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Abstract

We present an algorithm for the well-known bidden·surface elimination

problem for redangles, which is also known as the window rendering problem.

The time complexity of our algorithm is sensitive to the size of the output.

Specifically, it runs in time that is O(n1.5 + k), where k is the size of the

output (which can be as large as 6(n2 )). For values of kin the range between

n1.5jlog nand n2 , our algorithm is asymptotically faster than previous ones.

1 Iritroduction

The hidden-surface el~mination problem is well known in computer graphicS and com

putational geometry \6,12,13,15,16,19,20,21,22]: one is given a set of simple, non

intersecting planar polygons in 3-dimensional space, and a proje~tion plane 7r, and wishes

to determine which portions of the polygons are visible when viewed from infinity along

a direction normal to 7r, assuming aU the polygons are opaque. An important special

case of this problem occurs when the polygons are all isothetic rectangles, i.e., the rect,.

angles are all parallel to the :ty-plane and have sides that are parallel to either the :t

or y-axis. This version of the hidden-surface elimination problem is also known as the

window rendering problem [4}, since it is the problem that must be solved to render the

windows that might need to be displayed on the screen of a work-station. (See Figure 1.)

Another situation where one often wishes to render such a collection of rectangles is in

IThis ...uthor's rese...rch Wall supported by the Office of Nn.T.ll Research under Grnnts NOOOI4·84·

K-OS02 ;],Jld N00014-8G-K-OG89, ...nd the N:Ltion...1 Science Found...tion under Grnnt DCR·8451393, with

m3tching funds from AT&T. P ...rt of thi.s rese...rch W;:),S c3ITied out while this :Luthor was visiting the Re

se:Lrch Institute for Adv:mced Compu~er Science, NASA Ames Research Center, Moffett Field, C...liforni....

2This :Luthor's rese:Lrch W;:),S supported by the N..tjon...l Science Foundation under Grant CCR·88105G8.
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Figure 1: (a) isothetic rectangles; (b) their visible portion.

drafting software, where any time a rectangle R1 is created, by the draftsman, before

rectangle Rz is created, then R1 is "behind" R2 , unless the draftsman explicitly changes

this ordering (e.g., by executing a "move to front" cOIJ".mand on R1 or, equivalently, a

"send to back" command on R2)-

Using the terminology of [221, we are interested in the object space version of this prob

lem. That is, we want a method that produc~ a device-independent, mathematically

based representation of the visible surfaces. One reason for our interest in an object

space solution is that such a solution is not dependent on a certain method for rendering

polygons nor on the number of pixels on a display screen (which seems to grow with

each passing year). In addition, an object space solution gives us a representation that

is easily scaled and rotated.

We briefly review some of the efficient algorithms for the window rendering problem.

Since this problem is a special case of hidden-surface elimination [131, any algorithm

for the general case can also be used for this problem. In [13] McKenna shows how

to solve the general hidden-surface elimination problem in O(n
1

) time, generalizing an

~lgorithm by Devai [61 for the e3.Sier hidden-line elimination problem that also runs in

O(n1) time. (In the hidden-line o-::~ination problem one is only interested in computing

t.he portions of the polygonai :'c;'::;'(i].:-ies that are visible.) Both of these algorithms are

worst-case optimal, because there are problem instances that have e(n
1

) output size

(,:.g_, a collection of rectangles that form a croSS hatched pattern, as in Figure 2a.)

Unfortunately, these algorithms always take O(nZ
) time, even if the size of the output

is very small (e.g., 0(1)). There are algorithms that run faster than O(n
2

) for certain
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Figure 2: (a) Quadratic output size; (b) Small output size with
quadratic I.

problem instances, however. We review these next.

In [151 Nurmi gives an algorithm for general hidden-line elimination that runs in

O((n + l) log n) time and O((n + I) logn) space, where I is the number of pairs of line

segments whose projections on 11" intersect (I is O(n2
)). Schmitt [19] is able to achieve

this same time bound for hidden-surface elimination using only O(n + I) space. If I is

o(n2/ log n), then t'hese algorithms clearly run faster than O(n2) time. Their worst-case

performance is} however, a suboptimal O(n2 logn) time (if I is e(n
2

))".

In 1121 Gliting and Ottmann address the window rendering problem (they are proba

bly the first to study this important special case of hidden-surface elimination), giving an

algorithm that runs in O(n 10gZ n + I) time. In [9] Goodrich shows how to solve general

hidden-line elimination, and a version of hidden-surface elimination that includes the

window rendering problem as a special case, in O(n log n + 1+ P) time, where P is the

number of pairs of polygons whose projections on rr intersect (P is O(n
2
)). Both of these

algorithms are optimal in the worst case and also take advantage of problem instances

that are "simpler" than in the worst case, but they are not truly output-sensitive. In

deed, there are problem instar:c~5 where these two algorithms run in DenZ) time even

though the output size is \.~:"y 5:-;:all (e.g., a large rectangle that covers up a collection

of cross hatched rectangles, ~ in Figure 2b.)

Recently, Bern [41 and Preparata, Vitter, and Yvinec 11B\ have shown that one can

sOlve the window rendering problem in O(nlog n log log n+k log n) time and O(n 10gZ n+

klogn) time, respectively, where k is the actual size of the output (recall that k is at
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worst 8(n:l)). Thus, ~hey have shown that one can solve the window rendering problem

in an output-sensitive manner. Their algorithms are not worst-case optimal, however.

In this paper we give an algorithm for the window rendering problem that is both

worst-case optimal and output-sensitive. Specifically, our algorithm runs in O(n1.5 + k)

time, where k is the actual size of the output. Thus, our algorithm is faster than those or

Bern [41 and Preparata, Vitter, and Yvinec !181 for k in the range between n 1.5 / log nand

nZ. Our algorithm is based on a problem-division approach to hidden-surface elimina

tion. In this approach one typically divides the problem-call it A-into two dissimilar

subproblems Band C, solves Band C independently (usually by completely different

techniques), and then "marries" the solutions to Band C to give a solution to A. Apply

ing this approach to the window rendering problem can lead to an algorithm that runs

in O(n1.slogn + k log n) time, although the details are somewhat non-trivial. This, of

course, is worse than previous solutions for all values of k. One of the ways we avoid these

logarithmic multiplicative factors is by modifying the approach so that we divide A into

Band C, and solve B, just as before, but then solve C while marrying the solutions to

Band C. Other ways we avoid these factors are based on fundament<JJ paradigms from

computational geometry. including batched dynamic searching !81, space-sweeping [17},

and fractional ca.scading [5].

In the next section we give a high-level description of our algorithm, and in the

subsequent sections (3-5) show how to implement each of its constituent steps. We

conclude in Section 6.

2 An Overview of the ·Window Rendering Algorithm

Suppose we are given a collection S of n non-intersecting isothetic rectangles in m3
, i.e.,

a collection of rectangles parallel to the xy-plane such that aU edges are parallel to either

the x- or y-axis. The problem is to comput~ all the portions of each rectangle that are

visible from z == oc with light rays that 'i,R" parallel to the z-axis (i.e., t.he projection

plane is the xy-plane).

More specifically, each rectangle R is giv!:!n by a triple ((Xl, yd, (x~, Y2), z), where

(Xl, yd is the lower-left corner of R, (X2' Y2) is the upper-right corner of R, and z is

the z-coordinate of the plane to which R belongs. For the remainder of this paper we

assume that the relationships "to the left of" and "to the right of" are with respect
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to x-coordinates, that the relationships "above" and "below" are with respect to y

coordinates, and that the relationships "in front of" and "behind" are with respect to

z-coordinates_

There are many ways that one can specify what constitutes a solution to the hidden

surface elimination problem [12,13,16,20,21,221. Let G be the planar subdivision deter

mined by a solution to the hidden-line elimination problem. Typically, a solution to the

hidden-surface elimination problem is given by G, augmented so that each polygonal face

of G stores the name of the rectangle of S that is visible in ,that face. Our exposition

will gain in simplicity if our output specification, which we denote by V is(S), generalizes

this so that each face is itself a rectangle (our Vis(G) is obtained from G by adding to

it a small number of extra edges, as explained below).

We begin our definition of Vis(S) by examining the subdivision G a little more

closely. For each vertex v of G either v corresponds to a (visible) corner point of a

rectangle in S or v corresponds to an intersection of two visible edges (where one of

them becomes occluded by the other, i.e., an intersection of the form T, .1, 1-, or -I).

We call sucb intersections dead ends, and classify them into two types: ve.rtical dead

ends, where the terminating segment is vertical (i.e., T or 1.), and horizontal dead ends,

where the terminating segment is horizontal (i.e., I- or -I). In Figure 1b, points e and

f are corners, a is a :r, b is a .1, c is a 1-, and d is a -I. In that same figure, points

a, b, c and d are dead ends: a and b are vertical dead ends, while c and d are horizontal

dead ends. For each corner point v in G, extend a horizontal ray from v in the direction

that points away from the rectangle to which v belongs. Thus, in Figure 1b, the ray

emanating from e goes leftward, whereas that from f goes rightward. The point on the

first (vertical) edge of G that is intersected by this ray is knowD as the horizontal shadow

of t1 (ifno such intersection with the ray occurs, i.e., the ray continues to infinity, then we

consider the point at infinity to be the horizontal shadow of t1). Call the new subdivision

created from G by drawing an edge from each corner point to its horizontal shadow the

rectangular decomposition of G, and let G' :'erlote this subdivision. Obviously each face

of G' is i'ec:angular rather than pOlygOr:.3!. r:g;,,;i'e 3 shows the G' that results from the

G of Figure lb. In that figure, the horizontal shadow of e is 9, that of f is at (+00, y(f)).

O~r characterization, Vis(S), of a solution to the hidden-surface elimination problem

for S consists of the subdivision G' augmented so that each rectangular face of G' stores

the name of the rectangle of S that is visible in that face.
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Figure 3: The subdivision G f
• The edges joining corners to their shad

OW!! are shown dotted.

By defining V is(S) in this way we get a characterization that consists entirely of rect

angular faces, yet is at most twice the size of G. For many applications, our specification

should lead to simpler rendering algorithms, e.g., by simplifying scan-line conversion.

For convenience, we assume throughout the paper that the planar graph Vis(8}

lies in the xy-plane, so that any rectangular face of Vis(S} is also in the xy-plane. Of

course, each such rectangular face knows which rectangle of S IS visible in it, and the

z-coordinate of that re,ctangle (throughout the paper, each rectangular face of a Vis(S)

is always assumed to have, attached to it, which rectangle of S is visible in it}.

There are a number of ways one can represent an embedded planar graph, such as

V is(8). Three such representations are the "winged edge" structure of Baumgart [21, the

"quad edge" structure of Guibas and Stolfi 111], and the "doubly-connected edge list"

structure of Muller and Preparata [14,171. Our algorithm does not depend on which

representation one chooses, so long as the representation allows one to determine each

of the following in time proportional to its size:

1. all edges and faces adjacent to a given verte;.:: L', ,~ •.....ell as their orientation wit.h

respect to v,

2. all vertices and faces adjacent to a given edge e, GS weil as their orientatioll with

respect to e, and

3. aU vertices and edges that. lie on the boundary or a given face f, in t.he order they

occur around f·
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Each of the mentioned representations provides t.his.

Given an isothetic rectangle R in m.3 we let z(R) denot.e t.he z-coordinate of the plane

to which R belongs. Similarly, for any point p in !R3• we use x(p), y(p), and z(p) to denote

the x-, y-, and z-coordinate of p, respectively_ Our terminology implicitly assumes that

the observer looking at the scene from z = co bas his body parallel to the y-axis. with

both arms extended so they are parallel to the x-axis (the reader probably inferred this

from the way we drew Figure Ib). Hence a vertical segment is parallel to the y-axis,

whereas a horizontal segment is parallel to the x-axis. Similarly, we say that a plane is

vertical (resp., horizontal) if it is parallel to the yz-plane (resp., xz-plane). In addition,

we assume that the x-, y-, and z-coordinates of all rectangle endpoints are integers in

the range [l,2nl. If this is not the case. then we apply a pre-processing step that, in

turn for each of the three coordinates, sorts its values in increasing order and replaces

each old value by its rank in the sorted list. This takes O(nlogn) time [1]. For the sake

of simplicity. we assume that the x-coordinates of the rectangles' endpoints are distinct,

and similarly for y-coordinates and for z-coordinates. Modifying our algorithm for the

general case is straightforward, and is left to the interested reader.

The algorithm we outline below constructs Vis(S).

The Hidden Surface Elimination Algoritmn (High-Level Description):

Step 1. Problem. division. In this step we divide the endpoints of the rectangles

of S by vertical planes into r groups, each of size r4n/r1(with the possible exception of

the last group, which may be smaller). Note that this also divides!R3 into r regions, each

delimited by twa vertical planes (except for the first and last such regions. which are

delimited by only one such plane). We call these regions slabs, and let (Ill, II2, ...• Dr)

denote the collection of slabs listed from left to right. For each II; we construct Endpointj

and Span" where Endpoint; denotes the set of all rectangles that have at least one

endpoint in IIi, and Span; denotes the set of all rectangles that span TI; (i.e., all rectangles

that intersect 11; but do not have an endpoint in it). (See Figure 4.) Let Si be obtained

from Span; by replacing every rectangle R in Span, by .~ ,j IT,.. Similarly, let E, be

obtained from Endpoint; by replacing every rectangle ~t ";'I ~;:dpoinli by R n IIi. This

step can easily be performed in O(rn) time.

_Step 2. Computing Vis(E;). In this step we solve the hidden-surface elimination

problem for each E;, ignoring all rectangles not in E,·. This can be done in O«n/r):!)

time for each Ei using the algorithm by McKenna [131. In addition, for each Ei we
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Figure 4: R is in Endpoint ll Spa.n'll Span3' and Endpoint".

perform some preprocessing to help us perform the space-sweeping method of Step 3

(given below). The total time complexity of this step is D(m+ n'ljr), and its details

can be found in Section 3.

Step 3. Determining visible COrDers and vertical dead ends. In this step we
,

determine all corners and vertical dead ends that belong to ViseS), and for each such

point we determine the rectangles of S that are visible in its vicinity (i.e., that are visible

in the faces of V is(S) adjacent to it). In addition, for each c?rDer point p we find the:

horizontal shadow of pin ViseS; u E,). where p E IT, and its horizontal shadow is now

constrained to be in II; (so that the horizontal rays by which we defined shadows are

stopped by the boundary of IIi. instead of being allowed to proceed to infinity). We call

this the restricted horizontal shadow of p. The main idea of our method for performing

this step is to perform a space-sweeping procedure that simultaneously sweeps through

all the slabs Il1, ...•TI
r

to determine all the visible corners and vertical dead ends. This

step requires D(n log'l n + m + n2 jr + k') time, where k' is the total number of (visible)

points discovered in the sweep (note that k' ~ k). Its details are given in Section 4.

Step 4. Determining visible horizontal dead ends. In this step we repeat

Steps 1-3, except that the roles of the x-axis and y-axis are interd::::.r.l;cd, that is, we

divide by horizontal planes and sweep horizontally. We do not p,~:::-c:'::::l ~.he extra work,

as done in Step 3, to find visible corners and their shadows, howl!'ier. That is, this sLep

simply discovers all visible horizontal dead ends, and, for each one, all the the rectangles

of S that are visible in its vicinity (i.e., that are visible in the faces of Vis(S) adjacent

to it).

8



Step 5. Constructing Vis(S). In this step we combine the information compu~ed

in Steps 3 and 4 to construct a. representa~ion ofVis(S). Since we have already computed

all the visible vertices in Vis(S)' we hegin by constructing the subdivision G t.hat they

determine. We do t.his using two calls to a bucket. sorting routi:le Pl. which takes

O(n + k) time. To complete the construction of Vis(S), we !:1'''::>~ augment G with the

true horizontal shadows of all visible corner points. (Recall t::2.~ Step 3 only yields the

restricted horizontal shadow of each corner point p, that is, the horizontal shadow of p

restricted to the slab to which p belongs.) The main idea of our method for doing this

involves the construction of left and right "'horizontal exposure" lists for each TI" and the

application of the fractional cascading technique 15] to these lists. This gives us a data

structure that enables us to find each horizontal shadow in O(logn + r) time, and then

finish constructing Vis(S) in a further O(n) time. Performing the entire step requires

O(n log n + rn + k) time. The details are in Section 5.

End of High-Level Description.

Assuming that we caD perform each of the above steps correctly in the stated time

bounds, this method gives us an algorithm that runs in O(n log'l n + rn + n'l /T +k) time.

where k is the size of the output. Setting T =..;n gives us the time bound of o (n1.5
+k)

that we claimed in the introduction.

Let us now give the details for each of the above steps. The details of Step 1 should

be obvious given the above description, so we begin our discussion with Step 2.

3 Step 2: Computing Vis(E;), and preparing for Step 3

Recall that in Step 2 we wish to solve the hidden-surface elimination problem for each

E, in O((n/T)'l) time. Since each E, contains O(n/T) rectangles, this amounts to being

able to perform hidden-surface elimination in time that is quadratic in the number of

rectangles. As mentioned above, we can do this by calling the algorithm of McKenna [13j

as a subroutine. This section, however, does more than just call ~·l·~=-:,;,~na·s algorithm:

it. computes information that will be crucial to t.he efficient imp;:;:-:.e::'~;J.~ion of St.ep 3.

For that purpose, we need to briefly review McI<enna·s method ana somewhat. modify

its out.put.

When applied to a set S of isothetic rectangles, McKenna's method constructs t.he

arrangement in the :ry-plane produced by (i) extending each rectangular edge to infinit.y

9



Figure 5: The arrangement resulting from Figure 1.

in each direction, (ii) projecting the lines so obtained on the xy-plane, and (iii) deter

mining the rectangle of S visible in each rectangular face of the arrangement produced

by these projected lines. Figure 5 shows the arrangement resulting from the situation

depicted in Figure 1 (in boldface are the edges of the arrangement that are projections

of edges of rectangles in S).

Suppose we have already applied McKenna's method to Ej, producing W(E;). First

we use the boundary of TI, to "clip" all the infinite horizontal edges of WeE;) (Le., they

now stop at this boundary instead of proceeding to infinity). Then we delete from W(Ei)

all the segments that are not in Vis(E;), Le., we eliminate each edge e that has the same

rectangle of E; visible on both sides of e, unless e joins a corner to the (restricted)

horizontal shadow of that corner (recall that segments that extend from corner points to

their respective horizontal shadows are part of V is(E;)). This is easily done by checking

whether both of the two faces of W(E;) that are adjacent to e have the same rectangle

of Ei visible in both of them, and whether e joins a corner to its (restricted) horizontal

shadow.

We now do some preprocessmg that will help us efficiently irr::pl~ment Step 3. In

Step 3 we will be performing a space-sweeping procedure in which ",.~ :-weep a horizontal

plane). in the negative y-direction. At certain everl.!"; during tb;2 5-...·~~? we will need to

update some dynamic data structures associated with the slab IT;. The preprocessing

w~do now facilitates our being able to perform these update operations efficiently. Ba

sically, we take advantage of the fact that the set of operations we will be performing on

Lhese dynamic data structures are known in advance, i.e., it is a ha.tched problem. In gen-
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eral, this paradigm of taking advantage of the batched nature of the dynamic problems

that arise in geometric problems such as ours is known as batch~d dynamic uarch£ng.

Applications of this paradigm to other geometric problems are given by Edelsbrunner

and Overmars [81! for example.

The details of our preproce~sing steps are as follows. Suppose we wish to sweep

a horizontal plane ..\ throug~ Yis(Ei) in the negative y-direction (as will happen for

real in Section 4). Such a plane would encounter t = O(n/r) horizontal positions, each

of which coincides with (possibly many) horizontal edges of.v is(Ei). Each horizontal

position determines a horizontal plane, which corresponds to a "snap shot
n

of the plane

>. at the time it would encounter that position. The collection of all such horizontal

planes divides Ili into t + 1 regions, which we call strips. Number these strips, from

top to bottom, 1, 2, 3, and so on. Thus, the strips form a horizontal partitioning of TIi·

Now, for each rectangular face f ofVis(Ei) that intersects (say) the t1 strips numbered

to, to + 1, ... , to + tl - 1, create t1 copies of f, each copy being associate9 with one of

those t
l

strips. The copy of f associated with strip s gets assigned as its key the pair

(8, z) where z is the z-component of the rectangle of Ej that is visible in rectangular

face f. (Thus all the copies of f have keys with the same second component.) Observe

that the sum over all f E Vis(E;) of the number of (s,z) pairs associated with f is

O((nJr)::), because each strip can determine at most O(nJr) (s,z) pairs, and there are

O(n/r) strips.

Let Ci denote the collection of (5, z) pairs, where each (s, z) pair contains a pointer

to the face f in V£s(Ej ) associated with that pair. Now, bucket sort Ci using the

lexicographical ordering determined by the (s,z) keys for comparisons. This takes O(n+

(nJr)2) time. For each strip s let Zi,3 denote the part of this sorted list that has s as its

key's first coordinate. For each 5 compare the list Z,,3 with the list Z,,3+1' constructing

three sorted lists, Samei,u Deletei,31 and Inserti'.'+1' defined as follows. The list Samei, .•

consists of all the rectangular faces f that have a copy in both Z,,3 and Zi,Hl (the key of

fin Same;,3 is inherited from the copy in Zi,3 rather than from ~h:J.:!!1 Zi, .•+d· The list

Delete;,3 consists of all the rectangular faces f that have a copy::;. Z, .., but not in Zi,HI

(the key of f in Delete,,3 is the same as its key in Z,,3). The lis:; Inserti"+1 consists of

all the rectangular faces f that have a copy in Z;,'+1 but not in Zi" (the key of f in

Insert,,3+! is the same as its key in z;,,+d·
Note that the keys of the elements of S arne"., all have the same first component
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(namely, s), so that the contents of Same;, .• are in fact sorted by t.he second components

of their respective keys (that is, by t.he z_coordinates of the respective rectangles of E;

that are visible in them). Therefore, from now on, we shall ignore the first components

of the keys of the elements of Samei,~' That is, a key is from now on a z-value rather

than a pair (s,:). Similar remarks hold for each Deletei,J' and also for each Inserti,~·

For each rectangular face f in Inserti,'+l, we determine its predecessor in Samei,~

and store this in a field Prec4,~+1 (f) associated with f·
Once this is completed, we no longer need the Samei,~ lists. The Deletei" and

Inserti,~ lists, on the other hand, will become very helpful in performing the space

sweeping procedure in Step 3. Specifically, we shall use them to maintain a list (the

current list) of rectangular faces of V is(Ei) that are intersected by a horizontal plane ).

(the plane we use for sweeping in the negative y direction). That is, to move some such

plane). from the strip s to the strip s + 1 we need only consult the lists Deletei,~ and

I nserti,~+l to tell us which rectangular faces to respectively delete and insert from the

current list. In addition, by storing, in the field Pred;,'+l(J), the predecessor in Samei,~

of each rectangular face f E InseTti,~+l, we enable ourselves to perform the insertion of

f into the current list in 0(1) time. Section 4 contains the details of how aU these things

are done.
The computation of Vis(Ei) and of the Deletei,J lists and Inserti,J lists (and their

associated Pred;,~ fields) takes 0((n/r)2) time for each Ei, and hence the total time

complexity of Step 2 is OHnle)') = O(n'le).
We next show how to combine the information of the previous two steps to implement

Step 3.

4 Step 3: Computing visible corners and visible vertical

dead ends

In this step, we use the information computed in the previous step ~o ~:::::=t the implemen

tation of a space-sweeping procedure that computes (i) all the c::'~:-;~:'~ ~ntl vertical dead

ends in all the V is(SiUEi) 's, (ii) for each such point, the rectangular faces of~' is(SiUE;)

that are adjacent to it, and (iii) for each such rectangular face, the rectangle of Ei U Si

(and hence of S) that is visible in it.

We implement this step by sweeping space in the negative !I-direction with a hori-
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zont;).1 plane A. We will be using a number of data structures to implement this space

sweep:

1. For each Il, we maintain a variable CurVisj that stores the name of the rectan

Ele of Span; having highest .:-coordinate among all elements of Span; currently

intersected by A. Note: we never maintain all of Vis(S,J, just CurVis j •

2. For each IT, we maintain a list D, that stores all the redangular faces ofVis(E,)

that are currently intersected by A, sorted by non-increasing z-coordinates of the

rectangles of E i visible in them (that is, by associating with each face the z

coordinate of the rectangle of E; that is visible in it). Each Di is represented using

a doubly linked list and has an entry-pointer (or "finger") Ii that points to the

last face in D; whose associated z-value is greater than z(CurVisi ). If there is no

such face in D" then Ii points to the first element in Di· We also maintain for

each IIi an array of pointers c?,Ued Wherej, such that for every rectangular face

IE Vis(Ei), Wherei(J) points to the location of I in Di if I E Di' and is nil

otherwise.

3. We maintain a tree T that contains the set S). of rectangles in Ui""l Spa~i that are

currently intersected by A. (Note that S). contains no more than n elements, since

it is a subset o(S.) The tree T is represented by a priority segment tree [3,12j,

where the leaves of T are associated with the slabs III. IT:, .. " Iln listed from left

to right. For each internal node v of T we associate a slab IT(lI) that is the union

of the slabs associated with the descendents of 1I in T. Let the i-th leaf be Vi,

50 that IT(Vj) = IT;. In addition, for each node V we store a list Cover(v) Lhat

stores all the rectangles of S>. that span TI(v) but do not span IT(parent(v)), sorted

by decreasing z-coordinates. Each list Cover(v) is represented by a dynamic tree

structure (e.g., a (2,3)-tree [IJ or a red-black tree [lO,23J) augmented with a poinr.er

to the rectangle in Cover(v) with largest z-coordinate (we call it Ma:-('J)). Every

node v also stores Best(v), which is the rectangle that has maximum .:-,:;:o;dinate

in the set of l"fax(w)'s stored in the nodes on the path from v to t::e ;-=07. oi T. It

is not bard to see that a rectangle R can appear in no more than Zlog T aifferent

Cover( 1I )'s, so that the space complexity of T is O(r + IS>.llog r) = O( r + n log r).

The following lemma follows immediately from the above definitions.
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Lenun3 4.1: Assuming the above data structures are correctly maintained for the cur

rent position of A, then, for any ni, CurVis; is equal to Best{v;) where Vi is the leaf

that corresponds to nj in T.

Proof: An immediate consequence of the definitions. -

Let Y be the list oC the 2n horizontal edges of the rectangles in S, sorted in decreasing

order oC their y-coordinates. For each edge in Y we store the name oC the rectangle that

determined that edge. The list Y determines the events in the space sweep. The goat

of the sweep procedure is to discover all visible corner points and visible vertical dead

ends. Initially, CurVis j is set to the "background" rectangle -ee, all the D; lists are

empty, and all the Cover{v) lists in T are empty.

To implement the space sweep we iteratively examine each edge in Y. Suppose I is

the next event in Y. Let R be the rectangle of S to which I belongs. Let a (resp., b) be

the left (resp., right) endpoint of l. There are essentially two different kinds of updates

we must perform for I: updating the slabs containing a and b (Subsection 4.1 below),

and upda.ting the slabs spanned by I (Subsection 4.2 below). But before doing any of

these, we begin by upda.ting the tree T so that it already reflects the occurrence of event

l. This is done as follows.

If I is the upper edge of R then, just after event I, the sweeping plane A inter

sects R (whereas it did not before event f) and therefore we must insert R in all the

Cover{v)'s to which it belongs and update their respective Ma:z:(v)'s accordingly. As

already stated, there are at most 2logr such nodes vET whos'e respective Cover(v)'s

are to be updated. Since each such update takes O{log n) time, the amount oC time

for aU such updates is O{log r log n) = O{log2 n). On the other hand, if I is the lower

edge of R then, just after event I, the sweeping plane A no longer intersects R (whereas

it did before event l) and thereCore we must delete R from all the Cover(v)'s to which

it belongs and update their respective Ma:z:(v)'s accordingly. Of course, this too takes

O{log2 n) time, by an argument similar to that for the case oC insertions. Fin2.11:J

• we

must update the Best{w) values in T, so that they reflect the ne'''' Ma:z:{v) ...ah:es. :-~!s

is easily done by a preorder traversal of T during which we maintain a stack .-i. ;)[ .~il

the Best{v) values from the current node to the root. That. is, if the traversal is at node

urr, and if the path from WI to the root of T is WI, W2,.· _,WI, t.hen the stack A contains

Best{ WI), Best(W2), ... , Be.st{ w:) (with Best{WI) at the top ,?C the stack). It is trivial Lo

maintain the stack. A during the traversal of T, as follows. When we tra.verse down T to

14



a new node v, we compare z(A[torJ) t,o .:(Max('I)) and push t.he re'ctangle achieving t.he

larger of t.hese t.wo ont.o A[top]. When we t.raverse up T we pop t.he t.op element.. oIT A.

The traversal for updat.ing t.he Best(v),s takes O(r) t.ime, since T has O(r) nodes. Thus

the time for updating T as a result of event I is O(log~ n + r).

Now that T is updated, we can proceed t.o compute the effect of event I on the various

TIi'S.

4.1 Processing the "endpoint~ slabs

We first describe the updating of Dh where a E TIh. (The updating of Dj, where bE TIj,

is similar.) Since a is in TIh there were two adjacent strips (say, strips sand s+ 1) in Step 2

whose common boundary is the horizontal plane L containing 1. In moving A from s to

s + 1 past this horizontal plane L, we must delet.e the rectangular faces of V is(Ei) that

will no longer be intersected by A and insert the new rectangular faces that will become

intersected by A. Determining these rectangular faces is easy, given the preprocessing

done in the previous step (St.ep 2). Suppose we are in strip s and crossing int.o strip s+l

at L. To determine which faces to delete from Dh we need only consult the list Deleteh,3:

for each f in it, we follow the Whereh(J) pointer which tells us where f occurs in Dh and

thus enables us to delete f from Dh in 0(1) time. To determine which rectangular faces

to insert in Dh' we corisult the list. Inserth,3+l: for each f in t.hat list, the Predh,3+1(J)

point.er tells us which rectangular face f' immediately precedes the locat.ion in Dh where

f is to be inserted, and following W hereh(J') enables us to complete the insertion oC f in

Dh in 0(1) time. Of course after deleting f from Dh we must update the Wkereh array by

doing Whereh(J) :=nil. Similarly, after inserting f in Dh we must change Whereh(J)

from being nil to pointing to where f is in D h . Updating D h therefore clearly takes

0(IDeletch,31 + IInserth,3+lD, which is O(lEhl) ::; O(n/r) because .\ coincides with at

most O(IEhll ,dg,s of Vi,(Eh).

In addition, for each rectangular face f in Deleteh,3 U Inserth,Hl we perform the

following computations for discovering corners and vertical dead ends on f in V is( E,1
that are also in V£s(E, U Silo Let e be the projection oj I onto f (in the projeetio~

plane); recall that since f E Deleleh" U I nserth,Hl' e must contain one of the horizontal

boundaries of f. For each endpoint p oC e, we check if p is in Vis(Ei US,), by comparing

z(CurVis;) t.o the z-coordinate of the rectangle of E; that is visible in f: if z(CurVis;) is

the larger oC the two then p is not in Vis(E,USd, otherwise it is. If p is in \iis(E;uS;)-
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I.e., p is visible-~hen we must find ou~, for each rectangular face l' adjacent ~o p in

Vis(Ed, which rec~angle of E,US; is visible in 1'. This is easily done by comparing the

rectangle GllrVis j ~o the rectangle of Ei ~hat was visible in l' (the one wit.h t.he higher

z_coordinate wins).
In addit.ion, if p is a corner point, t.hen we must determine its restricted horizontal

shadow. To do this, we st.art walking from p along the horizontal ray leading to p's

shadow in Vis(E;): we walk through all the rectangular fa~es of Vis(E,) that are cut

by t.his horizontal ray until either (i) we first hit a face whose z_coordinate is more than

z(GurVisj), or (ii) we reach the boundary of II;. Eit.her of events (i) or (ii) gives us the

horizontal shadow of pin Vis(S, U Ei), i.e., the restricted horizontal shadow of p.

The above computations for processing the event I for slab IIh require a total, over

all f in Deleteh,3 U Inserth,3+1. ot 00Eil) == O(n/r) time (this is because even though

Vis(E;) has O((n/r)2) faces, the number of faces cut by any particular position of the

sweeping plane.>.. is O(IEd))-

4.2 Processing the "spanned" slabs

Assume that the processing of the "endpoint" slabs IIh and IIj has already been done,

as explained in Subsection 4.1. This section deals with processing the "spanned" slabs,

i.e., the IIi'S for which R E Span;. (Recall that R is the rectangle of S to which event I

belongs.)
Le~ U denote the set of fIi'S that are affected by event I and thus will need further

processing. Thus U consists of the II;'s whose respective CurVisj's will change as a

result of event I (either CurV is; was R and wiII cease to be R, or it was not Rand

will become R). Finding U is easy to do: Lemma 4.1 implies that the new value of each

CurV iSi-call it N ewCurV iSi-just after event l is readily available in the tree T (recall

that T has already been updated to reflect event 1). Therefore we can easily compute U

as follows. For each IIi, compare CurVis; to NewCurVis;, i.e., to the Best(t'i) entry

available in T: if they are not the same rectangle then include TIj in U.

For each IIi E U, we perform the following computation. For convenience, in what.

follows we let Rl stand for CurVisi, and we let R2 stand for NewCurVis,. Thus R1

i-6 the rectangle that is in CurVisi just before event 1, and R2 is the rectangle that

becomes in CurVis
j

just after event 1 (R1 t- R2 by definition of U). Not.e that R will

be one or Rl or R".!. (Figure 6 depicts the case R1 = R). We obtain from D; the set D~
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Figure 6: illustrating the case z(R1) > z(Rz)·

of rectangular faces ofVis(E;) whose associated z-values faU between z(Rd and z(Rz).

IT z(Rd > z(Rz) (as in Figure 6), then the rectangular faces in D' are not visible (in

E. uS.) before I, but become visible after 1. Otherwise, if z(Rr} < z(Rz), then the

rectangular faces in D' are visible before I, but are not visible after l. In either case, (a

portion of) each of these rectangular faces is part of the output, Vis(E; U Silo For each

such rectangular face f, we determine the intersection of f with A, the sweep plane (or,

equivalently, the projection of I onto f). Let p E f be an endpoint of this intersection;

and let e be the vertical line segment of Vis(Ei) that contains p. For each such point p,

we find the redangles of Ei U Si that are visible in the vicinity of p by comparing the

two z-values (in Vis(E;)) of the two rectangular faces adjacent to e, to z(R1) and z(Rz).

Note that p forms a visible vertical dead end in Vis(E. USi) (and hence in Vis(S)). We

complete the computations for IIi by assigning CUTVis j := Rz· The processing of each

such IIi E U clearly requires O(k') time, where k' = ID'I (recall that a portion of each

face in D' is visible in E; U Si, hence is part of the output).

4.3 Analyzing Step 3

When the slab-sweeping procedure terminates we will have computed all the corner

points, restricted horizontal shadows, and vertical dead ends in 'F is(S; U E;). (We prove

this in the next lemma.) From the comments made during the detailed presentation of

Step 3, it is easy to see that performing this entire step requires O(n log:! n+nT+n
2
Jr+k)

time, where k is the size of Vis(S). In the following lemma we establish the correctness

of our method so far.
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Lemma 4.2: The previous sters corrpctly find All corner points and vertical dead ends

in every ViS{Si U Ed and, {or each such point p, correctly determine the rectangles of

E, U 5, that are visible its vicinity (i.P.., in each rectangular (ace orVis{Ej U 5;) that is

adjacent to p).

Proof: (::::;..:) Suppose p is a corner paint or vertical dead end ir. F;"s(SjU E;), where

TI
j

is the slab containing p. We wish to show that p will be discovered in the previous

steps of the algorithm. Let us treat each of the possible cases.

Case 1. p is a comer point, the projection of a vertex p' of some RES. Let e

be the horizontal edge of R containing p'. Since p is a vertex in Vis{Ei U Sd, P must

be a vertex in Vis{E;). Therefore, Step 2 will have computed which rectangle of Sis

visible in each face that is adjacent to p in Vis(E;). Therefore when event e is processed

by Step 3, that step must indeed discover that p is visible in Vis(Ei U 5;) (this follows

from the way Step 3 works). Moreover, for each face / of Vis{E;) that is adjacent to

p, Step 3 correctly determines the rectangle of 5 visible in / when it compares CurV is;

to the rectangle of Endpoint; that is visible in / and chooses the one with the larger

z-coordinate.

Case 2. p is a visible vertical dead end in Vis{Ei U Si), i.e., it is of the form Tor

1.. If p is a vertex in Vis{Ei), then an argument similar to that Cor Case 1 applies. So

suppose pis not a vertex in Vis(Ei), i.e. I it occurs on the interior of an edge e ofVis(E;).

Obviously e must be vertical so that a portion of it becomes the vertical part of the T

or.1 in Vis{Ei U Si), the horizontal part of the T or .1 being contributed by the edge

of a rectangle in Span;. We continue the discussion assuming that p is, in V is{E; U Si),

of the form.1 (the argument for when p is of the form T is similar). As already stated,

the .1 that p forms is the intersection of a portion of the (vertical) segment e with a

horizontal line segment 1 that is the projection of an edge I' of a rectangle, call it Rbig-,

that spans I1j. (Note that Rbill" becomes the new CurVis j just after event I' is processed.)

Let j' and f" be the two rectangular faces or Vis(E;) that are adjacent to e just above

p (i.e., just before event 1'). Let R' and R" be the two rectangles of Ej that are visible

in Vis{E,) in (respectively) faces /' and 1". Then R' and R" must both have lower

z-coordinates than that of Rbill" (because p is a .1 in Vis(Ei U Si))· Moreover, at least

one of R
'

and R" (possibly both) must be visible around p in Vis{E; uS;), i.e., have

a z-coordinate larger than that of the CurVis j just before event {' (otherwise p could

not be a .1). Therefore the search performed by Step 3 for event {' will discover at least
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one of P and f"; hence, discover the intersection of e wit.h 1 at p and all the rectangles

visible in the faces around p.

C¢:::) Let p be any point determined to be "visible" by Step 3. We wish to show

that this action of Step 3 is correct, i.e., that p is indeed visible in Vis(S; U E i ), whe!'e

TIi is the slab containing p. Obviously p must be in Vis(Ei) as well, but not necessar:l;'

as a vertex (perhaps as a point along some edge). Any rectangle R that can possibl:.

obstruct p is either in Ei or in Span;. Thus, since we compare p to the rectangles in

Eo in Step 2, and, in Step 3, to the rectangle with largest z-coocdinate whose projection

contains p, p is indeed a visible point. Moreover, since p must correspond to an event in

one of the plane sweeps of Steps 2 and 3, by a~guments similar to those for the "(*) part

of the proof, we do discover all the rectangles of S that are visible in the faces adjacent

to p. This completes the proof. •

In Step 4 we repeat the above three steps, except that the roles of the x-axis and

y-axis are reversed, and we do not bother performing the extra steps to determine corner

points and their respective shadows (this was already done in Step 3). Thus, we find

all the visible horizontal dead ends. This gives us all the visible vertices of Vis(S),

except those that are horizontal shadows. In the next section we show how to extend

the restricted horizontal shadows (in ViS(Si U Ei)'S) into true horizontal shadows (in

Vis(S)), thus giving us all the vertices ofVis(S).

5 Step 5: Constructing Vis(S)

In this step we complete the construction of Vis(S). From Steps 3 and 4 we have all

the visible vertices of Vis(S), except those that are horizontal shadows. Moreover, for

each visible vertex p we have the rectangles of S that are visible in each face adjacent to

p. In order to complete the construction ofVis(S) we must determine all the horizontal

shadows in Vis(S), as well as all the adjacency relationships between vertices and edges

in V;s(S).

Let B be the set of all visible horizontal dead ends, visible vertical dead ends, \'isible

corner points, and the restricted horizontal shadows of visible corner points. \Ve begin

by constructing G, the planar graph determined by the adjacencies of the vertices in

B. We construct all the adjacencies between these vertices by performing two calls to a

2-dimensional bucket sorting routine, each time giving B as the set to be sorted. In the
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first call we specify that the rontinE' should sort. lexicographically by (x, y) coordinates,

resull.ing in the list B:I/' In the second call we specify thaI. the routine sort lexicograph

ically by (y, x) coordinates, giving the list BI/=' This requires D(n + k) ~ime, where k is

the number of ve:tices in ViseS). For any vertex p in B we del.ermine the other vertices

of B that are adjacent to p in G by examining the immediate predecessors and successors

of p-in B=f/ a~:: Bf/'Z.' In addition, recall that we have for each p the rectangles that are

visible in each of the faces of G adjacent to p.

Having so constructed G, we need only extend each restricted horizontal shadow in

G to a true horizontal shadow. Let us re-divide the space by the vertical dividing planes

used in Step I, again giving us the slabs Ill, II::!, ... , IIr · From the first part of this

Step 5 (explained above) we now have all the vertices in ViseS; U E;) as well as all their

adjacencies in ViseS). We say that a vertical segment s in Vis(S; U Ei) is horizontally

exposed from the left (resp., right) if there is a horizontal line that intersects no vertical

segments in ViS(Si U E;) between s and the left (resp., right) boundary of IIi. For each

slab IIi we define the left profile (resp.• right profile) to be the y-sorted list of vertical

segments of ViseS. U E;) that are horizontally exposed from the left (resp., right). Let

Lj and Eli denote the left and right profiles of IIi, respectively.

The method for constructing L; is as follows (the method for R; is similar). Let £i
be the set of all vertic.es p in Vis(S; U Ej) such that p is adjacent to a horizontal (visible

or shadow) segment in ViseS; U E,) that intersects the left boundary of II;. We can

construct £j by examining all the vertices in V is(S; U Ei) once. Sort the points in £; by

decreasing y-coordinates. Each point p in £i determines a segment in Li, namely, the

vertical segment that is adjacent to p. In addition, for each point p we traverse the face

of ViseS; U E,) that is adjacent to p, but does not contain the vertical segment adjacent

to p, to see if it contains a vertical segment horizontally exposed from the left. Note

that by the definition oi the points in £; we will traverse each such face only once. After

we have completed all such traversals, we will have the entire list Lj. This construction

takes D(n + k') time, where k, is the number of vertices in Vis(S, U E;}.

We construct a graph that has a node for each Li and R; list, and connects each R;

to R;-l and and each L; to Li+l' Using the terminology of Chazelle and Guibas [5], this

graph is a catalogue graph. Thus, we can apply the "fractional cascading" technique [51 1.0

build a data structure that consists of augmented lists L~ and R;, for each i in (1,2, ... , r},

as well as a number of pointers between consecutive augmented lists, such that given the
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position of a point p in some Li list this structure allows one to locate p in L i and L~+I

in 0(1) time. The similar property holds for Lhe R~ lists. Using the method of Chazelle

and Guibas [51, this data structure can be constructed in time and space proportional

to the total number of elements in all the lists (which is O(n + k)).

Let us return to the problem at harte. :lc.:nely, completing the construction ofVis(S)

by finding the true horizontal shado\" ;::ims of each corner point p that currently has

its restricted horizontal shadow falling on a boundary of ITi, where p E ITi. Let us con

centrate on the computation of the true horizontal shadow of a point p whose restricted

horizontal shadow falls on the left boundary of IT i (the method for the case when p's

restricted shadow falls on the right boundary of ni is similar). We first locate y(p) in

R;_l in O(logn) time by using the binary search technique. Then, we can locate y(p) in

Ra-l in 0(1) time. If the interval in R;-l in which y(p) falls contains a vertical segment,

then we have found the true horizontal shadow of p-simply compute the intersection

of the line y = y(p) with this segment. If, on the other hand, this interval is empty of

any vertical segments (of ViS(Si_l U Ei_l)), then we use the position of y(p) in R:_1

to locate y(p) in R;_2 in 0(1) time. We then repeat the above procedure un~il we lo

cate p's horizontal shadow or run out of lists to search in (in which case p's shadow is

(-00, y(P))). This searching procedure takes at most O(log n + r) time for each j:orner

point p.

The only thing left, then, is to link each new horizontal shadow into the graph G to

give us Vis(S) while removing all the old (restricted) horizontal shadows they replace.

To perform thi~ last computation construct a tuple (::1:, y, y(p)) , where (x, y) is the upper

endpoint of the vertical segment on which the horizontal shadow (x, y(p)) of p lies. We
•

can then sort all these. tuples in O(n) additional time. Using this sorted list we can.
complete the construction ofVis(S) in O(n) time. Since there are at most O(n) corner

points for which we perform this procedure, the total time for finding these horizontal

shadows is O(n log n + rn + k) time. This completes the algorithm. We summarize the

above discussion in the following theorem.

Theorem 5.1: Given a set S ofn isothetic rectangles in !R3 , one can solve the hidden

surface elimination problem for S in O(nlog:! n + (n:! fr) + rn + k) time, where r is any

integer parameter and k is the size of the output. •

Corollary 5.2: One can solve the I,idden-surface elimination problem [or an isothctic
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collection of rectangles in O(n1.5 + k) time.

Proof: Set r == ft· •

6 Conclusion

In this paper we have gIven an algorithm for solving the hidden-surface elimination

problem for rectangles that runs in O(n1.5 + k) time, which is output-sensitive and

simultaneously worst-case optimal (for quadratic k). Moreover, our algorithm should be

competit.ive with existing methods for realistic values of n. Of course, solving hidden

surface elimination for rectangles is a special case of the general problem. Can the general

hidden.surface elimination problem be solved in time proportional to k + o(n::!:) ?
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