
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1990

Output-Sensitive Methods for Rectilinear Hidden Surface Removal Output-Sensitive Methods for Rectilinear Hidden Surface Removal

Michael T. Goodrich

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

Mark H. Overmars

Report Number:
90-961

Goodrich, Michael T.; Atallah, Mikhail J.; and Overmars, Mark H., "Output-Sensitive Methods for Rectilinear
Hidden Surface Removal" (1990). Department of Computer Science Technical Reports. Paper 815.
https://docs.lib.purdue.edu/cstech/815

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

OUTPUT-SENSIT1VE METHODS FOR
RECTILINEAR HIDDEN SURFACE REMOVAL

Michael T. Goodrich
Mikhail J. Alallah
Mark H. Overmars

CSD-TR-961
M=h 1990

Output-Sensitive Methods for Rectilinear Hidden
Surface Removal'

Michael T. Goodrich t Mikhail J. Atallah'

Abstract

Mark H. Overmars§

We present an algorithm for the hidden-surface elimination problem for rect

angles, which is also known as window rendering. The time complexity of OUI

algorithm is dependent on both the number of input rectangles, n, and on the

size of the output, k. Our algorithm obtains a hade-off between these two com

ponents, in that its running time is O(r(nI+l/T" + k», where 1 5 r :S log n is a

tunable parameter. By using this method while adjusting the parameter r (Con

the fly" one can achieve a running time that is O(nlog n+k{log n/ log(l+k/n))).

Note that when k is 0(n), this achieves an G(nlog n) running time, and when k

is 0(nl+l
) for any positive constant E, then this achieves an O(k) running time,

both of which are optimal.

•A preliminary version of this research appeared in the Proceedings of the 17th ICALP conference, July
1990.

fThis author's research was supported by the National Science Foundation under Grant CCR-8810568

and by the NSF and DARPA under Grant CCR-8908092. Author's address: Department of Computer

Science, The Johns Hopkins University, Baltimore, Maryland 21218.

tThis author's research was supported by the Office of Naval Research under Grants NOOOl4-84-K-0502

and NOOOI4-86-K-0689, the Air Force Office of Scientific Research under Grant AFOSR-90-0107, the National

Science Foundation under Grant DCRr8451393, and the National Library of Medicine under Grant R01

LM05118. Part of this research was carried out while this author was visiting the Research Institute for

Advanced Computer Science, NASA Ames Research Center, Moffett Field, California. Author's address:

Department of Computer Science, Purdue University, West Lafayette, Indiana 47907.
§This author's research was partially supported by the ESPRIT II Basic Research Actions Program of

the EC, under contract No. 3075 (project ALCOM). Author's address: Department of Computer Science,

University of Utrecht, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.

1

Figure 1: (a) isothetic rectanglesj (b) their visible portion.

1 Introduction

1.1 The Problem

The hidden-surface elimination problem is well known in computer graphics and compu

tational geometry. In this problem one is given a set of simple, non-intersecting planar

polygons. in 3-dimensional space, and a projection plane ii, and one wishes to determine

which portions of the polygons are visible when viewed from infinity along a direction nor

mal to ;;, assuming all the polygons are opaque. An important special case of this problem

occurs when the polygons are all isoiheiic rectangles, i.e., the rectangles are all parallel to

the xy-plane and have sides that are parallel to either the x- or y-axis. This version of the

hidden· surface elimination problem is also known as the window rendering problem: since it

is the problem that must be solved to render the windows that might need to be displayed

on the screen of a workstation. (See Figure 1.)

Using the terminology of [28], we are interested in the object space version of this problem.

That is, we want a method that produces a de.."ice-independent, combinatorial representation

of the visible surfaces. Such a solution is not dependent on any specific method for rendering

polygons nor on the number of pixels on a display screen. In addition, an object space

solution gives us a representation that is easily scaled and rotated.

2

Figure 2: (a) Quadratic output sizej (b) Small output size with quadratic 1.

1.2 Previous Work

We briefly review some of the more efficient known algorithms for the window rendering

"problem. Since this problem is a special case of the general hidden-surface elimination,

problem, any algorithm for the general case can also be used for this problem. In [16]

McKenna shows how to solve the general hidden-surface elimination problem in O(n 2) time,

generalizing an algorithm by Devai [8J for the hidden-line elimination problem that also runs

in O(n2
) time (in the hidden-line elimination problem one is only interested in computing

the portions of the polygonal boundaries that are visible). These algorithms are worst

case optimal, because there are problem instances that have 0(n 2) output size (e.g., see

Figure 2a). Unfortunately, these algorithms always take 0(n 2) time [8, 16], even if the size

of the au lput is very small.

In [19] Nurmi gives an algorithm for general hidden-line elimination that runs in O«n +
I) log n) time, where I is the number of pairs of line segments whose projections on 11' intersect

(1 is O(n2
)). Schmitt [25] also achieves this bound. If I is o(n 2 jlogn), then these algorithms

clearly run faster than O(n2
) time. Their worst-case performance is, however, a suboptimal

O{n' logn) time(ifI is 0(n')):

In [13] Guting and Ottmann address the window rendering problem, giving an algorithm

that runs in O(nlog2
n + I) time. Using results of Goodrich [11] and Larmore [14J this can

be improved to O(n log n + I) time. Doh [9] also achieves this bound. All of these algorithms

are not truly output-sensitive, however. Indeed, there are problem instances where these

algorithms run in O(n2
) time even though the output size is constant (e.g. in the case where

a large rectangle obscures a collection of rectangles that intersect to form a "grid", as in

3

Figme 2b).

There are methods whose running time depends on both the input size and output

size, however. In [13J Giiting and Gttmann also gave an output-sensitive window-rendering

algorithm that runs in O(nlog 2
n +klog 2 n) time, where k is the actual size of the output.

Bern [4J and Preparata, Vitter, and Yvinec [24] have subsequently shown that one can solve

the window rendering problem in O(nlog nlog logn + k log n) time and O(nlog 2 11. + k log 11.)

time, respectively. In algorithms such as these, the term in the time-complexity involving

only 11. is called the input-size component and the term in....olving k (and possibly n as well)
is called the output-size component.

1.3 Our Results

In this paper we give a new algorithm for the window rendering problem whose running

-'--__ time depends on both the input size and output size. Our algorithm allows one to specify

---------a-trade-off between these .two component.s of the running time, in that its running time is

O(r(nl-i-l/~ + k», where 1 2:: r ~ logn is a tunable parameter. Using this method while

adjusting the parameter r (Con the fly", one can easily ac.hieve 0(11. log n + k(log nflog(1 +
kin)) time, as observed by Paterson [22J. IndependenUy, Bern [5] and Mehlhorn et al. [171

were rec~ntIy able to achieve O(nlogn +k log(2n2Ik» time using an elegant method, which

is quite different from OUIS. Note, however, that our time bound is always at least as good as

theirs, and is better for quite a large range of k values. For example, if k is 0(nI+~) for any

constant. c, a < € < 1: then OUI method achieves an O(k) running time, which is optimal,

,,,-hereas theirs still has a subopt.imal 0(k log n) running time.

1;Ve sweep through the colled-ion of rectangles from front to back with a plane parallel

to the xy-plane. During this sweep we maintain the shadow of all the rectangles already

encountered (i.e., the union of their projections on the xy-plane). In encountering a new

rectangle R, we determine all the intersections of R with the sha"dow-each intersection

determines a "piece" of a solution to the hidden-surface elimination problem. 1;Ve complete

I.he processing of R by updating the shadow to include the region obscured by R. The main

difficulty is in performing these operations efficiently.

To obtain an efficient running time we develop a new data structure that we call the

hive tree. This st.ruclure is a combination of the hive graph st.ructure of Chazelle [6] and the

segment tree structure of Bentley and 'Vood (3], augmented wHh a number of support.jug

auxiliary structures. Each supporting structure is implemented with the most simple data

structures-arrays and linked lists-hence, our method should be fairly easy to program.

4

The paper is organized as follows. In t.he next sed-ion we dt"sc.rihf' Hlf' hiv~ t.rf'r;" rlata

structure and give a method for its construction. In Section 3 we show how to use the hive

tree to derive a simple l efficient method for rectilinear hidden-line elimination. We show how

to extend this method t.o the hidden-surface eliminat.ion problem in Section 4. Both of these

methods run in time that is O(r(n 1+1
/
r + k)), except for a pre-processing steps that requires

O(r(n 1+t/r log 11. + k)) t.ime. In Section 5 we show how derive the claimed time bound by

eliminating this pre-processing bottleneck (at the expense of introducing some sophisticated

data structuring techniques).

2 The Hive Tree

Suppose we are given a collection S of n non-intersecting isot.hetic rectangles in ~3, i.e., a

collection of rectangles parallel to the xy-plane such that all edges are parallel to eitheT the

:1::- o~y-axis. The problem is to compute all the portions of each rectangle that are visible

from z = 00 with light rays that are parallel to the z-axis (i.e., t.he projection plane is the
:z:y-plane).

Specifically, each rectangle R is given by a triple ((:z: 1, yd, (X2' Yz), z), where (Xl' yr) is the

lower-left corner of R, (X21Y2) is the upper-right. corner of R, and z is the z-coordinat.e of the

plane to which R belongs. For the remainder of this paper we assume that t.he relationships

lIto t.he right. of" and Uta t.he left or' are with respect to x-coordinates, that the relationships

"above
ll

and l:below:' are with respect to y-coordinates, _and that the relat.ionships "in front

or' and llbehind" are wit.h respect to z-coordinates. Gi-... en an isothetic rectangle R in 91 3 we

let z(R) denote the z-coordinate of the plane to which R belongs. Similarly, for any point p

in 3?3 1 "oie use x(p), y(pL and z(p) to denote the X-I Y-l and z-c.oordinate of Pl respectively.

Let Hid(S) be the planar subdivision determined by a solut.ion to the hidden-line elim

ination problem. That is, Hid(S) is an embedded planar graph whose edges correspond to

the visible segments. In order to better motivate our hidden-surface method, let us examine

the st.ructure of Hid(S) more closely. For each vertex v of Hid(S) either v corresponds to a

(visible) comer point of a rectangle in S or v corresponds to an intersection of two visible

edges (where one of them becomes occluded by the other, i.e.
l
an intersection of the form I,

.1 1 r, or -I). We call such intersections dead end5, and classify them into two types: 'vertical

dead ends, where the terminating segment is vertical (i.e., T or .1), and horizontal dead ends,

where the terminating segment. is horizontal (i.e., r or -I).

Before we give our hidden-line elimination method, we describe the primary data struc

ture we use in our algorithm, namely, the hive tree. This data structure is defined for a given

5

colleet.ion of rectangles in the plane. In our case we use t.he projections of t.1H' red.anJ!;les

in S on the xy-plane. To construct a hive tree we project the vertical rectangle boundaries

on the x-axis and place a vertical line between each consecutive pair of projection points

(any such verf.icalline will do). This partitions the plane into at most 2n + 1 "slabs'!. Not.e

that none of the dividing vertical lines contains t.he vertical boundary of a rectangle in S.

We then build a complete n 1
/

f _ary tree T (i.e., a rooted tree such that each internal node

has n 1
/

f children) on these slabs in the natural way, so that each leaf is associated wHh a

slab, where Z ::; t ::; logn is a tunable parameter. ''''Ie will use t to denote this "branching

factor" throughout the remainder of this paper, and use the relationship.r = tlZ to derive

the bounds claimed in the introduction (Which involve the parameter r). To simplify com

putations that we will perform for leaf nodes, we augment T. by giving each leaf v a parent

w, such that v is the only child of w (so that the parent of w has n 1 / t children). Thus, T

has height rtl +1, since each leaf node has no siblings.

vVe use II" to denote the slab associated with the leaf v. For each internal node v in T we

associate a slab II", which is the union of all the slabs associated with the children of 1.". Let

C(II,,) (resp., n(Il,,)) denote the left (resp., right) vertical line that is the boundary of II~..

Note that by projecting back to 3·dimensions C(II,,) (resp., n(II,,)) can also be vie,...-ed as a

plane parallel to the yz-plane such that any rectangle RES intersects this plane in a line

segment parallel to the y-axis. (This alternate view will be useful for our v..-indow-rendering
methods.)

VIe define some relationships similar to those defined for the segment tree dat.a struet.ure

of Bentley and 'Vood [31. 'Ve say that a rectangle R spans a slab II" if R intersects IT", but

neither of R's vertical boundaries lie inside IT". A rectangle R COVErs a node l' in T if it

spans II" but does not span II", where x is the parent of z. A rectangle R ends in a slab II"

if R does not span II" and has a vertical boundary inside IIv. For each v in T we define two

lists, Cover(v) and End(v), such that Cover(v) stores all the rectangles that cover v and

End(v) stores all the rectangles that end in II". Note that any rectangle in S can belong to

at. most Zrtl + Zof the End(v) lists and no more than (Zrtl + 2)n1/ t of the Cover(v) lists.

'Ve partition each IIv slab into horizontal strips, whose vertical boundaries are delim

ited by C(II,,) and n(Il,,), respectively, and whose horizontal boundaries are delimited by

horizontal lines passing through two consecutive y-coordinates in a y·sorted listing of the

horizontf\.l boundaries of the rectangles in C over(v) U End(v). We let Stripev) denote the

list of horizontal strips so-constructed for II".

'We also define t.wo list.s, Up(h) and Down(h), for each horizontal strip h in Strip("!.!), as
follows:

6

Figure 3: Illustrating the enclosure property. h is the shaded region, Up(h) =
{hQ,hb,hc,hd,he}, and Down(h) = {hl1 h2 ,h3 ,h4 } •

• Up(h) is the set of horizontal strips hi such that h' is in Strip(z) and h' intersects h,

where z is the parent. of'U in Tj

• Down(h) is the set of horizontal strips hi such that hi is in Strip(w) for some child w

of v and h' intersects h.

Note that a. E Down(b) "if and only if b E Up(a.). Let Y"(h) denote the (int-erval) projec.t.ion of it

horizontal strip h onto the y-a.xis. The following lemma establishes an important relationship

between a Y(h) and Y(h l
), where hE Down(hl

). respectively.

Lemma 2.1: Let h be a strip suel, tI..t h E Down(h') and h n h',p 0. nen Y(h') ~ Y(h).

Proof. Let v and z be the nodes in T such that h E Strip(v) and h' E Strip(z.). Thus, =
is the parent of v. Since the ships in Strip(=) are built on consecutive y-coordinat.es in a

y-sorting of the horizontal boundaries of the rectangles in Cover(z) U End(z) (and similarly

for v), it suffices to show that C over('U) lj End('U) ~ C o'Uer(z) U End(z). By the definition

of II.:, End(t l) ~ End(z), since II v C II.:. By the definition of Gover(v), each rectangle in

Cover(v) does not span II.;; hence, each rectangle in Cover(v) has a vertical boundary in

II,. Thus, Cover(v) ~ End(=). 0

Corollary 2.2: Let h be a strip SUell tllat h E Up(h') and h n h' f:. 1lJ. Tllen Y(h) ~ Y(h').

We call the property defined by Lemma 2.1, and its corollary, the enclosure property of

the strips in the hive tree. (See Figure 3.) Viewed another way, if v is a child of z, t.hen

7

const.ructing Strip(=) involves extending the horizontal boundaries of .!'d,rip!': in Sfrip(l-') to

be horizontal boundaries in Strip(z) as well. This extending of boundaries is reminiscent

of segment extensions used by Chazelle [6J in his hive graph structure, and motivates the

name, hive tree, for our structure.

Algorithmically, Lemma 2.1 implies that constructing the Up(h) and Down(h) lists will

increase the space complexity of the data structure by at Illost a factor of nl/t . '~;e a!':sume

that Up and Down lists are represented as doubly-linked lists, and are augmented with ext.ra

pointers so that for each (h,h') pair with h E Up(h') we have symmetric pointers between

t.he copy of h in Up(h') and the copy of h' in Down(h).

Before we show how we use the hive tree for hidden-line and hidden-surface elimination,

let us briefly outline how to efficiently construct a hive tree. As shown in [3] it is fairly

st~aight.forward to determine for each rectangle R all t.he nodes in- T that R covers or ends

in. This takes O(tn l
/

t
) time for each R, or O(tnl+1 / l) time overall (since we are using an

n
l

/
l _ary tree instead of a binary tree). Thus we can const.ruct all the Cover(v) and End(v)

lists in O(tn I+l /t) time. As for the Strip lists (and the associated Up and Down lists)' note

that 1 by the enclosure property, the y-coordinates of t.he boundaries of t.he st.rips in Strip(v)

are a subset of the y~coordinates of t.he boundaries of the strips in Strip(=), where z is 'l/s

parent. Our met.hod, t.hen, is t.o construct the Striper) list for the root node, r. This takes

O(nlogl1) time (to sort all the y-coordinates). Then: we copy out (in order) the boundaries

j.hat are also in each of Strip(vl)l Strip(ll:!L ... , Sirip(lI"l/'), in turn, where VI: t:~, ... ,1'"1/' are

t.he children of r. Given the lists COt:€T(V;) and End('l.") already constructed for each t'i: t.his

is easy t.o do in O(lStrip(r)l) time for each v,. Repeating t.his recursively, for VI: ' •• 1'1)"1/',

constructs all the Strip lists in D. \-\ihile we are copying out the strips from the Strip list for

a node1 11, to one of it.s children: Vi, it. is a straightforward addit.ion tei also be const.ruet.ing

the Up lists for the strips in Strip(t'i) and adding the Strip(v;) strips to the Down lists

for the strips in Strip(t1). In addition 1 while 'e are building these lists ",..-e also build a list

CoverStrips(R), for each red-angle R 1 that contains a pointer t.o each strip h in D such that.

h is in Strip(v), R is in COller(v)l and a horizonlal boundar)' of R contains a horizontal

boundary of h.. Since each recursive call takes O(jStrip(l~)lnl/l) t.ime plus the t.he t.ime for

the smaller recursive calls, the t.otal time for this construction is O(nlog n + tn 1+2 / t). Thus,

we have the following lemma:

Lemma 2.3: Given a colleetion S oEn isotlletic rectangles ill tile plane, one call COJlstrllcf,

a l,ive tree for 5 ill O(tn l+2/t) time, 1Vllere 2::::; t::; logn is a (.unable parameter.

Proof. nlogn is O(tn1+2/ l) for 2::; t::::; logn. 0

8

Figu,e 4, The two shadow operations. (aJ v-query(R); (b) add(R).

In the next section we show how to use the hive tree to solve the hidden-line elimination

problem for isothetic rectangles.

3 Rectilinear Hidden-Line Elimination

Suppose we are given a collection1 5, of n isothetic redangles in !}t3. In t.his sed-ion we

5ho"..- hm\' to construct Hid(S). For simplicity of expression in the description t.hat. follows

we assume that no two horizontal (resp.~ vertical) boundaries have the same y-coordinat.e

(fesp., ::r:-c.oordinate). It is straightforward to modify our algorithm for t_he more general

Crtse, as this only adds a number of trivial special cases to variolls steps in our method.

As menl-ioned above, the main idea of our algorithm is to sweep through the collection of

rectangles from front to back with a plane parallel to the xy-plane, maintaining lhe shadow

of all the rectangles encountered as we go. (The shadow of a collection of rectangles is

the union of their projections on the xy-plane.) \Ve use a hive tree, constructed on the

projection of the rectangles in 5, to maintain the shadow of the rectangles in the subset

5' ~ 5 of rectangles encountered so far by the sweep. In particular~ there are two operations

that. we support.:

• v-query(R), given a redangle RES - 5', determine all the int.ersections R has with

vertical edges in t.he shadow of the rectangles in 5'. This operation also identifLes wideh

corner points of R (if any) are not obscured by the shadow. (See Figure 4a.)

• add(R), update D so as t.o represent the shadow of SU{R} and assign 51:::::: SIU{R}.

(See Fig,,,e 4b.)

9

We sort t.he rectangles in 5 by decreasing z-coordinat.es and add l-he r~et.angl('s in 5 t.o 51,

one by one, in this order. Just before adding a rectangle R to 5' we perform a v-query

for R. Since we add the rectangles to 51 in order by their z-coordinates, any int.ersections a

rectangle R has with the shadow of the rectangles in 51 (at that time) must all be part of

t.he hidden. surface map for 5. In fact, these are all the horizontal dead ends in Hid(5) that

are determined by R. In addition, a v-query for a rectangle R tells us whether each corner

point p of R is visible or lIOt.. Thus, this space-sweep gives us all the corner point.s, and

horizontal dead ends (i.e., points of the form f- or -i), in Hid(5). vVe then repeat this same

space-sweep one more time, wit.h the roles of the x- and y-axes interchanged (that is, wit.h

the hive tree determined by t.he vert.ical segments in 5), giving us all t.he vertical dead ends

in Hid(5) (i.e., points of the form Tor .1). 'Ve focus on the first space-sweep, the second
one being simil~r.

Vve complet.e the algorithm by constructing a representation of the Hid(S) (minus edge

face adjacency information) from t.he corner and intersection points, which comprise the

vertices of Hid(S). This can easily be clone by sort-ing the corner points lexicographically

twice-once wit.h t.he :r-coordinate being most significant and once with the y-coorclinate

being most significant. This allows us to determine for any point p the points immediat.ely

adjacent to p in each of the 4 possible directions. To implement t.his post-processing step,

we can normalize all t.he x- and y-coordina.t.es t,o be integers in the range [1: nl and use radix

sort. to perform the sorting (see [1]). This step t.akes O(nlogn + k) time.

The remainder of t.his seet.ion, then: is devoted t.o explaining how t.o augment. the hive

tree for shadow maintenance and also how to use t.his augmented hive f.ree to perform t.he

operat.io:LJ.s v-query(R) and add(RL given S. Given a paramet.e:: t, we show t.hat. the

running time of our pre-processing st.ep is O(tn 1+1 / t logn + tn1+2 / t L t.hat t.he running time

of any v-query(R) operation is O(t(n 2/ t + kit)), where kR is the number of answers, and

that the amortized running time of any addeR) operation is O(tn2jt). This will show t.hat

the tolal running t.ime of our met.hod is O(t(n1-;-1/! logn -:- n1+ 2/ t + k)L \vhere k is the size of

t.he output.. '~Te show in Section 5 how t.o e1iminat.e the log n fador in t.he running time of

t.he pre-processing step.

3.1 Using the Hive Tree for Shadow Maintenance

So leI. T be a hive t.ree const.ruded on the projections of the redangles in 5 on the :ry-plane.

In order t.o use Ule hive t.ree for shadow maintenance, we define three states for any strip h

ill 5tl·ip(1') for ~ome node l' ill T as follows:

10

• full: 11 is fu.I! if it is completely obscured hy the shadow of t.he rednnglt"s in S'.

• open: h is open if it is not full and is not intersected by a vertical boundary of the

shadow of the rectangles in 5'.

• to Itched: h is touched if it is not. full but is inl.erseded by a vertical boundary of t.he

shadow of the rectangles in 5'.

It should be dear that any st.rip h will always be in exactly one of these states. Also note

that, by the' enclosure property, if a strip h E 5trip(v) is open , then any full strip hi that

intersects h must span II.., and hi II II.., must be completely contained inside h. SimilarlYl if

a st.rip h E Strip(v) is touched: then any full strip hi that intersects It must either span II..,

or int.ersed both of the horizontal boundaries of h. I\'Ioreover, if such an h' spans II.." then

. h' n II.., is completely contained inside h.

To facilitate the searching and updating of the shadow of 5' , we maintain the following

auxiliary structures for quickly differentiating between strips in different states:

• NFU(h): for each h. in St7'ip(v) we maintain a doubly-linked list, NFU(hL which

stores all the st.rips in Up(h) that are not full.

• T D(h): for each non-full h in Strip(v) we'maintain a doubly-linkedlist , T D(h), which

stores all t.he st.rips in Down(h) that are touched.

• OD{h): for ell.ch non-full h in Strip(<:) we maintain a doubly-linked list.: OD(h-L which

st.ores all t.he st.rips in Down(h) t.hat are open.

Initially, NFU(h) = Up(h), TD(h) = 0, and OD(h) = Dou"'(h) 1o, all st,ips h in T.

Thus: each of these lists can easily be constructed pi'ior to t.he space sweep in the same

bounds as all the Up(h) and D01V7I.(h.) lists.

3.2 Principal Rectangles

There is one more auxiliary st.ructure that we add t.o T t.o help implement. our space sweeping

procedure. It.s definit.ion is a lit.He more involved that. t.he previous auxiliary st.ruct.ures
l

however. It is based on t.he follO\..-ing not-ion.

Definition: GiVeJl a strip h. in Slrip(l1), tlIe rect.angle ll'itllJargest =-coordinaf.e (i.e., I.he

first 01le t.o be il,dded), over all rectangles tJlil.t are iIl COllcr(tl) Cl.lld completely obscure h., is

'called /,he principal rec\.allgle [or h.

11

Not.e that a strip It can have at most. 1 principal rectangle, and that it is possihle t.hat.

It has no principal rectangle. The final auxiliary structure we add to T is a list., P(R), for

each rectangle R, which is defined as follows:

• P(R): for eRch rectangle R in 5,' P(R) st.ores each strip h such t.hat R is t.he principal

rectangle for h.

vVe can const.ruct all t.he P(R) lists as follows.

1. For each 'V construct a representation, Vis.." of a solution to the hidden-surface elimina

t.ion problem for the rect.angles in C olJcr(11), rest.ricted t.o IT u. Si nee all t.he redangles in

CO/lCr(11) span IT u , this is essentially equivalent to the problem of computing t.he upper

,envelope, in i.he C(II u)' plane, of a collection of line segments parallel t.o the y-axis (t.he

so-called "skyline problem" [1.5]). This step can easily be implemented, for each 'lJ in

T, by a mergesort-like divide-and-conquer scheme: where the "merge' st.ep of amounts

t.o combining t.wo lists of y-paralle1 segments in the yz.plane ordered by y-coordinates

while maint.aining t.he segment (piece) with largest =-coordinate. Since each merge can

be clone in linear r.ime: this comput.at.ion requires O(7l- u logn
L
.) \.ime for each 1J in T,

where n" = ICov€r(t~)I. Thus, the total time for t.his st.ep is O(tn H - l / 1 logn).

2. For each t' merge Fis" and Strip(t:) (as in the mergesort procedltre [I]), to assign t.o

e?ch h .:::: Sh'ip(t,) the rectangle asso("iat.ed with the face in Vis" that cont.ains h. This

is l,he principal rectangle for h, so add h t.o the P(R) list for this reet.fl.ng!e. This takes

an addit.ional O(n l . + IStrip(tl)l) t.ime for each t~; hence, a t.ot.al of 0(tn 1+2/ t) t.ime.

The coneer-ness of the Rbove method follows immediately from t.he fae!- t.hat eadt horizont.::tI

boundary of a rectangle in Cover(v) (rest.ricted t.o IT u) is also a horizont.al boundary of a

strip in Strip(li), by definit.ion. Thus: in St.ep 2 there can be at most one face in Fis" that.

cont.ains any hand t.he rectangle corresponding t.o this face must be t.he principal redangle

for h (unless of course;> I-his filce is assigned \.he "rectangle at. +00," in which CRse t.his h has

no principal rect.angle).

This complet.es the descript.ion of the dat.a structure, which \ve call the Gl/gmO/fed hive

free and denote by D: for maint.aining t.he shadow of 5'. 'Ve have t.he following lemma:

Lemma 3.1: Girell a collection S of n isof.11etic: rectangles in ~(3, olle Gill construct cUI

allgme'Jli.ed hh·e tree, D, (or tlle rf'dilJlgJes ill S ill 0(t1J1 +1 / t logn + f.111 +2/ 1) f.ime, ldlere t is

iI t IIll<t'bJe parameter.

12

Proof. The proof follows illunediat.ely from t.he abovt:' discussion and Lemma 2.:1. 0

Having described our met.hod [or constructing D1let us turn to our method [or performing

eetch of the operctt.ions v-query and add. We begin wilh v-query.

3.3 Performing a Query on the Shadow

Recallt.hat. in the v-query(R) operat.ion we wish to def.ermine aU t.he int.ersect.ions bet.ween

R's horizont.al boundaries and the vertical edges of t.he shadow, as well as det.ermine which

corner point.s of R (if any) are not obseured by t.he shadow. So let s be one of R's horizont.al

boundaries, say, the top one. For each node 11 t.hat s covers (in [.he segment tree sense) we

10C'Ctte l.he horizonl.a.l strip_ h in StTip(tl) whose bot.tom boundary coincides wil.h oS (not.e that.

h is not. obscured by R, since oS is the top boundary of R). Sinc.e R is in C:ovEr(11) for any such

node l', s corresponds t.o a horizont.al boundary beb\·een t-wo strips in Strip(v); hence, each

such s can be deri,-ed by searching through the Cot:e7'Sfrips(R) list. for R. Tlltts, seRrching

through all such hOs can be done in O(tn 1/!) time. If an individual h from i-his group is not

marked ::j.ouched'·, t.hen s intersect.s no yert.ical edges of t-he shadow boundary in h. Thus,

after examining such a strip. we need not. perform any more work for it.. If, on t.he at-her

hand, an h is marked "t,ollched", then we must determine all Ute visible vert.ical edges of (.he

shadow that are in h-thcy must all intersect. s. "Ve do this by calling t.he following recursi,:e

procedure, passing it s and h..

Search(s,h):

If 11 is a hOI.t.oIll-level st.rip then
net-uIH t.he (single) venical boundary cuning through h.

Else

Combine all (,he venical boundaries returned by calling
Search(s,h') for each h' -:=: TD(h).

End-if
End Search(so 11).

B.\-" collect-iug; the <l.llSWerS from all ralls of S("al·ch(,~,h) (j.e., for all h·s such tbal, .5

int-erseds 11 -;: Sil'ip(l') emd s co'·ers V), we get. all t.1lt' int.ersect.ions of s with ,·ert.ind edges

of the shadow. Let. us tlnal)"ze how long t.his takes. There are OUn 1 / 1) nodes 1) such that. .~

con'rs Vo For each such node we only call Sca'Joch(s, h) if we know f.here is an cwswer in h,

i.e., if It is tOllched. i\Iofeo\·er, we will 0111)" call SeQ7o ch(s,h ') recursively if we know l.here is

an answer in h'. Therefore, since there can be at. most- llevels of recursion, and we perform

t.he sallle COlpput,a(.ion [or R's lo\\'er horizolll.al boundary, t.he t.ol.al t.ime spent in cedIs (.0 Ute

13

TOllch procedure is 0(1.(1)1/1. + kn)), where l'R IS I-he numher of I--- or -1 illt.f>r~,.rtiol1 poin1.s

clef.ermined by R in t.he hidden-surface map.

It is an easy maHer to also determine if the four corner points of R are visible or not,

within these same time bounds. In particular, we can detennine if a corner point p is visible

or not. as follows. First., 10cCl.t.e the leaf 1.' with st.rip h. <:;: Slri]l(v) such that. h cont.ains p.

Not.e t.ha!. h must be t.he leaf sf-rip associated with one of n's vertical boundaries. H 11 is full,

t.hen p is not. yisible. If h is not..full, t.hen we "march up" t.he t.ree from 11 t.o t.he root., t.est.ing

for each w on this pat.h if the strip h. E Strip(w) that contains p is full or not. If none of

these strips are full, then p is visible. Since this can easily be done in 0(t(n1Il)) time for

each corner point of R, the tot.al t.ime for performing a v-query(R) is 0(t(n1 / l + k
R

)).

3.4 Updating the Shadow

So, having described how t.o perform a v-query(R) operation: let us now describe how t.o

perform an add(R) operation. Recall that. in t.his operation we must. update D to reRect

the adding of R t.o t.he subset Sf, i.e., so that D represent.s the shadow of the rectangles in

8/ U {R}. Our met.hod consists of t.,'..-o steps. In the first step we process all the llopen" st.rips

in T t.hat, become :'t.ouched" by the addit.ion of R, and in the second step we process all the

"open" and "t.ouched" sl.rips in T t.hat become "full" by t.he addition of R.

In t.he firs!. step we must. corredly mark all the "open" strips in T t.hat become "t.ouched"

because of the addit.ion of R (i.e., because they are in1.erseet.ed by one of the ,·erl-ic".l bound.

aries of R). "7e begir: by locating in D the 2 leans t.hat contain the nrt.ical boundaries of R.

Because of our convent.ion of making t.he parent. of each leaf node in T have only one child,

there are 3 si,rips in the slab for such a leaf (i.e., ISfrip(t'Ji = 3). ::'IIare-oyer, it is t.he middle

strip, 11, t.hat. cont.Rim t.he Yert.ical boundary of R. If h is marked "full·:, t.hen we need not,

updat.e anyt.hing for h, for adding R does not change how the shado,'''- int.ersects h. If, on

t.he ot.her hand, h is Ilopen" (h cannot be l'l.ouched" prior to a.dding RL t.hen we mark h as

l:t.ouched". This is because t.he yertical boundary of R can only pariially obscure this st.rip,

by our conyent.ion of not. allowing the di,-iding lines t.o contain ,·erUcal boundaries. Doing

t,his for each of Ute t.wo vert.ical boundaries of R can easily be done in 0(1) time.

This is dearly not. enough, however, for we must. update all the the strips in D I.hat.

become "t.ouched" by t.he addit.ion of R to the subset Sf. \·Ve perform all of these updat.es by

"climbing" up D, incorporat.ing t.he effect. of addi ng R. Since we can ignore any strips that. are

marked "full", for any st.rip h f we mark as "t.auched", we need only examine the non-full strips

in [TJI(h
f

) -(i.e., t.he strips in lVF[T(h')), and lllark any t.hat were "open" as "t.ouched". This

ohl'ervat.ion immediately gives 111' (.he fl)l1owing n'(,11rsive proCf'rll1fe, TOllChfh). for nprlnJin.e:

all the strips in D t.hat. must. be marked "t.ouched" by the addit.ion of R. 'We call Touch(h.)

at most twice, once for eac.h leaf-level non·full strip, h, containing a vert.ical boundary of R.

Touch(h):
1. For each hi in N FU(h) do
2. Remon;· h [rom OD(h') and add II. 1-0 T D(ll').
3. If h' is "open" then .
4. l'dark h' as "touched" and call Touch(h').

End-for
End Touch(h).

By a simple induct.ive argument. one can show t.hat, for each strip h that is an argument.

to the Touch procedure, h does not" become fu~, since R cannot. completely obscure h, by

definit.ion. There are a nnmber of ot.her st.rips in D t.hat R can complet.ely obscure, howe·ver.

For this reason, we follow t.he above step by our second st.ep, ·where we process all the llopen"

and "t.ollched·' st.rips in D t.hat. become :'[ulr' by t.he addil.ion of R. In pn.r!.icular: we mark

as "full" all t.he non-full strips in peR). These are all t.he strips in a Strip(-tl) list. for which

R is t.he first redangle added in r.he sweep such that R coers l' (in the segment tree sense)

and R complet.ely obscnres 11. Not.e l.hat. some of t.he strips in peR) may already be marked

"[nIP'. For example, a strip h in peR) would become full if all t,he st.rips in Dou:n(h) become

full (by different rednngles).

As we mark each of t.he non-full strips h in P(R) as ::rulf1 we updat.e any other strips in D

t.h<lt. become ::fuU" bec<l.use of h becoming fnIl. There are tWQ possible ways a st.rip hi could

become full as a result. of h. becoming full. The first. w'ay is that. h' belongs t.o a Dotl'Jl(h) list.

where h ..:: P(R) is the last. non-full st.rip in Cp(h'). For example, this sittiat.ion \\-ould arise in

the configurat.ion of Figure 3 should he be t.he last non-full st.rip in Up(h) and he is now being

marked "full". The second \\'ay a strip h' could become full is t.hat. h' belongs to an Up(h)

list: v..·here and h ..:: P(R) is the la~;;t, non-fullstIip in Down(h'). For example: this siLualion

would arise in t.he configurat.ion of Figure :3 should h,., be t.he last. non-full strip in Down(h)

and h~ is no\\' being marked :lful}"'. Thus, we must. updat.e t.he shadow si·rnct.ure. D, for ('{I('h

previously non.full st.rip h .:: P(R) that. we are now marking as Hfull": by alt.erna.t.ely climbing

D and descending D t.o cascade the efl'eds of marking t.his h as "full". III radicular, we do

this by calling Ule following recursive procedures, FullUp(h) and FuILDown(h), in t.urn, for

each]lIe'viollsly non-full h.:: P(R). Int.uil.ively, FullUp{h) cascades t.he affect. of marking 11

as ufull" up D and FullDown(h) cascades the affect. of marking II as "[uIP' down D.

15

FullUp(")'
1. For each hi in N FU(h) do

2. If h. was "ope-nll then Remove h from OD(h').
3. if h was "toucheel ll then Remove h from T D(h').
4. If DD(h') U TD(h') = 0 then
.5. l'vIark h' as "full" ([or it. is obscured by t.he strips in DOHm(h')).
6. Can FullUp(h').

End-if
End-for

End FullUp(h).

Not.e that. in St.ep 6 we do not. also call FullDown(h'), for all of t.he st.rips in Down(h')

are already full. Also not.e t.hat. we have omiHecl a t.est. for the case ,....hen OD(h') I: 0 and

t.he removal of h from T D(h l
) leaves T D(h') = 0. Such a case would require us t.o mark h'

as "open~'. Fortunat.ely, however, as we ,...·ill show later, suc-h a sit.uation cannot occur, for

once a sf.rip is marked "t.ouched" it remains t.ouched nnt.il it. becomes full.

Having gi,"en OtH FullUp procedure we next. give t.he recursiye procedure, FullDowll:

which we nse to mark as "fulF any strips below each non-full strip h,. that. itre now full.

FullDown(h I'
I. For each h' in DD(h) 'J TD(h) do
2. Remove h from NFU(h').
3. If :YFU(h') ~ 0 then
4. .!\litrk hi itS ':full" (for it. is obscured hy t.he st,rips in Up(h')).
·5. Call FullDown(h').

End-if
End-for

End FullDown(h).

Not.e thai. in St.ep .) we cia not. also call FuIlUp(h'L for edl of t.he st.rips in Up(h') are

already full. Performing t.he:::e ho procedures on all the h,.'s marks as full all ihe st;·ips in T

t.hat. were pre'\-iously non-full and become full by i.he-introduction of the red angle R.

3.5 Analyzing the Time Complexity of Shadow Updating

A crude analysis of t.he time complexity of performing all t.he TOllch: FullUp, emel Full

DOWll calls associa.t.ed wit.h a. single add(R) is t.hat. each l.akes at. most. O(t.n1+I/I) (.iIlle.

Thus, an upper bound on the t,ime we spend upda(ing Ute shadm.... is O(tn2+I/l L since we

call add(R) alice for cach of t.he 11 rectangles in S. This is a significant. over-c-stimat,c , how

eVer: for, as we now show 1 i.he tot.al t.ime spent. performing add(R) opera.tions is D(tll1+2/1 L
implying t.hil.t. a single add(R) hil.s an amortized rnnning time of D(tn2/t).

16

One of the import.ant factors in our analysis is t.he observation t.hat. once a st.rip becomes

full it remains full for the rest of the computation. We also have a similar propert.y for

t.ouched strips: namely, once a strip becomes touched it remains touched until it becomes

full. Both of t.hese observations follow from the fact that we never remove redangles fcom

I-he collection S' (whose shadow D represents); no operation we perform on D can reduce

the portions of any st.rip [,hal. are obscured.

\·Ve use these observations to help LIS acco~nt for the work that is done by an operation

fT = add(R). Let us consider each sub-operation we perform for fT. The first sub-operation we

perform is to visit t-he leaf-levelst.Iips for R's two vedical boundaries, marking these regions

as "t.ouched" (if they are not. already full) and calling the recursive procedure Touch(h).

For each recursive call of Touch(h') let us charge all t.he work done by t.his call t,o the strip

h'. The total time req~ired for any call of Touch(h'), not count.ing any recursive calls it.

generat.es, is O(INFU(h')IL for we perform 0(1) \vork for each st.rip in NFU(h'). Since

11VFU(hlll ::; IUp(h')I, the most we can charge for any single cell, then, is O(]Up(h')I). Since

h' can become ::t.ouched" at. most once, in the entire space sweep procedure \",e will call

Touch(hl
) on a st-rip hi in D at most. once. Thus, the tot.al time we spend on performing

Touch operations during the sweep is O(2::\~D IUp(h)I). By Lemma 2.1, any st.rip h can

belong t.o at most. n l/l of the Up(h') lists. Thus, since there are at most 0(tn l +1/t) strjps

in D, the tot,al time we spenel performing Touch operat.ions is 0(tn1+:!/t). Therefore, the

amortized time complexity, per add operation, for any call t.o Touch is O(tn 2jl
).

The ot.her major sub-procedures we perform for (j = add(R) are the FullUp and Full

Down procedures, for marking as "full" all t.he open and touched st.rips that. R obscures.

Recall Ihat we call these procedures for each st.rip h in a Strip(d list., provided R covers 1·.

R ob:-cures h. <'Inc! h is not. full (i.e., h -:: P{R)). Now we may also haxe considered some

strips in P(R) r.hat. -were previously IllaL"ked "full"'. But this is the only P(R) list to which

any such h could belong, so we can charge the cost of this 0(1)-time test to h itself. Also

recall t.hat. ench such h is marked "full" before we call FullUp{h.) and FullDown(h). ?v1ore

over, we call FuIlUp(h.') or FullDown(h!) recursiYely only if hi has just been marked "full"

(hence, h' was previously not. full). For each call (recursive, or otherwise) of FullUp(h) or

FullDown(h), let. us charge t.he work of this call t.o the st.rip h. The t.otal time required for

the FullUp (resr., FullDown) call, not. count.ing recursive calls, is at. most O{ IUp(h) [) (resp.,

O(lDo'Ll'1J(h)1)). Thus, the total t.ime we spend performing FullUp and FullDown opera

tions is at mas!. OC~=lIo::D(jUl'(h)1 + IDoWJJ(h)I)). By an argument similar t.o t.hat. above, t.his

implies t.hat. f.he total t,i_me we spend performing t.hese operations is 0{t711 +2/t). Therefore,

the amort,ized time cOlllplexit)', per add operation, for sllch a call is O(tll 2/1). Combining

17

these observations with those made above} we have the following lemma:

Lemma 3.2: Gil'en a collection S of n isotlldic rectangles ill ~(3, and all a.ugmented lJive

tree (or the redallgles in 5, one can COllstruet Hid(5) in O(t(n 1+2/t + k)) time, wllere k is

f.11e size of tIle Ollt.put a.nd 2 ::; t ::; log n is a tunable parameter.

In the nexl. sed.ion we show how t,o extend our method t.o the hidden-surface e!imino.lion

problem for a set of rectangles.

4 Extending Our Method to Hidden-Surface Elimi

nation

The met.hod of t.he pre,·;ous section gave us Hid(5). In this section we sho".- how t.o adapt.

our method t.o give us Fis(S). That is, we will extend the method of the previous section

to not only give us the graph of visible edges} but also the rectangle that is visible in each

face of t.his graph. \·Ve can easily modify our met.hod so as t.o st.ore ",·it.h each vert.ieal edge

of t.he shadow l,he name (and =-coordinat.e) of tlle redangle that. ddermined that edge (t.his

essent.ially "comes for free"). Thus, whenever we use t.he Search procedure to locate "ertices

of Hid(S) we can ad-uo.!Iy get. some information about. Fi$(S). In particular: ,... ith each

horizont.al dead ~nd v (i.e., a '"Crtex of the form f- or -1) in Hid(S) we would immediately

know t.wo of t.he three visible rectangles t.hat are adjacent. to v. In addit.ion, for any visible

rectangle corner '"€'rt.ex "t', we would immediat.ely know one of t.he t.wo visible rect.aagles thid.

are adjacent to l' (l.e .. t.he rectangle wit.h r· as it.s corner point). The dimcult.y, t.hen, is r,o

deI-ermine the idenrity of t-he unknown adjacent. visible redangle. Viewed anot,her way. the

problem t.hat remains is to determine t.he :'background" rectangle for li.

The main obstacle t.o determining the background rectangle HI for a vertex 1) in Hid(S) is

l.ha.t., in our space-sweep procedure. R' may not. be added to the shado\',· until long after f.he

rectangle t.hat. discoyere-d t.' (i.e., l.he redangle R such that. v was one of t.he vertices ret.urned

by v-query(R)). We can modify our procedure t.o oYercome t.his obstacle~ howe\'er.

Our solution is t.o augment. D so as to also store all t.he vert.ices of Hid(S) for which

we have yet. t.o determine t.heir background redangle. We call t.hese I.he incomplete vel'ficcs

in D. Int.uit.ively, our method for maint.aining t.he incomplete vert.ices is t.o have l.he search

procedure "leave a t.raiI': in D of t.he vert.ices il discovers. \Ve t.hen augment Lhe FullUp

and FullDown procedures t.o tag each incomple!.e vertex v t.hey encount.er as "complet.e"

18

and identify 11'S background as t.he current red.angle (for which we ar~ pPTfOTllling t.hp add

operat.ion). '·Ve give t.he details below.

Recall that the Search(5, h) procedure is called on each strip h that the segment 5 covers

(in the segment-tree sense). Also rec.all that for each strip hi in TD(h) (the touched strips

belm\· h) we recursively call Search(5,h')_ We now augment. the procedure so t.hat. when

all the r('cursive calls f("!.llm we copy all [,he discovered answers int.o a list I(h), which will

always cont.ain a.ll the incomplete vertices in h_ We represent l(h) as a doubly-linked list.. In

addit.ion, for each 11 in I(h) we store a point.er to the copy of 11 in I(h l
), where hi E Down(h),

and also a point.er from t.his copy of tJ t.o its copy in I(h.). This does not. alter t.he time

complexit.y of the Search procedure, for 've will st.ore at most t copies of any incomplete

\-ertex and the adding of 171 new il.ems t.o an I(h.) list. can easily be done in O(m) time.

As ment.ioned above, we also modify t.he FullUp and FullDown procedures to t.ag

incomplete vert.ices tha.t. t.hey discover. lIdore precisely, any t.ime we nIark a st.rip h as "fuIF'

because of the addit.ion of a rectangle R we immediat.ely search t.hrough ihe list 1(11) and

t.ag each vert.ex 11 as having R as its background redangle. In addition, for each -v in I(h)

we remove all copies of l~ in D by following the up and down pointers associat.ecl wit.h

each l' in l(h). This t.akes OU) time for each l' in I(h). At. t.he end of t.he space-sweep

proc.edure, "..-hen all the rectangles in 5 have been incorporated into Lhe shado,.... , we t.ag all

t.he remaining incomplet.e verl,ices in D as having -00 (i.e., t.he t.rue background) ~s I.heir

background rect.angle_ In the lemma below we show t.hat. t.hese modifications rue sufficient.

for soh-ing the hidden-surface elimination problem.

Lemma 4.1: Give!! t.1H:~ ilboremodifjcatiolls. tlle space sweep algorii.lull correcil.rdelermhles

dlt' adjut'llT. \'isible rect<11!gles [or each \'enex of Hid(S).

Proof. Suppose there is a vertex v of Hid(S) t.hat is labeled with an incorrect background

rectar:gle R. Let R' be t.he true background rectangle for 1'. There are two cases:

Case 1: :::(R') > :::(R). Then RI is added to the shadow before R.. !\-loreO'·er.

since R' is t.hE' background red.angle {or !', r must. be sl-ored as all incomplel.e

venex in D aI, t.he t,ime we add R' 1-0 D. By definition, R' contains 1: (ill it.s

project.ion OIl t.he :1~y-plane). Thus: when we add R' t.o D \\-e must. mark as

"fnIP' sOllie st.rip that. cont.ains -ll. But, t.his st.rip must. cOllt.ain 'v in it.s I(") list..

Therefore, we- fC'lllO\"{' all copies of t· in D before R is added. (-'-.,...-).

Case 2: =(R') <: :::(R). Then R' is added to t.he shadow aHer R, and R

remo\·erl all cQpies of 1~ before R' was added. But. 1.1te fad. t.hat. R' is l':S true

19

hack~rol1nd Vf'rtf'X implif'.c:; thtlt. 1"S. pro.iP("tinn on R' is. not. nhi'l.rlldf'r1 h.\' 1"S.

projection on R. Thus, R cannot contain "I.' (in its projection on t.he xy-plane).

But this implies that R cannot obscure any strip that contains v, contradicting

t.he assumption that R removed all copies of v before R' was added. (-H-).

This comple(.es t.he proof. 0

Having esl.ahlishcd the correct.ness of our modificat.ions, \ve have t.he following lemma:

Lemma 4.2: Given a collectioll S of n isotlletic rectangles in riP, i'lnd an augmented llive

tree COJJstruct.ed for tlIe rectangles in S, one can solve tIle lI'illdow-renderiJJg problem for S

ill 0(t(711 +2
/

1 + k)) /,jme. ll"ilere k is tlle size of tile output, and 2::; t :.S logn is a till/able

paralIle (.er.

Proof. The proof follows immediately from the above descript.ion and Lemma 3.2. 0

Combining this lemma wit.h Lemma 3.1, we have the follo·wing theorem:

Theorem 4.3: Gi,'en a collection S ofn isotlIetic rectangles in R 3, one Cfill-."'olw' the windon"

renderillg problem [or S ill O(t(n!-;-l,'1 logn + n H-2ft + k)) time.

Not.e t.hat. the input-size component. of the above running time is a log n factor from that.

claimed in t.he imroduct.ion (wilh r = i/2). In the next section we sho\\' how 1.0 eliminr.te

t.his log II ftictor.

5 Improving the Running Time

In this sed-ion \....e show how t.o modify t.he pre-pi"Oc.essing for our algorit.hm t.o achiew a

running: time fot the ent.ire algorithm of O(t(nl+~,'t + k)). Recalling t.he analysis gi\'en

pre"iously, i,he only ob::;tade to achie"ing this time bound is t.hat, of const.ruding all t.he P(R)

lists. where we comput.e for each r ill D a solut.ion, Fi"".: \.0 t.he hidden-surface elimination

problem [or Ute rectangles in Cover(r'l: rest.rided 1.0 II~.. As we will show, achieving an

impro\"ed running t.ime for this st.ep require::: t,he use of more sophisl.icat.ed t.('"hniques than

those we have used so far.

20

5.1 A Modest Improvement

Vve can achieve it modest improvement by noticing that we can simplify the problem by nor

malizing the rectangles so that their =-coordinates fall in the range [1,11.] (in a preprocessing

step that requires O(n log n) t.ime). This immediately implies that we can canst.fuet all the

Fi.'~l"S in O(lie' log log 71) l.ime by a sinlple pliLue-sweeping procedure USillg the priority queue

dat.a shudure of \'<Ln Emc1e Boas [29, 30], where 7l." = ICo1Jcr(R)I. In part.icular, we can

sweep the y=-plane from y = -'XI to Y = +00 with a line parallel to the :=-axis, maintaining

the collection of rectangles llstabbed 'l by this line. At each rectangle endpoint we perform

a max opetat.ion to determine the visible rectangle at this point, and then perform the

appropriate insert or delete operation to maintain the collecf.ion of rectangles stabbed by

this line. This is not sufficient. for our goals, however, for LII.::Dn!.' is O(tnI +1Jt); hence, t.his

a'pproach would result. in a running time of O(tnH .1Jt loglogn). Thus, we must. be more

clever in how we construct t.he Fis/s.

5.2 A Coordinated Attack

Our approach t.o achieving O{ t(11 1+2/1)) time for the en tire pre-processi ng step is to coordinate

the construction of all the V is!.' '5: inst.ead of viewing the pre-processing for each v in T as

an isolated problem. 'Ve also use a rlog log n I-stratification paradigm [7]. Our method is as

follows:

O. 'Ve begin by normalizing t.he .:-coordinat.es of the rectangles in 5 to be int.egers in the

range [1: llj. This t.akes O(n log n) t.ime [1].

1. 'Ve lllark each noele t.har is on a. level of T that. is a mult.iple of rIog: log n l as a suprr

nodr, where. t.o Hoid confusion, we use T to denor-e rhe underlying (nl.'~_<'If)') tree for D.

For each super node t", on level i, ' e let T~. denote the subtree of T rooted at v and haing

the super nodes at, level i + [log log n1 as its leaves (the root is on level 0).

2. For each super node 1', let.: be the nearest super node ancest.or of p (so v is a leaf

in T:). We const.rnd. ,- is..L-efLL011g(-V) and F is-RighLLong(1'), where Fis-LefLLong(-<')

is a represent.ation of t.he upper envelope in t.he L(II:) plane of t,he segments formed by

intersecting qIIJ wit.h t.he rectangles in End(1J), ignoring the rectangles in End(t:) t.hat.

do not. int.ersect. qIIJ. In\.uit.jvely Fis...LffLLong(t:) is the upper envelope of \.he C(long~'

reet.angles in End(1'). Fis_RighLLong(1') is defined similarly, Since the horizont.al bound

aries of the reet-angles in E1I<!(t,) are gi"en in sorted order in Stl·jp(v), we can ext.ract a

v-sorted list.ing of the boundaries of rectangles in each End(1') in O(n1+1 JI) t.ime (for all

t·'s). Giwn t,hese lists WE" can l,hen construct. F'is,LcfLLollg(l') and F,:s.RigltLLoJlg(I') in

21

O(n c' log log J)) t.ime for each 11, where 11. u is t,he numher of TP('j angle~ involver! for 1', hy tllP

plane-sweeping met.hod described above. Since a rectangle R can be involved in at most

tj flog log 11.1 of these computations, this also takes 0(11.1+1//) time.

3. For each node tl t.hat is not. a super node we let z be the lleitrest super node

ance~t.or of 11 (so 11 is an internal node in T:). V"e construct. Fis-LefLLoll-g(l')' and

\ ·isJ1.ighLLo7lg(u). «:: dt-'fiIlecl ill Ule previolls ~I.ep_ \Ve perform t.his compnt.aJioll for

eitch = by applying Ule mergesort.-like procedure o(Section 3.2 to i.he solut.ions already

at the leaves of T: (combining solutions up the tree using a nl/I_way merge). Since the

height. of each T: is O(loglogn), and each node in T: has n 1/! children this step takes

O(77-: log n 1/1 log log n.) = O((n:jt) log 11. log log 11.) t.ime, where n.: is the number of redangles

which are stored in t.he leaves of T: (in FiLLefLLong(v) and FisJlighLLong(11) lists) at,

t.he beginning of t.his step_ Since a redangle R can b~ cont.ained in at most.· tj flog log n.1 of

t.hese (leaf) super node list.s: ~: 11.:: = ntj rIog log 711; hence, the tot.al t.ime for this step is

O(nlog 11..).

4. For each node l' that is not a super node (hence, has a nearest. Sllper node ancestor

=), we construct. Fi.~_COl'£r_5hort(11 L where F is-Cover'1 hort(-v) is a represent-ation of the

upper envelope (in I.he C(II c.) plane) of t.he segment.s formed b)' intersecting £(l1 v) with_t-he

ree-tangles in C01Ier(1.') that have both of their vertical boundaries properly contained in II:.

This can be done in O(mcloglogll) t.ime using t.he method given <l.bove (in Section .5.1),

where 7lI,. is the number of reet.<l.ngles involved for 1'. Since any rectangle can coyer a.t most.

O{Jll/~ log log n) nodes in this way. t.his step can be implement.ed in O(n!+I/I(log log 71)2)

t.ime.

.5. For each node r \\-e comput.e Fio5,.. the upper envelope (in t.he C(II,.) plane) of the

s<:'.',pnents (armed by intersecting Crn,,) with t.he rectangles in COl'f"r('1')' We do t.his b~·

init.ializing \'"io5 v to be '-isI:O'I'eT_Short(r:) and it-erative1y merging the current Fis" with

each upper envelope Fis-Left...Long(w) (resp., FiLRighLLong(lu)) such that w is a sibling

of I: and 'W is to the right (resp., left) of 1'. Since any redangle that covers "U eit.her has

holh it.s vertical boundaries in II~ or h<,.s one in a TIu. (where u' is a sibling of 11) and (.he

other outside of II", t.his gives us FiSt, for each I' in T. Note thClt. each segment. in snrh a

l-isJ£/LLong(w) or Fis_Right_Long(lc) list will be examined at most 0(n1il) times by

'Il. Thus, each segment in a Fio5_LefLLong(U') or Fio5-Righf-Long(w) list will be examined

at. most. O(1l2 /1) times (0(11 1/t) limes for each sibling of w). In addit.ion, each segment. in

FiLCOt'C1'_Shlld(I~) will Ill' f'x;llnined <It. most. O(n I/ t) t.imes (only hy 1'). Any rect.ang;l<.> R

can cont.ribut,e a segment. t,o at. most. O(t) Fis_Le/LLo11..g(w) or Fis...RighLLo71g(W) lists

and at. most. 0(/1 1/1) Fi$-C'ol:cr_Short.(l.I) list.s. Thus, t.his step tal,es at most 0(1.1I 1H/ 1)

22

ti me.

Therefore, we have the following lemma:

Lemma 5.1: Given n. mllect.ioll S of 11, isotlIetJ'c rect.il1lg1es ill !J{3, one ("i111 construct i111

allgmellted llie tree, D, {or tlIe rectangles in Sin 0(tn1+2/1) time, (or 2 ~ t::; log11,.

Proof. The proof follows from Lemma 2.3 and the fad t.hat 71logn + n 1+1/'(loglogn)2 is

0(t11 1+2/ t
) for 2:S t S; logn. 0

Incidentally, a met.hod of Bern [.51 and Mehlhorn et a1. [Ii], which \vas discovered inde

pendent. of t.he above met.hod, can also be used with Lemma 2.3 to derive Lemma 5.1. Their

met.hod depends on t.he union-find dat.a struet.uring t.echniques of Gabow and Tarja,n [10],

for they bot.h reduce the skyline problem to an ofF-line min problem. In any cas·e, having

established Lemma 5.1, one immediately has the follO\.... ing theorem:

Theorem 5.2: Girel(a collection 5 of11. isoUletic rectangles in 3{3, one call sohe t.ile window

renderillg problem {or S in 0(r(n 1+1/" + k)) time, \dlere k is flle size of tIle output. and

1 :S r :S log n is a tunable parameter.

Proof. Apply Lemmas .5.1 and 4.2, t.aking r = t/2. 0

5.3 Tuning the Algorithm "On the Fly"

Having established a method that. can be t.uned by a parameter. r, one can use t.llis to derire

an illlprond window-rendering algorithm for all values of 1.... 'Ve give Ihis result as a corollRry

t.o Theorem .5.2:

Corollary 5.3: (Paterson [22]) One ('an solve tlte windo\l--renderillg problem {or S ill

O(n log n + ktlog n/ 10g(1 -;- 1..)11.))) time.

Proof. The method is 1-0 it.eratively updat,e the v".Jue for r on t.he fly. 'Ve run l.he a.lgorithm

with difFerent. values of r: t.he -i-th t.ime: we use r = logn/2 i and let the algorit.hm run for

'(71:-i) time where T(n,i) = c2(2'-i)nlogn and c is a constant (any c will do). As soon as

t.he i-th run of the algorithm t.akes longer than T(n,i) t.ime steps, \ve st.op it and launch

l.he (i + 1 lost. one (using r = log n/'l/+l and T(11, i + 1) = c2:!;+l -i-1 11 log 11.). Should rever

become equal (.0 2 (i.e., i ::::; loglogn), t.hen we simply let the algorithm complel.e (we no

23

longer interrupt it). A st.raighlforward analysis shows that this strategy results in the time

bound claimed. 0

Thus, we can solve the window-rendering problem in time t.hat is both O((n + k)logn)

and O(n1+e+ k) for any positive constant e. We leave open the following quest.ion: Can

one solve Ute hicld/,"ll-!'urface eliminil.l.ion problem for rect.angh·s in 0(71 log 11 + I.') time? Sueh

an algorithm would be t.he best possible for all values of k, for it would opt.imize both

components of t.he running time.

Acknowledgements

\Ve would like t.o t.hank l\-lichael rdcKenna for several helpful discussions and S. Rao Kosaraju

for his never-ending encouragement.

References

[1] A.V. Aha, J.E. Hopcroft~ and J.D. Ullman, The Design and Ana.lys£s of Computer
A.lgorithms, Addison-\Vesley, Reading, Mass., 1974.

[2J B.G. Baumgart., "A Polyhedron Hepresf'nt.a1.ion for Computer Vision/' Fmc. 1975
AFIPS Nat.ional Compu.ter Conj., 44, AFIPS Press, 197.5, .589-.59G.

(3] J.L. Bentley and D. 'Vood, "An Opt.imal '~Torst. Case Algorit.hm for Ri"port.ing Iuter
sections of Reet.angles:" IEEE Trans. on Computers, Vol. C-29, 1980, .571-.577.

[4] 1\1. Bern, :'Hidden Surface Removal for Rect.angles," P,~oc . .fih A. eM Symp. on Com
puiaiional Geometry: 1988: 183-192.

[.5] l\1. Bern, "Hidden Surface Remo,'al for Rectangles." manuscript. (an improyed yersion
of [-!]).

[G] B. Chazelle, "Fi11.ering Search: A New Approach to Query-Answering," SIAM J. Com
put., Vol. 1.5, 198G, 703-724.

[7] B. Chazelle. ::Int.erseciing is Easier Than Sort.ing," 16th ACM Sym.p. on Theory of
Comp., 1984, pp. 12.j-134.

[8] F. Dcvai, ~Quadrat.ic Bounds for Hidden-Line Elilllinat.ion:'~ Froc. 2nd A Clll Symp.
on Computatiollal Gcomd.1"y, 1986, 2G9-27.5.

[9) J.1. Doh, l:Visibilit.y Prohlems for Ort.hogonal Objects in Two- or Three-Dimensions,"
\.0 appear in rhe l"islIal CompuifT'.

[10] Gabo,,,-, Ii.N· l and Tarjan, R.E., "A Linear-Time Algorit.hm for a Special Case of
Disjoin!. Sel. Union," 15th AC'M Symp. on Tlu:ory of (!omp.,24G-2.51 (1983).

24

[111 M.T. Goodrich, "A Polygonal Approach to Hiddt'n-Line Elimina.t.inn/' Fmc. of 2!ilh
Annual Allerton Coniel'cnee on C'o71un' l Control, and Computing, 1987, 849-858.

[12] L.J. Guibas and J. Stolfi, "Primitives for t.he Manipulation of General Subdivisions
and the Computation of Voronoi Diagrams," AOll Trans. on Graphics, Vol. 4, 1985,
7.5-123.

[13] n.H. Giit,ing and T. OU,mann, "Nt'w Algoritlulls Por Special Cast's of the Hidden Line
Elimination Problem," Computer Visioll, Graphics, and liHage P/,occssillg, Vol. 40,
1987, 188-204.

[H] L, Larmore, "An Optimal Query.Update St.rudure for the Int.erval Valuation Prob
lem," manuscript, 19S9.

[1.5J U. l\"Ianber, Introduction to Algorithms: A (.'reafilte Approach, Addison-"Vesley, Read
ing, :t',:Iass., 19S9.

[16] l\-I. :!VIcKenna, "VVorst.-case Optimal Hidden-Surface Removal/' ACM Transactiolls on
Graphics, Vol. 6, 19S7, 19-28.

[17) K ..Mehlhorn, pri...-ate communication, October 1989.

[IS) D.E. !vIuller and F.P. Preparata. "Findin~ the Int.ersection of Two Convex Polyhedra/'
Theoretical Comptdel" Science, Vol. 7, 1978, 217-236.

[19) O. Nurmi, "A Fast Line-Sweep Algorit.hm Por Hidden Line Elimjnat.ion~" BIT, Vol. 2.5,
198.5, 4G6-472.

f20i T. Ot,t-mann and P. '·Vidmayer. "Solving Visibility Problems by Using Skelet.on St.ruc
t.ures," Proc. 11th Symp. on 111ath. Fou.ndations of Computer ScienCE, 198-1,459-470.

[21] ~I.II. Q..-eriHars antI :;\1. Sharir, "Our,pui-Sensil_iye Hidden Surf?ce Rell1o\"aL'~ Pmc.

30th IEEE Symp. 071 FOIIJ1dations 0/ Compula SciEncE, 1989, in press.

[22] IvI. Paterson, private communicat.ion, October 1989.

[23] F.P. Preparat.a antI ?\LI. Shamos~ Computat-ional GwmEtry: An Introduction, Springer.
Verlag, New York, 198.5.

[2·lJ F. P. PrepClrata, .T.S. Vii.t.er~ an cl :i\L '(vinec, "Compn tat,ion of ~.he Axi a1 View of a Set. of
Isothet.ic Para.H~lepipeets/~ LCl.boral.oire d'Informatique de L'Ecole Normal Supf-rieure,
Depart.ment, de :i\-Iat.lu~lllat.iques et d~In[ormat.iqlle,Report LIENS-88-1, lY88.

[25] A. SchmiU, 'IOn t.he Time and Space Complexit.y of Cert.ain Exact Hidden Line Algo
ril.luus," VniversiUil. Karlsruhe, Fakult.iil, fiir Informal-iii:, Heport 24/81, 1981.

[26] A. Schmil.t., uTime and Space Bounds for Hidden Line and Hjdclen Surface Algo
,it.luns," EUROGRAPHICS '81,43-.56.

25

[27] S. Spchresl and D.P. Grpenherg, "A Vi!'>ihilit.y Polygon Recollsl.rudion Algorithm,"
ACM Transactions on Graphics, Vol. 1, I!J82, 25-42.

[28] I.E. Sutherland, R.F. Sproull, and R.A. Schumacker, ccA Charact.erization of Ten
Hidden-Surface Algorit_hms/' Computing Snn'fys, Vol. 6,1974, 1-2.5.

[29j P. Hill Emdc Boas. "Presew'rill;; Dreier ill a Forest. in Less titan Lo~ariLhll1jcTime a.nd
Linear Sp,lce."' Information PI'Oi'CSSill!} LcUer":::' Vol. 6, HJ7T, 80-82.

[:30] P. van Emde Boas, R.. Ka.as, and E. Zijlst.ra, "Design and Implement.at.ion of an Efficient
Priorit.y Queue," 111ath. Systems Theory, Vol. 10, I9ii, 99-127.

26

.--

f
b

cI-
a

e.-..,J d
,

x
(a) (b)

Figure 1

C') (b)

Figure 2

I 1 1

1 I I
1 1 1

I I 1 1 1 I

~--!-:::::':::-:I:::::::':: :::1::.:::.:.... :. ·:·::l··:···:·::::···::l·::::·······I---~
! I

!

lo_ --·_~---j:':'-·co·,:,·co''J"".''C'':''".:ie'".'co'':''".'co'"''C',"'"''C'~'''':':'".':':''T'"'C'~?+•• _._•••••••••••••••-•• .!.. .. '.-.", ',',"' ,': .
1_.• • • • • • • • • • • .

! ·.···I:.::·.:.·.:.J·.···:.:·:.::.i:.·: ·:::·:·::.·:::l:::ll·.·.ll-···::,.._~ '"
:'::1">:1::)"' ."'"1"" .c:
, ,
t..._..... ! "!". . I.' "1 . r " -I

....... :1".. .'. ·.1.··.··:· ".1. '1 -r''''''· "".
II' ~l'I!

I -. i
, .. '1 '1'· '-:1 II
1·····1 ···1j ..' 'lii·----------·--I, '.' i I "-1-'-,·_·_.n"
!

L· ·-:··.... 1·:.:.,.... , '! .. ·-:-:1 -_---'-_

, .. ,
C 0--' ~ ~ ~ -I- , .- - - -•

:-:-:-:':-::,
'---::'.. -." .. :~-;

:-:;::=:'" ,:.:.-:.; ::':::;:;:',":: :.::-::::,.::.";,

.. :."

w!illllll"'II:'III!iillllllllll;-. -- .-.-";::..,: -,:-.::.{::: '--.-.. ~... -.~..
,
•• :••••:.:::,:.:::=.• :::.:••,,

	Output-Sensitive Methods for Rectilinear Hidden Surface Removal
	Report Number:
	

	tmp.1307986960.pdf.bHjH7

