
Discrete Comput Geom 16:369-387 (1996) Discrete & Computational

Geometry
~) 1996 Springer-Vertag New Yolk Inc.

Output-Sensitive Results on Convex Hulls, Extreme Points,

and Related Problems*

T. M. Chan

Department of Computer Science, University of British Columbia,
Vancouver, British Columbia, Canada V6T 1Z4

Abstract. We use known data structures for ray-shooting and linear-programming queries

to derive new output-sensitive results on convex hulls, extreme points, and related prob-

lems. We show that the f-face convex hull of an n-point set P in a fixed dimension

d >_ 2 can be constructed in O(n tog f + (n f) 1-1/(Ld/2J+I) log ~ n) time; this is opti-

mal if f = 0 (nl/[d/EJ/logr n) for some sufficiently large constant K. We also show that

the h extreme points of P can be computed in O(nlog ~ h q- (nh) l-U(Ld/2]+l) log ~ n)

time. These results are then applied to produce an algorithm that computes the vertices of all

the convex layers of P in O(n 2-r) time for any constant y < 2/(Ld/2J 2 + 1). Finally, we

obtain improved time bounds for other problems including levels in arrangements and linear

programming with few violated constraints. In all of our algorithms the input is assumed to

be in general position.

I. Introduction

Let P be a set of n points in d-dimensional Euclidean space E d, where d > 2 is a

fixed constant. We assume that the points are in general position. The smallest convex

set containing P is a polytope conv(P) called the convex hull of P. It is known that

the number of faces, f , in this polytope is at worst | (n td/2J) [27]. In the convex hull

problem we want to construct the facial structure of conv(P) . This problem has been

intensively studied in computational geometry [16], [31], [33], [36], and it has applica-

tions to other geometric problems such as computing intersections of half-spaces and

computing Voronoi diagrams and Delaunay triangulations.

Chazelle [10] has solved the convex hull problem optimally in the worst case by

giving an O (n log n + n [d/2J)_time algorithm. However, this bound depends only on

* This research was supported by a Killam Predoctoral Fellowship and an NSERC Postgraduate

Scholarship.

370 T.M. Chan

the input size n and is insensitive to the output size f . An optimal O(n log f)-time

output-sensitive algorithm in two dimensions was given by Kirkpatrick and Seidel [23].

For dimension three, Edelsbrunner and Shi [18] obtained an O (n log 2 f)-time method,

and Chazelle and Matou~ek [11] demonstrated that optimal O(n log f) time is possi-

ble by derandomizing an earlier algorithm due to Clarkson and Shor [13]. In any fixed

dimension the "gift-wrapping" algorithm of Swart [44] and the "beneath/beyond" algo-

rithm of Seidel [41] achieve O (n f) and O (n 2 + f log n) time, respectively. The latter is

subsequently improved to O(n 2-2/([d/2j+l)+e + f log n) by Matou~ek [24] using a data

structuring technique that he has developed for linear-programming queries. (Through-

out this paper, e > 0 denotes an arbitrarily small constant.) It is in fact possible to

reduce the O(n 2-2/([d/2]+1)+~) t e rm to O(n 2-2/([d/2]+1) log ~ n) by using the static

structures in [24]. Recently, Chan et al. [7] have obtained an O((n + f) log 2 f)-time

algorithm in four dimensions; their method is less efficient in higher dimensions, running

in O ((n + fa-3) loga-2 f) time. Thus, there is still a large gap between the known upper

bounds and the ~2 (n log f + f) lower bound for d > 4.

Here, we show that the gift-wrapping method can be fun_her improved using the

data structures for ray-shooting queries in polytopes developed by Agarwal and Ma-

tougek [1] and refined by Matougek and Schwarzkopf [26]. Our convex hull algo-

rithm runs in O(n log f + (nf) l-l/([d/21+l) log ~ n) time and is optimal when f =

O(nl/Ld/ZJ/logKn) for a sufficiently large K. Furthermore, it is faster than all previ-

ous methods when f = O(n/logrn) and d > 4. Note that in many cases, f can in

fact be sublinear; for example, Raynaud [37] proved that the expected value of f is

0 (n (d-1)/(d+l)) if the points of P are chosen uniformly at random from a d-dimensional

ball. The expected number of hull vertices is only polylogarithmic in n if the points are

chosen uniformly from a hypercube or from a normal distribution [3], [37].

Surprisingly, our method leads to new optimal output-sensitive algorithms in two and

three dimensions, running in O (n log f) time. In the plane our algorithm is as simple as

Kirkpatrick and Seidel's, and in three dimensions our algorithm is simpler than Chazelle

and Matougek's. These are reported separately [6].

Next, we turn to the problem of computing the extreme points of P, i.e., the vertices of

cony(P) (or equivalently, the set of points p e P with conv(P - {p}) r conv(P)). By

Megiddo's linear-programming algorithm [29], we can test whether a given point is an ex-

treme point of P in linear time; this immediately yields an algorithm for the extreme point

problem that runs in O(n 2) time. Matou~ek reduced the bound to O(n 2-2/([d/2j+l)+e)
using his data structures for linear-programming queries [24]; again, the n ~ factor can be

replaced by log ~ n if static structures are used. We further improve this to an output-

sensitive bound. Let h denote the number of extreme points (h _< n). By using Matou~ek's

data structures in a simple O(nh)-tlme algorithm, we show that the extreme points can

be computed in O (n log ~ h + (nh)1-1/([d/2J+a) logO(l) n) time. This O (nh)-time algo-

rithm has recently been discovered independently by Clarkson [12] and Ottmann et al.
[32].

We then consider the problem of computing the convex layers of P, defined iteratively

as follows: layer 1 is the convex hull of P, and if layer i is nonempty, then layer i + 1

is defined as the convex hull of the points of P that are not vertices of the previous

layers 1 i. It is known that this problem can be solved optimally in O (n log n) time

Output-Sensitive Results on Convex Hulls, Extreme Points, and Related Problems 371

by an algorithm of Chazelle [9] for d = 2 and quasi-optimally in O(n 1+~) time by an

algorithm of Agarwal and Matou~ek [2] for d = 3.

For d > 4, Edelsbrunner [16, Problem 10.3(c)] asked whether the vertices of all

layers can be identified in o(n 3) time. This problem is equivalent to finding the depth of

p, i.e., the index of the layer of which p is a vertex, for every p 6 P. It is not difficult

to get an O (n3-3/(la/2J+l)+~)-time solution by applying Matougek's technique [24]. As

Ottmann et al. [32] have pointed out, an O(nh)-time extreme point algorithm [12]

immediately yields an O (nZ)-time solution. Here, we show how the depth problem can

be solved in O(n 2-t~+E) time with/~ = 2/([d/2J 2 + 1); for example, in four or five

dimensions the bound is 0(n8/5+~). As a result, we can construct the convex layers in

O (n 2-~+~ + f log n) time, where f is now the total number of faces in all layers (which

is at least ff2(n) and at most O(n[d/2J)).
Finally, we examine applications of our ideas to other related problems. The first

application we consider is the construction of a level in an arrangement of hyperplanes.

Given a set H of n hyperplanes in E d, the k-level in the arrangement ,A(H) is defined

as the set of all points in E d that have at most k hyperplanes of H above it (0 < k < n).

The 0-level is just the dual of a convex hull. In the plane, an output-sensitive algorithm

for constructing the k-level was given by Edelsbrunner and Welzl [19]. We improve its

running time from O(n logn + f log 2 n) to O(n log f + f log z n), where f denotes the

size of the k-level. In higher dimensions, Agarwal and Matou~ek [2] proposed a method

based on ray-shooting queries, which runs in O (n log n + f I +e) time for d = 3 (actually

they state a weaker O((n + f)n ~) bound). We improve this to O(n log f + fl+e) and

show that the time bound is O(n log f + (n f) 1-1/ILd/2j+I~+E + f n l-2/~Ld/2j+1)+~) for

d > 4 .

Another related problem studied here is: given a set H of n hyperplanes in E d, a
direction ~, and a small integer 0 < k < n, find a point in the k-level of .A(H) that is

minimal with respect to ~; in other words, find a minimal point that lies on or above all

but at most k of the hyperplanes in H. This is the feasible case of the linear-programming
problem with at most k violated constraints. For this problem, Matou~ek [25] has devised

a method that not only finds the minimum but also enumerates all O(k a) local minima

in the (< k)-levels. His method runs in O(nlogn + k21og2n) time if d = 2 and

O (n log n + k 3+e) time if d = 3; when d > 4 and k is sufficiently small (more precisely:

k a < nl/ta/2J+e), the running time is O(n log n). We show how the O(n logn) terms in

these bounds can be reduced to O (n log k) in two dimensions or to O (n log log n +n log k)

in higher dimensions; if randomization is allowed, this O (n log log n) term can even be

removed.

As an aside, we point out that Matou[ek's results [25] can be used to improve an

algorithm by Mulmuley [30] for constructing (< k)-levels of a nonredundant arrange-

ment of n hyperplanes in E d. The algorithm is an extension of Seidel's output-sensitive

convex hull algorithm [41] and runs in O (n2k a-1 + f log n) time for an f-face output.

We decrease the time bound to O(n2-2/ILa/2J+l~+~kd-I + f log n).

We remark that all our algorithms depend heavily on the assumption that the input

points or hyperplanes are in general position. For some of the problems we have consid-

ered (e.g., convex hulls and k-levels), standard perturbation techniques [17], [20] may

be used when this assumption does not hold. However, it should be kept in mind that

372 T.M. Chan

these perturbation methods may increase the output size when there is a large number

of degeneracies.

The remainder of this paper is organized as follows. In Sections 2 and 3 we review

some of the known data structures for ray-shooting queries and linear-programming

queries, which serve as the basic tools of our approach. Our contribution is a (very

simple) preprocessing-time/query-time tradeoff that allows us to obtain improved time

bounds when there are only a small number of queries. We then apply these results to

the output-sensitive construction of convex hulls in Section 4 and the output-sensitive

computation of extreme points in Section 5. Applications to convex layers and depths

are discussed in Section 6; further applications are given in Section 7. We then conclude

with some final remarks in Section 8.

2. Ray-Shooting Queries

We first investigate the problem of ray shooting in polytopes. Let H be a collection

of n (closed) half-spaces in E d, where each half-space contains a known point, say, the

origin o. Let N H denote the intersection of these half-spaces. Without loss of generality,

we assume that N H is bounded (otherwise, we intersect it with a sufficiently large box

and consider this intersection instead). Then N H is a (convex) polytope. A ray-shooting

query is to determine the first bounding hyperplane h of 0 H that is crossed by a query

ray originating from some point in A H (a ray crosses a hyperplane h if it intersects h

but is not contained in h).

In two dimensions the ray-shooting problem can be solved as follows: first compute

the polygon N H and store its vertices in an array in counterclockwise order; then a query

can be done by a simple binary search. Observ e that computing the intersection ['7 H is

equivalent to computing a convex hull in the dual space, and thus takes O (n log n) time

by Graham's scan for example [22]; and the binary search takes O (log n) time. Hence,

this method requires O (n log n) preprocessing time, O (n) space, and O (log n) query

time.

The same preprocessing time, space, and query time can be obtained in three dimen-

sions: in the preprocessing, compute the polytope ~ H by the dual of Preparata and

Hong's convex hull algorithm [35] and construct its Dobkin-Kirkpatrick hierarchical

representation [15]; then use the query algorithm from [15].

Our first observation is that a preprocessing-time/query-time tradeoffis possible using

a standard "grouping" technique. Using this observation, we can perform q queries in

O(n logq) time rather than O(n logn) time for small q's.

Lemma 2.1. There is a (static) data structure for ray shooting in a polytope defined by

a set H ofn half-spaces in E 2 or E 3 with O(n logm) preprocessing time, O(n) space,

and 0 ((n/m) log m) query time, where m is a parameter between 1 and n.

Proof. Partition H into In~m] subsets ("groups") 1-11 Hrnlml, each of size at

most m and build the above structures for each Hi. The total preprocessing time is

0 ((n/m) (m log m)) = 0 (n log m), and the space complexity remains 0 (n). Since ray

shooting is a decomposable problem (i.e., the answer to a query on H' t.J H" can be

Output-Sensitive Results on Convex Hulls, Extreme Points, and Related Problems 373

Table 1. Known (deterministic) data slxuctures for ray-shooting queries in polytopes [26] and linear-

programming queries [24]. For Structures 2 and 2', m is a parameter between n and n td/2j.

Preprocessing Update time Ray-shooting Linear-programming

Structures time, space (amortized) query time query time

1 n logn, n N/A n l -1/[d/2j log ~ n n 1-1/Ld/2j log ~ n

2 m log O(1) n N/A ml~[d/2j logn rnl/'~a/2 j log 2d+l n

3 n Ld/2j logO(l) n N/A log n log d+l n

1' n logn , n log 2 n n l - l / [d / 2 j + e n l - l / [d /2 j+e

2 t ml+e m TM n ral~d/2j l o g n n log 2d+l n n mll'~12J
3 p n td123 +~ n td/23 - l+~ log n log d+ 1 n

computed from the answers to the queries on H ' and H" in constant time), a query on

H can be computed directly by querying on each Hi, taking O ((n/m) log m) time. []

Corollary 2.2. An (online) sequence of q ray-shooting queries in a polytope defined

by a set H of n half-spaces in E 2 or E 3 can be performed in O(n logq + q logn) time

and O(n) space.

Proof. By Lemma 2.1, the total time needed to answer q queries is O(n log m +

q((n /m) logm)) , where 1 < m < n. Choose m = q when q < n and choose m = n

when q > n. []

For ray-shooting queries in d-dimensional polytopes, Agarwal and Matou~ek [1] have

proposed a data structuring method that was subsequently improved by Matougek and

Schwarzkopf [26]. The top half of Table 1 shows their results in the static case. (The

table also includes results on linear-programming queries, which are discussed in the

next section.) Structure 1 is a linear-space data structure with O(n logn) preprocessing

time and O (n 1 - 1 / [d / 2 j log ~ n) query time. Structure 3 achieves a much faster query

time of O (log n), but preprocessing time increases to 0 (n Ld/2j logO(l) n). A continuous

tradeoff between preprocessing and query time is provided by Structure 2.

We observe here that the grouping technique can be used to obtain further preproces-

sing-time/query-time tradeoffs for Structure 1.

Lemma 2.3. There is a (static) data structure for ray shooting in a polytope defined by

a set H ofn half-spaces in E a (d > 3) with 0 (n log m) preprocessing time, 0 (n) space,
and 0 ((n/m 1/la/2j) log ~ m) query time, where m is a parameter between 1 and n.

Proof. By partitioning H into [him7 groups as in Lemma 2.1 and using Structure 1 to

store each group, the preprocessing time becomes O ((n/m)(m log m)) = O (n log m)

and query time becomes O((n/m)(m 1-1/[d/2j log ~ m)) = O((n/m 1/Ld/2j) log ~ m).

[]

374 T.M. Chart

Corol la ry 2.4. A sequence of q ray-shooting queries in a polytope defined by a set H of
n half-spacesin E a (d > 3) canbeperformedin O(n log q+(nq) 1-U(La/2J+l) log ~ n +

q logn) time.

Proof

Case I: q < n 1/ta/2J /logKn, where K is a sufficiently large constant. Use Lemma 2.3's

modification of Structure 1 with m = (q log K q)td/2J (1 < m < n). Then the running

time is

n o (~) =
O (n l o g m + q ~ log m) O(nlogq).

Case II: nl/ta/2J /logKn < q < nta/2J /logKn. Use Structure 2 with m = (nq log K

n) 1-1/(Ld/2J+l~ (n < m < nLa/2j). Then the running time is

n) O((nq) 1-1/([d/2J+l) log O(l) n). 0 m l o g ~ =

Case III: q > nLa/2J/logKn. Use Structure 3. Then the running time is

O(n ta/2J log ~ n + q log n) = O((nq) 1-1/(La/2J+l) log ~ n + q logn) . []

R e m a r k . In some applications the number of queries q may not be known in advance.

In that case the parameter m cannot be set directly. This problem can be avoided by

breaking the q queries into k clusters of ql qk queries, where ql, q2 is a known

sequence and ql + " '" + qk-1 < q < ql + " '" + qk. For example, in Case I of the

proof of Corollary 2.4, if we choose the sequence qi --- 22i (i = 1, 2), then the
k (~--~['loglogq] n2 i) total running time is O(y] /= 1 n logqi) = O ~z.,i=l = O(n logq) , as before.

(Logarithms are in base 2.) As soon as q exceeds n Uta/2J/logKn, we switch to Case II

and use a different sequence qi = nl/ta/2J2 i (i = 1, 2); the running time is again a

geometric series and thus increases by only a constant factor. Finally, when q exceeds

n ta/aj/logrn, we switch to Case III, which does not require setting the parameter m.

We now discuss dynamic ray shooting in polytopes, where half-spaces may be inserted

or deleted. Let n denote a (known) upper bound on the number of half-spaces at any

given time. In two dimensions a data structure by Overmars and van Leeuwen [34] has

O (n log n) preprocessing time, O (n) space, O (log 2 n) update time, and O (log n) query

time. We can extend the grouping technique to get the following analogues of Lemma 2.1

and Corollary 2.2:

L e m m a 2,5. There is a data structure for ray shooting in a polygon defined by a
dynamic set H of at most n half-planes in E 2 with 0 (n log m) preprocessing time, 0 (n)
space, O ((n / m) log 2 m) update time, and O ((n / m) logm) query time (1 < m < n).

Proof Let BI Brnlm 1 be In~m] "buckets", each containing at most m half-planes

at any given time. For each bucket, keep a dictionary of its half-planes and use Overmars

Output-Sensitive Results on Convex Hulls, Extreme Points, and Related Problems 375

and van Leeuwen's data structure to store the polygon defined by these half-planes.

The preprocessing time, space complexity, and query time are as before. To perform an

insertion, we search for a bucket Bi that is not full (i.e., one that contains < m half-

planes) and insert the given half-plane to Bi; to perform a deletion, we search for the

bucket Bi containing the given half-plane and delete it from Bi. Clearly, the update time

is upper bounded by O((n/m)log 2 m). (In fact, insertions can be done in O(log 2 m)

time if we maintain a linked list of buckets that are not full; deletions can also be done

in O (log 2 m) time if we are given a pointer to the half-plane being deleted.) []

Corol la ry 2.6. A sequence of q ray-shooting queries in a polygon defined by a dynamic

set H of at most n half-planes in E 2, and q insertions~deletions on H can be performed

in O(n logq + q log 2 n) time and O(n) space.

Proof. By Lemma 2.5, the total time needed to perform q queries and updates is

O(nlogm + q ((n / m) l o f m)) , where 1 < m < n. Choose m = q l o g q when q <

n / log n and choose m = n otherwise. []

In higher dimensions Matou~ek and Schwarzkopf [26] have provided dynamic ver-

sions of their data structures, as shown in the bottom half of Table 1. These dynamic

structures, named Structures 1', 2', and 3' in the table, achieve the same preprocessing

and query time as their static counterparts, except that certain log ~162 n factors are in-

creased to n e. With the techniques we have used so far, it is straightforward to obtain a

modification of Structure 1' with the following tradeoff: O (n log m) preprocessing time,

O(n) space, O((n/m) log 2 m) amortized update time, and O(n/m 1/La/2j-E) query time

(1 < m < n). We then have:

Lemma 2.7. A sequence of q ray-shooting queries in a polytope defined by a dynamic

set H of at most n half-spaces in E a (d > 2) can be performed in

(i) O(n log q + (nq) 1-1/(ta/2j+lg+E + qn l-2/r time, if the number of inser-

tions~deletions is O(q);

(ii) O (n log 2 n + (nq) 1-1/r + q log n) time, if the number of insertions~dele-

tions is 0 (n).

Proof. For (i), we consider three cases:

Case I: q < n l/Ld/2j-~. Use the above modification of Structure 1' with m 1/[d/2j-E = q

(1 < m < n). Then the running time is

(n n)
0 n l o g m + q - ~ l o f m + q m l / L - d / 2 j _ ~ = O(nlogq) .

Case II: n 1/La/2j-~ < q < n 1-~. Use Structure 2' with m = (nl+eq) ~-l/(Ld/'-j+~) (n <_

m _< n Le/zJ). Then the running time is

(m 1+~ n)
+ n O((nq)l-1/(Ld/ZJ+l~+e). 0 ml+e+q n q ~ l o g =

376 T.M. Chan

Case Ilk q > n 1-e. Use Structure 2' with m = n 2-2/([d/2j+l) (n < m <_ n[d/2J). T h e n

the running time is

ml+~

0 ml+~+q n
+ q ~ l o g n n) = O(qnl_2/([d/2j+l)+2e)

For (ii), we perform a similar analysis. We use Structure 1' when q < n 1/Ld/21-e, Struc-

ture 2' with m = (nl+eq) 1-1/r when n 1/La/2]-e < q < n [a/2j-e, and Structure 3'

when q > n td/2J-e []

Remark. As in the previous remark, the value of q does not need to be given in advance.

3. Linear-Programming Queries

Let H be a collection of half-spaces in E d as in Section 2. A linear-programming query

is to determine the vertex v of the polytope N H that maximizes ~ - v for a query vector

t e E d .

We begin by extending the grouping technique of Lemmas 2.1 and 2.3 to handle

linear programming with a small number of queries. This is not trivial because linear

programming, unlike ray shooting, is not a decomposable problem.

Lemma 3.1. There is a data structure for linear-programming queries on a dynamic

set H of at most n half-planes in E 2 with O(n log m) preprocessing time, O(n) space,

and 0 ((n / m) log 2 m) update and query time, where m is a parameter between 1 and n.

Proof We consider the static case first. Partition H into [n/m] groups H1 Hrn/m],

each of size at most m, compute the convex polygon 1"I i = N Hi for each i, and store each

of them in an ordered array. The total preprocessing time is then O ((n/m)(m log m)) =

O(nlogm), while space is linear. Reichling [38] showed that in O(klog2m) time,

one can detect whether the intersection of k convex m-gons is empty, and if not, re-

port the point in the intersection that is extreme in a given direction ~; his method is

based on Megiddo's prune-and-search technique. Using Reichling's algorithm on the

k = [n/m] polygons Il l I-Ir,/m 1, we can answer a linear-programming query in

O((n/m) log 2 m) time.

The dynamic part can be proven using Overmars and van Leeuwen's data structure [34]

to store each of the Hi 's, which requires O ((n/m) log 2 m) update time; Reichling's time

bound still applies. []

As a result of this lemma, q linear-programming queries in the plane can be answered

in O(n log q) time for q < n/log n.

Corollary 3.2. A sequence of q linear-programming queries and q insertions~deletions

on a dynamic set H of at most n half-planes in E 2 can be performed in 0 (n log q +

q log 2 n) time and 0 (n) space.

Output-Sensitive Results on Convex Hulls, Extreme Points, and Related Problems 377

In higher dimensions Matou~ek [24] has obtained data structures for linear-program-

ming queries achieving the complexities shown in Table 1. His approach uses a multi-

dimensional parametric search technique to reduce the problem of answering linear-

programming queries to that of answering half-space-emptiness queries with witness;

the half-space emptiness problem is then solved in the same way as ray shooting in

polytopes. (In the dual se~ing, a half-space emptiness query on H is to determine whether

a given query point p belongs to ["] H, and if not, provide a witness half-space h ~ H

that does not contain p; such a query can be performed by shooting the ray o--p in ('] H.)

We now show how to obtain a preprocessing-time/query-time tradeoff for the static

Structure 1 in the case of linear programming. The bounds we get are similar to those

obtained in Lemma 2.3, except for an extra polylogarithmic factor in n in the query time;

this causes an additional O (n log log n) term in the overall time bound.

Lenmaa 3.3. There is a (static) data structure for linear-programming queries on a set

H ofn half-spaces in E d (d > 2) with O(n logm) preprocessing time, O(n) space, and
0 ((n/m 1/td/2J) log ~ m log d n) query time, where m is a parameter between 1 and n.

Proof. In this proof we assume that the reader is familiar with Matou~ek's tech-

nique [24].

We consider the half-space emptiness queries first. Partition H into In~m] groups

H1 HFn/m 1, each of size at most m. For each of the Hi's, we build a data structure [24]

with O (m log m) preprocessing time and O (m) space, so that each half-space emptiness

query on Hi can be answered in O(log m) parallel steps using O(m 1-1/Ld/2J log ~ m)

processors. The total preprocessing time is then O ((n/m)(m log m)) = O (n log m) and

the space requirement remains linear. Since the half-space emptiness problem is decom-

posable, a query on H can be performed in r(n, m) = O(logm) parallel steps using

7r(n, m) = O ((n / m) (m l-l/Ld/2j log ~ m)) = O ((n / m 1/Ld/2j) log ~ m) processors;

or, sequentially, in t (n, m) = O((n/m)(m 1-1/Ld/2J log ~ = O((n/m 1/Ld/2j) log ~

m) time.

Matougek has shown that any data structure for half-space emptiness queries (satis-

fying some reasonable conditions) can be used to answer linear-programming queries

by a multidimensional version of Megiddo's parametric search method [28]. The re-

suiting query time is given by O (t (n, m)r (n, m)d 1ogd Jr (n, m)), which, in our case, is
O((n/m 1/Ld/2J) log O(1; m log d n). []

Corollary 3.4. A sequence of q linear-programming queries on a set H of n half-spaces
in E d (d > 2) can be performed in 0 (n log log n +n log q + (nq) l-l/t[d/2J+1) 1ogO~l/n +

q log d+l n) time.

Proof. The proof is as in Corollary 2.4, except that for Case I (q <_ nl/Ld/2J/logKn)
we use Lemma 3.3 with m = (q log r n) Ld/2j (1 < m < n). The running time for Case I

now becomes

n log~ logdn) = O(n log logn+nlogq) . 0 n l o g m + q ~ []

378 T.M. Chan

Remark. Again, the complexity remains the same even if the value of q is not known

in advance. (Use the sequence qi =- (logn) 2' (i = 1, 2) for Case I.)

Since Matougek's data structures can be made dynamic like the ray-shooting structures

(see the bottom half of Table 1), the following analogue of Lemma 2.7 is straightforward:

Lemma 3.5. A sequence of q linear-programming queries on a dynamic set H of at
most n half-spaces in E d (d > 2) can be performed in

(i) O(nloglogn + nlogq + (nq) 1-1/(td/2j+1)+~ + qn 1-2/(Ld/ej+l)+e) time, if the

number of insertions~deletions is O(q);

(ii) O(n log2n + (nq) 1-1/(td/zj+l)+~ + q log d+l n) time, if the number of inser-

tions~deletions is 0 (n).

Finally, we observe that for the semidynamic case, where there are no deletions,

Lemma 3.5(ii) may be improved somewhat.

Lemma 3.6. A sequence of q linear-programming queries and n insertions on an ini-
tially empty set of half-spaces in E d can be performed in 0 (n log 2 n q- (nq)l-1/([d/2J+l).
log ~ n -t- q log ~ n) time.

Proof. As in the proof of Lemma 3.3, we consider the half-space emptiness problem

first. Since, this problem is decomposable, the techniques by Bentley and Saxe [4] may be

applied to convert a static structure to a semidynamic one (which increases building time

and query time by a logarithmic factor). We then apply Matougek's parametric search to

use this structure for answering linear-programming queries. The resulting time bound

is only a polylogarithmic factor increase on the static bound in Corollary 3.4. []

Remark. The precise bound for the O (q log O(1) n) term in Lemma 3.6 is O (q log d+2 n-

(log log n)d), not O (q log d+2 n) as suggested in the extended abstract of this paper [5],

since we have r(n, m) = O(logn), rr(n, m) = O(logn), and t(n, m) = O(log2 n), in

Matou~ek's notation, for the semidynamic version of the 0 (n td/2l logO(l) n)-space half-

space emptiness data structure. The O(q log d+2 n) bound is still correct, but in order to

remove the unnecessary log log n factors, we need to apply a multidimensional version

of Cole's improved parametric search [14]. We do not go over this in detail, as for very

large values of q the bound in Lemma 3.5(ii) is better anyway.

In the Appendix we show how to eliminate the log n factors in Lemma 3.3 and thus

remove the n loglogn term from both Corollary 3.4 and Lemma 3.5(i), if we allow

randomization.

4. Convex Hulls

We now show that the f- face convex hull of an n-point set can be constructed by

performing O (f) ray-shooting queries in a polytope defined by n half-spaces. The

Output-Sensitive Results on Convex Hulls, Extreme Points, and Related Problems 379

algorithm we use is just the well-known gift-wrapping method [8], [36], [44] dualized,

since a "gift-wrapping operation" corresponds to shooting a ray in the dual polytope. If

the ray-shooting queries are performed directly by scanning the half-spaces, then we get

an O (nf)-time bound. We observe that this can be improved using the data structures

from Section 2.

Theorem 4.1. The convex hull of a set P of n points in E d can be constructed in
O(n log f + (n f) 1-1/(td/2j+l) log ~ n) time and O(n + (n f) 1-1/(td/2j+l) log ~ n)

space, where f is the number of hull faces.

Proof. In the dual se~ing, our problem becomes computing an intersection of a set H

of n half-spaces in E d (assumed to be in general position), each containing the origin

o. It suffices to compute the vertices of the intersection A H, from which the complete

lattice structure of A H can be easily generated in O (f log f) time by a dictionary.

First, an initial vertex v0 can be found by performing d ray-shooting queries in ["1 H,

since shooting a ray from o gives a point in a (d - 1)-face, and shooting a ray from

a point in a j-face inside its affine hull gives a point in a (j - 1)-face (1 __% j < d).

Furthermore, given a vertex v, the vertices adjacent to v in the 1-skeleton (the graph

formed by the vertices and edges of A H) can be found by performing d ray-shooting

queries: if hi hd are the hyperplanes defining v, then shoot a ray from v along each

of the d lines formed by intersecting d - 1 hyperplanes from {hi hd}.
Since the 1-skeleton is connected, we can use a depth-first search (or a breadth-first

search, or any graph traversal algorithm) to visit all vertices of N H; we can ensure

that each vertex is visited only once by using a dictionary to detect replication. This

shows that the vertices of f ')H can be computed by performing O (f) ray-shooting

queries in ['7 H. The theorem then follows by applying Corollaries 2.2 and 2.4 (recall

that f = O(n[d/2J)). []

5. Extreme Points

We now consider the problem of computing the h extreme points of an n-point set.

Since determining whether a point is extreme can be done by solving a certain linear

program, it is not difficult to see that n linear-programming queries on n half-spaces

are sufficient. We show that we can do better if h is small: by a simple algorithm, the

extreme points can be found using h queries on n half-spaces together with n queries

on h half-spaces. With Megiddo's linear-programming algorithm [29], this leads to a

simple O(nh)-time extrema algorithm. The same O(nh)-time algorithm has recently

been discovered by Clarkson [12] and Ottmann et al. [32]. We note that the time bound

can be further improved using the results from Section 3.

Theorem 5.1. The h extreme points of a set P of n points in E d can be computed in
O(n log d+l h + (nh) 1-1/(td/2j+1~+~) time orin O(n log ~ h+(nh) l-1/(td/2j+ll log ~ n)

time.

380 T.M. Chan

Proof. Without loss of generality, assume that the origin o is in the interior ofconv(P).

Consider the following incremental algorithm, which is essentially the same as Clark-

son's algorithm and the algorithm by Ottrnann et al.:

Algorithm Extrema(P)

1. Q +--0

2. for each p �9 P (in any order) do

3. if p r Q and pr conv(Q u {o}) then

4. if p is an extreme point of P then

5. Q ~ a u { p }

6. else find the facet f of conv(P) that intersects ray op

7. let v be a vertex of f that is not in Q

8. Q +- O U { v }

9. return Q

Observe that v must exist in line 7, because otherwise all vertices of f would be in

Q; since p e conv(f u {o}), this would imply that p �9 conv(Q u {o}): a contradiction

with line 3. It is then clear that the algorithm correctly returns the set of extreme points

of P.

We now analyze the cost of the algorithm. Note that line 3 can be accomplished by

solving a linear program on Q in the dual and lines 4 and 6 can be accomplished by

solving a linear program on P in the dual. (Line 7 takes constant time since each facet has

d vertices by the general position assumption.) Observe that although line 3 is executed

n times, lines 4-8 are executed only h times since each execution adds a new point to Q.

Thus, the algorithm requires h linear-programming queries on P, a static set of size n,

and n linear-programming queries on Q, a semidynamic set of size at most h.

By Corollary 3.4, the h queries on P can be done in O(n log log n + n log h +

(nh) 1-U([d/2j+l) log ~ n) time. By Lemma 3.5(ii), the n queries and h insertions on Q

can be done in O((nh) 1-1/([d/2J+l)+e q- n log d+l h) time. The total running time is then

O(n loglog n + n log d+l h -t- (nh)l-1/(Id/EJ+l)+e).

Notice that when h _< n ~ for a constant ot < (1/[d/2J) 2, the number of hull faces

is O(nl/[d/2J-e), SO we can compute the entire convex hull in optimal O(n logh) time

and O (n) space by Theorem 4.1. This allows us to remove the O (n log log n) term in

the time bound. The first part of the theorem is thus proven, and the second part follows

similarly, using Lemma 3.6 instead of Lemma 3.5(ii) for Q. []

Theorem 5.1 has an interesting corollary. It implies a bound for the convex hull

problem that is within a polylogarithmic factor of optimal in the worst case, if the

complexity is measured in terms of n and the number of extreme points h. (Note that

f2 (n log h + h kd/2J) is a lower bound in terms of n and h.)

Corollary 5.2. The convex hull of a set P of n points in E a can be constructed in

O (n log ~ h + h [d/2J) time, where h is the number of hull vertices.

Output-Sensitive Results on Convex Hulls, Extreme Points, and Related Problems 381

Proof. Compute the extreme points by Theorem 5.1 and then construct the convex

hull of these h points by Chazelle 's algorithm [10] in O(h Ld/2j) time (note that when

h = ~(nl/Id/2J), we have h ta/2j = g2((nh)~-l/fLd/2J+l))). H

6. Convex Layers and Depths

We now consider the convex-layers problem and the depth problem. For the depth prob-

lem, we use a hybrid of the methods of Sections 4 and 5 to obtain a subquadratic

algorithm. Then we show how this leads to an output-sensitive convex-layers algorithm

using Seidel's convex hull algorithm [41].

Theo rem 6.1, The depth of all points in a set P of n points in E d can be computed in
O(n 2-t3+~) time, where fl = 2/(Id/2J 2 + 1).

Proof. We iteratively compute the vertices of the ith layer (i = 1, 2) as follows.

We use the convex hull algorithm in Theorem 4.1 to construct the ith layer, but as soon

as more than n t3 vertices are discovered in the layer, we stop the computation and switch

to the extrema algorithm in Theorem 5.1 to compute the vertices of the layer. We then

remove the vertices of the ith layer from P and proceed to the (i + 1)st layer. In the end

we will have the depths of every point in P. For the calls to the convex hull algorithm,

we use a dynamic ray-shooting data structure instead of a static one so that structures do

not have to be rebuilt as points are removed from P after each iteration; for the calls to

the extrema algorithm, however, we leave the data structures unchanged.

Let h i denote the number of vertices of the ith layer (~-,i hi = n). We first analyze the

cost of the calls to the convex hull algorithm in Theorem 4.1, which involve a number of

ray-shooting queries and n deletions on a dynamic set of at most n half-spaces; the number

of queries is proportional to the number of facets discovered. Since we stop the compu-

tation in a layer when n t3 vertices are found, we make at most O(min{hy/2j , nt3[d/2J})
queries for the ith layer. The total number of queries is then asymptotically bounded

by

E h y / 2 J + En#La/2J < n t 3 ~ L a / 2 j - 1) (E h i) + n ~ L a / 2 J - l) (E n ~ I
hi <n ~ hi >n # \h i <n #] \h , >n # I

< n3([d/2J -1) E h i <_ nl+3([d/2J -1) .

i

B y Lernma 2.6(ii), we see that the cost o f these queries is O ((n 2+3f [d/2J- 1)) 1 - 1/([d/2J + l)+e)

= O(n 2-~+c~) by our choice of fl (where c is an appropriate constant).

Next, we analyze the cost of the calls to the extrema algorithm in Theorem 5.1. Note

that the extrema algorithm is called only for the layers i with hi > n/3, and the number

of hi's with hi > n ~ is at most n l-~ (since E i hi ---- n). Ignoring logarithmic factors,

382 T.M. Chan

the cost is then

E (n + (nhi) l-1/([d/2j+l))

hi > n .e

< n ~_, hl -l/(Id/2j+l)

< n 2-~ -t- n l-1/(ka/21+l~ (n l-~/(ta/2j+l~) (nl-~) 1/(ta/2j+l)

= 0 (n2-#),

by H61der's inequality. Therefore, the entire method runs in 0 (n 2-r time. []

Corollary 6.2. The convex layers of a set P of n points in E d can be constructed in

O(n 2-3+e -t- f logn) time, where f is the total output size and ~ = 2 / ([d /2J 2 -t- 1).

Proof. Let Pi be the set of vertices of layer i (i.e., the points of depth i) and let hi and

3] be the number of vertices and faces of the layer (~']i hi = n, E i fi = f) . We first

compute Pi for all i in O (n 2-~+e) time by Theorem 6.1 and then construct the convex hull

of each Pi using Seidel's algorithm [41] with Matou~ek's improvement [24]. The total

time needed is 0 (n 2-/~+e -t- E i (h~ -2/([d/2j+l)+e "[- ft" log hi)) = O(n 2-3+e q- f log n).
[]

Remarks. 1. A worst-case optimal convex-layers algorithm for d _> 4 is not difficult

to get" just use an O (nh)-time extrema algorithm to compute the vertices of each layer

and use Chazelle's convex hull algorithm [10] to construct the layers; then the running

time is O(n 2 + n[d/2J).
2. For a more direct output-sensitive convex-layers algorithm, we can simply do the

following: iteratively use the convex hull algorithm in Theorem 4.1 to construct the ith

layer (i = 1, 2) and delete points from P that are vertices of a layer after each

iteration. This method is the same as the one by Agarwal and Matougek [2] for the

three-dimensional case. It requires O (f) ray-shooting queries and n deletions, and by

Lemma 2.7(ii), takes O((n f) 1-1/([d/2j+l)+e) time, which is superior to the bound in

Corollary 6.2 only when f is near linear (recall f2 (n) = f = 0 (n Id/2J)).

7. Other Applications

We now consider applications of our techniques to the construction of a k-level in an

arrangement and to linear programming with few violated constraints.

Output-Sensitive Results on Convex Hulls, Extreme Points, and Related Problems 383

Theorem 7.1. A k-level in an arrangement ,A(H) of n hyperplanes in E a can be
constructed in

(i) O (n l o g f + f log2n) time, i fd = 2;

(ii) O (n l o g f + fl+e) t/me, i fd = 3;

(iii) O(n log f + (n f) 1-1/~ta/2j+l)+~ + f n 1-2/~La/2j+lg+e) time, if d > 4;

where f is the output size.

Proof The depth-first search algorithm by Agarwal and Matougek [2] constructs the

k-level using O (f) polytope ray-shooting queries and O (f) insertions/deletions on two

dynamic sets of at most n half-spaces. (In two dimensions their algorithm is the same

as Edelsbrunner and Welzl's [19].) Hence, the theorem follows from Corollary 2.6 and

Lemma 2.7(i). []

Theorem 7.2. The linear-programming problem on n constraints in E a with at most

k violations for the feasible case can be solved in

(i) O(nlogk +k21og2n) time, i fd = 2;

(ii) O(n loglogn + n logk + k 3+E) t ime,/ fd = 3;

(iii) O (n log log n + n log k) time, if d > 4 and k a < n 1/td/2j-e.

Proof The depth-first search algorithm by Matou~ek [25] solves this problem using

0 (k d) linear-programming/membership queries and O (k d) insertions/deletions on two

dynamic sets of at most n half-spaces. (A membership query is just a special case

of a ray-shooting query.) Hence, part (i) of the theorem follows from Corollaries 2.6

and 3.2, and parts (ii) and (iii) follow from Lemmas 2.7(i) and 3.5(i). With randomization,

the results from the Appendix can even eliminate the n log log n terms in parts (ii)

and (iii). []

Remark. For large values of k in the two-dimensional case, the time bound of

Theorem 7.20) can be reduced to O(n log2n) using parametric-search or slope-

selection techniques, as Matou~ek [25] and Roos and Widmayer [40] observed.

The techniques here may also be applicable to the infeasible case of linear program-

ming with k violated constraints, or to the smallest k-enclosing circle problem; see

Matou~ek's paper [25].

Finally, we mention an improvement to Mulmuley's output-sensitive algorithm [30]

for constructing (< k)-levels. The algorithm assumes that the input hyperplanes H

are nonredundant, i.e., every hyperplane in H supports the upper envelope of H. For

applications to (< k)-order Voronoi diagrams, this assumption is automatically satisfied.

Theorem 7.3. We can compute i-levels in an arrangement ,A(H) of n nonredundant
hyperplanes in E d for all i = O, 1 k in O(nZ-Z/~td/ZJ+l)+ek d-1 + f logn) time,

where f is the output size.

384 T.M. Chan

Proof Let Li (H) denote the boundary of the/-level in .A(H) and let f / b e its size

()--~.ik=0 3~ = f) . For each h ~ H, let Hh = {h n h': h' ~ H - {h}}, which is a set of

(d - 1)-dimensional hyperplanes.

Mulmuley [30] gave an algorithm which constructs the facial structure of Li (H) in

O((fi + f/-1) logn) time, given the following information:

1. The local minima (along some predefined direction) of the/-level in .A(H) that

lie on Li (H) - Li-1 (H).
2. The local minima of the/-level in .,4(Hh) that lie on Li (Hh) -- Li-1 (nh), for each

h 6 H .

3. The facial structure of Li-1 (H).

Matougek [25] has shown that the local minima of all/-levels in .A(H) (i = 0, 1,

. . . . k) can be enumerated by performing O (k d) linear-programming/membership queries

and 0 (k d) insertions/deletions on two dynamic sets of at most n half-spaces. Similarly,

the local minima of all/-levels in .A(Hh) (i = 0, 1 k) can be computed using

0 (k d-1) linear-programming/membership queries and O (k d-l) insertions/deletions,

for each h ~ H. Observe that we do not need separate structures to store each Hh as the

data structures from Section 3 can perform linear-programming queries restricted to any

j-fiat [24]. The total number of queries and updates is then O (k d + nk d-l) = 0 (nkd-l).
By Lemmas 2.7 (i) and 3.5(i), this takes O (n 2-2/(Ld/2j + 1)+~ k d- 1) time.

Thus, items 1 and 2, for all i = 0, 1 k, can be computed in

O(n2-2/~Ld/2J+l)+~kd-1)

time. Now, Mulmuley's algorithm can be used to construct the facial structure of L0 (H),

L1 (H) Lk (H) incrementally, in additional O (f log n) time. []

8. Final Remarks

We remark that further applications of our ideas are possible. For example, Theorem 4.1

can be extended to compute the intersection of a convex hull with a j-flat in an output-

sensitive manner; in the dual, this corresponds to computing projections (shadows) of an

intersection of half-spaces. More generally, we can obtain output-sensitive bounds for

computing "skeletons" in a half-space intersection, or with the known methods for ray

shooting in a collection of hyperplanes [1], "skeletons" in a hyperplane arrangement; see

Chapter 9 of [16]. With suitable data structures, this applies to arrangements of different

objects as well, such as line segments in the plane.

Many open questions remain, however. A major problem is to find an O ((n + f)~+e)-

time convex hull algorithm in dimensions higher than four. Another question is: can the

depth problem be solved in O (n 2-2/~td/21+1)+~) time?

Acknowledgments

I am grateful to Jack Snoeyink for his guidance and encouragement as well as for many

valuable suggestions and stimulating discussions. I would also like to thank the referees

for pointing out Clarkson's result on extreme points.

Output-Sensitive Results on Convex Hulls, Extreme Points, and Related Problems 385

Appendix. Using Randomization in Linear-Programming Queries

Consider the following linear-programming problem: given k preprocessed polytopes

FI1 Flk C E d, each defined by m half-spaces containing the origin o, compute the

vertex v of FI 1N... A I-Ik that maximizes ~- v for a given ~ e E d. Suppose that linear-space

static structures (Structure 1) from Table 1 are used to store these polytopes. As is demon-

strated in the proof of Lemma 3.3, a direct application of Matou~ek's multidimensional

parametric-search technique would yield an 0 (k m 1-1/Id/2J 1ogO~l) m log d k)-time so-

lution. Here we describe how the logdk factor can be eliminated by using Sharir and

Welzl's randomized algorithm for generalized linear programming [43] (which is based

on Seidel's linear-programming algorithm [42]). This in turn improves the query time

in Lemma 3.3.

We first observe that the problem of finding an extremum in a nonempty intersection

of k convex objects in E d belongs to the class of LP-type problems of combinatorial
dimension d as defined by Sharir and Welzl [43]. Sharir and Welzl presented a simple

randomized algorithm for solving LP-type problems of fixed combinatorial dimension

that requires an expected number of O (k) primitive operations. The primitive operations,

in our case, are: (i) to test whether a given point lies inside one of the objects (violation

tests), and (ii) to find the extremum in an intersection of d + 1 of the objects (basis
computations).

For our application, the objects are (convex) polytopes. A violation test is simply a

membership query and costs 0 (m 1-1/Ld/2J log o~1) m) time. A basis computation involves

solving our linear-programming problem on d + 1 of the polytopes; since the number of

polytopes is now constant, we can apply our previous method, via Matou~ek's parametric

search, to solve this problem in O(m 1-1/Ld/2j log ~ m) time. Because O(k) violation

tests and basis computations are expected to be performed by Sharir and Welzl's algo-

rithm (the expected number of basis computations is actually only O (log d k) [45]), we

obtain a randomized O (k m 1-1/Ld/2J log o ~1~ m)-time solution to our linear-programming

problem on k polytopes.

The above method carries through if the polytopes are stored in linear-space dynamic

structures (Structure 1' from Table 1); we simply replace the log ~ m factors with

m e. With slightly more effort, we can even remove the assumption that the polytopes

all contain the origin; the method can detect whether k preprocessed polytopes have a

common intersection.

Note that in the two-dimensional case both violation tests and basis computations can

be performed in O (log m) time. Thus, Sharir and Welzl's algorithm achieves expected

O (k log m) time, which is an improvement over the previous O (k log 2 m) algorithm by

Reichling [38], as used in our proof of Lemma 3.1. It is also interesting to compare the

techniques here with those used in the previous deterministic and randomized methods

by Reichling [39] and Eppstein [21] for the three-dimensional problem.

The (expected) query time in Lemma 3.3 can now be improved to 0 ((n / m Ld/2j) log o ~1

m) since it uses k = [n/m]. As a consequence, the O (n log log n) term in Corollary 3.4

can be eliminated; the same is true for the dynamic case (Lemma 3.5(i)), which leads to

corresponding improvements in Theorem 7.2.

386 T.M. Chan

References

1. P. K. Agarwal and J. Matou~ek. Ray shooting and parametric search. SlAM J. Comput., 22:794-806, 1993.

2. P. K. Agarwal and J. Matou~ek. Dynamic half-space range reporting and its applications. Algorithmica,

13:325-345, 1995.

3. J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the average number of maxima in a

set of vectors. J. Assoc. Comput. Mach., 25:536-543, 1978.

4. J. L. Bentley and J. Saxe. Decomposable searching problems, I: static-to-dynamic transformations.

J. Algorithms, 1:301-358, 1980.

5. T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems. Proc. 1 lth
ACM Symp. on Computational Geometry, pp. 10-19, 1995.

6. T. M. Chan. •ptima• •utput-sensitive c•nvex hu•• a•g•rithms in tw• and three dimensi•ns. Discrete C•mput.
Geom., this issue, pp. 361-368.

7. T. M. Chan, J. Snoeyink, and C.-K. Yap. Output-sensitive construction of polytopes in four dimensions

and clipped Voronoi diagrams in three. Proc. 6th ACM-SIAM Syrup. on Discrete Algorithms, pp. 282-291,

1995.

8. D. R. Chand and S. S. Kapur. An algorithm for convex polytopes. J. Assoc. Comput. Mach., 17:78-86,

1970.

9. B. Chazelle. An optimal algorithm for computing convex layers. IEEE Trans. Inform. Theory, 31:509-517,

1985.

10. B. Chazelle. An optimal convex hull algorithm for point sets in any fixed dimension. Discrete Comput.

Geom., 9:145-158, 1993.

11. B. Chazelle and J. Matou~ek. Derandomizing an output-sensitive convex hull algorithm in three dimensions.

Comput. Geom. Theory Appl., 5:27-32, 1995.

12. K. L. Clarkson. More output-sensitive geometric algorithms. Proc. 35th IEEE Symp. on Foundations of
Computer Science, pp. 695-702, 1994.

13. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II. Discrete
Comput. Geom., 4:387-421, 1989.

14. R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. Assoc. Comput. Mach.,

34:200-208, 1987.

15. D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection. Theoret. Comput. Sci.,

27:241-253, 1983.

16. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Veflag, Berlin, 1987.

17. H. Edelsbrunner and E. P. Miicke. Simulation of simplicity: A technique to cope with degenerate cases in

geometric algorithms. ACM Trans. Graphics, 9:66-104, 1990.

18. H. Ede•sbrunner and w. Shi. An • (n ••g2 h) time alg•rithm f•r the three-dimensi•na• c•nvex hu•• pr•b•em.

SIAM J. Comput., 20:259-277, 1991.

19. H. Edelshrunner and E. Welzl. Constructing belts in two-dimensional arrangements with applications.

S1AM J. Comput., 15:271-284, 1986.

20. I. Emiris and J. Canny. An efficient approach to removing geometric degeneracies. Proc. 8th ACM Syrup.

on Computational Geometry, pp. 74-82, 1992.

21. D. Eppstein. Dynamic three-dimensional linear programming. Proc. 32nd 1EEE Syrup. on Foundations of
Computer Science, pp. 488-494, 1991.

22. R.L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Inform. Process.

Lett., 1:132-133, 1972.

23. D. G. Kirkpalxick and R. Seidel. The ultimate planar convex hull algorithm? SIAMJ. Comput., 15:287-299,

1986.

24. J. Matou~ek. Linear optimization queries. J. Algorithms, 14:432-448, 1993. Also with O. Schwarzkopf in

Proc. 8th ACM Symp. on Computational Geometry, pp. 16-25, 1992.

25. J. Matou~ek. On geometric optimization with few violated constraints. Proc. lOth ACM Symp. on Compu-

tational Geometry, pp. 312-321, 1994.

26. J. Matou~ek and O. Schwarzkopf. On ray shooting in convex polytopes. Discrete Comput. Geom., 10:215-

232, 1993.

27. P. McMullen. The maximal number of faces of a convex polytope. Mathematika, 17:179-184, 1970.

Output-Sensitive Results on Convex Hulls, Extreme Points, and Related Problems 387

28. N.Me~dd~.App~yingpara~e~c~mputati~na~g~rithmsinthedesign~fseria~a~g~rithms.J.Ass~c. C~mput.

Mach., 30:852-865, 1983.

29. N. Megiddo. Linear programming in linear time when the dimension is fixed. J. Assoc. Comput. Mach.,
31:114-127, 1984.

30. K. Mulmuley. Output sensitive construction of levels and Voronoi diagrams in R d of order 1 to k. Proc.
22nd ACM Symp. on Theory of Computing, pp. 322-330, 1990.

31. K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice-Hall,

Englewood Cliffs, N J, 1994.

32. T. Ottmann, S. Schuierer, and S. Soundaralakshmi. Enumerating extreme points in higher dimensions.

Proc. 12th Syrup. on Theoretical Aspects of Computer Science, pp. 562-570. Lecture Notes in Computer

Science, vol. 900. Springer-Verlag, Berlin, 1995.

33. J. O'Rourke. Computational Geometry in C. Cambridge University Press, Cambridge, 1994.

34. M.H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput. System Sci.,

23:166-204, 1981.

35. E P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three dimensions. Commun.
ACM, 20:87-93, 1977.

36. E P. Preparata and M. I. Sbamos. Computational Geometry: An Introduction. Springer-Verlag, New York,

1985.

37. H. Raynaud. Sur l'enveloppe convexe des nuages des points al6atoires dans R n, J. Appl. Probab., 7:35-48,

1970.

38. M. Reichling. On the detection of a common intersection of k convex objects in the plane. Inform. Process.
Len., 29:25-29, 1988.

39. M. Reichling. On the detection of a common intersection of k convex polyhedra. In H. Noltemeier (ed.),

Computational Geometry and Its Applications, pp. 18(~186. Lecture Notes in Computer Science, vol. 333.

Springer-Verlag, Berlin, 1988.

40. T. Roos and P. Widmayer. k-Violation linear programming. Inform. Process. Lett., 52:109-114, 1994.

41. R. Seidel. Constructing higher-dimensional convex hulls at logarithmic cost per face. Proc. 18th ACM

Symp. on Theory of Computing, pp. 404-413, 1986.

42. R. Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete Comput. Geom.,
6:423-434, 1991.

43. M. Sharir and E. Welzl. A combinatorial bound for linear programming and related problems. Proc. 9th
Syrup. on Theoretical Aspects of Computer Science, pp. 569-579. Lecture Notes in Computer Science,

vol. 577. Springer-Verlag, Berlin, 1992.

44. G. E Swart. Finding the convex hull facet by facet. J. Algorithms, 6:17-48, 1985.

45. E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer (ed.), New Results and New Trends
in Computer Science, pp. 359-370. Lecture Notes in Computer Science, vol. 555. Springer-Verlag, Berlin,

1991.

Received April 27, 1995, and in revised form September 14, 1995, and November 30, 1995.

