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ABSTRACT

This dissertation is concerned with the solvability of the output regulation
problem for infinite-dimensional linear control systems with bounded control and
observation operators. By output regulation we mean a control design problem
in which the objective is to achieve tracking, disturbance rejection and internal
stability. Two versions of output regulation are considered: the state feedback
regulator problem, in which we look for a static state feedback control law and
the error feedback regulator problem in which a dynamical controller is sought for
which only the tracking error is available to the controller. Under the standard
assumption of stabilizability necessary and sufficient conditions are given for the
solvability of the state feedback problem and under the additional assumption
of detectability necessary and sufficient conditions are given for the solvability of
the error feedback problem. The solvability of both problems are characterized in
terms of the solvability of a pair of linear regulator equations. This characterization
represents an extension of the results obtained by B. Francis for multivariable linear
control systems. The approach follows the lines of the geometric theory of output
regulation developed by C. I. Byrnes and A. Isidori for finite-dimensional nonlinear
systems. The solvability of the regulator equations is shown to be equivalent to
the property that the zero dynamics of the composite, formed from the plant
and the exosystem, contains isomorphic copies of the exosystem and the plants’
zero dynamics. Examples of periodic tracking are presented for parabolic and
hyperbolic systems.
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CHAPTER I
INTRODUCTION

1.1 Output Regulation Problem - Generic Description
We shall outline here the problem that is usually referred to in the control
literature as output regulation problem. For the sake of simplicity we will use
the finite-dimensional linear control system model to describe the various control
objectives that are collected under the name of output regulation. We assume that
the controlled system (or controlled plant) can be modeled by a first order system
of linear ordinary differential equations

%x(t) — Az(t) + Bu(t) + d(2), (1.1)

y(t) = Cx(t),

where z(t) € IR", u(t) € R?, y(t) € IR? for t > 0, represent the state, the input and
the output of the system respectively, and where A, B and C are linear operators
(in this case matrices) between the corresponding spaces. d(t) in (1.1) represents
a disturbance.

In the following we describe some common control design objectives for such a
system. By tracking we mean that the control input u(t) is designed in such a way
that each output variable is tracking a preassigned reference signal:

yi(t) — i (1),

as t — oo for every 1 < ¢ < p, or simply y(t) — y"(t). We will assume that the
reference output 3" is generated as the output of another linear finite-dimensional

system,

d 1 1
pri (t) = Syw (t), (1.2)

y'(t) = Riw'(t),

To achieve another important design objective, namely disturbance rejection,
the designed control has to be such that the disturbance effects on the output are
attenuated. A standard assumption which we adopt is that d(¢) can be generated




by a finite-dimensional linear system

d , 2
SV () = Swi(b), (1.3)

d(t) = Ryw?(t),

for some initial condition. It is convenient, and customary, to combine system
(1.2) with system (1.3), to obtain a single finite-dimensional system

d
Zu(t) = Sw(?), (1.4)
y' () = Qu(t),

d(t) = Pw(t),

S € L(R*), Q € L(R*,IR?) and P ¢ L(IR*, R™), that produces both the signal
to be tracked and the disturbance to be rejected. This system represents the
outside world for the controlled plant and is refered to as the ezogenous system,
or erosystem for short. With the choice of a suitable initial condition for the
exosystem a specific tracking and disturbance rejection task can be initiated and
the control problem then is to produce the control input u that carries out this task.
In practice, the asymptotic requirements of tracking and disturbance rejection are
replaced by that of reaching a certain error level in a given time interval.

An additional, natural requirement for the control design is usually referred to
as internal stability. It requires the system comprising the plant and the controller
to be stable when there is no tracking or disturbance rejection assignment present.
We note that the exosystem itself is typically not stable. For example it is often
required to produce periodic, quasiperiodic or constant signals.

By output requlation we mean the problem of designing a controller so that the
output of the resulting closed loop system tracks the reference signal regardless of
the plants’ initial conditions while maintaining internal stability.

The problem described above, in terms of control objectives is not restricted
to the linear finite-dimensional model of (1.1), (1.2) and (1.3). We can formulate
the problem similarly when the controlled plant is modeled by nonlinear ordinary
differential equations, or for infinite-dimensional models as partial or delay dif-
ferential equations. We expect however, that the exosystem is chosen to be the
simplest system that can produce the perturbations and the required reference
signal, and that it is finite-dimensional.




Generally two versions of the output regulation are considered. In the first one,
it is assumed that the controller is provided with full information on the state of the
plant and exosystem. We will refer to this as the state feedback regulator problem.

For the multivariable linear state feedback problem the solution is expected to be
a linear feedback controller of the form

v= Kz + Lw. (1.5)

For the second version, only the tracking error
eE=Yy—-y

is available for the controller, and in this case the problem is called the error
Jeedback regulator problem. The solution in the linear multivariable case consists
in finding a finite-dimensional linear error feedback controller

X =FX +Ge (1.6)
u=HX.

1.2 Outline of the History of the Problem
The regulator theory for finite-dimensional systems is well developed. Among
the contributors are Smith and Davison [23], Francis and Wonham [12], Francis
[11], Wonham [24], Hautus [14], Hepburn and Wonham (16}, Byrnes and Isidori [3].
A characterization of the solvability of the multivariable linear problem was given
by Francis in [11] in terms of the solvability of a pair of linear matrix equations,
the so called regulator equations. This theory is based on the following hypotheses:

h1l o(S) is contained in the closed right half plane,
h2 the pair (A, B) is stabilizable,

h3 the pair
A P

0 S

|

([c -Q 1,

is detectable.
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The following results (due to Francis) give necessary and sufficient conditions for
the solvability of both the state feedback and error feedback problems.

Theorem 1.1 Let hl and h2 hold. The multivariable linear state feedback regu-

lator problem is solvable if and only if there exrist matrices I1 and T that solve the
equations

I1S = AIl + BT + P, (1.7)
CIl-Q =0.

Theorem 1.2 Let hl and h2 and h3 hold. The multivariable linear error feedback

regulator problem is solvable if and only if there exist matrices II and T that solve
the equations

ILS = AIl + BI' + P,
CII1-@=0.

This shows that under the assumptions h1-h3 the state feedback regulator problem
is solvable exactly when the error feedback problem is solvable. The solvability of
the regulator equations in turn has been characterized in terms of the transmission
polynomials of the systems

z = Az + Bu + Pw, (1.8)
w = Sw
e=Cz— Qu
and
i = Az + Bu, (1.9)
w = Sw
e=Crz,

with input u and output e. This characterization was proved by Hautus in [14].

Theorem 1.3 The matriz equations are solvable if and only if the systems (1.8)

and (1.9) have the same transmission polynomials.




These results were generalized to nonlinear multivariable systems by Byrnes
and Isidori [3]. In their results the solvability conditions introduced by Francis
correspond to the local solvability of a pair of nonlinear equations. Byrnes and
Isidori introduced a geometric interpretation of the regulator equations: they point
out that the solvability of the regulator equations corresponds to the existence of
an error zeroing local manifold (in the linear case a subspace) that is rendered
invariant by feedback.

Byrnes and Isidori also generalized Hautus’ result given in Theorem 1.3. They
express the solvability of the regulator equations in terms of the relationship be-
tween the zero dynamics of the plant and the zero dynamics of the composite
system (formed from the plant and the exosystem), that has the tracking error as
its output. They proved that the regulator equations are solvable exactly when
the zero dynamics of the composite system can be decomposed to the exosystem
and the zero dynamics of the plant. The Byrnes-Isidori nonlinear theory relies on
the center manifold theory as its main tool.

1.3 A Finite Dimensional Example
To illustrate the finite-dimensional regulator theory we will consider a simple
example. Let the controlled plant be given by the following system:

3'.','1 =X +T2t+u (110)
i‘z = 31}1 - 3.’1)2

Yy = Ty.

With the output we want to track the constant reference signal y" = 6, but we do

not consider any disturbance. With

; _13} Bz[(l)], c=[0 1],

and d(t) = 0 (1.10) can be written in the form of of (1.1). To produce the reference
signal we can use a trivial exogenous system of the form of (1.4), with w € R,
S =10, Q =1, P=0 and initial condition w(0) = 6. We note that for this system
the hypotheses of the linear finite-dimensional regulator theory are satisfied:

A=

T —




hl: ¢(S) =0,

)

h2: it is easy to check that (A, B) is stabilizable, indeed with K = [ -2 —1 |
h3: the detectability of the pair

o0(A+ BK) = {-3,-1}
(e [15]

: T
can be seen if we set, e.g., G = [ 8 5 1 ] , and compute that the eigenval-

A P
0 S

ues of
A P
0 S| G [ ¢ - ]
are —1, —2 and -3.
The regulator equations
IIS = AIl + BT + P, (1.11)
Cll-Q=0
are also solvable for II and I". A quick computation shows that the pair Il = i

and I' = —2 is a solution. Theorem 1.1 and Theorem 1.2 then shows that both the
state feedback and the error feedback regulator problems are solvable.
Solutions for both problems can also be found. In the state feedback case the

feedback

u=—-2r] —22+6 (1.12)
will result in tracking for any initial condition 0 | In the error feedback
T2

case the controller (1.6) with

~1 -8 9 i
F=|3 -85, H=[-2 —11],G=[851],
0 -1 1
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Figure 1.1: Output of the uncontrolled system

i.e., the system

X1 =-X; —8X2+9X3+ 8e
X, =3X; —8X, 4 5X3 + 5e
Xs=-Xo+Xs+e
u=-2X; — X+ X3

will be a solution.

Figure 1.1 shows a numerical approximation of the uncontrolled output z, for
various initial conditions of the plant. Numerical results for the output y = z for
the same initial conditions are shown on Figure 1.2 for the state feedback solution.
In Figure 1.3 we can see the tracking with the error feedback solution, starting
the plant from the same initial conditions as before, but setting different initial
conditions for the controller for each case. This indicates the fact, that for this
particular solution for the error feedback problem, the tracking is not sensitive to
the initial conditions of the controller, in other words, irrespective of its initial
conditions the above controller will solve the tracking problem.
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Figure 1.2: Tracking with state feedback controller
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Figure 1.3: Tracking with error feedback controller

1.4 Outline of the Dissertation
In this work we give the generalization of the results outlined above for infinite-
dimensional linear control systems assuming that the control and observation oper-




ators are bounded. In particular, we obtain results characterizing the solvability of
both the state and the error feedback regulator problems in terms of the solvability
of certain equations which we again refer to as the regulator equations. We need
to address certain difficulties that arise in extending the Byrnes-Isidori approach
to the distributed parameter case. Now the phase space is infinite-dimensional,
the state operator is unbounded and consequently, only densely defined. There is
no direct analog of the Jordan decomposition, so care must be exercised in dealing
with the spectra of composite systems. The error zeroing invariant subspace com-
plementary to the plant must be contained in the domain of the state operator,
and the resulting regulator equations now become distributed parameter equa-
tions. Except for the technical problems, the proofs parallel the development in
[3]. Chapter 2 contains a formulation and discussion of basic assumptions, and the
presentation of the state and error feedback regulator problems. We give necessary
and sufficient conditions for the solvability of both the state and error feedback
regulator problems in terms of the solvability of a pair of linear operator equations
— the regulator equations. Once a solution of these equations is available, an ap-
propriate state feedback control in the case of the full information problem, or an
explicit dynamical controller in the case of error feedback, is obtained that provides
the solution to the regulator problem. In Chapter 3, Theorem 2.2 is applied to two
specific examples. The first example is the problem of finding a feedback control
law for a controlled heat equation so that the output of the closed loop system will
track a prescribed periodic trajectory. In the second example we solve the same
regulator problem for a damped wave equation. For these examples the regulator
equations reduce to a system of linear ordinary differential equations subject to
certain constraints. These systems are readily solved off-line. In particular, ap-
proximate solutions are easily obtained numerically. In Chapter 4, motivated by
Byrnes-Isidori [3], we extend the concept of zero dynamics for linear distributed
parameter systems and give a characterization of the solvability of the regulator
equations in terms of the structure of the zero dynamics of the system formed from
the plant and the exogenous system with the tracking error as output.
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CHAPTER II
SOLVABILITY AND THE REGULATOR EQUATIONS

2.1 Definitions, Auxiliary Results and Introductory Comments

To solve the two output regulation problems, the solvability criteria given in
terms of the solvability of the regulator equations gives a practical approach. In-
deed, once a solution of the regulator equations in Theorems 1.1 and 1.2 is found
and the stabilizing feedback and output injection, that appear in the conditions
h2 and h3, are available, the controllers that solve the two types of output reg-
ulation problems can be explicitly constructed. For the finite-dimensional lin-
ear example in the Introduction the state feedback controller was constructed as
u= Kz + (I' = KII)w, and the error feedback solution was found as

H=[K (T-KI) ]|,

P (A+ BK - G,0) (P + B(I' — KTI) + G,Q)
-G,C (S + G2Q) ’
where G; = ? and G, = 1 were parts of the output injection G acting on the

state space of the plant and the exosystem, correspondingly. We expect that similar
equations give solvability conditions and explicit schemes to construct solutions for
distributed parameter systems. In this chapter we will obtain the analog of the
finite-dimensional linear theory, but the problem of solving the regulator equations,
which was a problem of solving linear matrix equations in finite dimensions, now
turns into the solvability problem of linear operator equations frequently involving
unbounded operators. As we will see in the next chapter the regulator equations
can represent elliptic boundary value problems with extra constraints for plants
that are described by partial differential equations.

It is clear from the formulation of the problem that the stabilizability of the pair
(A, B) is a necessary condition for the solvability of the state feedback problem.
For finite-dimensional linear systems it is also known to be necessary for solving
the error feedback problem, as it is shown in Francis [11]. The arguments in [11]
can also be carried out for a large class of infinite-dimensional systems that are

10
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well represented in applications, namely for linear control systems with finite rank
control operator B, finite rank observation operator C and with A that satisfies
the so called spectrum decomposition condition at some 3 < 0. This is not sur-
prising if we consider that in the error feedback problem the controller is given less
information about the plant then in the state feedback case. It is also suggested by
the example in the introductory chapter that a necessary step in achieving output
regulation should be the stabilization of the plant.

Definition 2.1 Let the linear operator A be the infinitesimal generator of a Cj
semigroup T'(t) on the Hilbert space Z. T(t) is called [-ezponentially stable if
there exist constants 3 and Mg > 0, such that

IT(t)|| < MgeP for t>0. (2.1)

The infimum of all possible values of B for which (2.1) holds is called the stability
margin of T(t). We say that T(t) is ezponentially stable if its stability margin
1s negative. Let us additionally assume that B : U — Z is a bounded linear
operator from another Hilbert space U to Z. We say that the pair of (A, B) is
B-ezxponentially stabilizable if there exists a bounded operator K : Z — U such that
the semigroup Tay gk (t) generated by A+ BK is (3-ezponetially stable and (A, B)
15 ezponentially stabilizable if it 1s B-exponentially stabilizable for some 5 < 0.

In the previous definition we used, as we will do several times in the following,
the basic perturbation result for linear operators that bounded perturbations of
infinitesimal generators of Cy semigroups also generate Cy semigroups. For com-
posite systems in special cases we know the structure of the perturbed semigroup
as well. The proof of the following lemma can be found in [10] Section 3.2.

Lemma 2.1 Let T1(t) and T»(t) be Cy semigroups on the respective Hilbert spaces
Zy and Z,, with infinitesimal generators A; and A,. Suppose that D : Zy, — Z,

A D
th D(A) =
0 a4, | vt DA

D(A;) X D(Ay) is the infinitesimal generator of the Co semigroup

21 _ T1 (t)Zl + fot T1 (t — S)DTz(S)Zz ds
N T2 (t)Zg .

is a bounded linear operator, then the operator A =

50

22
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The main tool in obtaining the solvability conditions below will be a suitable
decomposition of the state space of the closed-loop system — which is simply the
product of the plant’s and exosystem’s state spaces in the state feedback case,
but includes the state space of the controller also for the error feedback problem.
To obtain such a decomposition we will rely on a result that is originally due to
T. Kato [21]. We state here a version of this result for Hilbert spaces from [10]

(see Lemma (2.5.7) therein), after defininig the notions of operator and semigroup
invariance of subspaces in Hilbert spaces.

Definition 2.2 Let V be a subspace of a Hilbert space H and let A be an infinites-
imal generator of a Cy semigroup on H. We say that V is A-invariant if

A(VND(A)) C V.

Definition 2.3 Let V be a subspace of a Hilbert space H and let T(t) be a Cy
semigroup on ‘H. We say that V' is T(t)-invariant if

TV C V.

These two invariance concepts are equivalent for finite-dimensional systems. In
general, T'(t)-invariance implies A-invariance, but not vice versa. However, they
are equivalent for closed subspaces in D(A) as it is shown in [10]:

Lemma 2.2 Suppose that A is the infinitesimal generator of a Cy semigroup T'(t)
on the Hilbert space H. If V is a closed subspace contained in D(A) and V 1s

A-invariant, then V is T(t)-invariant.
The Kato spectral decomposition result for Hilbert spaces is the following:

Lemma 2.3 Let A be the infinitesimal generator of a Cy semigroup T(t) on H.
Assume tizat the spectrum of A is the disjoint union of two parts ot and o~, such
that a rectifiable, closed , simple curve C can be drawn that encloses an open set
containing ot in its interior and o~ in its exterior. The operator Fe, defined by

Pch = —1— (M — A)’lh dA
2 C

e
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where C is traversed once in positive direction, is a projection, the so called spectral

projection on o*. This projection induces a decomposition of the state space
H=H*®&H",
where H* = PcH and H = (I — P:)H. The following properties also hold:

i. H* and H™ are T(t)-invariant;

4. Ht = PeH C D(A), also Ht and H~ are A-invariant, i.e., AHt C H* and
A(H-ND(A) Cc H~;

ui. The restriction AT of A to H* is a bounded operator on H* and o(A*) =o™.
The restriction A~ of A to H™ has spectrum o(A~) = o~. Furthermore, for
A € p(A) we have that (\] — AY)™ = (M — A)7 Yy and M — A7) ! =
(AI - A)_II'H‘;

w. The operators T*(t) = T(t)|n+ and T~(t) = T(t)|n- are Co semigroups on
H* and H~, respectively, and their infinitesimal generators are given by A™
and A~, respectively.

Next we will see that a special case of the assumption on A in the result above,
namely, that the spectrum of the operator can be separated into two parts by a sim-
ple closed curve, is necessary for the exponential stabilizability of the pair (A, B)
if B is finite rank operator. This shows how strong the concept of exponential
stabilizability is.

Definition 2.4 Let €5 = {A € €' |Re()) > B}, @5 = {) € € |Re()) < B},
of(A) == 0(4) N CF,

and

05(A) =a(A)N 5.

A : Z — Z satisfies the spectrum decomposition assumption at B if UZ','(A) and
O'E(A) can be separated by a rectifiable, closed , simple curve Cs that encloses an

open set containing o3 (A) in its interior and o4 (A) in its exterior.
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By Lemma 2.3 such a decomposition of the spectrum corresponds to a decompo-

sition of the state space Z. The spectral projection P; onto 04 (A) induces the
decomposition of Z:

Z=PZ+(I-P)Z =2 +2;,

and
AT 0 + +
A= [ oo | T = Ts (1) _O : B‘i , (2.2)
where
Af =Alzy, A5 =Al, (2.3)
i) =TIz Ty =T®;, (2.4)
Bg = PﬂB BE = (I — Pg)B. (2.5)

Lemma 2.4 (See [10] Theorem 5.2.6.) Let the linear operator A be the infinites-
imal generator of a Cy semigroup T(t) on the Hilbert space Z. If B: U — Z is a
finite rank linear operator then the following are equivalent:

i. The pair (A, B) of linear operators is 3-exponentially stabilizable;

1. A satisfies the spectrum decomposition assumption at 8. Z ; 18 finite-dimensional,
T5 (t) is B-exponentially stable, and the pair (A}, BF) is controllable.

In the state feedback problem once the plant is stabilized, instability in the com-
posite system, formed from the plant and the exosystem, is due only to unstable
modes in the exosystem itself. We do not want to get rid of this instability, since
this system models the disturbances and produces the reference output. To achieve
tracking we are free to use the exosystem variables for feedback, additional to the
feedback that stabilizes the plant. We design this feedback to shape the composite
system’s state space so that the unstable part lies in the kernel of the observation
operator, i.e., it is output zeroing, while it leaves the exosystem itself intact. If we
are able to do this we achieve that the state of the controlled plant asymptotically
evolves on an output zeroing subspace. This would mean that the state feedback

problem is solved.
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The error feedback problem will be approached with the following considera-
tions. Suppose that are able to achieve output regulation with state feedback, but
we only have the tracking error available. The objective is to use a observer to
approximate the state of the composite system (plant and exosystem) and use the
approximate state in the feedback law that provides solution to the correponding
state feedback problem. If for example we use a Luenberger observer, as it turns
out, this idea works. The approach requires additional conditions, namely, to re-
construct its state with an observer we need the composite system to be detectable.
This is the source of hypothesis hl for finite-dimensional systems. We will also
need the concept of detectability in our settings.

Definition 2.5 Let A be the infinitesimal generator of the Cy semigroup T(t) on a
Hilbert space Z, C : Z — Y be a bounded linear operator from Z to another Hilbert
space Y. We say that the pair of (C, A) is B-exponentially detectable if there exists
a bounded linear operator L : Y — Z such that the semigroup Ta,rc(t), generated
by A+ LC, is B-exponentially stable and (C, A) is exponentially detectable if it is
B-exponentially detectable for some 3 < 0.

Now we will formulate the infinite-dimensional output regulation problems.

2.2 Statement of Problems
Consider a plant described by an abstract distributed parameter control system
in Hilbert space:

%z(t) = Az(t) + Bu(t) + d(), (2.6)
y(t) = Cz(t),
Z(O) = 20,

where z € Z is the state of the system, Z is a separable Hilbert space (state space),
u € U is an input , y € Y is the measured output, U and Y are Hilbert spaces, the
control and output spaces, respectively. The term d(t) represents a disturbance.

S1 A is assumed to be the infinitesimal generator of a strongly continuous semi-
group T(t) on the Hilbert space Z, B € L(U,Z) and C € L(Z,Y).
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(Here we use the notation £(W;, W) to denote the set of all bounded linear oper-
ators from a Hilbert space W, to a Hilbert space W.)

In addition, we will assume that there exists a finite-dimensional linear system,
referred to as the exogenous system (or exosystem), that produces a reference
output y,(t) and which is also used to model the disturbance d(t):

ditw(t) = Sw(t) (2.7)
(t) = Qui) (238)
d(t) = Pw(t) (2.9)
w(0) = wy. (2.10)

S2 Here S € L(IR"), Q € L(R*,Y) and P € L(IR*, Z).

We will refer to the difference between the measured and reference outputs as
the error

e(t) = y(t) — y (8) = Cz(t) — Qu(?). (2.11)

The two problems we are interested in are formulated as follows.

I. Linear State Feedback Regulator Problem:
Find a feedback control law in the form u(t) = Kz(t) + Lw(t) such that K €
L(Z,U), L € L(IR*,U) and

I.a 2(t) = (A + BK)z(t) is stable, i.e., (A + BK) is the infinitesimal generator
of an exponentially stable Cy semigroup.

I.b For the closed-loop system
z(t) = (A+ BK)z(t) + (BL + P)w(t), (2.12)
w(t) = Sw(t)
the error
e(t) = Cz(t) — Quw(t) — 0

as t — oo, for any initial condition in Z X R*.

Since the state of the plant is usually not fully available, we are led to investigate

the error feedback regulator problem.
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II. Linear Error Feedback Regulator Problem:
Find an error feedback controller of the form

ditX(t) = FX(t) + Ge(t), (2.13)
u(t) = HX(t)

where X (t) € X for t > 0, X is a Hilbert space, G € L(Y,X), He L(X,U) and
F’ is the infinitesimal generator of a C; semigroup on X with the properties that

II.a The system

d
az(t) = Az(t)+ BHX(t), (2.14)
d
EX(t) = FX(t) + Ge(t)
is exponentially stable when w = 0, i.e., GAC BH is the infinitesimal

generator of an exponentially stable Cy semigroup, and

II.b for the closed-loop system

d
PTRA
% X(t) = GC2(t) + FX(t) — GQu(t),

t) = Az(t) + BHX(t) + Pu(t), (2.15)

d
Ew(t) = Sw(t)

the error e(t) = Cz(t) — Qw(t) — 0 as t — oo, for any initial condition in
Z x X x R*.

We impose the following standard assumptions.
Three basic assumptions:

H1 Assume that the spectrum of the exosystem is contained in the closed right
half plane, i.e., o(S) C C7;

H2 Assume that the pair (A, B) is exponentially stabilizable, i.e., there exists
K € £L(Z,U) such that A+ BK is the infinitesimal generator of an exponen-
tially stable Cy semigroup;
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H3 Assume that the pair

AP
0 S

(

is exponentially detectable, i.e., there exists G € L(Y, Z x IR¥),

¢ - ]) (2.16)

G
G= [ 1 } , G1€ LY, Z), Gy € LY, R),

G,
such that
A P G,
0 S [Gz][c Q]

is the infinitesimal generator of an exponentially stable Cy semigroup.

These assumptions correspond to the hypotheses h1-h3, on which the finite-
dimensional linear regulator theory is based. H1 does not involve loss of generality
since the modes of the exosystem that correspond to eigenvalues in the open left
half plane decay exponentially to zero, and so asymptotically do not affect the
output regulation. It is evident from the formulation of the state feedback prob-
lem, that for its solvability H2 is a necessary condition. For finite-dimensional
linear systems it is known that the stabilizability of (A4, B) and the detectability of
(C, A) are necessary for the solvability of the error feedback problem. The proof of
this result, which appeared in [11] can be adjusted to our settings, provided that
we make additional assumptions on the system (2.6). Before we do that we will
state a result from [10] (Theorem 5.2.11) that, for a class of linear control systems,
will give necessary and sufficient conditions for exponential stabilizability and de-
tectability that are generalizations of the finite-dimensional Hautus conditions. We
will use notations that were set in Definition 2.4 and in (2.2)-(2.5).

Theorem 2.1 Consider the linear system with B and C finite rank operators.

Suppose that A satisfies the spectrum decomposition assumption at 3, o'ﬂ*(A) com-

prises finitely many eigenvalues, with finite multiplicity and Tg (t) is 3-ezponentially
stable. The pair (A, B) is 3-ezponentially stabilizable if and only if

Ran(sI — A)+ RanB=Z2  forall se {j. (2.17)
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The pair (C, A) is B-ezponentially detectable if and only if
Ker(sI — A)Nn KerC ={0}  forall se@j. (2.18)

Let us now make the additional assumptions on system (2.6) that the conditions
of Theorem 2.1 are satisfied.

Assume that A satisfies the spectrum decomposition assumption at 3 < 0,
o4 (A) comprises finitely many eigenvalues, with finite multiplicity and T 5 (t) is
B-exponentially stable. Assume also that B and C are finite rank operators. Let
there exist a controller of the form (2.13) that solves the error feedback regulator

: ~ A BH
problem. In particular A = Go is the infinitesimal generator of an
exponentially stable Cyy semigroup. It means that the stability margin of A,
wo = lim PBITEAN _
t—0 t

But then the spectrum o(A4) C _G'—[,:, and therefore €5, C p(A). This implies that

2
for every s € €%,
2

A—-—sl BH
GC F—sI

is boundedly invertible in Z x X’ with dense range. This implies that Ran(sI —
A) + Ran(BH) is dense in Z and Ker(sI — A) N Ker(GC) = {0} or, a forteriori,
that the subspace

Ran(sI — A) + RanB (2.19)

of Z is dense for all s € € and
Ker(sI — A)N KerC ={0}  for se @, (2.20)

with w = max(%, 3). By Theorem 2.1, (2.20) is equivalent to the w-exponential
detectability of (C, A). Since w < 0 this gives that the pair (C, A) is exponentially
detectable. Considering the statement of Theorem 2.1 it may seem that the density
of Ran(sI — A) + RanB in Z is not sufficient for the w-exponential stabilizability
of (A, B), however scrutinizing the proof of Theorem 2.1 in [10] we find that it
can be modified to show that it is indeed sufficient (see Lemma 2.5 below). Since
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w < 0 we can also conclude that (A, B) exponentially stabilizable. Thus, with the
following lemma we obtain that for the solvability of the error feedback problem

the exponential stabilizability of (A, B) and the exponential detectability of (C, A)
are necessary.

Lemma 2.5 Suppose that the assumptions of Theorem 2.1 hold. If
Ran(sI — A) + RanB

is a dense subspace of Z for all s € €' (A) then (A, B) is w-ezponentially stabiliz-
able.

Proof: We repeat the argument given in [1