving 

unbounded operators. As we will see in the next chapter the regulator equations 

can represent elliptic boundary value problems with extra constraints for plants 

that are described by partial differential equations. 

It is clear from the formulation of the problem that the stabilizability of the pair 

{A, B) is a necessary condition for the solvability of the state feedback problem. 

For finite-dimensional Unear systems it is also known to be necessary for solving 

the error feedback problem, as it is shown in Francis [11]. The arguments in [11] 

can also be carried out for a large claiss of infinite-dimensional systems that are 

10 
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well represented in applications, namely for linear control systems with finite rank 

control operator B, finite rank observation operator C and with A that satisfies 

the so called spectrum decomposition condition at some P < 0. This is not sur-

prising if we consider that in the error feedback problem the controller is given less 

information about the plant then in the state feedback case. It is also suggested by 

the example in the introductory chapter that a necessary step in achieving output 

regulation should be the stabilization of the plant. 

Definition 2.1 Let the linear operator A be the infinitesimal generator of a CQ 

semigroup T{t) on the Hilbert space Z. T{t) is called l3-exponentially stable if 

there exist constants /3 and Mp > 0, such that 

\\T{t)\\<Mpe^' for t>0. (2.1) 

The infimum of all possible values of (3 for which (2.1) holds is called the stability 

margin ofT{t). We say that T(t) is exponentially stable if its stability margin 

is negative. Let us additionally assume that B : U ^^ Z is a bounded linear 

operator from another Hilbert space U to Z. We say that the pair of {A, B) is 

P-exponentially stabilizable if there exists a bounded operator K . Z ^^ U such that 

the semigroup TA-\-BK{t) generated by A-\- BK is (3-exponetially stable and {A, B) 

is exponentially stabilizable if it is /3-exponentially stabilizable for some /? < 0. 

In the previous definition we used, as we will do several times in the following, 

the basic perturbation result for linear operators that bounded perturbations of 

infinitesimal generators of Co semigroups also generate Co semigroups. For com-

posite systems in special cases we know the structure of the perturbed semigroup 

as well. The proof of the following lemma can be found in [10] Section 3.2. 

Lemma 2.1 Let Ti{t) and T2{t) be Co semigroups on the respective Hilbert spaces 

Zi and Z2, with infinitesimal generators Ai and A2. Suppose that D : Z2 —> Zi 

~ Ai D 
is a bounded linear operator, then the operator A = 

0 A, 

V(Ai) X V[A2) is the infinitesimal generator of the Co semigroup 

T{t) 

with V{A) = 

Z2 

Ti{t)zi + Si Ti{t - s)DT2{s)z2 ds 

T2(t)Z2 
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The main tool in obtaining the solvability conditions below will be a suitable 

decomposition of the state space of the closed-loop system - which is simply the 

product of the plant's and exosystem's state spaces in the state feedback case, 

but includes the state space of the controller also for the error feedback problem. 

To obtain such a decomposition we will rely on a result that is originally due to 

T. Kato [21]. We state here a version of this result for Hilbert spaces from [10] 

(see Lemma (2.5.7) therein), after defininig the notions of operator and semigroup 

invariance of subspaces in Hilbert spaces. 

Definition 2.2 Let V be a subspace of a Hilbert space H and let A be an infinites-

imal generator of a Co semigroup on 7i. We say that V is A-invariant if 

A{vnv{A))cv. 

Definition 2.3 Let V be a subspace of a Hilbert space H and let T{t) be a Co 

semigroup on TC. We say that V is T{t)-invariant if 

T{t)V C V. 

These two invariance concepts are equivalent for finite-dimensional systems. In 

general, T(t)-invariance implies A-invariance, but not vice versa. However, they 

are equivalent for closed subspaces in V{A) as it is shown in [10]: 

Lemma 2.2 Suppose that A is the infinitesimal generator of a Co semigroup T{t) 

on the Hilbert space H. If V is a closed subspace contained in V{A) and V is 

A-invariant, then V is T{t)-invariant. 

The Kato spectral decomposition result for Hilbert spaces is the following: 

Lemma 2.3 Let A be the infinitesimal generator of a Co semigroup T(t) on H. 

Assume that the spectrum of A is the disjoint union of two parts a^ and cr~, such 

that a rectifiable, closed , simple curve C can be drawn that encloses an open set 

containing a^ in its interior and o~ in its exterior. The operator PQ, defined by 

p^^ = hlS''-^^"' d\ 
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where C is traversed once in positive direction, is a projection, the so called spectral 

projection on cr'^. This projection induces a decomposition of the state space 

where H+ = PQH and H = {I - Pc)H. The following properties also hold: 

i. 7i^ and H~ are T(t)-invariant; 

ii. H^ = PcH C T>{A), also Tf^ and H' are A-invariant, i.e., ATf^ C H-^ and 

A{n-nv{A))cn-; 

Hi. The restriction A'^ of A to H^ is a bounded operator on H^ and (T{A'^) = cr+. 

The restriction A~ of A to Ji~ has spectrum (y{A~) = a~. Furthermore, for 

X e p{A) we have that {XT - A+)-'^ = {XI - A)-'^\n+ and (XI - A-)-'^ = 

{XI-Ar%-; 

iv. The operators T'^(t) = T(t)\n+ and T~(t) = T{t)\-n- are Co semigroups on 

'W' and 1-L~, respectively, and their infinitesimal generators are given by A'^ 

and A~, respectively. 

Next we will see that a special case of the assumption on A in the result above, 

namely, that the spectrum of the operator can be separated into two parts by a sim-

ple closed curve, is necessary for the exponential stabilizability of the pair [A, B) 

if B is finite rank operator. This shows how strong the concept of exponential 

stabilizability is. 

Definition 2.4 Let(D^ = {Xe(D \Re{X) > /?}, (Z:j = {A € (T \Re{X) < /?}, 

a-'p{A)'.= (j{A)^(D^p, 

and 

a^{A) :=o-(>l)n(rj. 

A : Z ^^ Z satisfies the spectrum decomposition assumption at /3 if ap{A) and 

^^{A) can be separated by a rectifiable, closed , simple curve C^ that encloses an 

open set containing cr'^{A) in its interior and <J^(A) in its exterior. 
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By Lemma 2.3 such a decomposition of the spectrum corresponds to a decompo-

sition of the state space Z. The spectral projection P^ onto o^{A) induces the 

decomposition of Z: 

Z = PpZ + {I- Pp)Z = Z^^Z^ 
' / ? ' 

and 

A = 

where 

"4J 0 " 
0 ^J_ 

, T(t) = 
0 T^{t) _ 

1 

A+ = ^|^+, A-^=A\^-, 

n(t) = T{t)\,p T^{t) = T(t)\,-, 

Bp = PpB Bp = {I- Pp)B. 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Lemma 2.4 (See [10] Theorem 5.2.6.) Let the linear operator A be the infinites-

imal generator of a CQ semigroup T(t) on the Hilbert space Z. If B : U ^ Z is a 

finite rank linear operator then the following are equivalent: 

i. The pair {A, B) of linear operators is P-exponentially stabilizable; 

ii. A satisfies the spectrum decomposition assumption at (3. Zt is finite-dimensional, 

Tp{t) is /3-exponentially stable, and the pair (ylJ,B^) is controllable. 

In the state feedback problem once the plant is stabilized, instability in the com-

posite system, formed from the plant and the exosystem, is due only to unstable 

modes in the exosystem itself. We do not want to get rid of this instability, since 

this system models the disturbances and produces the reference output. To achieve 

tracking we are free to use the exosystem variables for feedback, additional to the 

feedback that stabilizes the plant. We design this feedback to shape the composite 

system's state space so that the unstable part hes in the kernel of the observation 

operator, i.e., it is output zeroing, while it leaves the exosystem itself intact. If we 

are able to do this we achieve that the state of the controlled plant asymptotically 

evolves on an output zeroing subspace. This would mean that the state feedback 

problem is solved. 
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The error feedback problem will be approached with the following considera-

tions. Suppose that are able to achieve output regulation with state feedback, but 

we only have the tracking error available. The objective is to use a observer to 

approximate the state of the composite system (plant and exosystem) and use the 

approximate state in the feedback law that provides solution to the correponding 

state feedback problem. If for example we use a Luenberger observer, as it turns 

out, this idea works. The approach requires additional conditions, namely, to re-

construct its state with an observer we need the composite system to be detectable. 

This is the source of hypothesis h i for finite-dimensional systems. We will also 

need the concept of detectability in our settings. 

Definition 2.5 Let A be the infinitesimal generator of the Co semigroup T{t) on a 

Hilbert space Z, C : Z ^t-Y be a bounded linear operator from Z to another Hilbert 

space Y. We say that the pair of (C, A) is (5-exponentially detectable if there exists 

a bounded linear operator L :Y ^^ Z such that the semigroup TA-\-Lc{t)i generated 

by A-\- LC, is (3-exponentially stable and (C, A) is exponentially detectable if it is 

p-exponentially detectable for some P < 0. 

Now we will formulate the infinite-dimensional output regulation problems. 

2.2 Statement of Problems 

Consider a plant described by an abstract distributed parameter control system 

in Hilbert space: 

^z{t) = Az{t) -\- Bu{t) + d{t), (2.6) 
dt 

y{t) = Cz(t), 

z(0) = zo, 

where z £ Z is the state of the system, Z is a separable Hilbert space (state space), 

li G t/ is an input ,yeYisthe measured output, U and Y are Hilbert spaces, the 

control and output spaces, respectively. The term d{t) represents a disturbance. 

S I ^ is assumed to be the infinitesimal generator of a strongly continuous semi-

group T{t) on the Hilbert space Z, B e C{U, Z) and C G C{Z, Y). 
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(Here we use the notation C{Wi, W2) to denote the set of all bounded hnear oper-

ators from a Hilbert space Wi to a Hilbert space ^^2) 

In addition, we will assume that there exists a finite-dimensional linear system, 

referred to as the exogenous system (or exosystem), that produces a reference 

output yr(t) and which is also used to model the disturbance d{t)-. 

j^w{t) = Sw{t) (2.7) 

yr{t) = Qw{t) (2.8) 

d{t) = Pw{t) (2.9) 

w{0) = wo. (2.10) 

S2 Here S G C{IR^), Q G C(IR\ Y) and P G C{IR\ Z ) . 

We will refer to the difference between the measured and reference outputs as 

the error 

e{t) = y{t) - yr(t) = Cz{t) - Qw{t). (2.11) 

The two problems we are interested in are formulated as follows. 

I. Linear State Feedback Regulator Problem: 

Find a feedback control law in the form u(t) = Kz{t) -j- Lw{t) such that K G 

C{Z, U), L e C{R\U) a.nd 

I.a z(t) = {A-h BK)z{t) is stable, i.e., {A -f BK) is the infinitesimal generator 

of an exponentially stable Co semigroup. 

Lb For the closed-loop system 

z{t) = (^ + BK)z{t) + {BL + P)w{t), (2.12) 

w{t) = Sw{t) 

the error 

e{t) = Cz{t) - Qw{t) —^ 0 

as t ^^ 00, for any initial condition in Z x M^. 

Since the state of the plant is usually not fully available, we are led to investigate 

the error feedback regulator problem. 
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II. Linear Error Feedback Regulator Problem: 

Find an error feedback controller of the form 

j^X{t) = FX{t)^Ge{t), 

u{t) = HX{t) 

(2.13) 

where X{t) G A' for t > 0, A' is a Hilbert space, G G C{Y, X), H G C{X, U) and 

F is the infinitesimal generator of a Co semigroup on X with the properties that 

Il.a The system 

-z{t) = Az(t) ^ BHX{t), 

j^X{t) = FX{t) + Ge{t) 

(2.14) 

is exponentially stable when w = 0, i.e.. 
A BH 

GC F 

generator of an exponentially stable Co semigroup, and 

is the infinitesimal 

Il.b for the closed-loop system 

-z(t) = Az{t) -\- BHX{t) -h Pw{t), 

j^X{t) = GCzit) + FX{t) - GQw{t), 

j^wit) = Sw{t) 

(2.15) 

the error e{t) = Cz{t) - Qw(t) 

ZxX xM''. 

0 as t —> 00, for any initial condition in 

We impose the following standard assumptions. 

Three basic assumptions: 

HI Assume that the spectrum of the exosystem is contained in the closed right 

half plane, i.e., (T{S) C CQ'; 

H2 Assume that the pair (A,B) is exponentially stabihzable, i.e., there exists 

K G C{Z, U) such that A-\-BK is the infinitesimal generator of an exponen-

tially stable Co semigroup; 
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H 3 Assume that the pair 

A P 

0 S 
C -Q (2.16) 

is exponentially detectable, i.e., there exists G G C{Y, Z x E!"), 

G = 
G2 

, GieC{Y,Z), G2eC{Y,IR'), 

such that 
A P 

0 S G2 
[C -Q] 

is the infinitesimal generator of an exponentially stable Co semigroup. 

These assumptions correspond to the hypotheses h l -h3 , on which the finite-

dimensional linear regulator theory is based. H I does not involve loss of generality 

since the modes of the exosystem that correspond to eigenvalues in the open left 

half plane decay exponentially to zero, and so asymptotically do not affect the 

output regulation. It is evident from the formulation of the state feedback prob-

lem, that for its solvability H2 is a necessary condition. For finite-dimensional 

Hnear systems it is known that the stabilizability of (A, B) and the detectability of 

(C, A) are necessary for the solvability of the error feedback problem. The proof of 

this result, which appeared in [11] can be adjusted to our settings, provided that 

we make additional assumptions on the system (2.6). Before we do that we will 

state a result from [10] (Theorem 5.2.11) that, for a class of linear control systems, 

will give necessary and sufficient conditions for exponential stabilizability and de-

tectability that are generahzations of the finite-dimensional Hautus conditions. We 

will use notations that were set in Definition 2.4 and in (2.2)-(2.5). 

Theorem 2.1 Consider the linear system with B and C finite rank operators. 

Suppose that A satisfies the spectrum decomposition assumption at P, (7^{A) com-

prises finitely many eigenvalues, with finite multiplicity andTp{t) is 13-exponentially 

stable. The pair {A, B) is /3-exponentially stabilizable if and only if 

Ran{sl - A)-\-RanB = Z for all seCT^. (2.17) 
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The pair (C, A) is P-exponentially detectable if and only if 

Ker{sI-A)nKerC = {0} for all sed^. (2.18) 

Let us now make the additional assumptions on system (2.6) that the conditions 

of Theorem 2.1 are satisfied. 

Assume that A satisfies the spectrum decomposition assumption at P < 0, 

(J^(A) comprises finitely many eigenvalues, with finite multiphcity and T^{t) is 

/^-exponentially stable. Assume also that B and C are finite rank operators. Let 

there exist a controller of the form (2.13) that solves the error feedback regulator 

A BH 

GC F 
problem. In particular A = is the infinitesimal generator of an 

exponentially stable Co semigroup. It means that the stability margin of A, 

t^o t 

But then the spectrum (T{A) C (Z^^, and therefore (Z^ C p{A). This implies that 

for every s G (Z^ 
2 

'' A-sI BH 

GC F-sI 

is boundedly invertible in Z x X with dense range. This implies that Ran[sl — 

A) + Ran{BH) is dense in Z and Ker{sl - ^ ) fi Ker{GC) = {0} or, a forteriori, 

that the subspace 

Ran{sl - A)-\- RanB (2.19) 

of Z is dense for all s G (Zj and 

Ker{sI-A)nKerC = {0} for s G (Zj, (2.20) 

with u = max(^,/?). By Theorem 2.1, (2.20) is equivalent to the cj-exponential 

detectabihty of (C, ^4). Since a; < 0 this gives that the pair (C, A) is exponentially 

detectable. Considering the statement of Theorem 2.1 it may seem that the density 

of Ran{sl - A) -\- RanB in Z is not sufficient for the cj-exponential stabilizability 

of (A,B), however scrutinizing the proof of Theorem 2.1 in [10] we find that it 

can be modified to show that it is indeed sufficient (see Lemma 2.5 below). Since 
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a; < 0 we can also conclude that {A, B) exponentially stabihzable. Thus, with the 

following lemma we obtain that for the solvability of the error feedback problem 

the exponential stabihzabihty of {A, B) and the exponential detectabihty of (C, A) 

are necessary. 

Lemma 2.5 Suppose that the assumptions of Theorem 2.1 hold. If 

Ran{sl - A) -\- RanB 

is a dense subspace of Z for all s G (I%j{A) then {A,B) is u-exponentially stabiliz-

able. 

Proof: We repeat the argument given in [10] page 241 with a slight modification. 

Since A satisfies the spectrum decomposition assumption at a;, we may consider 

the spectral decomposition 

A = 
Ai; 0 

0 A 
Ui 

B = Bt 
B. 

U) 

c = ci C-], 

where P^j is the spectral projection onto cr^(^), (T{A^) C (ZJ, (T{A~) C (Z^, using 

the notations in Definition 2.4, in (2.2)-(2.5) and defining Cj" = CP^, C~ = 

C{I — Puj). Pui is projection onto a finite-dimensional subspace Z^ of Z and the 

triple {A;^, B^, C^) form a finite-dimensional system linear system with state space 

Zjj" (see Lemma 2.3). By the properties listed in Lemma 2.3 we have for all s G (Zj 

that 

P^(Ran{sI -A)-\- RanB) 

= P^{Ran{sI - A)) + P^{RanB) 

= Ran{P^{sI - A)) + Ran{P^B) 

= Ran{slz+ - A^) + Ran{B;^). 

(2.21) 

But also 

_ y+ P^{Ran{sI -A)-\- RanB) = ZZ (2.22) 

We can show (2.22) with the following argument: Clearly P^{Ran{sI - A) -^ 

RanB) C Z;^, since P^; is a projection onto the finite-dimensional subspace Zj". 
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Suppose that z e Z^ is not in the subspace P^^{Ran{sI — A) -\- RanB) of Zj". 

Since Ran{sl — A) -\- RanB is dense in Z we can choose a sequence {ziji^i C 

Ran{sl—A)-\-RanB such that Zi -^ z in Z. Since P^^ is continuous this imphes that 

PuZi -> PujZ = z. However we have that {P^2i}gi C P^{Ran{sI - A)-\- RanB), 

where P^^{Ran{sI — A) -\- RanB) is finite-dimensional subspace, hence closed and 

that z ^ P^j(Ran{sI — A) -hRanB). This contradicts with the convergence P^jZi —>• 

z. Now we conclude that the finite-dimensional system {A^, B^, Cj") on the state 

space Z'^ is cj-exponentially stabilizable by the finite-dimensional Hautus criteria 

(compare equations (2.21) and (2.22)). This implies that the pair {A'^,B'^) is 

controllable and by Theorem 2.4 the pair {A, B) is exponentially stabilizable. • 

2.3 Solvability Conditions for the Regulator Problems 

The main results of this section are contained in Theorems 2.2 and 2.3 that 

give necessary and sufficient conditions for the solvability of the state feedback and 

error feedback regulator problems, respectively. To obtain these results we prove 

a series of lemmas. 

Lemma 2.6 Let S G C{IR^) satisfy H I . Let Y be a normed space and N G 

C{IR'', Y). If Ne^^w —>0 as t ^ oo for every w £ IR^ then N = 0. 

Proof: Let Nw = 2/1 ••• yk 1 ^ with some yj eYioij = l,2,--',k. Without 

loss of generahty we may assume that S is in Jordan normal form since otherwise 

we can consider 

TVê ^̂ o = (NP)(P-'e''P){P-'wo) = {NP)e''- '""'(P-'wo) 

for some nonsingular matrix P and remark that P is bijective and therefore N 

exactly when NP = 0. The semigroup ê * has the special form 

= 0 

e'' = 

Jit 

0 

0 
,J2t 

0 0 

0 

0 

oJst 
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where 

^Jit ^ ^Xit 

' 1 

0 

0 

t 

1 

0 

<2 

2! • 

t . 

0 . 

T i - i 

• • ( r i - 1 ) ! 
r i - 2 

• • ( r i -2 ) ! 

1 

2 = 1,2,...,S, Y,fi = ^-
1=1 

We use finite induction on j = l,...,k. Assume that yj ^ 0, then choosing the 

standard basis elements in IR^ as initial conditions Wo = e^ for m = l , - - - , j , 

considering the form of the exponential of a matrix in Jordan normal form and 

taking into account that the eigenvalue Â  of S have nonnegative real parts we 

obtain a contradiction to the assumption that Ne^^Wo —̂  0. This gives that yj = 0. 

It is true for j = 1,..., k and hence N = 0. • 

Lemma 2.7 Let H be a Hilbert space, A G C{H) (closed operators in H), S G 

Ci^m!') andB £C{IR^,H). If a{A)na{S) = ill, then a{F) = a{A)U(T{S) where 

F = 
A B 

0 S 

Proof: We first show that a{F) C (T{A) U (T{S). Suppose that A 0 a{A) and 

A ^ <j(5), then (XI — A)~^ and {XI — Si)~^ are bounded operators on H and iR*, 

respectively. Then the operator 

R = 
{XI - A)-^ {XI - A)-^B{XI - 5)- i 

0 {XI - 5)- i 

is a bounded operator on H x M^ and by a straightforward calculation using the 

fact that 

Ran{{XI - A)-') = V{XI - A) = V{A) 

we have 

R{XI-F)y = y V y e V{F) = V{A) x R', 

{XI-F)Ry = y V y e H x R \ 

which means that A ̂  cr{F). Next we show that cr{A) U G{S) C (J{F). The proof 

is carried out in two steps: 
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1. First we show that A G a{S) imphes A G a{F). Suppose that Sw = Xw for 

some w ^0. Then 

h 

w 

is equivalent to 

A B 

0 S 

= X 

h 

w 

h 

w 

Xh 

Xw 

which is in turn equivalent to the pair of equations 

Ah-\-Bw = Xh, 

Sw = Xw. 

The second of these, by assumption, holds for a nonzero w and since A G p{A), 

the first equation is also solvable for hhy h= {XI - A)~^Bw. 

2. Now we show that A G a{A) implies A G a{F): Suppose that A G p{F). Then 

{XI - F) ^ exists, is bounded and is of the form {XI - F)~^ = 

Let 0 # /i G V{A), then 

Pi P2 

Pz PA 

h 

0 
= {XI-F)-^{XI-F) 

h 

0 
= (A/ - F) - 1 {XI - A)h 

0 

Pi P2 

Pz PA 

{XI - A)h 

0 

Pi{XI-A)h 

Pz{XI - A)h 

This imphes that Ran{XI - ^ ) C Ker{Ps) and Pi(A/ - A)h = h for all 

h G T>{A). On the other hand, 

I O] _ \ {XI-A) -B ] \ Pi P2 

0 / J ~ [ 0 {XI-S)\ Ps P^ 

{XI - A)Pi - BP3 {XI - A)P2 - BP4 

{XI - S)Ps {XI - S)P4 

The (2,1) position of this matrix identity implies that Ran{Pz) C Ker{XI — 

S). But Ker{XI - 5) = 0, since A G a{A) C p{S). Therefore P3 = 0 and 
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{XI - A)Pi = In, also Pi = P{XI - F)-^P, where P is the projection of 

H X R onto H. So Pi is a bounded operator, the inverse oi {XI - A), i.e., 

A G p{A), which is a contradiction. D 

Lemma 2.8 Let H, A, S, B and f be as H, A, S, B and F in Lemma 2.7. As-

sume that A is the infinitesimal generator of an exponentially stable Co semigroup 

and S satisfies H I . 

Let T{t) denote the Co semigroup in the space H = H x R^ generated by 

T = 
A B 

0 S 

Then the space Ji = H x R^ can be decomposed into H — 'K^ ® Hr where Ti^ 

and 7i~ are T-invariant and T{t)-invariant complementary subspaces, with the 

property that if M : R^ —>• H is defined by the expression Graph{M) = H^ then 

M G C{R\H) and Ran{M) C V{A). 

Proof: Applying Lemma 2.7 and using the assumptions on A and S, it follows 

that the part of the spectrum of the operator T lying in the closed right half plane 

consists of finitely many eigenvalues of finite multiplicity. 

We have that ^ satisfies the spectrum decomposition condition so we can apply 

Lemma 2.3, thus obtaining a decomposition of H into two ^-invariant and T{t)-

invariant subspaces as ?i = W' 0 Ti'. Additional consequences of the spectrum 

decomposition result include that 

H^ C V{f). 

Now define the operator M : R^ —> H by h = Mw for w e R^, where 

'W'. We will show that M is an operator with the stated properties. 

First let us show that M is well defined. It is enough to show that 

h 

w 

h 

0 

0 

0 
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This equahty holds since we know from the proof of Lemma 2.7 that when A G F, 

> i P2 

0 P4 
{XI — T) ^ has the special form and therefore 

h 

0 

^Jri^I - A)-'hdX 

0 

0 

0 

The first component of the last equahty holds by Cauchy's theorem for vector 

valued analytic functions since {XI-A)-^his analytic in the closure of the interior 

off. 

•" h 
We have just seen that 

0 
is not in H'^ for nonzero h. Next we show that 

for every w G R^ there is an element 
h 

w 
in TC^. For every nonzero w G R^, 

h 

w ^. }^{xi - sr'wdx 
* 

w 

where by "*" we denote certain vectors from H whose precise form is immaterial 

h 
for us. We see that 

h 

w 

h 

w 

= PT 

^ Ti and since 
w 

has a decomposition of the form 

h 

w 
+ {I- Pr) 

h 

w 

^ 
* 

w 
+ 

* 

0 

(where, once again, "*" denotes certain vectors from H) and it follows that M is 

defined on all of R^. The linearity follows from the fact that l-C^ in the definition 

of M is linear subspace and the boundedness of M is obvious since R'^ is finite-

dimensional. Ran{M) C V{A) follows from Lemma 2.3 since PrH C V{T), which 

imphes, by the definition of M (defined through values in H^), that Mw G ^(A) 

for every w G R^. • 

Lemma 2.9 Let HI hold and assume that for some u{t) = Kz{t) -h Lw{t) I.a 

holds. Then there exists H G C{R^,Z) such that Ran{U) C V{A) and 

US = AU-h B{KU + L) + P. (2.23) 
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In this case the following equivalence also holds: e{t) = Cz{t) — Qw{t) —> 0 as 

t -^ oo for the system (2.12) and for all initial data [zo,Wo]'^ e Z x R^, if and 

only ifCU = Q. 

Proof: Let us define the operator J^ : Z x R^ -^ Z x R^ hy 

T = 
A^BK P-\-BL 

0 5 

Since P + BL G C{R^, Z), T generates a Co semigroup T{t) on Z x R!". Note that 

by assumptions H I and I.a, G{A -h BK) fi G{S) = 0. Let H" = Z, i = A -h BK, 

B = P+BL, S = SandT = T. Lemma 2.8 imphes the existence of M G £(!?'', Z) 

with W^ = Graph{M) and li~ both .7^-invariant and r(t)-invariant. Let U = M, 

then Lemma 2.8 implies that Pan(n) C T>{A) and the .F-invariance of Graph{M) 

implies 

:F 
Uw 

w 

A + BK BL-\-P 

0 S 

Uw 

w 

USw 

Sw 

which gives (2.23). 

Let us prove the equivalence in the statement. To prove the sufficiency assume 

that for the closed-loop system 

di 
z 

w 
= T z 

w 

the error e{t) —> 0 as t —> oo for every initial condition 
Zo 

Wo 

e Z X R^. Let 

Zo 

Wo 

G Graph{M) and let T{t) denote the semigroup generated by T. The 

z 
T(t)-invariance of Graph{M) imphes that the solution of the initial value 

problem 

(2.24) 

(2.25) 

d 

di 

z 

W 

• z{0) ' 

u ;(0) 

= J' 
z 

W 

Zo 

1 Uo _ 
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with initial condition in Graph{M) is of the form 
z{t) 

w{t) 

Uw{t) 

w{t) 
and in 

this case e{t) = {CU - Q)e^'wo. Since H I holds and (CH - Q) G C{R\Y), by 

Lemma 2.6 (CH — Q) is the zero operator. 

Conversely, let us assume that {CU-Q) = 0. Consider once again the previous 

initial value problem with any initial condition in Z x iR*. Decompose the initial 

condition into components in l-C^ and 7i~: 

Zo 

Wo 
=: 

Zl 

Wi 
+ 

Z2 

0 

Then the solution can be written as 

T{t) 
Zo 

Wo 
= T{t) 

Zl 

Wi 

^T{t) 
Z2 

0 

and 

e{t)=[c -Q]T{t) 
Uwi 

Wi 
+ [C -Q]T{t) 

Z2 

0 

c - Q ] 
TA-i-BK{t)z2 

0 

where TA-\-BK{t) is the semigroup generated by ^ + BK. Since TA+BK(t) is an 

exponentially stable Co semigroup by I.a, and C is bounded we see that e{t) 

converges to 0 as ^ tends to infinity. ^ 

The following theorem gives necessary and sufficient conditions for the solv-

ability of the state feedback regulator problem: 

Theorem 2.2 Let HI and H2 hold. The linear state feedback regulator problem 

solvable if and only if there exist mappings H G C{R^, Z) with Ran{U) C V{A) 
is 

and F G C{R^,U) satisfying the "regulator equations," 

n 5 = ^ n + PF + P, 

cn = o. 
(2.26) 

(2.27) 
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In this case a feedback law solving the state feedback regulator problem is given by 

u{t) = Kz{t) -I- (r — KIl)w{t), where K is any exponentially stabilizing feedback 

for{A,B). 

Proof: Suppose that u{t) = Kz{t) -h Lw{t) solves the linear regulator problem, 

i.e., I.a and Lb hold. Then by Lemma 2.9 there exists a mapping U : R^ -^ V{A) 

so that 

US = {A-\- BK)U -h {BL -H P), 

cn = Q. 

These are exactly (2.26) and (2.27) with U and T = KU-I- L. 

Conversely, assume that H G C{R^,Z) and F G C{R^,U) solve the regulator 

equations (2.26), (2.27). Let u{t) = K{z{t) - Uw{t)) 4- rw{t), where K is an 

exponentially stabihzing feedback. Since I.a holds, we can apply Lemma 2.9 again. 

With K andL = r - KU, 

US = AU-^ B{KU -hL)-{-P = AU-\-Br-^P, 

which is (2.26), and CH — Q = 0 imphes that e{t) -^ 0 for the closed-loop system 

(2.12) and for any initial condition. D 

We now turn to the error feedback problem. 

Lemma 2.10 Let HI hold. Let G G C{Y, X), H G C{X, U) and let F : X -^ X be 

a possibly unbounded linear operator with dense domain such that Il.a is satisfied. 

The linear error feedback regulator problem is solvable if and only if there exist 

mappings U G £(iR^ Z) and A G £ ( ^ * , X), with Ran{U) C V{A) and Ran{A) C 

P ( P ) such that 

US = AU-^ BHA -\- P, (2.28) 

AS = FA, (2.29) 

C n = Q. (2.30) 

Proof: Consider the closed-loop system with the error feedback controller 

di 

• z(t) • 

X{t) 

. Hi) . 

= r 
• <t) • 

X(t) 

. At) . 

(2.31) 
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where 

T = 

A BH P 

GC F -GQ 

0 0 5 

From H I and Il.a using Lemma 2.7 we get that 

a{T) = a{S) U a 
A BH 

GC F 

Setting H = Z X X, A = 
A BH 

GC F 
, B = 

P 

-GQ 
, S = S and T = T 

and applying Lemma 2.8 we obtain H+, U~ and M G L{IE^, Z x X) with H^ = 

Graph{M). Ti^ and H~ are .F-invariant and T(t)-invariant {T{t) denoting the 

semigroup generated by T). Let the components of M be H G C{R^,Z) and 

. Then using the .F-invariance of Graph{M) we have AeC{R\X),M = 
A 

T 

Uw 

Aw 

w 

AUw -t- BHAw + Pw 

GCUw -f FAw - GQw 

Sw 

USw 

ASw 

Sw 

(2.32) 

for aUweR'^. It follows that with this choice of H and A (2.28) holds. 

Now suppose that for the closed-loop system (2.31) with any initial condition 

Zo 1 
Xo e Z X X X R^ e{t) —^ 0 as t -^ oo. Let 

Wo . 

Uwo 

Awo 

Wo 

G Graph{M) 
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and let T{t) denote the semigroup generated by T. The T(i)-invariance oiGraph{M) 

z 

X implies that the solution 

w 

of the initial value problem 

dt 

z 

X 

w 

= T 

z 

X 

w 

5 

• z ( 0 ) • 

X(0) 

w{0) 

=z 

Zo 

Xo 

. '^0 . 

(2.33) 

with initial condition in Graph{M) is of the form 
[ m ] 

X(t) 

[ w{t) J 

=^ 

' Uw{t) ' 

Aw{t) 

[ wit) \ 

and in 

this case e{t) = {CU — Q)e^*wo. Again as in the proof of Lemma 2.9 applying 

Lemma 2.6 we see that (CH — Q) is necessarily the zero operator. This is exactly 

(2.30), and together with (2.32) it gives (2.29). Thus the necessity is proved. 

As for the sufficiency, let us assume that (2.28)-(2.30) hold. We need to argue 

that I l .b holds. Consider again the initial value problem (2.33) with initial con-

dition in Z X X X R^. Let us decompose the initial condition into components in 

n+ and H-: 

Zo 

Xo 

. '^0 . 

^ 

Zl 

Xi 

. "^1 . 

+ 

Z2 

X2 

0 

Then the solution can be written as 

T{t) 

' Zo 

Xo 

. Wo . 

= T{t) 

Zl 

Xi 

. '^1 . 

+ T{t) 

Z2 

X2 

0 

and 

e(^) = [ c 0 - Q ]T{t) 

Uwi 

Awi 

Wi 

+ [ C 0 - Q ]T{t) 

22 

X2 

0 

=[c 0 -o] 
S{t) 

Zl 

X2 

0 



31 

where S{t) is the semigroup generated by . Since S{t) is an expo-
A BH 

^GC F ^ 

nentially stable Co semigroup by Il.a, and C is bounded" we have that e{t) ^ 0 as 
t —> oo. • 

Theorem 2.3 Let H i , H2 and H3 hold. The linear error feedback regulator 

problem is solvable if and only if there exist mappings U G C{R^,Z) and T G 

C{R^, U) with Ran{U) C V{A), such that 

US = AU + BT + P 

CU = Q. 

(2.34) 

(2.35) 

With this U and F a controller solving the error feedback regulator problem is given 

by 

X{t)=FX{t) + Ge{t), 

u{t) = HX{t), 

where X eX = Z xR^, 

G = 
Ci 

C2 
, H=[K {T-KU)], 

F = 
{A + BK-GiC) (P-f P ( r - jftTH)-h CiQ) 

-C2C (5 -f- C2g) 

where K G C{Z, U) is an exponentially stabilizing feedback for the pair {A, B) and 
Q 

is an exponentially stabilizing output injection (such K and G exist by H2 
C2 

and H 3 / 

Proof: Suppose the problem has a solution with controller 

^^X{t) = FX{t)^Ge{t), 

u{t) = HX{t). 

Since H I holds and Il.a is satisfied, by Lemma 2.10 we see that Il.b implies the 

existence of U and A that solve (2.28) and (2.30). Hence H and F = HA solve 

(2.34)-(2.35). 
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On the other hand assume that H and F solve (2.34)-(2.35). Let 

X = ZxR^, X ex, 

G = 
Ci 

G2 
. H= K (F - i^H) 

F = 
A + BK-GiC P + B{T-KU)^GiQ 

-G2C S + C2Q 

where K G C{Z, U) is an exponentially stabilizing feedback for the pair {A, B) and 

G is an exponentially stabihzing output injection, respectively. To satisfy I l .a we 

must show that the closed-loop system 

-z{t) = Az{t)-^BHX{t), 

j^X{t) = FX{t) + Ge{t) 

is exponentially stable when w = 0. 

To see that Il.a is satisfied note that the closed-loop system operator can be 

factored as 

A BK B{r - KU) 

CiC A-hBK-GiC P-\-B{r-KU)-^GiQ 

G2C -G2C S + C2Q 

" / 0 0 • 

I I 0 

0 0 7 . 

A-\-BK BK B{r - KU) 

0 ^ - C i C P + CiQ 

0 -C2C S + C2Q 

7 0 0 

- 7 / 0 

0 0 7 

— T - l = J-'EJ. 

G C{X,Z) Now the hypotheses H2, H3 and the fact that [ BK P(F - KU) 

imply that E is the infinitesimal generator of an exponentially stable Co semigroup, 

which we denote by S{t). It is easy to see that J~^EJ is the generator of J~^S{t)J, 

and taking into account that J~^ and J are bounded, we see that Il.a is satisfied. 

To justify Il.b it is enough to prove the existence of H G C{R^, Z) and A G 

C{R^,U) satisfying (2.28) and (2.29) and appeal to Lemma 2.10. With U given 
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in the hypothesis, let A = 
n 

, then BHA = BT and (2.28) reduces to (2.34). 

Finally, equation (2.29) is obtained by a straightforward calculation. Namely, the 

expression on the left in (2.29) is 

AS = 
US 

S 

Due to (2.35) and the exphcit formulas for F and H, the expression on the right 

can be written as 

PA = 
{A-\-BK-GiC) (P + P ( r - jftTH)-f CiQ) 

-C2C {S + G2Q) 

U 

Imfk 

AU-hP + BT 

S 

and using (2.34) we see that (2.29) is satisfied. This completes the proof. • 

Beyond establishing necessary and sufficient conditions, both Theorem 2.2 and 

Theorem 2.3 provide an explicit solution to the respective problem in term of the 

solutions of the regulator equations and a stabihzing feedback and output injection. 



CHAPTER III 

EXAMPLES 

3.1 Example 1: Periodic Tracking for the Heat Equation 

Consider a controlled one-dimensional heat equation on a finite rod (Curtain-Zwart 

[10]): 

—z{t) = Az{t)-hBu{t), (3.1) 

y{t) = Cz{t), 

z{0) = (j). 

Here A = d^/dx^ in Z = L^(0,1) is a seffadjoint operator with the domain, 

V{A) = {^e H'{0,1) : ( '̂(0) = ct>'{l) = 0}. 

The spectrum of A consists of cr(^) = {-j^7r^}°io with corresponding orthonor-

mal eigenvectors ipo{^) = 1 and ipj{x) = v^cos(J7r2;) for j > 1. 

In this example, we consider one-dimensional bounded input and output oper-

ators B and C so that Y = U = R. 

1. Input operator: 

The input corresponds to a spatially uniform temperature input over a 

small interval about a fixed point XQ G (0,1): 

Bu = b{x)u, b{x) = -^X[xo-uo,xo+i^o]i^)- (3-2) 

2. Output operator: 

The output corresponds to the average temperature over a small interval 

about a point xi G (0,1). 

/•I 1 

C(l> = J c{x)(l){x) dx, c{x) = —X[x,-uuxi+u,]{oo). (3.3) 

A simple bounded stabihzing feedback law for this problem with /? > 0 is 

K(l)=-P<(l),l> . 
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To see that the closed-loop system with the exosystem turned off is exponentially 

stable, we note that the spectrum of {A -\- BK) is {-/?} U {-j^7r^}°ii and this 

operator is a discrete Riesz spectral operator in the sense of Curtain and Zwart 

[10]. In particular, it satisfies the spectrum determined growth condition and 

therefore generates an exponentially stable semigroup. We note that {A -f BK) 

is not self adjoint since the eigenfunction associated with the eigenvalue —p is not 

orthogonal to the other eigenfunctions. This eigenfunction is rather complicated. 

In fact a formula for this normalized eigenfunction, which we again denote by ipo 

is given in terms of the function 

ô(x) = 1 + /? E atS.^^^("°)^^<^) 

by 

ô(x) = UoVM^)-

The eigenfunctions associated with the remainder of the spectrum are the same as 

for A, namely, for j > 1, '^j{x) = v^cos(J7rx). 

For this example we are interested in controlhng the output y{t) to track a 

periodic reference trajectory of the form yr = A7sin(Q:^). In this case we take the 

exogenous system to be a harmonic oscillator: 

0 

M _̂  

Thus, in terms of our earlier notation, Q = [1,0] and S G C{R'') with k = 2. 

In order to solve this tracking problem, following Theorem 2.2, we seek mappings 

n = [Hi, n2] G C{R^, Z) and F = [71,72) G R^ satisfying the regulator equations 

USw = AUw + BTw (3.4) 

CUw -Qw = 0. (3.5) 

for all w eR^r The equation (3.4) can be written as 

[-aU2,0iUi\w = [AUi, AU2]w + [Bji,Bj2]w, 

or £is the system of equations 

AUi + an2 = -P71 (3.6) 

^ n 2 - a n i = -P72- (3.7) 

w = Sw, S= { ^ \ , w{0) = 
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This gives rise to a system of second-order ordinary differential equations with 

boundary conditions 

U'l -\- aU2 = -671 

n'2' - aHi = -672. 

n;(o) = nui) = o 
n'2(o) = n'2(i) = 0. 

The equation (3.5) reduces to 

CHi = 1, CU2 = 0 (3.8) 

which corresponds to a pair of extra contraints to be imposed on the solutions to 

the system (3.6), (3.7), in addition to the obvious conditions that Hi, n2 are in 

the domain of A. 

Here we note that B does not map into the domain oi A, so to solve the 

equations (3.6), (3.7), we first regularize (3.6) by applying A{A'^ -\- a'^)~^. This 

produces the equation 

A''{A + a'')-'Ui + aA{A'' + a'')-'^2 = -A{A^ 4- a^^Bji). (3.9) 

Rewriting equation (3.7) in the form 

^ n 2 = a H i - JB72, 

and substituting this into (3.9) we obtain 

A^A' + aY'Ui + a(^2 ^ ^2)-i[^ni - P72] = -A{A'' -f a'')-\B'yi), (3.10) 

which simplifies to 

Hi = a{A'' + a'')-\Bj2) - A{A'' + a'')-\Bji). (3.11) 

Then from equation (3.6) we have 

n2 = -a{A' -f a')-\Bji) - A{A'' + a ' ) - ' (P72) . (3.12) 

We note that Theorems 2.2 and 2.3 give necessary and sufficient conditions for 

solvabihty of the regulator problem in terms of the solvabihty of the regulator 



equations. We must now address the question of solvability of these equations. At 

this point we have found formulas for Hi and n2 in terms of 71 and 72 but we must 

now find 71 and 72 so that the equations in (3.8) are satisfied. These equations give 

a system of two equations in two unknowns for 71 and 72. Setting some notation, 

let us define 

Ri = A{A'-^ a"^)-', 

P2 = a{A'' + Q;2)-I 

then the system of equation can be written as 

-CP1671 -h CP2^2 = 1, 

(3.13) 

(3.14) 

(3.15) 

-CP2&71 - CP1672 = 0. (3.16) 

Let A denote the determinant of the coefficient matrix for the system in (3.15), 

(3.16) 

-CRib CR2b 
A = = {CRibY + {CRiby. (3.17) 

-CR2b -CRib 

As we might expect some conditions will have to be met in order to completely 

solve the regulator equations. For this example, the equations are solvable if and 

only if A 7̂  0, i.e., b ^ Ker{CRi) D Ker{CR2). Assuming that A 7̂  0 we have 

-CRib CR2b 
7 i = — X , 72 = — T — • 

Combining (3.11)-(3.18) we have 

C P i 6 „ , CR2b^^ 
Hi = -^Rib + — e - P 2 ^ 

n, = 
A 

CRib 
R2b-

A 
CR2b 

Rib. 

Using this we can introduce the feedback law 

u = Kz-^{T- KU)w 

to obtain the closed-loop composite system 

^z{t) = (A + BK)z{t) + P ( F - KU)w{t), 
dt 

j^w{t) = Sw{t). 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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We now turn to the question of approximate numerical solution for this prob-

lem. There are of course many methods that could be used to solve the equations 

(3.6), (3.7), (3.8). We have chosen to introduce the regularization by A{A'^-\-a'^)~'^ 

to solve the equations since, for this example, spectral theory can be employed to 

obtain explicit formulas for approximations of the feedback law that work quite 

well numerically. Namely, recall that 

oo 

f{A){<l>) = '£f{Xj)<cl>,^j> ijj. 
3=0 

For each positive integer Â  define 

^1 = E -^Y—^-^i^ P2 = E ;,2 , ^2 ^^ 
^=0 \-T- Oi ^^Q A^ -\-a 

With these expressions we obtain approximate values for A and 7̂  defined by 

N A^ = 

Ni -CR^b CR^b 

N] 
-CR^b -CR^b 

Nu\2 = {CR^b)' -f {CR^b)\ 

7r = 
CR^b 

1? = 
CRU 

Combining these approximations we additionaUy define 

j^-Rib. 

(3.23) 

(3.24) 

A^ 

YiN ̂  CR^b 5^^ CP2 ^ 57V 
.N 

•R^b-

(3.25) 

(3.26) 

Using these approximate formulas for the feedback control law we consider a 

numerical example in which we have taken the approximations in (3.23)-(3.26) 

with iV = 4 and Xo = 2/7r, Xi = I/TT, i/o = ^1 = 0.05, M = I, a = I, p = 0.2, 

(^(x) = 4x^(3/2 - x). In Figure 3.1 we have plotted the exact reference trajectory 

yr = sin{t) and the numerically computed output y using the approximate feedback 

control law described above. Figure 3.2 contains a plot of the entire numerical 

solution of (3.22) with this feedback law. 
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0 5 10 15 20 25 

Figure 3.1: Output tracking for the parabolic example 

0 0 

Figure 3.2: Controlled solution surface for the parabolic example 

3.2 Example 2: Periodic Tracking for a Damped Wave Equation 

Consider a controlled one-dimensional damped wave equation governing the 

small vibrations of a finite string (/? > 0): 

^zix, t) = ^ z ( x , t) - I3^z{x, t) + Bu{t), (3.27) 
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z{0,t) = z{l,t) = 0, 

y{t) = Cz{t) 

z{0) = (/) G P2(0,1) 

Zt{0) = il;eL\0,l). 

Once again our design objective will be to control the average motion of the string 

over a small fixed interval about a point Xi G (0,1) to track a prescribed periodic 

motion. Just as in the previous example let us choose the output and the control 

spaces Y = U = R, the input operator 

Bu = b{x)u, b{x) = —X[xo-uo,xo+i^o]i^), (3.28) 

and the output operator ELS the average value over a small interval, 

/•I 1 

C<f)= c{x)(l){x)dx, c{x) =-—X[x^-ui,xi-\-ui]{x). (3.29) 
Jo ZiVi 

In order to formulate this problem within the current framework we define 

A = d'^/dx'^ in Z = L^(0,1) as the selfadjoint operator defined by 

V{A) = {cf>e H\0,1) : m = ^{1) = 0} = H\0,1) n i7o^(0,1). 

Now define the space H = Hl{0, 1 ) ® L 2 ( 0 , 1) = V{{-A)^/'^)eL^{0,1) with the 

graph norm. For ^ = I ^ M , ^ = [ ^ M G ?i, 

i^,^)^ = ( ( - ^ ) l / V l , ( - ^ ) ' / V l ) + < 02,^2 > . 

Next we define the operator A with V{A) = V{A) 0 H^ by 

[A -2/3/ 

It is easy to compute the adjoint operator 

A'=\ ° -' 
' -A -2/31 
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with 7)(^*) = V{A) and 

{^,A^) = -2P\\(f>2f <0, ^e V{A), 

and 

(^,^*$) = -2p\\(f)2\\^ < 0, $ G X>(^*). 

Thus A is maximal dissipative and hence generates a contraction semigroup. 

The spectrum of A can be expressed in terms of the eigenvalues and eigenfunc-

tions of A as follows: The spectrum of A consists of {-j^7r^}°ii with corresponding 

orthonormal eigenvectors <l)j{x) = \/2sin(J7rx) for j > 1. Now for j >1 the spec-

trum of A can be expressed as 

X±j = -P± iyjflj - P^, i = V^, Hj = JTT. 

The corresponding eigenfunctions are given by 

^±j{x) = C±jl j (f)j{x), 

where c±j = A^j. The spectrum of A* is the same as the spectrum of A but the 

eigenvectors are given by 

-1 

where c*^j = =F \2iJfij — P"^) with fij = jir. With the normalizations c±j and 

c^ the eigenvectors of A and A* form two biorthogonal families, i.e., 

f 1, ^ = -j 
{^j,n) = { j = ±i,±2,---. 

[0, k:^ -j 

The operator A is a Riesz spectral operator for which we have the following spectral 

functional calculus: 

CX) 

£ {(̂ ,̂ *_j)̂ j + ($,^;)^-j} = $, V ^en. 

file:///2iJfij
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CX) 

•^^ = E {^j{^^ ^-j)^j + A_,($, ^*)$_,) , V $ G P(.4), 

(.4-A7)-^ = f;(<M^^^. + JMlL . 
,ttl(A,-A)^^^(A_,-A)'̂ -^J 

With this notation the system (3.27) can be reformulated as 

^ V ^en. 

Z = AZ + Bu, Z = 
Zl 

Z2 

(3.30) 

(3.31) 

. , . , = 1 * , . < « , = : (3.32) 

y = CZ=[c 0 ] z = C2i, Bu = 

yr = Qw = [ 1 0 ] ly = 1̂1 

e{t)=y{t)-yr{t). 

0 

Bu 

In this example we require the average displacement y{t) over a small interval 

about xi (see (3.29)) to track a sinusoid yr{t) = Msin(a^). We note that y = Czi 

is a bounded approximation of Zi{xi, t). 

As we have already noted A generates a contraction semigroup. In fact more is 

true, namely, A generates an exponentially stable semigroup. This can be seen by 

direct computation or argued as follows: as a Riesz spectral operator A satisfies 

the spectrum determined growth condition (see for example Theorem 2.3.5.C in 

Curtain-Zwart [10]), the spectrum lies along the hne Re2 = —/? therefore the 

semigroup generated by A is exponentially stable. Since this semigroup is already 

stable, in Theorem 3.1 we can choose K = 0. Therefore we need only to compute 

the mappings H and F solving the regulator equations and take the feedback law 

u = Tw. 
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To this end we seek linear operators H = [ Hi n2 

Fi r2 ] : iR' -^ t/ satisfying: 
R' n, and r = 

USw = AUw -\- BTw 

CUw -Qw = 0. 

Note that since 

n = [ Hi n2 • 

the second regulator equation becomes 

0 = (CH - Q)w = CUiWi -f CU2W2 - wi 

which implies 

C H i ^ l , cn2 = o. 

The first regulator equation gives 

aUiW2 - aU2Wi = AUiWi -\- AU2W2 + BTiWi -\- Br2W2, 

which can be written as 

^ n i - h a n 2 = - ^ F i , 

AU2 - aUi = -Br2. 

(3.33) 

(3.34) 

(3.35) 

From this point we proceed just as in the first example, regularizing the first 

equation (3.34) by applying 1Zi = A{A'^ + 0;^)"^ Note that 7 l̂ has the following 

representation 

CXI 

A simple calculation shows that 

Aj -^a^ = (2/?2 -\-a^- p^^) - 2pi^pi] - p^ ^ 0 

since if the imaginary part is zero then the real part equals {o^ -\- P^) ^ 0. We also 

define the operator 7̂ 2 by 

' ^ ^ ^ ^ , \ (Aj + a2) *^ + (Ai,. + Q2) -^ / • 
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Now combining the regularization of equation (3.34) obtained by multiplying 

by TZi just as in Example 1 and using equation (3.35), which imphes. 

we arrive at 

and 

.4n2 = aHi - ^r2, 

Ui = -ni{Bri) + n2{Br2), (3.36) 

n2 = -7^l(5F2) - n2{BTi). (3.37) 

Now it remains to find Fi and r2 so that the equations in (3.33) are satisfied. The 

problem reduces to solving a 2 x 2 system of linear equations for scalars Fi, F2. 

The solvability condition is 

A = 
-cni{Bi) cn2{Bi) 

-cn2{Bi) -C7^l(m) 
= {cni{Bi)f + {cn2{Bi)f^Q, 

where B\ = 0 

Bl 
= 

0 

b 

. If the solvability condition is met, then we obtain 

_ cni{B\) _. cn2{Bi) 
l l = 1 5 ^ 2 — • (3.38) 

A ' ^ A 

After some lengthy calculations we can simplify the above formulas. Namely, 

first we note that 

A_; 

AI + a2 Xlj, + a2 

1 

2i^pil-P\-nl + a'') 
{PI - a2)2 + 4Q;2/?2 

^ip^pl - P^^ 

XI+ a^ A2_,-fa2 \Xl + oc 

With this we can write, 

<b,(jjk> C(j)k 

212 

CX) 

cni{B\) = Y. ^. r^-^2 w'^c? x^ 
k=l 2lyjpl-p^ lAfc + a A_k 

_^{a^ - PI) <b,^k><cAk> 

, t l {a^ - lilf + 4a2/?2 

A_, 

A2_, + a2 
(3.39) 
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and 

CX) 

_ y.2aP <b,<t>k ><c,(j>k > 

h ("'-/xl)^ + 4a2/3̂  

Just as in Example 1, we can obtain an approximate formula for the feedback 

law by truncating the infinite sums in (3.39) and (3.40). As a result we obtain 

approximate values for A and F^. 

rl^rt2^\^ - V^ 2aP < b, (l)k >< c, (f)k > 

^ ^ ^ ( ^ ' ) - , ^ 1 (a^ - / . D ^ + 4a2/?2 ' 

A^ = {Cli^Bl)'')'' + (C7^T^^1)^)^ (3.42) 

rf = - ^ ^ , r^ = ^ ^ - (3.43) 

Using (3.43), we approximate F by 

F^ = [ Ff r2^ ] , (3.44) 

and introduce the feedback law 

u = r^w (3.45) 

to obtain the closed-loop system 

^Z{t) = AZ{t) + Br^w{t) 
dt 

4-w{t) = Sw{t). (3.46) 
dt 

In our numerical example we have used the approximations in (3.42)-(3.46) 

with iV = 50 and, we have set Xo = .3, Xi = .5, i^o = ^^i = 0.1, M = 1, a = 1, 

P = .4, and chosen initial conditions (l>{x) = 16x^(1 - x)^ and ip = .5sin^(7rx). 

Figure 3.3 depicts the reference signal yr{t) = sin(t) and the controlled output for 

the closed-loop system (3.46) given in (3.29) and Figure 3.4 contains the numerical 

solution for the displacement z for all x G [0,1] and t G [0,87r]. 
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Figure 3.3: Output tracking for the hyperbolic example 
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Figure 3.4: Controlled solution surface for the hyperbohc example 



CHAPTER IV 

ZERO DYNAMICS 

4.1 Introduction 

The fact that the solvabihty of the regulator problem is related to the sys-

tem zeros is well known for finite-dimensional linear systems. We refer here to 

Theorem 1.3 stated in the introductory chapter. The efforts to find the con-

cept corresponding to the transmission zeroes for nonlinear systems led to the 

notion of zero djoiamics. The nonlinear finite-dimensional theory of zero dynamics 

was initiated by Isidori-Krener [19], Isidori-Moog [20], and Byrnes-Isidori [4]-[6]. 

There are attempts in the literature to extend the concept of zero dynamics for 

infinite-dimensional systems. A zero dynamics concept for a special class of infinite-

dimensional systems was proposed by C. I. Byrnes in [2]. The infinite-dimensional 

version of the so called zero dynamics algorithm, used to compute the zero dy-

namics submanifold (or zero dynamics subspace for linear case) for the finite-

dimensional systems (see Chapter 6. in [18]), has been investigated by Curtain in 

[8]. The main source of difficulty in exploring this concept for infinite-dimensional 

systems is that the various controlled invariance notions that coincide in finite 

dimensions differ for infinite-dimensional systems. The relationship between sev-

eral invariance concepts for infinite-dimensional linear systems was studied e.g., by 

Curtain [8] and Zwart [25]. 

In the first section of this chapter we are going to consider a special case of 

systems of the form (2.6). Following [2] we will investigate the dynamics for a family 

of SISO systems with the restriction that the output of the system is identically 

zero, and define a concept of zero dynamics for these particular systems. The 

decomposition appHed here for relative degree 1 systems (i.e., when CB / 0 ) to 

isolate the subspace on which the dynamics evolves when we restrict the output 

to zero was also used in [2] for systems with bounded system operator. In this 

section we will apply this decomposition for systems with an unbounded operator 

A, which we only assume to be the infinitesimal generator of a Co semigroup on 

state the space Z, and prove that the system restricted to the above mentioned 

subspace has a well defined dynamics which we will caU the zero dynamics of the 

original system. In the second section we will show that the relationship between 

47 
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the solvabihty of the regulator problem and the structure of the zero dynamics of 

the composite system formed from the plant and the exosystem. This result is 

a direct analog of the result given in Byrnes and Isidori [3] for finite-dimensional 

systems. Namely, under certain assumptions we show that both the error and state 

feedback regulator problems are solvable if and only if the zero dynamics of the 

composite system can be decomposed into isomorphic copies of the plant's zero 

dynamics and the exosystem. 

4.2 Single Input Single Output Systems - A Special Case 

A l We assume that the control input u as well £is the measured output y are 

real scalars so that the plant (2.6) without disturbance takes the form 

j^z{t) = Az{t) + bu{t), (4.1) 

y{t) = Cz{t) = {c,z{t)), 

where 

A is the infinitesimal generator of a Co semigroup on Z, 

b G V{A), c G V{A*) and 

(b, c) # 0. 

In our applications ^ is a maximal dissipative (wave t5T)e) or maximal accretive 

(parabolic) operator and hence it generates a Co semigroup. 

Consider a special decomposition of the state space of the plant, Z. Define 

P : Z —>̂ Z as the projection 

P . = | | . (4.2) 

onto the one-dimensional subspace span{b), with Ker{P) = Ker{C), i.e., 

Ker{P) = {(l>eZ:{(l>,c) = 0}. 

Note that Ker{P) is a co-dimension 1 closed hyperplane in Z. (7 - P) is a pro-

jection onto the complementary subspace Ker{C). This gives the decomposition 
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of Z = 5^ + <Ŝ  into complementary closed subspaces S^ = {I — P)Z = Ker{C) 

and S^ = PZ = span{b}, and ioT z e Z we introduce the coordinates 

V = {I- P)z, ^b = Pz, ^ G R. (4.3) 

Notice that b eT>{A) imphes that Pz G V{A) and we can write 

APz = ^ A b . 
{b,c) 

With the new coordinates z = r) -\- ^b and by the short computation 

-j-V + b—^ = —z = {I- P){Az -\- bu) -\- P{Az -\- bu) 
at at at 
(7 - P){Ar} -\- AbO + P{Ar] + Ab^ + bu) 

y{t) = {{I - P)z -h Pz, c) = (P{rj -f ^b), c) = {P^b, c) = {b, c)^ 

the system (4.1) takes the form 

-ri{t) = {I- P)Ar){t) + (7 - P)A6^(*), 

^^{t)b = PAr){t) + PAbe,{t) -f bu{t), 
dt 
y{t) = {Pz{t),c)=i(b,c). 

(4.4) 

(4.5) 

In these coordinates A can be written as 

A = 
All Ai2 

A21 A22 

here Aij : S' —^ 5^ for i = 1,2 j = 1,2 are Unear operators 

All = (7 - P)A\s^ A12 = {I- P)A\s2 

A21 = PA\si A22 = PA\s2 . 

In particular, 

{b,c) (6,c) 



The system becomes 

^ ^ ( 0 = Aiir]{t) -h ^12^(^6, 

j^i{t)b = A2ir]{t)^A22ib^bu, 

y{t) = ^{b,c). 

Let us apply the feedback control input 

u = Kz = J 
0 0 

•A21 0 

V {Ay, c) 

{b,c) ' 

50 

(4.6) 

(4.7) 

where J denotes the isomorphism J^b = ^ between S"^ and R. We note that 

by assumption c G V{A*) and therefore ^21 is a bounded hnear operator and so 

K : Z -^ Ris also bounded. With this feedback the system becomes 

j^r){t) = Aiiri + Ai2m. 

j^mh = A22e,b, 

y{t)=^(b,c). 

We remark that the subspace <Ŝ  of Z is ^ -f 67i'-invariant, i.e., 

{A -h bK) {S' n V{A -h bK)) c S\ 

Now we define the zero dynamics of (4.1) to be the system 

d 

dt 
V = AiiT), 

(4.8) 

(4.9) 

(4.10) 

obtained by constraining the output to be identically zero: y{t) = 0, i.e., ^{t) = 0. 

Next we will argue that the system we called above zero dynamics does generate 

dynamics, i.e.. An is the infinitesimal generator of a semigroup on the subspace 

S\ 

Theorem 4.1 An is the infinitesimal generator of a Co semigroup on the subspace 

S' ofZ. 
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Proof: We are going to use the Lumer-Philips theorem (see Chap. 1 Theorem 4.6 

in [22]). By our assumptions A is the infinitesimal generator of a Co semigroup 

and the operator 

"" An Ai2 
A = A-^bK = 

0 122 

is a bounded perturbation of A we have that A also generates a Co semigroup on 

Z (see e.g.. Theorem 3.2.1 in [10] ) which we denote by T{t). Let uj be the growth 

bound of T{t), then for some positive constant M we have \\T{t)\\ < Me'^^ The 

family of bounded operators S{t) = e-^^T{t) is also a semigroup on Z, 115(̂ )11 < M 

and its infinitesimal generator is ^ — UJI. We can see that with an equivalent norm 

A — UJI generates a contraction semigroup on Z and therefore by the Lumer-Philips 

Theorem Ran{XI - {A - ul)) = Z for aU A > 0 and {A - ul) is dissipative in 

Z. We also see that the closed subspace S^ of Z is (^ — a;7)-invariant, and since 

dissipativity is a norm condition we can also say that on the subspace S^ 

{A-ujI)\s^ 

is dissipative. Let us show that there exists a positive AQ such that 

Ran (((Ao - w)/ - A)\ss) = SK 

(4.11) 

(4.12) 

Since we have that Ran{XI — {A — uI)) = Z for all A > 0 it is enough to show that 

for some AQ > 0 there is no element ^ e Z\S^ such that (Ao7 — {A — UJI))'Z G S^. 

Assume that there is such an element z G Z\S^. With the notation z = 

where Zi = {I — P)'z, Z2 = P^ we have that 
22 

[Ao7 -{A- ul)]z = [{Xo + uj)I - A] 
Zl 

Z2 

(Ao + uj)zi - AnZi - A12Z2 

(Ao + UJ)Z2 - ^22^2 

is such that the second component (AQ + uj)z2 - A22Z2 = 0. This is true only 

if (Ao + cj) G (T{A22) = {^4^}. Therefore for sufficiently large Ao we have 

Pan ( ( ( A o - a ; ) 7 - ^ ) | 5 i ) = S^. Since the closed subspace S^ of Z is Hilbert 
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space referring to Chap.l. Theorem 4.6. in [22] (4.11) and (4.12) implies that 

V {{A — ujl)\sij is dense in S^, and then using (4.11) and (4.12) again, the Lumer-

Phihps Theorem gives that {A - ul)\si generates a contraction semigroup on S^. 

Let us denote it by S{t). Finally f{t) = e'^^S{t) is a Co semigroup on S^ with 

infinitesimal generator An = AI51. • 

We mention here that for the system (4.1) in the case of periodic tracking there 

are results that show the connection between the output regulation problem and 

the transmission zeroes of the controlled plant. Namely, in [1] under additional 

assumptions on (4.1) the following theorem was proved. 

A2 Assume that the transfer function is real, i.e., g{s) = g{s). 

A3 Assume that there are no pole zero cancellations. That is if So is a transmis-

sion zero, then 5o G p{A), the resolvent set of A. 

Theorem 4.2 Let the operator A in (4-1) be a discrete Riesz spectral operator 

with simple eigenvalues cr{A) = {Xjj'^i, the input be given by u{t) = 7isin(at) + 

72 cos(a^) with 7? + 72 7̂  0 and let {A, b, c) satisfy A2 and A3. Then the following 

results hold. 

1. There exists periodic solution z to the system (4-1) with period T = 27r/Q; 

provided 

dist{(T{A), [kai \k = 0, ±1, ±2, •••})> 0. 

Furthermore, the system supports periodic solutions with all positive periods 

T (i.e., for any T there exists initial condition ZQ so that the state of the 

system (4-1) will be a periodic of period T) if 

dist{a{A),(I^)>0 

where dP = {X € (U : ReA = 0} denotes the imaginary axis. 

2. In this case, there is a nontrivial periodic output y if and only if ia is not a 

transmission zero, i.e., g{ia) 7̂  0. 



53 

3. Let 

M„ = sup \u{t)\ = A / T F + T I -
«€[o,r] 

denote the amplitude of the periodic input u, then the amplitude of the output 

y is a linear function of the amplitude of the input u. In particular, the output 

can be written in the forms 

y{t) = [Reg{ia)]u{t) -\- -[lmg{ia)]-^{t) 
a at 

= Mu\g{ia)\[yi sin{at) + 72 cos(Q;t)] 

= Mu\g{ia)\sin{at-h(l)) 

where 71 -f 72^ = 1 and we can easily write explicit formulas for 71, 72 and 

(f) in terms 0/71, 72 and g{ia). Thus the amplitude My of y can be written 

as 

My= sup \y{t)\ = Mu\g{ia)\. 
te[o,T] 

4.3 Solvability and Zero Dynamics 

In [3] Byrnes and Isidori interpreted the solvability of the regulator problems 

for nonlinear finite-dimensional systems as a property of the zero dynamics of 

the composite system formed from the plant and the exogenous system. Namely, 

under certain assumptions they showed that the regulator problem is solvable if and 

only if the zero dynamics of the composite system can locally be decomposed into 

diffeomorphic copies of the exosystem and the plant's zero dynamics. We present 

here analogous results for linear infinite-dimensional systems with bounded control 

and observation operators. 

For the system 

4-z{t) = Az{t)-\-Bu{t), (4.13) 
dt 
z{0) = Zo, 

where the assumptions on A, B, z and u are the same as for the system (2.6), we 

introduce the usual invariance concepts (cf. [8]) : 
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Definition 4.1 : 

• A closed, linear subspace V of the Hilbert space Z is called {A, B)-invariant 

if 

A{VnV{A))cV-\-Ran{B). 

• A closed, linear subspace V of the Hilbert space Z is called feedback {A,B)-

invariant if there exists a K e C{Z, U) such that 

{A-^BK){VnV{A)) CV. 

• A closed, linear subspace V of the Hilbert space Z is called T{A, B)-invariant 

if there exists a K e C{Z,U) such that for all t > 0 

TA+BK{t)V C V. 

While for finite-dimensional systems these three concepts are equivalent, if Z is 

infinite-dimensional then they form the following hierarchy: T{A, P)-invariance 

implies feedback (A, P)-invariance which in turn implies (A, P)-invariance. For 

the proof see Curtain [8]. 

Along with the system (4.13) we consider the observation process y{t) = Cz{t) 

in (2.6). Motivated by the zero dynamics concept introduced by Byrnes and Isidori 

for finite-dimensional systems, and by results in the previous section, let us intro-

duce a concept of zero dynamics for infinite-dimensional linear systems. 

Z l For the plant 

--z{t) = Az{t) + Bu{t), (4.14) 
dt 

yit) = Cz(t) 

suppose that the largest feedback (A, P)-invariant subspace contained in 

Ker{C) exists and is denoted by Z*, and assume that Z* is also T{A,B)-

invariant. Let us additionally assume, that any two feedback operators that 

render Z* T(A, P)-invariant coincide on Z*. Let A* denote {A -I- BK)\z*, 

where K G C{Z, U) is such that Z* is {A + BK)-invaTiant and define the 

system (Z*, A*) to be the zero dynamics of the plant. 
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The assumption that the largest feedback (A, P)-invariant subspace Z* of 

Ker{C) is such that there is essentially one feedback that renders it A-{- BK-

invariant is part of Z l . It is not clear how restrictive is this assumption in general, 

however in terms of the operator B we can find sufficient conditions for it to hold. 

Remark 4.1 If we assume that Ran{B)nZ* = {0} and Ker{B) = {0}, then any 

two bounded feedback operators that render Z* T{A, B)-invariant coincide on Z*. 

This statement can be justified by the following argument. Let Ki G C{Z, U) 

and K2 G C{Z, U) be two feedback operators that satisfy 

iA-\-BKi)'^ C Z . 

Lemma II. 2. in [25]gives that Ran{B{Ki-K2)\z*r\V{A)) C Z*, but since Ran{B)r\ 

Z* = {0} we obtain that Ran{B{Ki — K2)\z*nv{A)) = {0}. Since B is one to one, 

necessarily {Ki — K2)\zTrD{A) = 0, but Z* D T>{A) is dense in Z* and therefore 

{Ki - K2)\z^ = 0. 

In the previous remark the assumptions that gave the uniqueness oi K\z*, for 

feedbacks that render Z* T{A, P)-invariant is related to the assumptions made in 

[3] (see also Chapter 8, [18]) concerning the definition of zero dynamics for multi-

variable nonlinear control systems. 

Remark 4.2 The zero dynamics defined in Section 4-1 for a family of single in-

put single output systems is a special case of the concept defined in Zl. In that 

case we have seen that Z* = Ker{C), Z* is T{A, B)-invariant and therefore feed-

back {A, B)-invariant, and also by the previous remark since Ran{B) n Z* = {0} 

and Ker{B) = {0}, any two bounded feedback operators that render Z* T{A,B)-

invariant coincide on Z*. 

Now we consider the finite-dimensional exogenous system (2.7) with P = 0 and 

the composite system formed from controlled plant and the exosystem. For the 

composite system 

^Ze{t)=AeZe{t)-^BeU{t), ( 4 . 1 5 ) 

at 
e{t) = CeZe{t), 
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where Zg = Z x iR^, is a Hilbert space with norm 

2 

z 

w 
= ll^lb + ll^lliRfc, 

Be = 
B 

0 
eC{U,Ze), Ce = [C -Q]eC{Ze,Y), 

Ae = 
A 

0 

P 

S 

is the generator of a Co semigroup on Zg, we also consider the set of assumptions 

and the concept of zero dynamics introduced in Zl . 

Z2 For the composite system (4.15) suppose that the largest feedback {Ae,Be)-

invariant subspace contained in Ker{Ce) exists and is denoted by Z*, and 

assume that Z* is also T(Ae,Pe)-invariant. Let us additionally assume, that 

any two feedback operators that render Z* T(Ae,Pe)-invariant coincide on 

Z;. Let Al denote {Ae + BeKe)\z:, where Ke G C{Ze,U) is such that Z; 

is {Ae + Pe7^e)-iiivariant then we define the system {Z*,Al) to be the zero 

dynamics of the composite system. 

Notation 4.1 ; By our assumption in Til any two feedback operators Ki G 

C{Z,U) and K2 G C{Z,U) that render Z* T{A, B)-invariant, coincide in Z*. In 

the following we will only consider the unique restriction Ki\z* and denote it by K. 

Similarly, by Z2 any two feedback operators K^^ G £(Ze, U) and Kg^ G C{Ze, U) 

that render Z* T{Ae, Be)-invariant, coincide in Z*. For the rest of this section we 

will only consider the unique restriction {Kei)\z* O'^d denote it by Ke-

In the next theorem we will identify a copy of the plant's zero dynamics inside 

the zero dynamics of the composite system, provided that both zero dynamics 

exist. 

Theorem 4.3 Assume that Z l and Z2 hold. Let {Z*,A*) and {Z*,Al) denote 

the zero dynamics of the plant and the composite system, respectively. Then the 

two subspaces Z* H {Z x {0}) and Z* x {0} of Z* coincide and the mapping ^ : 



0 / 

Z; n (Z X {0}) — . Z* defined by ^ 

^Alz; = A*^zl for all z^ G V{A\). 

0 
= 2* is an isomorphism satisfying 

Proof: Let us show first that Z* x {0} C Z* n (Z x {0}). Z* x {0} C Z x {0}, 

therefore we only need that Z* x {0} C Z*. Since Z* is the largest feedback 

{Ae, Pe)-invariant subspace of Zg contained in Ker{Ce), it is enough to show that 

the closed subspace Z* x {0} of Zg is also contained in Ker{Ce) and that it is 

feedback (Ae, Pe)-invariant. Z* x {0} C Ker{Ce) follows from Z* C Ker{C). 

~ z* ~ 

0 
Now let G (Z* X {0}) n V{Ae) be arbitrary. 

{Ae + BeKe) 
0 

{A + BK)z' 

0 

where .^g = [-^0], and K is the unique feedback for Z* referred to in Notation 

4.1. Since Z* is (A-fP7f)-invariant, this means that Z* x {0} is feedback {Ae, Be)-

invariant. 

To show that Z* fl (Z x {0}) C Z* x {0} first note that for any 

0 
Gz:n(Zx{o}) 

we must have 
0 

G Ker{Ce), and therefore 

o = a z' 

0 
= Cz* -Q0 = Cz\ 

i.e., the first component z* G Ker{C). Let us define 

Z' = <̂  z* G Z z' 

0 
G z : n (z X {0}) 

Z' is clearly a subspace of Z and we have seen that Z' C Ker{C). Z' is a closed 

subspace of Z since it is isometrically isomorphic to the closed subspace Z*n{Z x 
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{0}). We need to show that Z' c Z*. Let the unique feedback operator Ke in Z[ 

(see Notation 4.1) be of the form Ke = [K L]. Since for every z* in Z' n V{A) 

e Z*n V{Ae), the A*-invariance of Z; imphes that 
0 

A + BK P-hBL 

0 S 0 

{A -\- Bk)z' 

0 
ez: 

This gives that {A 4- BK)z* G Z' and (A + Bk)z* G Ker{C). From this we 

have that Z' is feedback (A, P)-invariant and contained in Ker{C). But Z* is 

the largest subspace of Z with these properties, hence Z' c Z*. Thus we have 

established that Z ; fi (Z x {0}) = Z' x {0} C Z* x {0}. Note that we have also 

obtained K = K. To finish the proof of Theorem 4.3 we need to show that the 

mapping ^ , which is a hnear isomorphism satisfies the equation "^A^z* = A*'^z^ 

~ z* " 

0 
But for every G Z; n (Z X {0}) n V{Ae) we have: 

^ A > : = ^ 
A-^BK P-hBL 

0 S 0 

With this the proof is complete 

(A -\- BK)z' 

0 
= {A-\- BK)z* = A*^z^ 

D 

The following theorem shows that the zero djniamics of the composite system 

also contains an isomorphic copy of the exosystem, complementary to the plant's 

embedded zero dynamics, exactly when the regulator equations are solvable. 

Theorem 4.4 Assume that Z l and Z2 hold and {Z*, A*) and (Z*, A*) denote the 

zero dynamics of the plant and the composite system, respectively. Then there exist 

mappings U G C{R^, Z) and F G £(12^, U), with Ran{U) C V{A), that solve the 

regulator equations 

US = AU-\-BT-\-P 

CU-Q = 0 

(4.16) 

(4.17) 
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if and only if there is an A^-invariant k-dimensional subspace Z^ of Z* contained 

in V{Al) such that 

i) Zl = z, e {Zl n (z X {o})), 

ii) if for n^ G C{R^, Z), Z^ = graphics), then the mapping $ defined by ^w = 

is a linear isomorphism from R^ to Zs, satisfying ^Sw = A^^w. 
Ui,w 

W 

In this case we also have that Zs is TA*{t)-invariant and ^Ts{t)wo = TA*{t)^wo 

for woeR^, where Ts{t) = e^K 

Proof: Suppose that U G C{R^,Z) and F G C{R^,U) solve the regulator equa-

tions (4.16)-(4.17). Then Zg defined as the graph{U), i.e. 

Z. = I 

V L 

z 

w 
£ Ze'- Z = Uw 

is a A:-dimensional subspace of Zg. We first show that Zs C Z*. Note that Zs C 

7fer(Cg) n X>(Ag) by (4.17) and by Pa7i(n) C V{A). Let Ks G C{Z, U) be defined 

by Kg = [K {T — KU)] where K is the unique feedback referred to in Notation 4.1. 

Zg is (Ag -I- Pe7irs)-invariant by the foUowing calculation, where in the last step we 

use the first regulator equation (4.16): 

(Ag + BeKs) 
Uw 

w 

A P 

0 S 
+ 

B 

0 
[K (F - KU)] 

Uw 

w 

AUw -\-Pw-{- BKUw + BTw - BKUw 

Sw 

USw 

Sw 

Since Z* is the largest feedback (Ag,Pe)-invariant subspace in Ker{Ce), we have 

that Zs C Zl-

Now to prove Zs 0 {Zl D (Z x {0})) = Z*, we need to show that Zs n (Z* n 

(Z X {0})) = {0} and Z, + (Z; fl (Z x {0})) = Z^ The first equahty is obvious 
z 

by the definition of Zg- Furthermore any 
w 

G Zg can be written as 

z 

w 

__ Uw 

w 
+ 

z — Uw 

0 
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with 

z — Uw 

0 
z 

w 

Uw 

w 
G Zl n (z X {0}), 

and so the second equality also holds. 

To prove that h) holds we need to prove that Z; D (Z x {0}), the subspace 

complementary to Zs in Zl, is also (Ag -fPg7rs)-invariant. This, together with the 

(Ag -f Pg/^s)-invariance of Zs imphes that Z; is (Ag -f Pgi^5)-invariant. But this 

implies, by the uniqueness of Ke, that Ke = Ks\z* and A* = Ag + BeKs- Then 

by the definition of Zs, the mapping $ : R^ —> Zg defined hy ^w = ^ 

linear, bijective and by (4.16) 

Al^w = {Ae + BeKs)^w = 
A P 

0 5-
+ 

B 

0 
[K (F - KU)] 

w 

Uw 

w 

IS 

AUw -hPw-\- BKUw + BTw - BKUw 

Sw 

USw 

Sw 
= ^Sw. 

It only remains to show that Z* fl (Z x {0}) is (Ag -I- Pe7C5)-invariant. To see 

z* 

0 
this we note that, for any 

Theorem 4.3. But then 

G Zl n (Z X {0}) n X>(Ag), we have z* G Z* by 

(Ag -\- BeKs) 
z' 

0 

A P 

0 S 
+ 

B 

0 
[K (F - KU)] z^ 

0 

Az* + BKz* 

0 

(A -\- BK)z* 

0 
G Zl r\{Zx {0}) 

again by Theorem 4.3 and the (A 4- P7^)-invariance of Z*. This completes the 

proof of the sufficiency. 

Now to prove the necessity, let Zs be an A*-invariant fc-dimensional subspace 

of Zl contained in X>(A*) such that i) and ii) hold. Define H = H^ : ^ * —^ Z by 

Graph{U) = Zs- We claim that H is a well defined hnear mapping from R'^ to Z. 

z 
Note, that by i) any nonzero Zg G Zg has the form 

w 
for some nonzero w G R^ 
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and z G Z. If 
Zl 

w 
J 

Z2 

w 
G Zs with Zl ^ Z2 then 

Zl - Z2 

0 
GZ:n(Zx{o}) 

Zg is A;-dimensional, for every w e R^ there exists a z G Z such that eZg, 

which contradicts our remark in the previous sentence, so H is well defined. Since 

z 

w 

i.e., n is defined on the whole R^. H is also linear which follows from the fact 

that Zg is a linear subspace. Since Zg C X>(A*) = X>(Ag) = V{A) x R^ we have 

Pan(n) C V{A). 

To finish the proof of the necessity, we need to show that H satisfies the regulator 

equations with some F G C{R^,U). We know that Zg C Zl O V{Ae), therefore 

Zg is also contained in Ker{Ce) n I>(Ag). This means that for every w e R^, 

CUw -Qw = 0, which is exactly (4.17). Also we have the equation ^Sw = A*$w 

for all w e R^, where A* = 
A P 

0 S 
+ [K L] I and [K L] is the unique 

feedback operator Ke- This equation can be written as 

B 

0 

USw 

Sw 

A P 

0 S 
+ 

B 

0 
[KL] 

Uw 

w 

AUw -hPw-\- BKUw -\- BLw 

Sw 

so by choosing F = L H- KU, we obtain (4.16). 

To finish the proof of the theorem let us note, that Zg is also TA* (t)-invariant 

(i.e., T^^+B^/i:,(t)-invariant). This can be seen using Lemma 2.5.4 in Curtain-

Zwart [10], since Zg is a closed subspace of Z* and also contained in X>(A*) (since 

Ran{U) C X>(A)). Moreover, we have that ^Ts{t)wo = TA*{t)^wo for wo G R'', 

where Ts{t) = e^\ Indeed, 

^Ts{t)wo 
UTs{t)wo 

Ts{t)wo 

and referring to Lemma 3.2.2 in Curtain-Zwart [10] (see also Exercise 3.5 therein) 

we also have 

TA:{t)^wo = 
TA+BK{t)Uwo + /J TA+BK{t " s)(P -f P(F - KU))Ts{s)wo ds 

Ts{t)wo 
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^Ts{t)wo 

Ts{t)wo 

In the last equality we have used that ^w G Zg and Zg is TA*(t)-invariant. • 

Remark 4.3 Since we have shown in Chapter 2 that under suitable hypothesis 

the solvability of the regulator problems (both the state and the error feedback case) 

is equivalent to the solvability of the regulator equations, we see that under such 

hypothesis a necessary and sufficient condition for the solvability of the regulator 

problems, provided that both zero dynamics exist, is that the zero dynamics of the 

composite system contains an isomorphic copy of the exosystem,. 

For infinite-dimensional systems it is not true in general that the assumptions 

in Z l and Z2 hold. But as an example we can see for the plant (4.1) that satisfies 

the condition A l and for the exogenous system w = Sw, yr = Qw with 

S = 
0 

- 1 

1 

0 
Q = [1 0], 

Z l and Z2 can be established. 

We have already shown that for the plant (4.1) satisfying A l the subspace 

Z* = Ker{C) satisfies the assumptions in Z l and the zero dynamics {Z*,A*) 

exists (see Remark(4.2)). To establish Z2 we will show that that the composite 

system 

-Ze{t)=AeZe{t)-{-BeU{t), 

at 
e{t) = CeZe{t), 

(4.18) 

where 

Zg = Zx^^Ag = 
A 0 

0 S 
, BgU = beU = 

b 

0 
^,Cg = [C -Q], 

is also a single input single output system of the form of (4.1) that satisfies A l . 

This together with Ran{Be) D Ker{Ce) = {0} and Ker{Be) = {0} imphes that 

Z l holds for the composite system (4.18), but this is exactly Z2. Indeed, u, e are 

scalars. 

b.= 
b 

0 
G V{A) xR' = V{Ae), 
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e = CgZg = Cz - Qw = (c, z)z -
1 

0 

wi 

W2 
J ' IR? 

c 

1 

0 

5 

z 

Wi 

W2 

— {Cer,Ze)Zei 

Cp = 

C 

1 

0 

G P(A*) xR^ =V 
A* 0 

0 -S 
= V{A:), 

where A* and A* denotes the adjoint of the operators A and Ag, and 

(Ce ,^e )Ze = (C, b ) z " 
1 

0 

0 

0 
= (c ,6)z#0 

J ' m? 

show that the system (4.18) satisfies A l . Also Ran{Be) n Ker{Ce) = {0} because 

of the last computation and since bg^ 0 clearly Ker{Be) = {0}. 



CHAPTER V 

CONCLUSIONS 

In this dissertation, we presented a treatment of the theory of output regulation 

for linear control systems in Hilbert spaces, considering only bounded control and 

bounded observation operators. The two problems we considered are the output 

regulation with state feedback and the output regulation with error feedback con-

troller. We found that the major results of the finite dimensional output regulation 

theory can be established in these settings. We proved that under conditions that 

are analogous to the standard hypotheses of the finite dimensional theory, both 

problems are solvable if and only if a pair of operator equations, the regulator equa-

tions, are solvable. In terms of solutions to the regulator equations and in terms 

of stabilizing feedback and output injection, the state feedback and error feedback 

solutions can be explicitly constructed. The solutions that we constructed are 

not finite dimensional controUers. We gave examples for solving the state feedback 

problem for single input single output systems that were modeled by parabolic and 

hyperbolic partial differential equations. For these examples we have seen that the 

state feedback regulator problem is robust in the sense that a finite dimensional 

approximation of the controller applied to a finite dimensional approximation of 

the plant resulted in the required tracking. As we mentioned to construct such 

solutions, apart from the problem of solving the regulator equations, requires the 

availability of stabilizing feedback operator and stabilizing output injection for the 

composite system. To obtain such operators for various types of infinite dimen-

sional systems could be challenging and requires further investigations. 

It is also suggested by numerical results, that this theory can be extended to 

systems with certain types of unbounded control and observation operators. This 

is a subject of our further investigations. 

The zero dynamics concept was introduced as a generalization of transmission 

zeroes for nonlinear finite dimensional control systems. For such systems it was 

shown by C. I. Byrnes and A. Isidori that the solvability of the state feedback 

problem can be interpreted as the property of the zero dynamics of the composite 

system system (formed from the plant and the exosystem with the tracking error 

as output) that it can be decomposed to isometric copies of the exosystem and 
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the plant's zero dynamics. We proposed a definition of zero dynamics for infinite 

dimensional systems, in terms of controlled invariant subspaces, and showed that 

this result can be generalized to the infinite dimensional output regulation problem. 

The geometric theory for infinite dimensional systems, in particular the existence 

and relationship between of various controlled invariant subspaces is very subtle 

and complicated, and must be considered on a case by case basis. Thus, though 

this result gives additional insight into the solvability of the output regulation 

problems, it is not yet clear to what extent it can be used in practice. 
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