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Output Regulation for Voltage Control in DC
Networks With Time-Varying Loads

Amirreza Silani , Michele Cucuzzella , Member, IEEE ,

Jacquelien M. A. Scherpen , Senior Member, IEEE ,

and Mohammad Javad Yazdanpanah

Abstract—In this letter, we propose a novel control
scheme for regulating the voltage in Direct Current (DC)
networks. More precisely, the proposed control scheme is
based on the output regulation methodology and, differ-
ently from the results in the literature, where the loads are
assumed to be constant, we consider time-varying loads
whose dynamics are described by a class of nonlinear dif-
ferential equations. We prove that the proposed control
scheme achieves voltage regulation ensuring the stability
of the overall network.

Index Terms—DC networks, voltage control, nonlinear
output regulation.

I. INTRODUCTION

T
HE RECENT wide spread of renewable energy sources,

electronic appliances and batteries motivates the design

and operation of Direct Current (DC) networks, which are

generally more efficient and reliable than AC networks [1].

In order to guarantee a proper and safe functioning of the

overall network and the appliances connected to it, the main

control objective in DC networks is voltage stabilization (see

for instance [2]–[9]). In [2], new passivity properties using

a Krasovskii’s type Lyapunov function as storage function

are presented for control of Brayton-Moser systems. A robust

decentralized control scheme is presented in [3], where the

loads are assumed to be measurable. A nonlinear adaptive
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control scheme is designed in [4] to increase the stability

margin of DC networks with unknown constant power loads.

An input-to-state stability (ISS)-like Lyapunov function is

obtained and used for control design in [5], ensuring voltage

stability with known constant loads. Robust and decentralized

passivity-based control schemes are proposed in [6], [7] to

achieve voltage regulation with unknown constant ZIP loads.

In [8], the authors study the conditions under which PI con-

trollers (locally) passivate the generation units and the constant

ZIP loads. In [9], a systematic and constructive design based

on the port-Hamiltonian framework is proposed. However,

all these works provide stability guarantees only in pres-

ence of constant load components, while loads are in practice

time-varying.

Nowadays, the ever increasing electrification of transporta-

tion and buildings may indeed increase the demand fluctua-

tions, putting a strain on the system stability [10], [11]. For

this reason, the resilience and reliability of the power grid may

benefit from the design and analysis of control strategies that

theoretically guarantee the system stability in presence of time-

varying loads [12], [13]. Indeed, [10] and [11] show that loads

can be described for instance by stochastic processes (e.g., Ito

calculus) or dynamical models, respectively, attracting much

research attention (see for instance [14], [15] for AC networks

and [12], [13] for DC networks). However, [12], [13] do not

provide any stability or convergence guarantee. Differently, in

this letter we adopt a load model similar to but more general

than the one in [15], and propose a control scheme based on

the output regulation methodology [16], guaranteeing voltage

regulation in presence of time-varying loads.

The main contributions of this letter can be summarized

as follows: (i) the voltage control problem in DC networks

including time-varying loads is formulated as a standard output

regulation problem; (ii) we consider time-varying impedance

and current load components; (iii) we describe each load com-

ponent as the output of a large class of nonlinear dynamical

exosystem, as it is customary in output regulation theory [16];

(iv) the proposed control scheme achieves voltage regulation

ensuring the stability of the overall network.

Notation: The set of positive (nonnegative) real numbers

is denoted by R>0 (R≥0). Let 0 be the vector of all zeros

or the null matrix of suitable dimension(s) and let 1n ∈ R
n
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Fig. 1. Electrical scheme of DGU i , load i and transmission line k , with
i ∈ V and k ∈ E.

be the vector containing all ones. The i-th element of vec-

tor x is denoted by xi. A steady-state solution to the system

ẋ = ζ(x), is denoted by x, i.e., 0 = ζ(x). Given a vector

x ∈ R
n, [x] ∈ R

n×n indicates the diagonal matrix whose diag-

onal entries are the components of x. Let A ∈ R
n×n be a

matrix. In case A is a positive definite (positive semi-definite)

matrix, we write A > 0 (A ≥ 0). The n × n identity matrix is

denoted by In. Let x ∈ R
n, y ∈ R

m be vectors, then we define

col(x, y) := (x⊤ y⊤)⊤ ∈ R
n+m. Consider the vector x ∈ R

n and

functions g:Rn → R
n×m, h : Rn → R

n, then the Lie deriva-

tive of h(x) along g(x) is defined as Lgh(x) := ∂h(x)
∂x

g(x), with
∂h(x)
∂x

= col( ∂h1(x)
∂x

, . . . ,
∂hn(x)

∂x
) and ∂hi(x)

∂x
= (

∂hi(x)
∂x1

. . .
∂hi(x)
∂xn

),

for i = 1, . . . , n. The bold symbols denote the solutions to

Partial Differential Equations (PDEs).

II. PROBLEM FORMULATION

In this section, we introduce the DC network model together

with the dynamics of the load components, which are consid-

ered as the outputs of nonlinear dynamical exosystems. Then,

the main control objective concerning the voltage regulation

is introduced.

A. DC Network Model

The model of the considered DC network includes

Distributed Generation Units (DGUs), loads and transmission

lines (see for instance [17]–[19] and the references therein).

Fig. 1 illustrates the architecture of the considered DC network

and the meaning of the used symbols. Let G = (V, E)

be a connected and undirected graph describing the DC

network topology. The nodes and the edges are denoted by

V = {1, . . . , n} and E = {1, . . . , m}, respectively. Then, let

A ∈ R
n×m denote the corresponding incidence matrix, whose

entries are given by Aik = +1 if i is the positive end of k,

Aik = −1 if i is the negative end of k, and Aik = 0 other-

wise. Then, the dynamics of the overall network can be written

compactly as

Lg İg = −V + u

CgV̇ = Ig + AI − [Gl]V − Il

Lİ = −A⊤V − RI, (1)

where Ig, V, u : R≥0 → R
n, I : R≥0 → R

m, Lg, Cg ∈ R
n×n
>0 and

R, L ∈ R
m×m
>0 are diagonal matrices. Also, Gl, Il :R≥0 → R

n are

time-varying signals. More precisely, we assume that Gl, Il are

the output vectors of nonlinear dynamical exosystems, whose

dynamics are introduced in the next subsection. To refer to the

load types above, the letters Z and I, respectively, are often

used in the literature (see for instance [6]).

B. Exosystems Model

In this letter, we consider the dynamics of the components

of the ZI load, i.e., Gl, Il, as the outputs of (known) nonlinear

dynamical exosystems, as it is customary in output regulation

theory [16]. Let y denote G or I in case of Z or I loads,

respectively. Then, the exosystem dynamics can be expressed

as follows:

ḋa
yi = 0

ḋb
yi = syi(d

b
yi)

yli = Ŵyi col
(

da
yi, db

yi

)

, (2)

where da
yi : R≥0 → R, db

yi : R≥0 → R
nd are the states of

the exosystem describing the constant and time-varying com-

ponents of yli, respectively, syi : R
nd → R

nd , and Ŵyi ∈

R
1×(nd+1), nd ∈ R>0 being the dimension of the time-varying

component. Then, (2) can be written compactly as

ḋy = Sy(dy)

yl = Ŵydy, (3)

where dy : R≥0 → R
n(nd+1) is defined as

dy := col(da
y1, db

y1, . . . , da
yn, db

yn), yl : R≥0 →

R
n, Sy : R

n(nd+1) → R
n(nd+1) is

defined as Sy := col(0, sy1, . . . , 0, syn), and

Ŵy := blockdiag(Ŵy1, . . . , Ŵyn) ∈ R
n×n(nd+1).

C. Control Objective

Before introduce the main control objective of this letter,

we notice that for a constant input u, the steady-state solution

(Ig, V, I, dI, dG) to (1) and (3) satisfies

V = u (4a)

ŴIdI + [ŴGdG]V − Ig = AI (4b)

I = −R−1A⊤V (4c)

0 = SI(dI) (4d)

0 = SG(dG). (4e)

Then, the control objective concerning the steady-state value

of the voltages is defined as follows:

Objective 1 (Voltage Regulation):

lim
t→∞

V(t) = V∗, (5)

V∗
i ∈ R>0 being the voltage reference at node i ∈ V .

III. OUTPUT REGULATION BASED CONTROLLER DESIGN

In this section, we formulate the voltage control problem as

a standard output regulation problem [16] in order to design

a control scheme achieving Objective 1.

Let the network state x : R≥0 → R
m+2n and the exosystems

state d : R≥0 → R
2n(nd+1) be defined as x := col(Ig, V, I)

and d := col(dI, dG), respectively, and u : R≥0 → R
n be the

Authorized licensed use limited to: University of Groningen. Downloaded on February 15,2021 at 10:08:14 UTC from IEEE Xplore.  Restrictions apply. 
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control input. Then, we can rewrite (1) and (3) as the following

composite system:

ẋ = f (x, d) + g(x, d)u (6a)

ḋ = S(d) (6b)

h(x, d) = V − V∗, (6c)

where h(x, d) is the output mapping, S(d) := col(SI(d), SG(d)),

g(x, d) := col(L−1
g , 0n×n, 0m×n) and

f (x, d) :=

⎛

⎝

−L−1
g V

C−1
g

(

Ig + AI − [ŴGdG]V − ŴIdI

)

L−1
(

−A⊤V − RI
)

⎞

⎠.

Now, we compute the relative degree of system (6), which

will be used in the following subsections for analyzing the

zero dynamics of system (6). Let

fa(x, d) := col(f (x, d), S(d))

ga(x, d) := col(g(x, d), 02n(nd+1)×n), (7)

then, based on the definition [16, Definition 2.47], the relative

degree of the system (6) is computed in the following lemma.

Lemma 1 (Relative Degree of System (6)): For each i =

1, . . . , n, the i-th output hi of system (6) has relative degree

ri = 2 for all the trajectories (x, d).

Proof: System (6) satisfies

Lga h(x, d) = 0n×n

Lga Lfa h(x, d) = C−1
g L−1

g , (8)

which concludes the proof.

Before introducing the output regulation methodology, we

show in the following lemma that there exists a state-feedback

controller that asymptotically stabilizes system (6a) when

the load components are constant. More precisely, similarly

to [2]–[9], we provisionally assume that Gl and Il in (1) are

constant vectors. This result is indeed needed for the solvabil-

ity of the output regulation problem we introduce in the next

subsection (see [16, Assumption 3.2]).

Lemma 2 (Stabilizability of System (6a) With Constant

Loads): Consider system (6a) with d = d∗, d∗ =

col(d∗
I , d∗

G) ∈ R
2n(nd+1) being any constant vector. Let

Kx := (−K 0n×n 0n×m), where K ∈ R
n×n is a positive defi-

nite diagonal matrix. Then, system (6a) in closed-loop with

the state-feedback controller

u = Kxx (9)

asymptotically converges to the equilibrium point (Ig, V, I),

satisfying (4a)–(4c).

Proof: Consider the following Lyapunov function

S(x) = (Ig − Ig)
⊤Lg(Ig − Ig) + (V − V)⊤Cg(V − V)

+ (I − I)⊤L(I − I). (10)

Then, the derivative of the Lyapunov function (10) along the

solutions to (6a) satisfies

Ṡ(x) = −(Ig − Ig)
⊤K(Ig − Ig)

− (V − V)⊤[ŴGd∗
G](V − V) − (I − I)⊤R(I − I)

≤ 0, (11)

where the inequality follows from K, R > 0 and [ŴGd∗
G] ≥ 0.

Then, as a preliminary result we can conclude that the

solutions to the closed-loop system (6a), (9) are bounded.

Moreover, according to LaSalle’s invariance principle, these

solutions converge to the largest invariant set contained in

� := {Ig, I, V:Ig = Ig, I = I}. Hence, the behavior of the

closed-loop system (6a), (9) on the set � can be described by

0 = −V − KIg (12a)

CV̇ = Ig + AI − [ŴGd∗
G]V − ŴId

∗
I (12b)

0 = −A⊤V − RI. (12c)

Then, it follows from (12a) that V is also constant on the

largest invariant set �, concluding the proof.

In the following, we briefly recall for the readers’ conve-

nience some concepts of the output regulation methodology.

Then, we propose a control scheme for the problem of voltage

regulation in DC networks including time-varying loads.

A. Output RegulationMethodology

We now define the nonlinear output regulation problem for

system (6) as follows.

Problem 1 (Nonlinear Output Regulation): Let the initial

condition (x(0), d(0)) of system (6) be sufficiently close to the

equilibrium point (x, d) satisfying (4). Then, design a static

state feedback controller

u(t) = k(x(t), d(t)), (13)

such that the closed-loop system (6), (13) has the following

two properties:

Property 1: The trajectories col(x(t), d(t)) of the closed-

loop system exist and are bounded for all

t ≥ 0.

Property 1: The trajectories col(x(t), d(t)) of the closed-

loop system satisfy limt→∞ h(x, d) = 0n,

achieving Objective 1.1

If there exists a controller such that the closed-loop system

satisfies Properties 1 and 2, we say that the (local) nonlin-

ear output regulation problem (Problem 1) is solvable. Now,

in analogy with [16, Assumption 3.1′], we introduce the

following assumption.

Assumption 1 (Stability of Exosystem): The equilibrium d

of the exosystem (6b) is Lyapunov stable and there exists an

open neighborhood D of d = d in which every point is Poisson

stable [16, Remark 3.2].

We need the above assumption for establishing the nec-

essary condition for the solvability of Problem 1. Then

the solvability of Problem 1 is established in the following

theorem.

Theorem 1 (Solvability and Regulator Equation): Let

Assumption 1 hold. Problem 1 is solvable if and only if there

exist smooth functions x(d) and u(d) defined for d ∈ D such

that

∂x(d)

∂d
S(d) = f (x(d), d) + g(x(d), d)u(d) (14a)

0n = h(x(d), d). (14b)

1Note that Property 2 implies x = col(Ig, V∗, I).

Authorized licensed use limited to: University of Groningen. Downloaded on February 15,2021 at 10:08:14 UTC from IEEE Xplore.  Restrictions apply. 
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Proof: See2 [16, Th. 3.8].

The Partial Differential Equation (PDE) (14a) together

with (14b) is called regulator equation. It can be inferred from

Theorem 1 that the solvability of the regulator equation (14)

is equivalent to the solvability of Problem 1.

B. Controller Design

In this subsection, a novel control scheme is designed for

solving Problem 1 and, consequently, achieving Objective 1

in presence of time-varying loads. More precisely, we first

analyze the zero dynamics of system (6) in order to make the

regulator equation (14) simpler. Then we present the proposed

control scheme.

Let x(d) in (14) be partitioned as x(d) = col(xa(d), x
b(d)),

with x
a(d) = col(Ig(d), V(d)) and x

b(d) = I(d). Then,

consider the following PDE:

∂x
b(d)

∂d
S(d) = ̺

(

x
b(d), d

)

, (15)

where

̺
(

x
b(d), d

)

= −L−1
(

A⊤V∗ + RI(d)
)

. (16)

Moreover, let Ig(d), V(d) be given by

V(d) = V∗

Ig(d) = −AI(d) + [ŴGdG]V∗ + ŴIdI . (17)

Recalling that for each i = 1, . . . , n, the i-th output hi of

system (6) has relative degree equal to 2 (see Lemma 1), equa-

tion (17) follows from considering the output and its first-time

derivative being identically zero. In the following theorem, we

propose a controller solving Problem 1.

Theorem 2 (Controller Design): Let Assumption 1 hold.

Consider system (6) in closed-loop with

u = u∗
e(x(d), d) + Kx(x − x(d)), (18)

where

u∗
e(x(d), d) = V∗ + LgAL−1A⊤V∗ + LgAL−1RI(d)

+ LgŴISI(dI) + Lg[V∗]ŴGSG(dG), (19)

and I(d) is the solution to (15). Then, the trajectories of

the closed-loop system (6), (18) starting sufficiently close to

(Ig, V∗, I, dI, dG) are bounded and converge to the set where

the voltage is equal to the corresponding desired reference

value V∗, achieving Objective 1.

Proof: In analogy with [16, Th. 3.26], we first compute the

following matrix:

He(x, d) =

(

h(x, d)

Lfa h(x, d)

)

. (20)

Then we notice that the solution to He(x, d) = 02n for

system (6) can be expressed as follows:

V = V∗

Ig = −AI + [ŴGdG]V∗ + ŴIdI . (21)

2Note that by virtue of Lemma 2, we do not need [16, Assumption 3.2].

Therefore, there exist the partition xa := col(Ig, V), xb := I

and sufficiently smooth function δ(xb, d) := col(−AI +

[ŴGdG]V∗ + ŴIdI, V∗) such that He(x, d)|xa=δ(xb,d) = 02n.

Recalling that for each i = 1, . . . , n, the i-th output hi of

system (6) has relative degree equal to 2 (see Lemma 1), we

compute the equivalent control input ue(x, d) by posing the

second-time derivate of the output mapping (6c) equal to zero,

i.e.,

L2
fa

h(x, d) + Lga Lfa h(x, d)ue(x, d) = 0n, (22)

that is,

ue(x, d) = V + LgC−1
g [ŴGdG]

(

Ig + AI − [ŴGdG]V

− ŴIdI

)

+ LgAL−1
(

A⊤V + RI
)

+ LgŴISI(dI) + Lg[V]ŴGSG(dG). (23)

Now, let u∗
e(x, d) := ue(x, d)|xa=δ(xb,d). By replacing V and Ig

in (23) with the right-hand side of (21), we obtain

u∗
e(x, d) = V∗ + LgAL−1A⊤V∗ + LgAL−1RI

+ LgŴISI(dI) + Lg[V∗]ŴGSG(dG). (24)

According to Lemma 1, the zero dynamics of (6) can be

expressed as

Lİ = −A⊤V∗ − RI

ḋ = S(d), (25)

which can be rewritten as

ẋb = ̺(xb, d), (26a)

ḋ = S(d), (26b)

Now, we replace xb in (26a) with the solution x
b(d) to (15);

therefore, ̺(xb(d), d) can be given by (16). Moreover, by

observing that the matrix
∂̺(xb,d)

∂xb |(x,d)=(x,d) = −R is nega-

tive definite, then, according to [16, Corollary 3.27], we know

that the solution to (14) exists and can be given by

x(d) =

⎛

⎝

−AI(d) + [ŴGdG]V∗ + ŴIdI

V∗

I(d)

⎞

⎠

u(d) = u∗
e(x(d), d), (27)

where I(d) is the solution to (15) and u∗
e(x(d), d) is given

by (19). Consequently, according to Theorem 1, Problem 1 is

solvable. Properties 1 and 2 in Problem 1 imply that the trajec-

tories of the closed-loop system (6), (18) starting sufficiently

close to (Ig, V∗, I, dI, dG) are bounded and converge to the set

where the voltage is equal to V∗, achieving Objective 1.

Remark 1 (Controller Properties): Note that the struc-

ture of the control scheme we propose in this letter is more

complex than other control schemes proposed in [2]–[9].

More precisely, the proposed control scheme is distributed,

requires some information about the network parameters and

the exosystems, which can be determined in practice from data

analysis and engineering understanding. Also, a current sensor

is required at each node to measure the generated current Ig.

Note that, this higher complexity is associated with the more

Authorized licensed use limited to: University of Groningen. Downloaded on February 15,2021 at 10:08:14 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. Scheme of the considered microgrid with 4 nodes [18], [19].

Fig. 3. Comparison between the load current profile obtained from
the database [25] and the load current profile produced by the consid-
ered exosystems (similar results are obtained for the load conductance
profile).

challenging control objective we achieve. Indeed, differently

from [2]–[9], the proposed control scheme achieves voltage

regulation in DC networks affected by time-varying rather than

constant loads. Moreover, we notice that I(d) can be approx-

imated via the approximation methods proposed for instance

in [16, Ch. 4], [20], [21].

IV. SIMULATION RESULTS

In this section, the performance of the proposed method is

verified in simulation. We consider a DC network composed of

4 nodes as illustrated in Fig. 2, whose electric parameters are

equal to those reported in [18, Tables 2, 3] and are identical or

very similar to those used in [2], [7]–[9], [17], [19], [22] for

simulations and in [6], [23], [24] for experimental validation

in DC microgrids test facilities. In the following, we assume

that there is a mismatch between the actual load profile and

the one generated by the corresponding exosystem, showing

that the controlled system is input-to-state stable (ISS) with

respect to such a mismatch and the voltages are kept very

close to the desired references.

Let the system initially be at the steady-state with Il(0) =

col(30, 15, 30, 26) A and Gl(0) = col(0.07, 0.05, 0.06, 0.08)

�−1. Then, we suppose that at the time instant t = 1 s

the exosystems produce the following load variations: �Il =

1.43 sin(0.08t − 0.12)+ 0.45 sin(1.37t − 3.5)+ 1 A for Nodes

1, 2 and 3, �Il = 12.41 sin(0.477t −1.1)+11.98 sin(0.495t +

Fig. 4. Proposed controller: time evolution of the voltages at each node
together with the corresponding desired values (dashed lines).

1.97)+ 0.5 A for Node 4, and �Gl = 0.005�Il �−1, i.e., the

exosystem (6) can be expressed as

ḋa
yi = 0

ḋb
yi =

⎛

⎜

⎜

⎜

⎝

0 −ωα
yi 0 0

ωα
yi 0 0 0

0 0 0 −ω
β
yi

0 0 ω
β
yi 0

⎞

⎟

⎟

⎟

⎠

db
yi

yli = Ŵyi col
(

da
yi, db

yi

)

, (28)

where da
yi : R≥0 → R, db

yi : R≥0 → R
4 are the states of the

exosystem, ωα
yi, ω

β
yi are equal to 0.08 and 1.37 rad/s for Nodes

1, 2 and 3, and 0.477 and 0.495 rad/s for Node 4, respectively.

Moreover, the elements of the matrix Ŵyi can be obtained by

the amplitude and phase of the sinusoidal terms in �Il and

�Gl, where y denotes G or I in case of impedance or cur-

rent loads, respectively. Then, at the time instant t = 1 s, we

let the load vary according to the real values obtained from

the dataset3 [25], while the controller uses the information of

the exosystems, which generate load trajectories that are dif-

ferent from the real ones (see Fig. 3). We can observe from

Fig. 4 that, despite the mismatch between the actual load pro-

file and the one generated by the corresponding exosystems,

the voltage at each node is kept very close to the correspond-

ing reference, showing that the controlled system is ISS with

respect to such a mismatch, achieving in practice Objective 1

(we have also tested the case without mismatch, obtaining

exact convergence to the voltage references).

Moreover, we compare our controller with the one proposed

in [17], which is designed to deal with constant loads only.

We can clearly observe from Fig. 5 that the controller in [17]

is not capable to achieve voltage regulation.

Finally, although the estimate of the region of attraction of

the equilibria is out of the scope of this letter, we have verified

3Note that the dataset [25] provides hourly load profile data. However, given
the fast dynamics of our system, it does not make sense to show simulations
of 24 hours. Since the real load profile looks like a sinusoidal signal, we
have then reproduced the same signal (in terms of amplitude) with a higher
frequency.
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Fig. 5. Controller [17]: time evolution of the voltages at each node
together with the corresponding desired values (dashed lines).

in simulation that such a region is very large, especially when

compared with linear control techniques.

V. CONCLUSION AND FUTURE WORK

In this letter, we have considered time-varying dynamics

for the load components of a DC power network. Then, we

have proposed a control scheme based on the output regula-

tion methodology to achieve voltage regulation and guarantee

the stability of the overall network. Future research directions

include the use of robust output regulation theory to tackle the

problem of voltage regulation and current sharing in uncertain

DC networks.
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