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Abstract. We use known data structures for ray-shooting and linear-programming queries 

to derive new output-sensitive results on convex hulls, extreme points, and related prob- 

lems. We show that the f-face convex hull of an n-point set P in a fixed dimension 

d >_ 2 can be constructed in O(n tog f + (n f )  1-1/(Ld/2J+I) log ~ n) time; this is opti- 

mal if f = 0 (nl/[d/EJ/logr n) for some sufficiently large constant K. We also show that 

the h extreme points of P can be computed in O(nlog ~ h q- (nh) l-U(Ld/2]+l) log ~ n) 

time. These results are then applied to produce an algorithm that computes the vertices of all 

the convex layers of P in O(n 2-r) time for any constant y < 2/(Ld/2J 2 + 1). Finally, we 

obtain improved time bounds for other problems including levels in arrangements and linear 

programming with few violated constraints. In all of our algorithms the input is assumed to 

be in general position. 

I. Introduction 

Let P be a set of n points in d-dimensional  Euclidean space E d, where d > 2 is a 

fixed constant. We assume that the points are in general position. The smallest convex 

set containing P is a polytope conv(P)  called the convex hull of P.  It is known that 

the number of faces, f ,  in this polytope is at worst | (n td/2J) [27]. In the convex hull 

problem we want to construct the facial structure of  conv(P) .  This problem has been 

intensively studied in computational geometry [16], [31], [33], [36], and it has applica- 

tions to other geometric problems such as computing intersections of half-spaces and 

computing Voronoi diagrams and Delaunay triangulations. 

Chazelle [10] has solved the convex hull problem optimally in the worst case by 

giving an O (n log n + n [d/2J)_time algorithm. However, this bound depends only on 
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the input size n and is insensitive to the output size f .  An optimal O(n log f)-time 

output-sensitive algorithm in two dimensions was given by Kirkpatrick and Seidel [23]. 

For dimension three, Edelsbrunner and Shi [18] obtained an O (n log 2 f)-time method, 

and Chazelle and Matou~ek [11] demonstrated that optimal O(n log f )  time is possi- 

ble by derandomizing an earlier algorithm due to Clarkson and Shor [13]. In any fixed 

dimension the "gift-wrapping" algorithm of Swart [44] and the "beneath/beyond" algo- 

rithm of Seidel [41] achieve O (n f )  and O (n 2 + f log n) time, respectively. The latter is 

subsequently improved to O(n 2-2/([d/2j+l)+e + f log n) by Matou~ek [24] using a data 

structuring technique that he has developed for linear-programming queries. (Through- 

out this paper, e > 0 denotes an arbitrarily small constant.) It is in fact possible to 

reduce the O(n 2-2/([d/2]+1)+~) t e rm  to O(n 2-2/([d/2]+1) log ~ n) by using the static 

structures in [24]. Recently, Chan et al. [7] have obtained an O((n + f) log 2 f)-time 

algorithm in four dimensions; their method is less efficient in higher dimensions, running 

in O ((n + fa-3) loga-2 f )  time. Thus, there is still a large gap between the known upper 

bounds and the ~2 (n log f + f )  lower bound for d > 4. 

Here, we show that the gift-wrapping method can be fun_her improved using the 

data structures for ray-shooting queries in polytopes developed by Agarwal and Ma- 

tougek [1] and refined by Matougek and Schwarzkopf [26]. Our convex hull algo- 

rithm runs in O(n log f + (nf) l-l/([d/21+l) log ~ n) time and is optimal when f = 

O(nl/Ld/ZJ/logKn) for a sufficiently large K. Furthermore, it is faster than all previ- 

ous methods when f = O(n/logrn) and d > 4. Note that in many cases, f can in 

fact be sublinear; for example, Raynaud [37] proved that the expected value of f is 

0 (n (d-1)/(d+l)) if the points of P are chosen uniformly at random from a d-dimensional 

ball. The expected number of hull vertices is only polylogarithmic in n if the points are 

chosen uniformly from a hypercube or from a normal distribution [3], [37]. 

Surprisingly, our method leads to new optimal output-sensitive algorithms in two and 

three dimensions, running in O (n log f )  time. In the plane our algorithm is as simple as 

Kirkpatrick and Seidel's, and in three dimensions our algorithm is simpler than Chazelle 

and Matougek's. These are reported separately [6]. 

Next, we turn to the problem of computing the extreme points of P, i.e., the vertices of 

cony(P) (or equivalently, the set of points p e P with conv(P - {p}) r conv(P)). By 

Megiddo's linear-programming algorithm [29], we can test whether a given point is an ex- 

treme point of P in linear time; this immediately yields an algorithm for the extreme point 

problem that runs in O(n 2) time. Matou~ek reduced the bound to O(n 2-2/([d/2j+l)+e) 
using his data structures for linear-programming queries [24]; again, the n ~ factor can be 

replaced by log ~ n if static structures are used. We further improve this to an output- 

sensitive bound. Let h denote the number of extreme points (h _< n). By using Matou~ek's 

data structures in a simple O(nh)-tlme algorithm, we show that the extreme points can 

be computed in O (n log ~ h + (nh)1-1/([d/2J+a) logO(l) n) time. This O (nh)-time algo- 

rithm has recently been discovered independently by Clarkson [ 12] and Ottmann et al. 
[32]. 

We then consider the problem of computing the convex layers of P, defined iteratively 

as follows: layer 1 is the convex hull of P, and if layer i is nonempty, then layer i + 1 

is defined as the convex hull of the points of P that are not vertices of the previous 

layers 1 . . . . .  i. It is known that this problem can be solved optimally in O (n log n) time 
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by an algorithm of Chazelle [9] for d = 2 and quasi-optimally in O(n 1+~) time by an 

algorithm of Agarwal and Matou~ek [2] for d = 3. 

For d > 4, Edelsbrunner [16, Problem 10.3(c)] asked whether the vertices of all 

layers can be identified in o(n 3) time. This problem is equivalent to finding the depth of 

p, i.e., the index of the layer of which p is a vertex, for every p 6 P. It is not difficult 

to get an O (n3-3/(la/2J+l)+~)-time solution by applying Matougek's technique [24]. As 

Ottmann et al. [32] have pointed out, an O(nh)-time extreme point algorithm [12] 

immediately yields an O (nZ)-time solution. Here, we show how the depth problem can 

be solved in O(n 2-t~+E) time with/~ = 2/([d/2J 2 + 1); for example, in four or five 

dimensions the bound is 0(n8/5+~). As a result, we can construct the convex layers in 

O (n 2-~+~ + f log n) time, where f is now the total number of faces in all layers (which 

is at least ff2(n) and at most O(n[d/2J)). 
Finally, we examine applications of our ideas to other related problems. The first 

application we consider is the construction of a level in an arrangement of hyperplanes. 

Given a set H of n hyperplanes in E d, the k-level in the arrangement ,A(H) is defined 

as the set of all points in E d that have at most k hyperplanes of H above it (0 < k < n). 

The 0-level is just the dual of a convex hull. In the plane, an output-sensitive algorithm 

for constructing the k-level was given by Edelsbrunner and Welzl [19]. We improve its 

running time from O(n logn + f log 2 n) to O(n log f + f log z n), where f denotes the 

size of the k-level. In higher dimensions, Agarwal and Matou~ek [2] proposed a method 

based on ray-shooting queries, which runs in O (n log n + f I +e) time for d = 3 (actually 

they state a weaker O((n + f)n ~) bound). We improve this to O(n log f + fl+e) and 

show that the time bound is O(n log f + (n f )  1-1/ILd/2j+I~+E + f n  l-2/~Ld/2j+1)+~) for 

d > 4 .  

Another related problem studied here is: given a set H of n hyperplanes in E d, a 
direction ~, and a small integer 0 < k < n, find a point in the k-level of .A(H) that is 

minimal with respect to ~; in other words, find a minimal point that lies on or above all 

but at most k of the hyperplanes in H. This is the feasible case of the linear-programming 
problem with at most k violated constraints. For this problem, Matou~ek [25] has devised 

a method that not only finds the minimum but also enumerates all O(k a) local minima 

in the (< k)-levels. His method runs in O(nlogn + k21og2n) time if d = 2 and 

O (n log n + k 3+e) time if d = 3; when d > 4 and k is sufficiently small (more precisely: 

k a < nl/ta/2J+e), the running time is O(n log n). We show how the O(n logn) terms in 

these bounds can be reduced to O (n log k) in two dimensions or to O (n log log n +n log k) 

in higher dimensions; if randomization is allowed, this O (n log log n) term can even be 

removed. 

As an aside, we point out that Matou[ek's results [25] can be used to improve an 

algorithm by Mulmuley [30] for constructing (< k)-levels of a nonredundant arrange- 

ment of n hyperplanes in E d. The algorithm is an extension of Seidel's output-sensitive 

convex hull algorithm [41] and runs in O (n2k a-1 + f log n) time for an f-face output. 

We decrease the time bound to O(n2-2/ILa/2J+l~+~kd-I + f log n). 

We remark that all our algorithms depend heavily on the assumption that the input 

points or hyperplanes are in general position. For some of the problems we have consid- 

ered (e.g., convex hulls and k-levels), standard perturbation techniques [17], [20] may 

be used when this assumption does not hold. However, it should be kept in mind that 
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these perturbation methods may increase the output size when there is a large number 

of degeneracies. 

The remainder of this paper is organized as follows. In Sections 2 and 3 we review 

some of the known data structures for ray-shooting queries and linear-programming 

queries, which serve as the basic tools of our approach. Our contribution is a (very 

simple) preprocessing-time/query-time tradeoff that allows us to obtain improved time 

bounds when there are only a small number of queries. We then apply these results to 

the output-sensitive construction of convex hulls in Section 4 and the output-sensitive 

computation of extreme points in Section 5. Applications to convex layers and depths 

are discussed in Section 6; further applications are given in Section 7. We then conclude 

with some final remarks in Section 8. 

2. Ray-Shooting Queries 

We first investigate the problem of ray shooting in polytopes. Let H be a collection 

of n (closed) half-spaces in E d, where each half-space contains a known point, say, the 

origin o. Let N H denote the intersection of these half-spaces. Without loss of generality, 

we assume that N H is bounded (otherwise, we intersect it with a sufficiently large box 

and consider this intersection instead). Then N H is a (convex) polytope. A ray-shooting 

query is to determine the first bounding hyperplane h of 0 H that is crossed by a query 

ray originating from some point in A H (a ray crosses a hyperplane h if it intersects h 

but is not contained in h). 

In two dimensions the ray-shooting problem can be solved as follows: first compute 

the polygon N H and store its vertices in an array in counterclockwise order; then a query 

can be done by a simple binary search. Observ e that computing the intersection ['7 H is 

equivalent to computing a convex hull in the dual space, and thus takes O (n log n) time 

by Graham's scan for example [22]; and the binary search takes O (log n) time. Hence, 

this method requires O (n log n) preprocessing time, O (n) space, and O (log n) query 

time. 

The same preprocessing time, space, and query time can be obtained in three dimen- 

sions: in the preprocessing, compute the polytope ~ H by the dual of Preparata and 

Hong's convex hull algorithm [35] and construct its Dobkin-Kirkpatrick hierarchical 

representation [15]; then use the query algorithm from [15]. 

Our first observation is that a preprocessing-time/query-time tradeoffis possible using 

a standard "grouping" technique. Using this observation, we can perform q queries in 

O(n logq) time rather than O(n logn) time for small q's. 

Lemma 2.1. There is a (static) data structure for ray shooting in a polytope defined by 

a set H ofn half-spaces in E 2 or E 3 with O(n logm) preprocessing time, O(n) space, 

and 0 ((n/m) log m) query time, where m is a parameter between 1 and n. 

Proof. Partition H into In~m] subsets ("groups") 1-11 . . . . .  Hrnlml, each of size at 

most m and build the above structures for each Hi. The total preprocessing time is 

0 ((n/m) (m log m)) = 0 (n log m), and the space complexity remains 0 (n). Since ray 

shooting is a decomposable problem (i.e., the answer to a query on H'  t.J H" can be 
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Table 1. Known (deterministic) data slxuctures for ray-shooting queries in polytopes [26] and linear- 

programming queries [24]. For Structures 2 and 2', m is a parameter between n and n td/2j. 

Preprocessing Update time Ray-shooting Linear-programming 

Structures time, space (amortized) query time query time 

1 n logn, n N/A n l -1/[d/2j  log ~ n n 1-1/Ld/2j log ~ n 

2 m log O(1) n N/A ml~[d/2j logn rnl/'~a/2 j log 2d+l n 

3 n Ld/2j logO(l) n N/A log n log d+l n 

1' n logn ,  n log 2 n n l - l / [ d / 2 j + e  n l - l / [d /2 j+e  

2 t ml+e m TM n ral~d/2j l o g n  n log 2d+l n n mll'~12J 
3 p n td123 +~ n td/23 - l+~ log n log d+ 1 n 

computed from the answers to the queries on H '  and H"  in constant time), a query on 

H can be computed directly by querying on each Hi, taking O ((n/m) log m) time. [] 

Corollary 2.2. An (online) sequence of q ray-shooting queries in a polytope defined 

by a set H of n half-spaces in E 2 or E 3 can be performed in O(n logq + q logn) time 

and O(n) space. 

Proof. By Lemma 2.1, the total time needed to answer q queries is O(n log m + 

q((n /m) logm)) ,  where 1 < m < n. Choose m = q when q < n and choose m = n 

when q > n. [] 

For ray-shooting queries in d-dimensional polytopes, Agarwal and Matou~ek [ 1 ] have 

proposed a data structuring method that was subsequently improved by Matougek and 

Schwarzkopf [26]. The top half of Table 1 shows their results in the static case. (The 

table also includes results on linear-programming queries, which are discussed in the 

next section.) Structure 1 is a linear-space data structure with O(n logn) preprocessing 

time and O ( n  1 - 1 / [ d / 2 j  log ~ n) query time. Structure 3 achieves a much faster query 

time of O (log n), but preprocessing time increases to 0 (n Ld/2j logO(l) n). A continuous 

tradeoff between preprocessing and query time is provided by Structure 2. 

We observe here that the grouping technique can be used to obtain further preproces- 

sing-time/query-time tradeoffs for Structure 1. 

Lemma 2.3. There is a (static) data structure for ray shooting in a polytope defined by 

a set H ofn half-spaces in E a (d > 3) with 0 (n log m) preprocessing time, 0 (n) space, 
and 0 ((n/m 1/la/2j) log ~ m) query time, where m is a parameter between 1 and n. 

Proof. By partitioning H into [him7 groups as in Lemma 2.1 and using Structure 1 to 

store each group, the preprocessing time becomes O ((n/m)(m log m)) = O (n log m) 

and query time becomes O((n/m)(m 1-1/[d/2j log ~ m)) = O((n/m 1/Ld/2j) log ~ m). 

[] 



374 T.M. Chart 

Corol la ry  2.4. A sequence of q ray-shooting queries in a polytope defined by a set H of 
n half-spacesin E a (d > 3) canbeperformedin O(n log q+(nq) 1-U(La/2J+l) log ~ n +  

q logn)  time. 

Proof 

Case I: q < n 1/ta/2J /logKn, where K is a sufficiently large constant. Use Lemma  2.3's 

modification of  Structure 1 with m = (q log K q)td/2J (1 < m < n). Then the running 

time is 

n o ( ~ )  = 
O ( n l o g m  + q ~  log m)  O(nlogq).  

Case II: nl/ta/2J /logKn < q < nta/2J /logKn. Use Structure 2 with m = (nq log K 

n) 1-1/(Ld/2J+l~ (n < m < nLa/2j). Then the running time is 

n ) O((nq) 1-1/([d/2J+l) log O(l) n). 0 m l o g ~  = 

Case III: q > nLa/2J/logKn. Use Structure 3. Then the running time is 

O(n ta/2J log ~ n + q log n) = O((nq) 1-1/(La/2J+l) log ~ n + q logn) .  [] 

R e m a r k .  In some applications the number of  queries q may not be known in advance. 

In that case the parameter m cannot be set directly. This problem can be avoided by 

breaking the q queries into k clusters of  ql . . . . .  qk queries, where ql,  q2 . . . .  is a known 

sequence and ql + " '"  + qk-1 < q < ql + " '"  + qk. For example, in Case I of  the 

proof of  Corollary 2.4, if we choose the sequence qi --- 22i (i = 1, 2 . . . .  ), then the 
k (~--~['loglogq] n2 i) total running time is O(y] /=  1 n logqi)  = O ~z.,i=l = O(n logq) ,  as before. 

(Logarithms are in base 2.) As soon as q exceeds n Uta/2J/logKn, we switch to Case II 

and use a different sequence qi = nl/ta/2J2 i (i = 1, 2 . . . .  ); the running time is again a 

geometric series and thus increases by only a constant factor. Finally, when q exceeds 

n ta/aj/logrn, we switch to Case III, which does not require setting the parameter m. 

We now discuss dynamic ray shooting in polytopes, where half-spaces may be inserted 

or deleted. Let n denote a (known) upper bound on the number of  half-spaces at any 

given time. In two dimensions a data structure by Overmars and van Leeuwen [34] has 

O (n log n) preprocessing time, O (n) space, O (log 2 n) update time, and O (log n) query 

time. We can extend the grouping technique to get the following analogues of  Lemma 2.1 

and Corollary 2.2: 

L e m m a  2,5. There is a data structure for ray shooting in a polygon defined by a 
dynamic set H of at most n half-planes in E 2 with 0 (n log m) preprocessing time, 0 (n ) 
space, O ( (n / m ) log 2 m) update time, and O ( (n / m ) logm)  query time (1 < m < n). 

Proof Let BI . . . . .  Brnlm 1 be In~m] "buckets", each containing at most  m half-planes 

at any given time. For each bucket, keep a dictionary of its half-planes and use Overmars 
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and van Leeuwen's data structure to store the polygon defined by these half-planes. 

The preprocessing time, space complexity, and query time are as before. To perform an 

insertion, we search for a bucket Bi that is not full (i.e., one that contains < m half- 

planes) and insert the given half-plane to Bi; to perform a deletion, we search for the 

bucket Bi containing the given half-plane and delete it from Bi. Clearly, the update time 

is upper bounded by O((n/m)log  2 m). (In fact, insertions can be done in O(log 2 m) 

time if we maintain a linked list of buckets that are not full; deletions can also be done 

in O (log 2 m) time if we are given a pointer to the half-plane being deleted.) [] 

Corol la ry  2.6. A sequence of q ray-shooting queries in a polygon defined by a dynamic 

set H of at most n half-planes in E 2, and q insertions~deletions on H can be performed 

in O(n logq + q log 2 n) time and O(n) space. 

Proof. By Lemma 2.5, the total time needed to perform q queries and updates is 

O(nlogm + q ( ( n / m ) l o f m ) ) ,  where 1 < m < n. Choose m = q l o g q  when q < 

n / log  n and choose m = n otherwise. [] 

In higher dimensions Matou~ek and Schwarzkopf [26] have provided dynamic ver- 

sions of their data structures, as shown in the bottom half of  Table 1. These dynamic 

structures, named Structures 1', 2', and 3' in the table, achieve the same preprocessing 

and query time as their static counterparts, except that certain log ~162 n factors are in- 

creased to n e. With the techniques we have used so far, it is straightforward to obtain a 

modification of Structure 1' with the following tradeoff: O (n log m) preprocessing time, 

O(n) space, O((n/m) log 2 m) amortized update time, and O(n/m 1/La/2j-E) query time 

(1 < m < n). We then have: 

Lemma 2.7. A sequence of q ray-shooting queries in a polytope defined by a dynamic 

set H of at most n half-spaces in E a (d > 2) can be performed in 

(i) O(n log q + (nq) 1-1/(ta/2j+lg+E + qn l-2/r time, if the number of inser- 

tions~deletions is O(q);  

(ii) O (n log 2 n + (nq) 1-1/r + q log n) time, if the number of insertions~dele- 

tions is 0 (n). 

Proof. For (i), we consider three cases: 

Case I: q < n l/Ld/2j-~. Use the above modification of Structure 1' with m 1/[d/2j-E = q 

(1 < m < n). Then the running time is 

( n n ) 
0 n l o g m + q - ~ l o f m + q m l / L - d / 2 j _ ~  = O(nlogq) .  

Case II: n 1/La/2j-~ < q < n 1-~. Use Structure 2' with m = (nl+eq) ~-l/(Ld/'-j+~) (n <_ 

m _< n Le/zJ). Then the running time is 

( m 1+~ n ) 
+ n O((nq)l-1/(Ld/ZJ+l~+e). 0 ml+e+q n q ~ l o g  = 
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Case Ilk q > n 1-e. Use Structure 2' with m = n 2-2/([d/2j+l) (n < m <_ n[d/2J).  T h e n  

the running time is 

ml+~ 

0 ml+~+q n 
+ q ~ l o g n n  ) = O(qnl_2/([d/2j+l)+2e ) 

For (ii), we perform a similar analysis. We use Structure 1' when q < n 1/Ld/21-e, Struc- 

ture 2' with m = (nl+eq) 1-1/r when n 1/La/2]-e < q < n [a/2j-e, and Structure 3' 

when q > n td/2J-e [] 

Remark.  As in the previous remark, the value of q does not need to be given in advance. 

3. Linear-Programming Queries 

Let H be a collection of half-spaces in E d as in Section 2. A linear-programming query 

is to determine the vertex v of the polytope N H that maximizes ~ - v for a query vector 

t e E  d . 

We begin by extending the grouping technique of Lemmas 2.1 and 2.3 to handle 

linear programming with a small number of queries. This is not trivial because linear 

programming, unlike ray shooting, is not a decomposable problem. 

Lemma 3.1. There is a data structure for linear-programming queries on a dynamic 

set H of at most n half-planes in E 2 with O(n log m) preprocessing time, O(n) space, 

and 0 ( (n / m ) log 2 m) update and query time, where m is a parameter between 1 and n. 

Proof We consider the static case first. Partition H into [n/m] groups H1 . . . . .  Hrn/m], 

each of size at most m, compute the convex polygon 1"I i = N Hi for each i, and store each 

of them in an ordered array. The total preprocessing time is then O ( (n/m)(m log m)) = 

O(nlogm),  while space is linear. Reichling [38] showed that in O(klog2m) time, 

one can detect whether the intersection of k convex m-gons is empty, and if not, re- 

port the point in the intersection that is extreme in a given direction ~; his method is 

based on Megiddo's prune-and-search technique. Using Reichling's algorithm on the 

k = [n/m] polygons Il l  . . . . .  I-Ir,/m 1, we can answer a linear-programming query in 

O((n/m) log 2 m) time. 

The dynamic part can be proven using Overmars and van Leeuwen's data structure [34] 

to store each of the Hi 's, which requires O ((n/m) log 2 m ) update time; Reichling's time 

bound still applies. [] 

As a result of this lemma, q linear-programming queries in the plane can be answered 

in O(n log q) time for q < n/log n. 

Corollary 3.2. A sequence of q linear-programming queries and q insertions~deletions 

on a dynamic set H of at most n half-planes in E 2 can be performed in 0 (n log q + 

q log 2 n) time and 0 (n) space. 
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In higher dimensions Matou~ek [24] has obtained data structures for linear-program- 

ming queries achieving the complexities shown in Table 1. His approach uses a multi- 

dimensional parametric search technique to reduce the problem of answering linear- 

programming queries to that of answering half-space-emptiness queries with witness; 

the half-space emptiness problem is then solved in the same way as ray shooting in 

polytopes. (In the dual se~ing, a half-space emptiness query on H is to determine whether 

a given query point p belongs to ["] H, and if not, provide a witness half-space h ~ H 

that does not contain p; such a query can be performed by shooting the ray o--p in ('] H.) 

We now show how to obtain a preprocessing-time/query-time tradeoff for the static 

Structure 1 in the case of linear programming. The bounds we get are similar to those 

obtained in Lemma 2.3, except for an extra polylogarithmic factor in n in the query time; 

this causes an additional O (n log log n) term in the overall time bound. 

Lenmaa 3.3. There is a (static) data structure for linear-programming queries on a set 

H ofn half-spaces in E d (d > 2) with O(n logm) preprocessing time, O(n) space, and 
0 ((n/m 1/td/2J) log ~ m log d n) query time, where m is a parameter between 1 and n. 

Proof. In this proof we assume that the reader is familiar with Matou~ek's tech- 

nique [24]. 

We consider the half-space emptiness queries first. Partition H into In~m] groups 

H1 . . . . .  HFn/m 1, each of size at most m. For each of the Hi's, we build a data structure [24] 

with O (m log m) preprocessing time and O (m) space, so that each half-space emptiness 

query on Hi can be answered in O(log m) parallel steps using O(m 1-1/Ld/2J log ~ m) 

processors. The total preprocessing time is then O ((n/m)(m log m)) = O (n log m) and 

the space requirement remains linear. Since the half-space emptiness problem is decom- 

posable, a query on H can be performed in r(n, m) = O(logm) parallel steps using 

7r(n, m) = O ( ( n / m ) ( m  l-l/Ld/2j log ~ m)) = O ( ( n / m  1/Ld/2j) log ~ m) processors; 

or, sequentially, in t (n, m) = O((n/m)(m 1-1/Ld/2J log ~  = O((n/m 1/Ld/2j) log ~ 

m) time. 

Matougek has shown that any data structure for half-space emptiness queries (satis- 

fying some reasonable conditions) can be used to answer linear-programming queries 

by a multidimensional version of Megiddo's parametric search method [28]. The re- 

suiting query time is given by O (t (n, m)r  (n, m)d 1ogd Jr (n, m)), which, in our case, is 
O((n/m 1/Ld/2J) log O(1; m log d n). [] 

Corollary 3.4. A sequence of q linear-programming queries on a set H of n half-spaces 
in E d (d > 2) can be performed in 0 (n log log n +n  log q + (nq) l-l/t[d/2J+1) 1ogO~l/n + 

q log d+l n) time. 

Proof. The proof is as in Corollary 2.4, except that for Case I (q <_ nl/Ld/2J/logKn) 
we use Lemma 3.3 with m = (q log r n) Ld/2j (1 < m < n).  The running time for Case I 

now becomes 

n log~ logdn) = O(n log logn+nlogq) .  0 n l o g m + q ~  [] 
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Remark. Again, the complexity remains the same even if the value of q is not known 

in advance. (Use the sequence qi =- (logn) 2' (i = 1, 2 . . . .  ) for Case I.) 

Since Matougek's data structures can be made dynamic like the ray-shooting structures 

(see the bottom half of Table 1), the following analogue of Lemma 2.7 is straightforward: 

Lemma 3.5. A sequence of q linear-programming queries on a dynamic set H of at 
most n half-spaces in E d (d > 2) can be performed in 

(i) O(nloglogn + nlogq  + (nq) 1-1/(td/2j+1)+~ + qn 1-2/(Ld/ej+l)+e) time, if the 

number of insertions~deletions is O(q); 

(ii) O(n log2n + (nq) 1-1/(td/zj+l)+~ + q log d+l n) time, if the number of inser- 

tions~deletions is 0 (n ). 

Finally, we observe that for the semidynamic case, where there are no deletions, 

Lemma 3.5(ii) may be improved somewhat. 

Lemma 3.6. A sequence of q linear-programming queries and n insertions on an ini- 
tially empty set of half-spaces in E d can be performed in 0 (n log 2 n q- (nq)l-1/([d/2J+l). 
log ~ n -t- q log ~ n) time. 

Proof. As in the proof of Lemma 3.3, we consider the half-space emptiness problem 

first. Since, this problem is decomposable, the techniques by Bentley and Saxe [4] may be 

applied to convert a static structure to a semidynamic one (which increases building time 

and query time by a logarithmic factor). We then apply Matougek's parametric search to 

use this structure for answering linear-programming queries. The resulting time bound 

is only a polylogarithmic factor increase on the static bound in Corollary 3.4. [] 

Remark. The precise bound for the O (q log O(1) n) term in Lemma 3.6 is O (q log d+2 n- 

(log log n)d), not O (q log d+2 n) as suggested in the extended abstract of this paper [5], 

since we have r(n,  m) = O(logn), rr(n, m) = O(logn), and t(n, m) = O(log2 n), in 

Matou~ek's notation, for the semidynamic version of the 0 (n td/2l logO(l) n)-space half- 

space emptiness data structure. The O(q log d+2 n) bound is still correct, but in order to 

remove the unnecessary log log n factors, we need to apply a multidimensional version 

of Cole's improved parametric search [14]. We do not go over this in detail, as for very 

large values of q the bound in Lemma 3.5(ii) is better anyway. 

In the Appendix we show how to eliminate the log n factors in Lemma 3.3 and thus 

remove the n loglogn term from both Corollary 3.4 and Lemma 3.5(i), if we allow 

randomization. 

4. Convex Hulls 

We now show that the f- face convex hull of an n-point set can be constructed by 

performing O ( f )  ray-shooting queries in a polytope defined by n half-spaces. The 



Output-Sensitive Results on Convex Hulls, Extreme Points, and Related Problems 379 

algorithm we use is just the well-known gift-wrapping method [8], [36], [44] dualized, 

since a "gift-wrapping operation" corresponds to shooting a ray in the dual polytope. If 

the ray-shooting queries are performed directly by scanning the half-spaces, then we get 

an O (nf)-time bound. We observe that this can be improved using the data structures 

from Section 2. 

Theorem 4.1. The convex hull of a set P of n points in E d can be constructed in 
O(n log f + (n f )  1-1/(td/2j+l) log ~ n) time and O(n + (n f )  1-1/(td/2j+l) log ~ n) 

space, where f is the number of hull faces. 

Proof. In the dual se~ing, our problem becomes computing an intersection of a set H 

of n half-spaces in E d (assumed to be in general position), each containing the origin 

o. It suffices to compute the vertices of the intersection A H, from which the complete 

lattice structure of A H can be easily generated in O ( f  log f )  time by a dictionary. 

First, an initial vertex v0 can be found by performing d ray-shooting queries in ["1 H, 

since shooting a ray from o gives a point in a (d - 1)-face, and shooting a ray from 

a point in a j-face inside its affine hull gives a point in a (j  - 1)-face (1 __% j < d). 

Furthermore, given a vertex v, the vertices adjacent to v in the 1-skeleton (the graph 

formed by the vertices and edges of A H) can be found by performing d ray-shooting 

queries: if hi . . . . .  hd are the hyperplanes defining v, then shoot a ray from v along each 

of the d lines formed by intersecting d - 1 hyperplanes from {hi . . . . .  hd}. 
Since the 1-skeleton is connected, we can use a depth-first search (or a breadth-first 

search, or any graph traversal algorithm) to visit all vertices of N H; we can ensure 

that each vertex is visited only once by using a dictionary to detect replication. This 

shows that the vertices of f ' )H  can be computed by performing O ( f )  ray-shooting 

queries in ['7 H. The theorem then follows by applying Corollaries 2.2 and 2.4 (recall 

that f = O(n[d/2J)). [] 

5. Extreme Points 

We now consider the problem of computing the h extreme points of an n-point set. 

Since determining whether a point is extreme can be done by solving a certain linear 

program, it is not difficult to see that n linear-programming queries on n half-spaces 

are sufficient. We show that we can do better if h is small: by a simple algorithm, the 

extreme points can be found using h queries on n half-spaces together with n queries 

on h half-spaces. With Megiddo's linear-programming algorithm [29], this leads to a 

simple O(nh)-time extrema algorithm. The same O(nh)-time algorithm has recently 

been discovered by Clarkson [12] and Ottmann et al. [32]. We note that the time bound 

can be further improved using the results from Section 3. 

Theorem 5.1. The h extreme points of  a set P of  n points in E d can be computed in 
O(n log d+l h + (nh) 1-1/(td/2j+1~+~) time orin O(n log ~ h+(nh) l-1/(td/2j+ll log ~ n) 

time. 
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Proof. Without loss of generality, assume that the origin o is in the interior ofconv(P).  

Consider the following incremental algorithm, which is essentially the same as Clark- 

son's algorithm and the algorithm by Ottrnann et al.: 

Algorithm Extrema(P) 

1. Q +--0 

2. for each p �9 P (in any order) do 

3. if p r Q and pr  conv(Q u {o}) then 

4. if p is an extreme point of P then 

5. Q ~ a u { p }  

6. else find the facet f of conv(P) that intersects ray op 

7. let v be a vertex of f that is not in Q 

8. Q +- O U { v }  

9. return Q 

Observe that v must exist in line 7, because otherwise all vertices of f would be in 

Q; since p e conv(f  u {o}), this would imply that p �9 conv(Q u {o}): a contradiction 

with line 3. It is then clear that the algorithm correctly returns the set of extreme points 

of P. 

We now analyze the cost of the algorithm. Note that line 3 can be accomplished by 

solving a linear program on Q in the dual and lines 4 and 6 can be accomplished by 

solving a linear program on P in the dual. (Line 7 takes constant time since each facet has 

d vertices by the general position assumption.) Observe that although line 3 is executed 

n times, lines 4-8 are executed only h times since each execution adds a new point to Q. 

Thus, the algorithm requires h linear-programming queries on P, a static set of size n, 

and n linear-programming queries on Q, a semidynamic set of size at most h. 

By Corollary 3.4, the h queries on P can be done in O(n log log n + n log h + 

(nh) 1-U([d/2j+l) log ~ n) time. By Lemma 3.5(ii), the n queries and h insertions on Q 

can be done in O((nh) 1-1/([d/2J+l)+e q- n log d+l h) time. The total running time is then 

O(n loglog n + n log d+l h -t- (nh)l-1/(Id/EJ+l)+e). 

Notice that when h _< n ~ for a constant ot < (1/[d/2J) 2, the number of hull faces 

is O(nl/[d/2J-e), SO we can compute the entire convex hull in optimal O(n logh) time 

and O (n) space by Theorem 4.1. This allows us to remove the O (n log log n) term in 

the time bound. The first part of the theorem is thus proven, and the second part follows 

similarly, using Lemma 3.6 instead of Lemma 3.5(ii) for Q. [] 

Theorem 5.1 has an interesting corollary. It implies a bound for the convex hull 

problem that is within a polylogarithmic factor of optimal in the worst case, if the 

complexity is measured in terms of n and the number of extreme points h. (Note that 

f2 (n log h + h kd/2J ) is a lower bound in terms of n and h.) 

Corollary 5.2. The convex hull of a set P of n points in E a can be constructed in 

O (n log ~ h + h [d/2J) time, where h is the number of hull vertices. 
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Proof. Compute the extreme points by Theorem 5.1 and then construct the convex 

hull of these h points by Chazelle 's algorithm [10] in O(h Ld/2j) time (note that when 

h = ~(nl/Id/2J), we have h ta/2j = g2((nh)~-l/fLd/2J+l))). H 

6. Convex Layers and Depths 

We now consider the convex-layers problem and the depth problem. For the depth prob- 

lem, we use a hybrid of  the methods of  Sections 4 and 5 to obtain a subquadratic 

algorithm. Then we show how this leads to an output-sensitive convex-layers algorithm 

using Seidel's convex hull algorithm [41]. 

Theo rem 6.1, The depth of  all points in a set P of n points in E d can be computed in 
O(n 2-t3+~) time, where fl = 2/(Id/2J 2 + 1). 

Proof. We iteratively compute the vertices of  the ith layer (i = 1, 2 . . . .  ) as follows. 

We use the convex hull algorithm in Theorem 4.1 to construct the ith layer, but as soon 

as more than n t3 vertices are discovered in the layer, we stop the computation and switch 

to the extrema algorithm in Theorem 5.1 to compute the vertices of  the layer. We then 

remove the vertices of the ith layer from P and proceed to the (i + 1)st layer. In the end 

we will have the depths of every point in P. For the calls to the convex hull algorithm, 

we use a dynamic ray-shooting data structure instead of a static one so that structures do 

not have to be rebuilt as points are removed from P after each iteration; for the calls to 

the extrema algorithm, however, we leave the data structures unchanged. 

Let h i denote the number of vertices of  the ith layer (~-,i hi = n). We first analyze the 

cost of  the calls to the convex hull algorithm in Theorem 4.1, which involve a number of  

ray-shooting queries and n deletions on a dynamic set of  at most n half-spaces; the number 

of  queries is proportional to the number of  facets discovered. Since we stop the compu- 

tation in a layer when n t3 vertices are found, we make at most O(min{hy/2j , nt3[d/2J}) 
queries for the ith layer. The total number of queries is then asymptotically bounded 

by 

E h y / 2 J +  En#La/2J  < n t 3 ~ L a / 2 j - 1 ) ( E h i ) + n ~ L a / 2 J - l ) ( E n ~  I 
hi <n ~ hi >n # \h i  <n # ] \h ,  >n # I 

< n3([d/2J -1) E h i  <_ nl+3([d/2J -1) .  

i 

B y Lernma 2.6(ii), we see that the cost o f  these queries is O ((n 2+3f [d/2J- 1 ) ) 1 - 1/( [d/2J + l)+e) 

= O(n 2-~+c~) by our choice of fl (where c is an appropriate constant). 

Next, we analyze the cost of  the calls to the extrema algorithm in Theorem 5.1. Note 

that the extrema algorithm is called only for the layers i with hi > n/3, and the number 

of  hi's with hi > n ~ is at most n l-~ (since E i  hi ---- n). Ignoring logarithmic factors, 
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the cost is then 

E (n + (nhi) l-1/([d/2j+l)) 

hi > n  .e 

< n ~_, hl -l/(Id/2j+l) 

< n 2-~ -t- n l-1/(ka/21+l~ (n l-~/(ta/2j+l~) (nl-~)  1/(ta/2j+l) 

= 0 (n2-#), 

by H61der's inequality. Therefore, the entire method runs in 0 (n 2-r time. [] 

Corollary 6.2. The convex layers of  a set P of  n points in E d can be constructed in 

O(n 2-3+e -t- f logn) time, where f is the total output size and ~ = 2 / ( [d /2J  2 -t- 1). 

Proof. Let Pi be the set of vertices of layer i (i.e., the points of depth i) and let hi and 

3] be the number of vertices and faces of the layer (~']i hi = n, E i  fi  = f ) .  We first 

compute Pi for all i in O (n 2-~+e) time by Theorem 6.1 and then construct the convex hull 

of each Pi using Seidel's algorithm [41] with Matou~ek's improvement [24]. The total 

time needed is 0 (n 2-/~+e -t- E i  (h~ -2/([d/2j+l)+e "[- ft" log hi)) = O(n 2-3+e q- f log n). 
[] 

Remarks. 1. A worst-case optimal convex-layers algorithm for d _> 4 is not difficult 

to get" just use an O (nh)-time extrema algorithm to compute the vertices of each layer 

and use Chazelle's convex hull algorithm [10] to construct the layers; then the running 

time is O(n 2 + n[d/2J). 
2. For a more direct output-sensitive convex-layers algorithm, we can simply do the 

following: iteratively use the convex hull algorithm in Theorem 4.1 to construct the ith 

layer (i = 1, 2 . . . .  ) and delete points from P that are vertices of a layer after each 

iteration. This method is the same as the one by Agarwal and Matougek [2] for the 

three-dimensional case. It requires O ( f )  ray-shooting queries and n deletions, and by 

Lemma 2.7(ii), takes O((n f )  1-1/([d/2j+l)+e) time, which is superior to the bound in 

Corollary 6.2 only when f is near linear (recall f2 (n) = f = 0 (n Id/2J)). 

7. Other Applications 

We now consider applications of our techniques to the construction of a k-level in an 

arrangement and to linear programming with few violated constraints. 
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Theorem 7.1. A k-level in an arrangement ,A(H) of n hyperplanes in E a can be 
constructed in 

(i) O ( n l o g f  + f log2n) time, i fd  = 2; 

(ii) O ( n l o g f  + fl+e) t/me, i fd  = 3; 

(iii) O(n log f + (n f )  1-1/~ta/2j+l)+~ + f n  1-2/~La/2j+lg+e) time, if d > 4; 

where f is the output size. 

Proof The depth-first search algorithm by Agarwal and Matougek [2] constructs the 

k-level using O (f )  polytope ray-shooting queries and O ( f )  insertions/deletions on two 

dynamic sets of at most n half-spaces. (In two dimensions their algorithm is the same 

as Edelsbrunner and Welzl's [19].) Hence, the theorem follows from Corollary 2.6 and 

Lemma 2.7(i). [] 

Theorem 7.2. The linear-programming problem on n constraints in E a with at most 

k violations for the feasible case can be solved in 

(i) O(nlogk +k21og2n) time, i fd  = 2; 

(ii) O(n loglogn + n logk + k 3+E) t ime,/ fd = 3; 

(iii) O (n log log n + n log k) time, if d > 4 and k a < n 1/td/2j-e. 

Proof The depth-first search algorithm by Matou~ek [25] solves this problem using 

0 (k d) linear-programming/membership queries and O (k d) insertions/deletions on two 

dynamic sets of at most n half-spaces. (A membership query is just a special case 

of a ray-shooting query.) Hence, part (i) of the theorem follows from Corollaries 2.6 

and 3.2, and parts (ii) and (iii) follow from Lemmas 2.7(i) and 3.5(i). With randomization, 

the results from the Appendix can even eliminate the n log log n terms in parts (ii) 

and (iii). [] 

Remark. For large values of k in the two-dimensional case, the time bound of 

Theorem 7.20) can be reduced to O(n log2n) using parametric-search or slope- 

selection techniques, as Matou~ek [25] and Roos and Widmayer [40] observed. 

The techniques here may also be applicable to the infeasible case of linear program- 

ming with k violated constraints, or to the smallest k-enclosing circle problem; see 

Matou~ek's paper [25]. 

Finally, we mention an improvement to Mulmuley's output-sensitive algorithm [30] 

for constructing (< k)-levels. The algorithm assumes that the input hyperplanes H 

are nonredundant, i.e., every hyperplane in H supports the upper envelope of H. For 

applications to (< k)-order Voronoi diagrams, this assumption is automatically satisfied. 

Theorem 7.3. We can compute i-levels in an arrangement ,A(H) of n nonredundant 
hyperplanes in E d for all i = O, 1 . . . . .  k in O(nZ-Z/~td/ZJ+l)+ek d-1 + f logn) time, 

where f is the output size. 



384 T.M. Chan 

Proof Let Li (H) denote the boundary of the/-level in .A(H) and let f / b e  its size 

()--~.ik=0 3~ = f ) .  For each h ~ H, let Hh = {h n h': h' ~ H - {h}}, which is a set of 

(d - 1)-dimensional hyperplanes. 

Mulmuley [30] gave an algorithm which constructs the facial structure of Li (H) in 

O((fi + f/-1) logn) time, given the following information: 

1. The local minima (along some predefined direction) of the/-level in .A(H) that 

lie on Li ( H) - Li-1 ( H). 
2. The local minima of the/-level in .,4(Hh) that lie on Li (Hh) -- Li-1 (nh), for each 

h 6 H .  

3. The facial structure of Li-1 (H). 

Matougek [25] has shown that the local minima of all/-levels in .A(H) (i = 0, 1, 

. . . .  k) can be enumerated by performing O (k d) linear-programming/membership queries 

and 0 (k d) insertions/deletions on two dynamic sets of at most n half-spaces. Similarly, 

the local minima of all/-levels in .A(Hh) (i = 0, 1 . . . . .  k) can be computed using 

0 (k d-1 ) linear-programming/membership queries and O (k d-l) insertions/deletions, 

for each h ~ H. Observe that we do not need separate structures to store each Hh as the 

data structures from Section 3 can perform linear-programming queries restricted to any 

j-fiat [24]. The total number of queries and updates is then O (k d + nk d-l) = 0 (nkd-l). 
By Lemmas 2.7 (i) and 3.5(i), this takes O (n 2-2/(Ld/2j + 1)+~ k d- 1 ) time. 

Thus, items 1 and 2, for all i = 0, 1 . . . . .  k, can be computed in 

O(n2-2/~Ld/2J+l)+~kd-1 ) 

time. Now, Mulmuley's algorithm can be used to construct the facial structure of L0 (H), 

L1 (H) . . . . .  Lk (H) incrementally, in additional O ( f  log n) time. [] 

8. Final Remarks 

We remark that further applications of our ideas are possible. For example, Theorem 4.1 

can be extended to compute the intersection of a convex hull with a j-flat in an output- 

sensitive manner; in the dual, this corresponds to computing projections (shadows) of an 

intersection of half-spaces. More generally, we can obtain output-sensitive bounds for 

computing "skeletons" in a half-space intersection, or with the known methods for ray 

shooting in a collection of hyperplanes [ 1 ], "skeletons" in a hyperplane arrangement; see 

Chapter 9 of [16]. With suitable data structures, this applies to arrangements of different 

objects as well, such as line segments in the plane. 

Many open questions remain, however. A major problem is to find an O ((n + f)~+e)- 

time convex hull algorithm in dimensions higher than four. Another question is: can the 

depth problem be solved in O (n 2-2/~td/21+1)+~) time? 
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Appendix. Using Randomization in Linear-Programming Queries 

Consider the following linear-programming problem: given k preprocessed polytopes 

FI1 . . . . .  Flk C E d, each defined by m half-spaces containing the origin o, compute the 

vertex v of FI 1N... A I-Ik that maximizes ~- v for a given ~ e E d. Suppose that linear-space 

static structures (Structure 1) from Table 1 are used to store these polytopes. As is demon- 

strated in the proof of Lemma 3.3, a direct application of Matou~ek's multidimensional 

parametric-search technique would yield an 0 (k m 1-1/Id/2J 1ogO~l) m log d k)-time so- 

lution. Here we describe how the logdk factor can be eliminated by using Sharir and 

Welzl's randomized algorithm for generalized linear programming [43] (which is based 

on Seidel's linear-programming algorithm [42]). This in turn improves the query time 

in Lemma 3.3. 

We first observe that the problem of finding an extremum in a nonempty intersection 

of k convex objects in E d belongs to the class of LP-type problems of combinatorial 
dimension d as defined by Sharir and Welzl [43]. Sharir and Welzl presented a simple 

randomized algorithm for solving LP-type problems of fixed combinatorial dimension 

that requires an expected number of O (k) primitive operations. The primitive operations, 

in our case, are: (i) to test whether a given point lies inside one of the objects (violation 

tests), and (ii) to find the extremum in an intersection of d + 1 of the objects (basis 
computations). 

For our application, the objects are (convex) polytopes. A violation test is simply a 

membership query and costs 0 (m 1-1/Ld/2J log o~1) m) time. A basis computation involves 

solving our linear-programming problem on d + 1 of the polytopes; since the number of 

polytopes is now constant, we can apply our previous method, via Matou~ek's parametric 

search, to solve this problem in O(m 1-1/Ld/2j log ~ m) time. Because O(k) violation 

tests and basis computations are expected to be performed by Sharir and Welzl's algo- 

rithm (the expected number of basis computations is actually only O (log d k) [45]), we 

obtain a randomized O (k m 1-1/Ld/2J log o ~1~ m )-time solution to our linear-programming 

problem on k polytopes. 

The above method carries through if the polytopes are stored in linear-space dynamic 

structures (Structure 1' from Table 1); we simply replace the log ~ m factors with 

m e. With slightly more effort, we can even remove the assumption that the polytopes 

all contain the origin; the method can detect whether k preprocessed polytopes have a 

common intersection. 

Note that in the two-dimensional case both violation tests and basis computations can 

be performed in O (log m) time. Thus, Sharir and Welzl's algorithm achieves expected 

O (k log m) time, which is an improvement over the previous O (k log 2 m) algorithm by 

Reichling [38], as used in our proof of Lemma 3.1. It is also interesting to compare the 

techniques here with those used in the previous deterministic and randomized methods 

by Reichling [39] and Eppstein [21] for the three-dimensional problem. 

The (expected) query time in Lemma 3.3 can now be improved to 0 ((n / m Ld/2j ) log o ~1 

m) since it uses k = [n/m]. As a consequence, the O (n log log n) term in Corollary 3.4 

can be eliminated; the same is true for the dynamic case (Lemma 3.5(i)), which leads to 

corresponding improvements in Theorem 7.2. 
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