Purdue University

Purdue e-Pubs

Output-Sensitive Hidden Surface Elimination for Rectangles

Mikhail J. Atallah

Purdue University, mja@cs.purdue.edu
Michael T. Goodrich
Report Number:
88-804

Atallah, Mikhail J. and Goodrich, Michael T., "Output-Sensitive Hidden Surface Elimination for Rectangles" (1988). Department of Computer Science Technical Reports. Paper 686.
https://docs.lib.purdue.edu/cstech/686

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

OUTPUT-SENSITIVE HIDDEN SURFACE

ELIMINATION FOR RECTANGLES
Mikhail J. Atallah
Michael T. Goodrich
CSD-TR-804
August 1988

Output-Sensitive Hidden Surface Elimination for Rectangles

Mikhail J. Atallah ${ }^{1}$
Dept. of Computer Science, Purdue University, West Lafayette, IN 47907

Michael T. Goodrich ${ }^{2}$
Dept. of Computer Science, The Johns Hopkins University, Baltimore, MD 21218

Abstract

We present an algorithm for the well-known hidden-surface elimination problem for rectangles, which is also known as the window rendering problem. The time complexity of our algorithm is sensitive to the size of the output. Specifically, it runs in time that is $O\left(n^{1.5}+k\right)$, where k is the size of the output (which can be as large as $\Theta\left(n^{2}\right)$). For values of k in the range between $n^{1.5} / \log n$ and n^{2}, our algorithm is asymptotically faster than previous ones.

1 Introduction

The hidden-surface elimination problem is well known in computer graphics and computational geometry $[6,12,13,15,16,19,20,21,22]$: one is given a set of simple, nonintersecting planar polygons in 3-dimensional space, and a projection plane π, and wishes to determine which portions of the polygons are visible when viewed from infinity along a direction normal to π, assuming all the polygons are opaque. An important special case of this problem occurs when the polygons are all isothetic rectangles, i.e., the rectangles are all parallel to the $x y$-plane and have sides that are parallel to either the x or y-axis. This version of the hidden-surface elimination problem is also known as the window rendering problem [4], since it is the problem that must be solved to render the windows that might need to be displayed on the screen of a work-station. (See Figure 1.) Another situation where one often wishes to render such a collection of rectangles is in

[^0]Figure 1: (a) isothetic rectangles; (b) their visible portion.
draiting software, where any time a rectangle R_{1} is created, by the draftsman, before rectangle R_{2} is created, then R_{1} is "behind" R_{2}, unless the draftsman explicitly changes this ordering (e.g., by executing a "move to front" command on R_{1} or, equivalently, a "send to back" command on R_{2}).

Using the terminology of [22], we are interested in the object space version of this problem. That is, we want a method that produces a device-independent, mathematicallybased representation of the visible surfaces. One reason for our interest in an object space solution is that such a solution is not dependent on a certain method for rendering polygons nor on the number of pixels on a display screen (which seems to grow with each passing year). In addition, an object space solution gives us a representation that is easily scaled and rotated.

We briefly review some of the efficient algorithms for the window rendering problem. Since this problem is a special case of hidden-surface elimination [13], any algorithm for the general case can also be used for this problem. In [13] McKenna shows how to solve the general hidden-surface elimination problem in $O\left(n^{2}\right)$ time, generalizing an algorithm by Dévai [6] for the easier hidden-line elimination problem that also runs in $O\left(n^{2}\right)$ time. (In the hidden-line \because :mination problem one is only interested in computing the portions of the polygonal 50 :asizes that are visible.) Both of these algorithms are worst-case optimal, because there are problem instances that have $\Theta\left(n^{2}\right)$ output size (e.g., a collection of rectangles that form a cross hatched pattern, as in Figure 2a.)

Unfortunately, these algorithms always take $O\left(n^{2}\right)$ time, even if the size of the output is very small (e.g., $O(1)$). There are algorithms that run faster than $O\left(n^{2}\right)$ for certain

Figure 2: (a) Quadratic output size; (b) Small output size with quadratic I.
problem instances, however. We review these next.
In [15] Nurmi gives an algorithm for general hidden-line elimination that runs in $O((n+I) \log n)$ time and $O((n+I) \log n)$ space, where I is the number of pairs of line segments whose projections on π intersect (I is $O\left(n^{2}\right)$). Schmitt [19] is able to achieve this same time bound for hidden-surface elimination using only $O(n+I)$ space. If I is $o\left(n^{2} / \log n\right)$, then these algorithms clearly run faster than $O\left(n^{2}\right)$ time. Their worst-case performance is, however, a suboptimal $O\left(n^{2} \log n\right.$) time (if I is $\Theta\left(n^{2}\right)$).

In \{12 $\}$ Güting and Ottmann address the window rendering problem (they are probably the first to study this important special case of hidden-surface elimination), giving an algorithm that runs in $O\left(n \log ^{2} n+I\right)$ time. In [9] Goodrich shows how to solve general hidden-line elimination, and a version of hidden-surface elimination that includes the window rendering problem as a special case, in $O(n \log n+I+P)$ time, where P is the number of pairs of polygons whose projections on π intersect (P is $O\left(n^{2}\right)$). Both of these algorithms are optimal in the worst case and also take advantage of problem instances that are "simpler" than in the worst case, but they are not truly output-sensitive. Indeed, there are problem instancos where these two algorithms run in $O\left(n^{2}\right)$ time even though the output size is very small (e.g., a large rectangle that covers up a collection of cross hatched rectangles, $3 s$ in Figure 2b.)

Recently, Bern [4] and Preparata, Vitter, and Yvinec [18] have shown that one can solve the window rendering problem in $O(n \log n \log \log n+k \log n)$ time and $O\left(n \log ^{2} n+\right.$ $k \log n$) time, respectively, where k is the actual size of the output (recall that k is at
worst $\left.\Theta\left(n^{2}\right)\right)$. Thus, they have shown that one can solve the window rendering problem in an output-sensitive manner. Their algorithms are not worst-case optimal, however.

In this paper we give an algorithm for the window rendering problem that is both worst-case optimal and output-sensitive. Specifically, our algorithm runs in $O\left(n^{1.5}+k\right)$ time, where k is the actual size of the output. Thus, our algorithm is faster than those of Bern [4] and Preparata, Vitter, and Yvinec [18] for k in the range between $n^{1.5} / \log n$ and n^{2}. Our algorithm is based on a problem-division approach to hidden-surface elimination. In this approach one typically divides the problem-call it A-into two dissimilar subproblems B and C, solves B and C independently (usually by completely different techniques), and then "marries" the solutions to B and C to give a solution to A. Applying this approach to the window rendering problem can lead to an algorithm that runs in $O\left(n^{1.5} \log n+k \log n\right)$ time, although the details are somewhat non-trivial. This, of course, is worse than previous solutions for all values of k. One of the ways we avoid these logarithmic multiplicative factors is by modifying the approach so that we divide A into B and C, and solve B, just as before, but then solve C while marrying the solutions to B and C. Other ways we avoid these factors are based on fundamental paradigms from computational geometry, including batched dynamic searching [8], space-sweeping [17], . and fractional cascading [5].

In the next section we give a high-level description of our algorithm, and in the subsequent sections (3-5) show how to implement each of its constituent steps. We conclude in Section 6.

2 An Overview of the Window Rendering Algorithm

Suppose we are given a collection S of n non-intersecting isothetic rectangles in \mathfrak{R}^{3}, i.e., a collection of rectangles parallel to the $x y$-plane such that all edges are parallel to either the x - or y-axis. The problem is to compute all the portions of each rectangle that are visible from $z=\infty$ with light rays thet are parallel to the z-axis (i.e., the projection plane is the $x y$-plane).

More specifically, each rectangle R is given by a triple $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), z\right)$, where (x_{1}, y_{1}) is the lower-left corner of $R_{1}\left(x_{2}, y_{2}\right)$ is the upper-right corner of R, and z is the z-coordinate of the plane to which R belongs. For the remainder of this paper we assume that the relationships "to the left of" and "to the right of" are with respect
to x-coordinates, that the relationships "above" and "below" are with respect to y coordinates, and that the relationships "in front of" and "behind" are with respect to z-coordinates.

There are many ways that one can specify what constitutes a solution to the hiddensurface elimination problem $[12,13,16,20,21,22]$. Let G be the planar subdivision determined by a solution to the hidden-line elimination problem. Typically, a solution to the hidden-surface elimination problem is given by G, augmented so that each polygonal face of G stores the name of the rectangle of S that is visible in that face. Our exposition will gain in simplieity if our output specification, which we denote by V is (S), generalizes this so that each face is itself a rectangle (our $V i s(G)$ is obtained from G by adding to it a small number of extra edges, as explained below).

We begin our definition of $V i s(S)$ by examining the subdivision G a little more closely. For each vertex v of G either v corresponds to a (visible) corner point of a rectangle in S or v corresponds to an intersection of two visible edges (where one of them becomes occluded by the other, i.e., an intersection of the form T, \perp, \vdash, or \dashv). We call such intersections dead ends, and classify them into two types: vertical dead ends, where the terminating segment is vertical (i.e., T or \perp), and horizontal dead ends, where the terminating segment is horizontal (i.e., \vdash or -f). In Figure Ib, points \dot{e} and f are corners, a is a $T_{1} b$ is a \perp, c is a \vdash, and d is a -1 . In that same figure, points a, b, c and d are dead ends: a and b are vertical dead ends, while c and d are horizontal dead ends. For each corner point v in G; extend a horizontal ray from v in the direction that points away from the rectangle to which v belongs. Thus, in Figure 1b, the ray emanating from e goes leftward, whereas that from f goes rightward. The point on the first (vertical) edge of G that is intersected by this ray is known as the horizontal shadow of v (if no such intersection with the ray occurs, i.e., the ray continues to infinity, then we consider the point at infinity to be the horizontal shadow of v). Call the new subdivision created from G by drawing an edge from each corner point to its horizontal shadow the rectongular decomposition of G, and let G^{\prime} jenote this subdivision. Obviously each face of G^{\prime} is rectangular rather than polygonai. Fiejire 3 shows the G^{\prime} that results from the G of Figure 1b. In that figure, the horizontal shadow of e is g, that of f is at $(+\infty, y(f))$. Our characterization, $V i s(S)$, of a solution to the hidden-surface elimination problern for S consists of the subdivision G^{\prime} augmented so that each rectangular face of G^{\prime} stores the name of the rectangle of S that is visible in that face.

Figure 3: The subdivision G^{\prime}. The edges joining corners to their shadows are shown dotted.

By defining $V i s(S)$ in this way we get a characterization that consists entirely of rectangular faces, yet is at most twice the size of G. For many applications, our specification should lead to simpler rendering algorithms, e.g., by simplifying scan-line conversion.

For convenience, we assume throughout the paper that the planar graph V is (S) lies in the $x y$-plane, so that any rectangular face of $V i s(S)$ is also in the $x y$-plane. Of course, each such rectangular face knows which rectangle of S is visible in it, and the z-coordinate of that rectangle (throughout the paper, each rectangular face of a V is $s(S)$ is always assumed to have, attached to it, which rectangle of S is visible in it).

There are a number of ways one can represent an embedded planar graph, such as $V i s(S)$. Three such representations are the "winged edge" structure of Baumgart [2], the "quad edge" structure of Guibas and Stolf [11], and the "doubly-connected edge list" structure of Muller and Preparata [14,17]. Our algorithm does not depend on which representation one chooses, so long as the representation allows one to determine each of the following in time proportional to its size:

1. all edges and faces adjacent to a given vertex v_{1} as well as their orientation with respect to v,
2. all vertices and faces adjacent to a given edge ε, $\overline{5}$ weil as their orientation with respect to e, and
3. all vertices and edges that lie on the boundary of a given face f, in the order they occur around f.

Each of the mentioned representations provides this.
Given an isothetic rectangle R in \mathfrak{R}^{3} we let $z(R)$ denote the z-coordinate of the plane to which R belongs. Similarly, for any point p in \Re^{3}, we use $x(p), y(p)$, and $z(p)$ to denote the $x-, y$-, and z-coordinate of p, respectively. Our terminology implicitly assumes that the observer looking at the scene from $z=\infty$ has his body parallel to the y-axis, with both arms extended so they are parallel to the x-axis (the reader probably inferred this from the way we drew Figure 1b). Hence a vertical segment is parallel to the y-axis, whereas a horizontal segment is parallel to the x-axis. Similarly, we say that a plane is vertical (resp., horizontal) if it is parallel to the $y z$-plane (resp., $x z$-plane). In addition, we assume that the $x-, y$-, and z-coordinates of all rectangle endpoints are integers in the range $[1,2 n]$. If this is not the case, then we apply a pre-processing step that, in turn for each of the three coordinates, sorts its values in increasing order and replaces each old value by its rank in the sorted list. This takes $O(n \log n)$ time [1]. For the sake of simplicity, we assume that the x-coordinates of the rectangles' endpoints are distinct, and similarly for y-coordinates and for z-coordinates. Modifying our algorithm for the general case is straightforward, and is left to the interested reader.

The algorithm we outline below constructs $V i s(S)$.

The Hidden Surface Elimination Algorithm (High-Level Description):

Step 1. Problem division. In this step we divide the endpoints of the rectangles of S by vertical planes into r groups, each of size $[4 n / r\rceil$ (with the possible exception of the last group, which may be smaller). Note that this also divides \Re^{3} into r regions, each delimited by two vertical planes (except for the first and last such regions, which are delimited by only one such plane). We call these regions slabs, and let ($\Pi_{1}, \Pi_{2}, \ldots, \Pi_{r}$) denote the collection of slabs listed from left to right. For each Π_{i} we construct $E n d p o i n t_{i}$ and $S p a n_{i}$, where Endpoint t_{i} denotes the set of all rectangles that have at least one endpoint in Π_{i}, and $S_{p a n_{i}}$ denotes the set oi all rectangles that span Π_{i} (i.e., all rectangles that intersect Π_{i} but do not have an endpoint in it). (See Figure 4.) Let S_{i} be obtained from $S_{p a n_{i}}$ by replacing every rectangle R in $S_{p a n}$ by Ω n Π_{i}. Similarly, let E_{i} be
 step can easily be performed in $O(\mathrm{rn})$ time.
_ Step 2. Computing $V i s\left(E_{i}\right)$. In this step we solve the hidden-surface elimination problem for each E_{i}, ignoring all rectangles not in E_{i}. This can be done in $O\left((n / r)^{n}\right)$ time for each E_{i} using the algorithm by McKenna [13]. In addition, for each E_{i} we

Figure 4: R is in Endpoint ${ }_{1}, S_{p a n_{2}}, S_{p a n_{3}}$, and Endpoint ${ }_{4}$.
perform some preprocessing to help us perform the space-sweeping method of Step 3 (given below). The total time complexity of this step is $O\left(r n+n^{2} / r\right)$, and its details can be found in Section 3.

Step 3. Determining visible corners and vertical dead ends. In this step we determine all corners and vertical dead ends that belong to $V i s(S)$, and for each such point we determine the rectangles of S that are visible in its vicinity (i.e., that are visible in the faces of $V i s(S)$ adjacent to $i t)$. In addition, for each corner point p we find the ; horizontal shadow of p in $V i s\left(S_{i} \cup E_{i}\right)$, where $p \in \Pi_{i}$ and its horizontal shadow is now constrained to be in $\Pi_{\mathbf{i}}$ (so that the horizontal rays by which we defined shadows are stopped by the boundary of Π_{i}, instead of being allowed to proceed to infinity). We call this the restricted horizontal shadow of p. The main idea of our method for performing this step is to perform a space-sweeping procedure that simultaneously sweeps through all the slabs Π_{1}, \ldots, Π_{r} to determine all the visible corners and vertical dead ends. This step requires $O\left(n \log ^{2} n+r n+n^{2} / r+k^{\prime}\right)$ time, where k^{\prime} is the total number of (visible) points discovered in the sweep (note that $k^{\prime} \leq k$). Its details are given in Section 4.

Step 4. Determining visible horizontal dead ends. In this step we repeat Steps 1-3, except that the roles of the x-axis and y-axis are intercharged, that is, we divide by horizontal planes and sweep horizontally. We do not pericen the extra work, as done in Step 3, to find visible corners and their shadows, however. That is, this step simply discovers all visible horizontal dead ends, and, for each one, all the the rectangles of S that are visible in its vicinity (i.e., that are visible in the faces of V is (S) adjacent to it).

Step 5. Constructing $V i s(S)$. In this step we combine the information computed in Steps 3 and 4 to construct a representation of $V i s(S)$. Since we have already computed all the visible vertices in $V i s(S)$, we begin by constructing the subdivision G that they determine. We do this using two calls to a bucket sorting routine [1], which takes $O(n+k)$ time. To complete the construction of $V i s(S)$, we musi augment G with the true horizontal shadows of all visible corner points. (Recall tha: Step 3 only yields the restricted horizontal shadow of each corner point p, that is, the horizontal shadow of p restricted to the slab to which p belongs.) The main idea of our method for doing this involves the construction of left and right "horizontal exposure" lists for each Π_{i}, and the application of the fractional cascading technique [5] to these lists. This gives us a data structure that enables us to find each horizontal shadow in $O(\log n+r)$ time, and then finish constructing $V i s(S)$ in a further $O(n)$ time. Performing the entire step requires $O(n \log n+r n+k)$ time. The details are in Section 5.

End of High-Level Description.

Assuming that we can perform each of the above steps correctly in the stated time bounds, this method gives us an algorithm that runs in $O\left(n \log ^{2} n+r n+n^{2} / r+k\right)$ time, where k is the size of the output. Setting $r=\sqrt{n}$ gives us the time bound of $O\left(n^{1.5}+k\right)$ that we claimed in the introduction.

Let us now give the details for each of the above steps. The details of Step 1 should be obvious given the above description, so we begin our discussion with Step 2 .

3 Step 2: Computing $\operatorname{Vis}\left(E_{i}\right)$, and preparing for Step 3

Recall that in Step 2 we wish to solve the hidden-surface elimination problem for each E_{i} in $O\left((n / r)^{2}\right)$ time. Since each E_{i} contains $O(n / r)$ rectangles, this amounts to being able to perform hidden-surface elimination in time that is quadratic in the number of rectangles. As mentioned above, we can do this by calling the algorithm of McKenna [13] as a subroutine. This section, however, does more than just call $\mathrm{A}: \mathrm{E}=\mathrm{mn}$ a's algorithm: it computes information that will be crucial to the effient impizanen: ation of Step 3. For that purpose, we need to briefly review McKenna's method and somewhat modify its output.

When applied to a set S of isothetic rectangles, McKenna's method constructs the arrangement in the $x y$-plane produced by (i) extending each rectangular edge to infinity

Figure 5: The arrangement resulting from Figure 1.
in each direction, (ii) projecting the lines so obtained on the $x y$-plane, and (iii) determining the rectangle of S visible in each rectangular face of the arrangement produced by these projected lines. Figure 5 shows the arrangement resulting from the situation depicted in Figure 1 (in boldface are the edges of the arrangement that are projections of edges of rectangles in S).

Suppose we have already applied McKenna's method to E_{i}, producing $W\left(E_{i}\right)$. First we use the boundary of Π_{i} to "clip" all the infinite horizontal edges of $W\left(E_{i}\right)$ (i.e., they now stop at this boundary instead of proceeding to infinity). Then we delete from $W\left(E_{i}\right)$ all the segments that are not in $V i s\left(E_{i}\right)$, i.e., we eliminate each edge e that has the same rectangle of E_{i} visible on both sides of e, unless e joins a corner to the (restricted) horizontal shadow of that corner (recall that segments that extend from corner points to their respective horizontal shadows are part of $V i s\left(E_{i}\right)$). This is easily done by checking whether both of the two faces of $W\left(E_{i}\right)$ that are adjacent to e have the same rectangle of E_{i} visible in both of them, and whether e joins a corner to its (restricted) horizontal shadow.

We now do some preprocessing that will help us efficiently ingloment Step 3. In Step 3 we will be performing a space-sweeping procedure in which weep a horizontal plane λ in the negative y-direction. At certain events during this s wec? we will need to update some dynamic data structures associated with the slab Π_{i}. The preprocessing we do now facilitates our being able to periorm these update operations efficiently. Basically, we take advantage of the fact that the set of operations we will be performing on these dynamic data structures are known in advance, i.e., it is a batched problem. In gen-
eral, this paradigm of taking advantage of the batched nature of the dynamic problems that arise in geometric problems such as ours is known as batched dynamic searching. Applications of this paradigm to other geometric problems are given by Edelsbrunner and Overmars [8], for example.

The details of our preprocessing steps are as follows. Suppose we wish to sweep a horizontal plane λ through $V i s\left(E_{i}\right)$ in the negative y-direction (as will happen for real in Section 4). Such a plane would encounter $t=O(n / r)$ horizontal positions, each of which coincides with (possibly many) horizontal edges of $V i s\left(E_{i}\right)$. Eacn horizontal position determines a horizontal plane, which corresponds to a "snap shot" of the plane λ at the time it would encounter that position. The collection of all such horizontal planes divides Π_{i} into $t+1$ regions, which we call strips. Number these strips, from top to bottom, $1,2,3$, and so on. Thus, the strips form a horizontal partitioning of Π_{i}. Now, for each rectangular face f of $V i s\left(E_{i}\right)$ that intersects (say) the t_{1} strips numbered $t_{0}, t_{0}+1, \ldots, t_{0}+t_{1}-1$, create t_{1} copies of f, each copy being associated with one of those t_{1} strips. The copy of f associated with strip s gets assigned as its key the pair (s, z) where z is the z-component of the rectangle of E_{i} that is visible in rectangular face f. (Thus all the copies of f have keys with the same second component.) Observe that the sum over all $f \in V i s\left(E_{i}\right)$ of the number of (s, z) pairs associated with f is $O\left((n / r)^{2}\right)$, because each strip can determine at most $O(n / r)(s, z)$ pairs, and there are $O(n / r)$ strips.

Let C_{i} denote the collection of (s, z) pairs, where each (s, z) pair contains a pointer to the face \int in $V i s\left(E_{i}\right)$ associated with that pair. Now, bucket sort C_{i} using the lexicographical ordering determined by the (s, z) keys for comparisons. This takes O ($n+$ $\left.(n / r)^{2}\right)$ time. For each strip s let $Z_{i,}$, denote the part of this sorted list that has s as its key's first coordinate. For each s compare the list $Z_{i, s}$ with the list $Z_{i, s+1}$, constructing three sorted lists, $S_{a m e} e_{i, s}$ Deiete $e_{i, s}$, and Insert $i_{i, s+1}$, defined as follows. The list Same $e_{i, s}$ consists of all the rectangular faces f that have a copy in both $Z_{i, s}$ and $Z_{i, s+1}$ (the key of f in $S_{a m e}{ }_{i, s}$ is inherited from the copy in $Z_{i,}$, rather than from tha: in $Z_{i, s+1}$). The list Delete $_{i, s}$ consists of all the rectangular [aces \int that have a copy : $z_{i, s}$ out not in $Z_{i, s+1}$ (the key of \int in Delete $_{i, j}$, is the same as its key in $Z_{i, s}$). The list insert $i_{i, s+1}$ consists of all the rectangular faces f that have a copy in $Z_{i, s+1}$ but not in $Z_{i, s}$ (the key of f in Insert $t_{i, s+1}$ is the same as its key in $Z_{i, s+1}$).

Note that the keys of the elements of Same $e_{i, s}$ all have the same first component
(namely, s), so that the contents of Same $_{i, s}$ are in fact sorted by the second components of their respective keys (that is, by the z-coordinates of the respective rectangles of E_{i} that are visible in them). Therefore, from now on, we shall ignore the first components of the keys of the elements of $S a m e_{i, s}$. That is, a key is from now on a z-value rather than a pair (s, z). Similar remarks hold for each Delete $_{i, s}$, and also for each $I_{n s e r t}^{i, v}$.

For each rectangular face f in Insert $t_{i, s+1}$, we determine its predecessor in $S a m e_{i, 0}$ and store this in a field Pred $_{i, s+1}(f)$ associated with f.

Once this is completed, we no longer need the Same $\mathrm{S}_{\mathrm{i}, \mathrm{s}}$ lists. The Delete $\mathrm{e}_{i, \mathrm{~s}}$ and Insert $_{i,}$, lists, on the other hand, will become very helpful in performing the spacesweeping procedure in Step 3. Specifically, we shall use them to maintain a list (the current list) of rectangular faces of $V i s\left(E_{i}\right)$ that are intersected by a horizontal plane λ (the plane we use for sweeping in the negative y direction). That is, to move some such plane λ from the strip s to the strip $s+1$ we need only consult the lists Delete $e_{i, s}$ and Insert $i_{i, s+1}$ to tell us which rectangular faces to respectively delete and insert from the current list. In addition, by storing, in the field $\operatorname{Pred}_{i, s+1}(f)$, the predecessor in $S a m e_{i, s}$ of each rectangular face $f \in I_{n s e r t}^{i, s+1}$, we enable ourselves to perform the insertion of f into the current list in $O(1)$ time. Section 4 contains the details of how all these things are done.

The computation of $V i s\left(E_{i}\right)$ and of the Delete $e_{i, s}$ lists and Insert $i_{i, s}$ lists (and their associated Pred $_{i,}$, fields) takes $O\left((n / r)^{2}\right)$ time for each E_{i}, and hence the total time complexity of Step 2 is $O\left(r(n / r)^{2}\right)=O\left(n^{2} / r\right)$.

We next show how to combine the information of the previous two steps to implement Step 3.

4 Step 3: Computing visible corners and visible vertical dead ends

In this step, we use the information computed in the previous step to $3:=0$: the implementation of a space-sweeping procedure that computes (i) all the ceseess snd vertical dead ends in all the $V i s\left(S_{i} \cup E_{i}\right)$'s, (ii) for each such point, the rectanguiar faces of V is $\left(S_{i} \cup E_{i}\right)$ that are adjacent to it, and (iii) for each such rectangular face, the rectangle of $E_{i} \cup S_{i}$ (and hence of S) that is visible in it.

We implement this step by sweeping space in the negative y-direction with a hori-
zontal plane λ. We will be using a number of data structures to implement this space sweep:

1. For each Π_{i} we maintain a variable $C u r V i s_{i}$ that stores the name of the rectangle of $S p a n_{i}$ having highest z-coordinate among all elements of $S p a n_{i}$ currently intersected by λ. Note: we never maintain all of $V i s\left(S_{i}\right)$, just $C u r V i s_{i}$.
2. For each Π_{i} we maintain a list D_{i} that stores all the rectangular faces of $V i s\left(E_{i}\right)$ that are currently intersected by λ, sorted by non-increasing z-coordinates of the rectangles of E_{i} visible in them (that is, by associating with each face the z coordinate of the rectangle of E_{i} that is visible in it). Each D_{i} is represented using a doubly linked list and has an entry-pointer (or "finger") f_{i} that points to the last face in D_{i} whose associated z-value is greater than $z\left(C u r V i s_{i}\right)$. If there is no such face in D_{i}, then f_{i} points to the first element in D_{i}. We also maintain for each Π_{i} an array of pointers called W here ${ }_{i}$, such that for every rectangular face $f \in V i s\left(E_{i}\right)$, Where (f) points to the location of f in D_{i} if $f \in D_{i}$, and is nil otherwise.
3. We maintain a tree T that contains the set S_{λ} of rectangles in $U_{i=1}^{r} S_{p a n_{i}}$ that are currently intersected by λ. (Note that S_{λ} contains no more than n elements, since it is a subset of S.) The tree T is represented by a priority segment tree [3,12], where the leaves of T are associated with the slabs $\Pi_{1}, \Pi_{2}, \ldots, \Pi_{r}$, listed from left to right. For each internal node v of T we associate a slab $\Pi(v)$ that is the union of the slabs associated with the descendents of v in T. Let the i-th leaf be v_{i}, so that $\Pi\left(v_{i}\right)=\Pi_{i}$. In addition, for each node v we store a list $\operatorname{Cover}(v)$ that stores all the rectangles of S_{λ} that span $\Pi(v)$ but do not span Π (parent (v)), sorted by decreasing z-coordinates. Each list Cover (v) is represented by a dynamic tree structure (e.g., a (2,3)-tree [1] or a red-black tree [10,23]) augmented with a pointer to the rectangle in Cover(ν) with largest z-coordinate (we call it Mo-(ν)). Every node v also stores $\operatorname{Best}(v)$, which is the rectangle that has maximum $=-\sigma$ ordinate in the set of $M a x(w)$'s stored in the nodes on the path from v to the $r=0$ oi T. It is not hard to see that a rectangle R can appear in no more than $2 \log r$ different - $\operatorname{Cover}(v)$'s, so that the space complexity of T is $O\left(r+\left|S_{\lambda}\right| \log r\right)=O(r+n \log r)$. The following lemma follows immediately from the above definitions.

Lemma 4.1: Assuming the above data structures are correctly maintained for the current position of λ, then, for any $\Pi_{i}, C u r V i s_{i}$ is equal to Best $\left(v_{i}\right)$ where v_{i} is the leaf that corresponds to Π_{i} in T.

Proof: An immediate consequence of the definitions.
Let Y be the list of the 2π horizontal edges of the rectangles in S, sorted in decreasing order of their y-coordinates. For each edge in Y we store the name of the rectangle that determined that edge. The list Y determines the events in the space sweep. The goal of the sweep procedure is to discover all visible corner points and visible vertical dead ends. Initially, $C u r V i s_{i}$ is set to the "background" rectangle $-\infty$, all the D_{i} lists are empty, and all the Cover(v) lists in T are empty.

To implement the space sweep we iteratively examine each edge in Y. Suppose l is the next event in Y. Let R be the rectangle of S to which l belongs. Let a (resp., b) be the left (resp., right) endpoint of l. There are essentially two different kinds of updates we must perform for l : updating the slabs containing a and b (Subsection 4.1 below), and updating the slabs spanned by l (Subsection 4.2 below). But before doing any of these, we begin by updating the tree T so that it already reflects the occurrence of event l. This is done as follows.

If l is the upper edge of R then, just after event l, the sweeping plane λ intersects R (whereas it did not before event l) and therefore we must insert R in all the Cover(v)'s to which it belongs and update their respective $\operatorname{Max}(v)$'s accordingly. As already stated, there are at most $2 \log r$ such nodes $v \in T$ whose respective Cover(v)'s are to be updated. Since each such update takes $O(\log n)$ time, the amount of time for all such updates is $O(\log r \log n)=O\left(\log ^{2} n\right)$. On the other hand, if l is the lower edge of R then, just after event l, the sweeping plane λ no longer intersects R (whereas it did before event l) and therefore we must delete R from all the $\operatorname{Cover}(v)^{\prime}$'s to which it belongs and update their respective $\operatorname{Max}(v)$'s accordingly. Of course, this too takes $O\left(\log ^{2} n\right)$ time, by an argument similar to that for the case of insertions. Finelily, we must update the $\operatorname{Best}(w)$ values in T, so that they refiect the new $M a x(v)$ valees. -his is easily done by a preorder traversal of T during which we maintain a stack in of an the Best ($v)$ values from the current node to the root. That is, if the traversal is at node ω_{T}, and if the path from w_{1} to the root of T is $w_{1}, w_{2}, \ldots, w_{1}$, then the stack A contains $\operatorname{Best}\left(\omega_{1}\right), \operatorname{Best}\left(w_{2}\right), \ldots, \operatorname{Best}\left(w_{i}\right)$ (with Best $\left(w_{1}\right)$ at the top of the stack). It is trivial to maintain the stack, A during the traversal of T, as follows. When we traverse down T to
a new node v, we compare $z(A[$ lop $])$ to $z(M a \pi(r))$ and push the rectangle achieving the larger of these two onto $A[t o p]$. When we traverse up T we pop the top element off A. The traversal for updating the Best(v)'s takes $O(r)$ time, since T has $O(r)$ nodes. Thus the time for updating T as a result of event l is $O\left(\log ^{2} n+r\right)$.

Now that T is updated, we can proceed to compute the effect of event l on the various Π_{i} 's.

4.1 Processing the "endpoint" slabs

We first describe the updating of D_{h} where $a \in \Pi_{h}$. (The updating of D_{j}, where $b \in \Pi_{j}$, is similar.) Since a is in Π_{h} there were two adjacent strips (say, strips s and $s+1$) in Step 2 whose common boundary is the horizontal plane L containing l. In moving λ from s to $s+1$ past this horizontal plane L, we must delete the rectangular faces of $V i s\left(E_{i}\right)$ that will no longer be intersected by λ and insert the new rectangular faces that will become intersected by λ. Determining these rectangular faces is easy, given the preprocessing done in the previous step (Step 2). Suppose we are in strip s and crossing into strip $s+1$ at L. To determine which faces to delete from D_{h} we need only consult the list Delete $e_{h, s}$: for each f in it, we follow the Where $h(f)$ pointer which tells us where f occurs in D_{h} and thus enables us to delete f from D_{h} in $O(1)$ time. To determine which rectangular faces to insert in D_{h}, we consult the list nnsert $_{h, s+1}$: for each f in that list, the $\operatorname{Pred}_{h, s+1}(f)$ pointer tells us which rectangular face f^{\prime} immediately precedes the location in D_{h} where f is to be inserted, and following Where $h_{h}\left(f^{\prime}\right)$ enables us to complete the insertion of f in D_{h} in $O(1)$ time. Of course after deleting f from D_{h} we must update the Where e_{h} array by doing Where $e_{h}(f):=$ nil. Similarly, after inserting f in D_{h} we must change Where ${ }_{h}(f)$ from being nil to pointing to where f is in D_{h}. Updating D_{h} therefore clearly takes $O\left(\mid\right.$ Delete $_{h, s}\left|+\left|I n s e r t_{h, s+1}\right|\right)$, which is $O\left(\left\{E_{h} \mid\right)=O(n / r)\right.$ because λ coincides with at most $O\left(\left|E_{h}\right|\right)$ edges of $V i s\left(E_{h}\right)$.

In addicion, for each rectangular face \int in Delete $h_{h, s} \cup$ Insert $h_{h, 9+1}$ we perform the following computations for discovering corners and vertical dead ends on f in V is $\left(E_{1}\right)$ that are also in $V i s\left(E_{i} \cup S_{i}\right)$. Let e be the projection oi l onto f (in the projection plane); recall that since $f \in$ Delete $_{h, s} \cup$ Insert $_{h, s+1}, e$ must contain one of the horizontal boundaries of f. For each endpoint p of e, we check if p is in $V i s\left(E_{i} \cup S_{i}\right)$, by comparing $z\left(C_{u r V i s i}\right)$ to the z-coordinate of the rectangle of E_{i} that is visible in $f:$ if $z(C u r V$ isis $)$ is the larger of the two then p is not in $V i s\left(E_{i} \cup S_{i}\right)$, otherwise it is. If p is in $V i s\left(E_{i} \cup S_{i}\right)$ -
i.e., p is visible-then we must find out, for each rectangular face f^{\prime} adjacent to p in $V i s\left(E_{i}\right)$, which rectangle of $E_{i} \cup S_{i}$ is visible in f^{\prime}. This is easily done by comparing the rectangle $C u r V i s_{i}$ to the rectangle of E_{i} that was visible in f^{\prime} (the one with the higher z-coordinate wins).

In addition, if p is a corner point, then we must determine its restricted horizontal shadow. To do this, we start walking from p along the horizontal ray leading to p 's shadow in $V i s\left(E_{i}\right)$: we walk through all the rectangular faces of $V i s\left(E_{i}\right)$ that are cut by this horizontal ray until either (i) we first hit a face whose z-coordinate is more than $z\left(C u r V i s_{i}\right)$, or (ii) we reach the boundary of Π_{i}. Either of events (i) or (ii) gives us the horizontal shadow of p in $V i s\left(S_{i} \cup E_{i}\right)$, i.e., the restricted horizontal shadow of p.

The above computations for processing the event / for slab Π_{h} require a total, over all f in Delete $_{h, s} \cup I_{n s e r t}^{h_{1} s+1}$, of $O\left(\left|E_{i}\right|\right)=O(n / r)$ time (this is because even though $V i s\left(E_{i}\right)$ has $O\left((n / r)^{2}\right)$ faces, the number of faces cut by any particular position of the sweeping plane λ is $\left.O\left(\left|E_{i}\right|\right)\right)$.

4.2 Processing the "spanned" slabs

Assume that the processing of the "endpoint" slabs Π_{h} and Π_{j} has already been done, as explained in Subsection 4.1. This section deals with processing the "spanned" slabs, i.e., the Π_{i} 's for which $R \in S p a n_{i}$. (Recall that R is the rectangle of S to which event l belongs.)

Let U denote the set of ${\Lambda_{i}}^{\prime}$'s that are affected by event l and thus will need further processing. Thus U consists of the Π_{i} 's whose respective $C u r V i s i$'s will change as a result of event l (either $C u r V i s_{i}$ was R and will cease to be R, or it was not R and will become R). Finding U is easy to do: Lemma 4.1 implies that the new value of each CurVisi-call it $N e w C u r V i s_{i}$-just after event l is readily available in the tree T (recall that T has already been updated to reflect event l). There 0 ore we can easily compute U as follows. For each Π_{i}, compare $C u r V i s_{i}$ to $N e w C u r V i s_{i}$, i.e., to the Best $\left(v_{i}\right)$ entry available in T : if they are not the same rectangle then include Π_{i} in U.

For each $\Pi_{i} \in U$, we perform the following computation. For convenience, in what follows we let R_{1} stand for $C u r V i s_{i}$, and we let R_{2} stand for $N e w C u r V i s_{i}$. Thus R_{1} is the rectangle that is in $C u r V i s_{i}$ just before event l, and R_{2} is the rectangle that becomes in CurVisi just after event $l\left(R_{1} \neq R_{2}\right.$ by definition of $\left.U\right)$. Note that R will be one of R_{1} or R_{2} (Figure 6 depicts the case $R_{1}=R$). We obtain from D_{i} the set D_{i}^{\prime}

Figure 6: Illustrating the case $z\left(R_{1}\right)>z\left(R_{2}\right)$.
of rectangular faces of $V i s\left(E_{i}\right)$ whose associated z-values fall between $z\left(R_{1}\right)$ and $z\left(R_{2}\right)$. If $z\left(R_{1}\right)>z\left(R_{2}\right)$ (as in Figure 6), then the rectangular faces in D^{\prime} are not visible (in $E_{i} \cup S_{i}$) before l, but become visible after l. Otherwise, if $z\left(R_{1}\right)<z\left(R_{2}\right)$, then the rectangular faces in D^{\prime} are visible before l, but are not visible after l. In either case, (a portion of) each of these rectangular faces is part of the output, $V i s\left(E_{i} \cup S_{i}\right)$. For each such rectangular face f, we determine the intersection of f with λ, the sweep plane (or, equivalently, the projection of l onto f). Let $p \in f$ be an endpoint of this intersection; and let e be the vertical line segment of $V i s\left(E_{i}\right)$ that contains p. For each such point p, we find the rectangles of $E_{i} \cup S_{i}$ that are visible in the vicinity of p by comparing the two z-values (in $V i s\left(E_{i}\right)$) of the two rectangular faces adjacent to e, to $z\left(R_{1}\right)$ and $z\left(R_{2}\right)$. Note that p forms a visible vertical dead end in $V i s\left(E_{i} \cup S_{i}\right)$ (and hence in $\left.V i s(S)\right)$. We complete the computations for Π_{i} by assigning $C u r V i s_{i}:=R_{2}$. The processing of each such $\Pi_{\mathbf{i}} \in U$ clearly requires $O\left(k^{\prime}\right)$ time, where $k^{\prime}=\left|D^{\prime}\right|$ (recall that a portion of each face in D^{\prime} is visible in $E_{i} \cup S_{i}$, hence is part of the output).

4.3 Analyzing Step 3

When the slab-sweeping procedure terminates we will have computed all the corner points, restricted horizontal shadows, and vertical dead ends in $F^{i}\left(S_{i} \cup E_{i}\right)$. (We prove this in the next lemma.) From the comments made during the detailed presentation of Step 3 , it is easy to see that performing this entire step requires $O\left(\pi \log ^{2} n+n r+n^{2} / r+k\right)$ time, where k is the size of $V i s(S)$. In the following lemma we establish the correctness of our method so far.

Lemma 4.2: The previous steps correctly find all corner points and vertical dead ends in every $V i s\left(S_{i} \cup E_{i}\right)$ and, for each such point p, correctly determine the rectangles of $E_{i} \cup S_{i}$ that are visible its vicinity (i.e., in each rectangular face of V is $\left(E_{i} \cup S_{i}\right)$ that is adjacent to p).
Proof: (\Rightarrow :) Suppose p is a corner point or vertical dead end ir $V i s ; S_{i} \cup E_{i}$), where Π_{i} is the slab containing p. We wish to show that p will be discovered in the previous steps of the algorithm. Let us treat each of the possible cases.

Case 1. p is a corner point, the projection of a vertex p^{\prime} of some $R \in S$. Let e be the horizontal edge of R containing p^{\prime}. Since p is a vertex in V is $\left(E_{i} \cup S_{i}\right), p$ must be a vertex in $V i s\left(E_{i}\right)$. Therefore, Step 2 will have computed which rectangle of S is visible in each face that is adjacent to p in $V i s\left(E_{i}\right)$. Therefore when event e is processed by Step 3 , that step must indeed discover that p is visible in $V i s\left(E_{i} \cup S_{i}\right)$ (this follows from the way Step 3 works). Moreover, for each face f of $V i s\left(E_{i}\right)$ that is adjacent to p, Step 3 correctly determines the rectangle of S visible in f when it compares $C u r V i s_{i}$ to the rectangle of Endpoint t_{i} that is visible in f and chooses the one with the larger z-coordinate.

Case 2. p is a visible vertical dead end in $V i s\left(E_{i} \cup S_{i}\right)$, i.e., it is of the form T or 1. If p is a vertex in $V i s\left(E_{i}\right)$, then an argument similar to that for Case 1 applies. So suppose p is not a vertex in $V i s\left(E_{\mathrm{i}}\right)$, i.e., it occurs on the interior of an edge e of $V i s\left(E_{\mathrm{i}}\right)$. Obviously e must be vertical so that a portion of it becomes the vertical part of the T or \perp in $V i s\left(E_{i} \cup S_{i}\right)$, the horizontal part of the T or \perp being contributed by the edge of a rectangle in $S p a n_{i}$. We continue the discussion assuming that p is, in V is $\left(E_{i} \cup S_{i}\right)$, of the form \perp (the argument for when p is of the form T is similar). As already stated, the \perp that p forms is the intersection of a portion of the (vertical) segment e with a horizontal line segment / that is the projection of an edge I^{I} of a rectangle, call it $R_{\text {big }}$, that spans Π_{i}. (Note that R_{big} becomes the new $C u r V i s_{i}$ just after event l^{\prime} is processed.) Let f^{\prime} and $f^{\prime \prime}$ be the two rectangular faces of $V i s\left(E_{i}\right)$ that are adjacent to e just above p (i.e., just before event l^{\prime}). Let R^{\prime} and $R^{\prime \prime}$ be the two rectangles of E_{i} that are visible in V is $\left(E_{i}\right)$ in (respectively) faces f^{\prime} and $f^{\prime \prime}$. Then R^{\prime} and $R^{\prime \prime}$ must both have lower z-coordinates than that of R_{big} (because p is a \perp in $V i s\left(E_{\mathrm{i}} \cup S_{i}\right)$). Moreover, at least one of R^{\prime} and $R^{\prime \prime}$ (possibly both) must be visible around p in $V i s\left(E_{i} \cup S_{i}\right)$, i.e., have a z-coordinate larger than that of the $C u r V i s ;$ just before event l^{\prime} (otherwise p could not be a \perp). Therefore the search performed by Step 3 for event $/ l$ will discover at least
one of f^{\prime} and $f^{\prime \prime}$; hence, discover the intersection of e with l at p and all the rectangles visible in the faces around p.
$(\Leftrightarrow$:) Let p be any point determined to be "visible" by Step 3. We wish to show that this action of Step 3 is correct, i.e., that p is indeed visible in $V i s\left(S_{i} \cup E_{i}\right)$, where Π_{i} is the slab containing p. Obviously p must be in $V i s\left(E_{i}\right)$ as weil, but not necessarily as a vertex (perhaps as a point along some edge). Any rectangle R that can possibly obstruct p is either in E_{i} or in $S_{p a n}$. Thus, since we compare p to the rectangles in E_{i} in Step 2, and, in Step 3, to the rectangle with largest z-coordinate whose projection contains p, p is indeed a visible point. Moreover, since p must correspond to an event in one of the plane sweeps of Steps 2 and 3 , by arguments similar to those for the (\Rightarrow) part of the proof, we do discover all the rectangles of S that are visible in the faces adjacent to p. This completes the proof.

In Step 4 we repeat the above three steps, except that the roles of the x-axis and y-axis are reversed, and we do not bother performing the extra steps to determine corner points and their respective shadows (this was already done in Step 3). Thus, we find all the visible horizontal dead ends. This gives us all the visible vertices of V is (S), except those that are horizontal shadows. In the next section we show how to extend the restricted horizontal shadows (in $V i s\left(S_{i} \cup E_{i}\right.$)'s) into true horizontal shadows (in $V i s(S)$), thus giving us all the vertices of $V i s(S)$.

5 Step 5: Constructing $V i s(S)$

In this step we complete the construction of $V i s(S)$. From Steps 3 and 4 we have all the visible vertices of $V i s(S)$, except those that are horizontal shadows. Moreover, for each visible vertex p we have the rectangles of S that are visible in each face adjacent to p. In order to complete the construction of $V i s(S)$ we must determine all the horizontal shadows in $V i s(S)$, as well as all the adjacency relationships between vertices and edges in $V i s(S)$.

Let B be the set of all visible horizontal dead ends, visible vertical dead ends, visible corner points, and the restricted horizontal shadows of visible corner points. We begin by constructing G, the planar graph determined by the adjacencies of the vertices in \bar{B}. We construct all the adjacencies between these vertices by periorming two calls to a 2-dimensional bucket sorting routine, each time giving B as the set to be sorted. In the
first call we specify that the rnutine should sort lexicographically by (x, y) coordinates, resulting in the list $B_{=v}$. In the second call we specify that the routine sort lexicographically by (y, x) coordinates, giving the list $B_{v z}$. This requires $O(n+k$) time, where k is the number of ve-tices in V is(S). For any vertex p in B we determine the other vertices of B that are adjacent to p in G by examining the immediate predecessors and successors of p in $B_{x y}$ and $B_{y z}$. In addition, recall that we have for each p the rectangles that are visible in each of the faces of G adjacent to p.

Having so constructed G, we need only extend each restricted horizontal shadow in G to a true horizontal shadow. Let us re-divide the space by the vertical dividing planes used in Step 1 , again giving us the slabs $\Pi_{1}, \Pi_{2}, \ldots, \Pi_{r}$. From the first part of this Step 5 (explained above) we now have all the vertices in $V i s\left(S_{i} \cup E_{i}\right)$ as well as all their adjacencies in $V i s(S)$. We say that a vertical segment s in $V i s\left(S_{i} \cup E_{i}\right)$ is horizontally exposed from the left (resp., right) if there is a horizontal line that intersects no vertical segments in $V i s\left(S_{i} \cup E_{i}\right)$ between s and the left (resp., right) boundary of Π_{i}. For each slab Π_{i} we define the left profile (resp., right profile) to be the y-sorted list of vertical segments of $V i s\left(S_{i} \cup E_{i}\right)$ that are horizontally exposed from the left (resp., right). Let L_{i} and R_{i} denote the left and right profiles of Π_{i}, respectively.

The method for constructing L_{i} is as follows (the method for R_{i} is similar). Let \hat{L}_{i} be the set of all vertices p in $V i s\left(S_{i} \cup E_{i}\right)$ such that p is adjacent to a horizontal (visible or shadow) segment in $V i s\left(S_{i} \cup E_{i}\right)$ that intersects the left boundary of Π_{i}. We can construct \hat{L}_{i} by examining all the vertices in $V i s\left(S_{i} \cup E_{i}\right)$ once. Sort the points in \hat{L}_{i} by decreasing y-coordinates. Each point p in \hat{L}_{i} determines a segment in L_{i}, namely, the vertical segment that is adjacent to p. In addition, for each point p we traverse the face of $V i s\left(S_{i} \cup E_{i}\right)$ that is adjacent to p, but does not contain the vertical segment adjacent to p, to see if it contains a vertical segment horizontally exposed from the left. Note that by the definition of the points in \hat{L}_{i} we will traverse each such face only once. After we have completed all such traversals, we will have the entire list L_{i}. This construction takes $O\left(n+k_{i}\right)$ time, where k_{i} is the number of vertices in $V i s\left(S_{i} \cup E_{i}\right)$.

We construct a graph that has a node for each L_{i} and P_{i} list, and connects each R_{i} to R_{i-1} and and each L_{i} to L_{i+1}. Using the terminology of Chazelle and Guibas [5], this graph is a catalogue graph. Thus, we can apply the "fractional cascading" technique [5] to build a data structure that consists of augmented lists L_{i}^{\prime} and R_{i}^{\prime}, for each i in $\{1,2, \ldots, r\}$, as well as a number of pointers between consecutive augmented lists, such that given the
position of a point p in some L_{i}^{\prime} list this structure allows one to locate p in L_{i} and L_{i+1}^{\prime} in $O(1)$ time. The similar property holds for the R_{i}^{\prime} lists. Using the method of Chazelle and Guibas [5], this data structure can be constructed in time and space proportional to the total number of elements in all the lists (which is $O(n+k)$).

Let us return to the problem at hanc. namely, completing the construction of V is (S) by finding the true horizontal shadow p cints of each corner point p that currently has its restricted horizontal shadow falling on a boundary of Π_{i}, where $p \in \Pi_{i}$. Let us concentrate on the computation of the true horizontal shadow of a point p whose restricted horizontal shadow falls on the left boundary of Π_{i} (the method for the case when p 's restricted shadow falls on the right boundary of Π_{i} is similar). We first locate $y(p)$ in R_{i-1}^{\prime} in $O(\log n)$ time by using the binary search technique. Then, we can locate $y(p)$ in R_{i-1} in $O(1)$ time. If the interval in R_{i-1} in which $y(p)$ falls contains a vertical segment, then we have found the true horizontal shadow of p-simply compute the intersection of the line $y=y(p)$ with this segment. If, on the other hand, this interval is empty of any vertical segments (of $V i s\left(S_{i-1} \cup E_{i-1}\right)$), then we use the position of $y(p)$ in R_{i-1}^{\prime} to locate $y(p)$ in R_{i-2}^{\prime} in $O(1)$ time. We then repeat the above procedure until we locate p 's horizontal shadow or run out of lists to search in (in which case p 's shadow is $(-\infty, y(p)))$. This searching procedure takes at most $O(\log n+r)$ time for each corner point p.

The only thing left, then, is to link each new horizontal shadow into the graph G to give us $V i s(S)$ while removing all the old (restricted) horizontal shadows they replace. To perform this last computation construct a tuple ($x, y, y(p)$), where (x, y) is the upper endpoint of the vertical segment on which the horizontal shadow ($x, y(p)$) of p lies. We can then sort all these tuples in $O(n)$ additional time. Using this sorted list we can complete the construction of V is (S) in $O(n)$ time. Since there are at most $O(n)$ corner points for which we perform this procedure, the total time for finding these horizontal shadows is $O(n \log n+r n+k)$ time. This completes the algorithm. We summarize the above discussion in the following theorem.

Theorem 5.1: Given a set S of n isothetic rectangles in \Re^{3}, one can solve the hiddensurface elimination problem for S in $O\left(n \log ^{2} n+\left(n^{2} / r\right)+r n+k\right)$ time, where r is any integer parameter and k is the size of the output.

Corollary 5.2: One can solve the hidden-surface elimination problem for an isothetic
collection of rectangles in $O\left(n^{1.5}+k\right)$ time.
Proof: Set $r=\sqrt{n}$.

6 Conclusion

In this paper we have given an algorithm for solving the hidden-surface elimination problem for rectangles that runs in $O\left(n^{1.5}+k\right)$ time, which is output-sensitive and simultaneously worst-case optimal (for quadratic k). Moreover, our algorithm should be competitive with existing methods for realistic values of n. Of course, solving hiddensuriace elimination for rectangles is a special case of the general problem. Can the general hidden-surface elimination problem be solved in time proportional to $k+o\left(n^{2}\right)$?

Acknowledgements

We would like to thank S. Rao Kosaraju and Michael McKenna for helpful discussions.

References

[I] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.
[2] B.G. Baumgart, "A Polyhedron Representation for Computer Vision," Proc. 1975 AFIPS National Computer Conf., 44, AFIPS Press, 1975, 589-596.
[3] J.L. Bentley and D. Wood, "An Optimal Worst Case Algorithm for Reporting Intersections of Rectangles," IEEE Trans. on Computers, Vol. C-29, 1980, 571577.
[4] M. Bern, "Hidden Surface Removal for Rectangles," Proc. 4th ACM Symp. on Computational Geometry, 1988, 183-192.
[5] B. Chazelle and L.J. Guibas, "Fractional Cascading: I. A Data Structuring Technique," Algorithmica, Vol. 1, No. 2, pp. 133-162.
[6] F. Dévai, "Quadratic Bounds for Hidden-Line Elimination," Proc. 2nd ACMI Symp. on Compulational Geometry, 1986, 269-275.
[7] H. Edeisbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.
[8] H. Edelsbrunner and M.H. Overmars, "Batched Dynamic Solutions to Decomposable Searching Problems," J. Algorithms, Vol. 6, 1985, 515-542.
[9] M.T. Goodrich, "A Polygonal Approach to Hidden-Line Elimination," Proc. of 25th Annual Allerton Conference on Communication; Control, and Computing, 1987, 849-858.
[10] L.J. Guibas and R. Sedgewick, "A Dichromatic Framework for Balanced Trees," Proc. 19th IEEE Symp. on Foundations of Computer Science, 1978, 8-21.
[11] L.J. Guibas and J. Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams," A CM Transactions on Graphics, Vol. 4, 1985, 75-123.
!12 R.H. Güting and T. Ottmann, "New Algorithms For Special Cases of the Hidden Line Elimination Problem," Computer Vision, Graphics, and Image Processing, Vol. 40, 1987, 188-204. (A preliminary version of this work appeared in Proc. Symp. on Theoretical Aspects of Computer Science, 1985, 161-171.)
[13] M. McKenna, "Worst-case Optimal Hidden-Surface Removal," ACM Transactions on Graphics, Vol. 6, No.1, January 1987, 19-28.
[14] D.E. Muller and F.P. Preparata, "Finding the Intersection of Two Convex Polyhedra," Theoretical Computer Science, Vol. 7, No. 2, October 1978, 217-236.
[15] O. Nurmi, "A Fast Line-Sweep Algorithm For Hidden Line Elimination," BIT, Vol. 25, 1985, 466-472.
[16] T. Ottmann and P. Widmayer, "Solving Visibility Problems by Using Skeleton Structures," Proc. 11th Symp. on Mathematical Foundations of Computer Science, 1984, 459-470.
[17] F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction, Springer-Verlag, New York, NY, 1985.
[18] F.P. Preparata, J.S. Vitter, and M. Yvinec, "Computation of the Axial View of a Set of Isothetic Parallelepipeds," Manuscript, 1987. (Cited in [4].)
(19) A. Schmitt, "On the Time and Space Complexity of Certain Exact Hidden Line Algorithms, ${ }^{n}$ Universität Karlsruhe, Fakultät für Informatik, Report 24/81, 1981. (Cited in [12].)
[20] A. Schmitt, "Time and Space Bounds for Hidden Line and Hidden Surface Algorithms," EUROGRAPHICS '81, 43-56.
[21] S. Sechrest and D.P. Greenberg, "A Visibility Polygon Reconstruction Algorithm," ACM Transactions on Graphics, Vol. 1, No. 1, January 1982, 25-42.
[22] I.E. Sutherland, R.F. Sproull, and R.A. Schumacker, "A Characterization of Ten Hidden-Surface Algorithms," Computing Surveys, Vol. 6, No. 1, March 1974, 1-25.
[23] R.E. Tarjan, Data Structures and Network Algorithms, SLAM, Philadelphia, PA, 1983.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

[^0]: ${ }^{1}$ This author's research was supported by the Ofice of Naval Research under Grants No0014-84-K-0502 and N00014-8G-K-0689, and the National Science Foundation under Grant DCR-8451393, with matching funds from ATdT. Part of this resenrch was carried out while this author wis visiting the Research Institute for Advanced Computer Science, NASA Ames Research Center, Moffett Field, Caijfornia.
 ${ }^{2}$ This author's research was supported by the National Seience Foundation under Grant CCR-8B10568.

