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ABSTRACT In this paper, output tracking problem for the Boolean control networks (BCNs) under constant

reference signal is investigated. A theorem is presented for solving the output tracking problem of BCNs.

A set, named the maximum invariant set, is obtained to solve the output tracking problem under shortest

time, and based on the invariant set, the number of state feedback matrices which make the output tracking

successful is obtained. Compare with the existing results, the computational cost can be dramatically reduced

by using our method. Finally, the results presented in this brief is verified by a biological network.

INDEX TERMS Semi-tensor product, optimal control design, Boolean networks, output tracking control.

I. INTRODUCTION

Boolean networks (BNs) were firstly introduced by Kauff-

man nearly 50 years ago [1] to model gene regulatory net-

works in efficient way at the system level. The study of BNs

is a hot topic now since BNs have been proved to be a pow-

erful modelling tool for many research topics. For example,

[2] modeling the lac operon’s behavior by Boolean functions.

Actually, the nodes in Boolean models can only take one of

the Boolean variables (1 and 0) at a time [1], and the value

(1 or 0) of the node represents states of nodes being on or off

(expressed or unexpressed).

When control inputs are added to the BNs, BNs become

Boolean control networks (BCNs). BCNs can be used to the

study the optimal regulatory intervention [3] or the therapeu-

tic intervention strategies. By designing control sequence, the

controlled system can achieve desirable states [4]. Up to now,

many interesting works have been obtained with the help of

semi-tensor product (STP) of matrix. STP is a generalization

of conventional product of matrices [5], and many interesting

works have been obtained, see [6]–[49].

The associate editor coordinating the review of this article and approving
it for publication was Feiqi Deng.

As is well-known, one of the most important goals in

studying BCNs is to design therapeutic intervention strat-

egy to influence the dynamic of the network, and further

achieving system stabilizing. Note that in the real case, the

state variables sometimes cannot be measured directly. In this

situation, one can only measure the outputs of the systems to

track a given reference signal (in other literature, it is also

called regulation of output trajectory of the system to a con-

stant value). The reference signal is corresponding to some

desirable states in BCNs. We can design suitable controller

to ensure the output of BCN to a given reference signal by

steering the BCN to the corresponding desirable states set.

The output tracking strategy is a meaningful research topic

in the field of BCNs, since the output control strategy can

provide a more suitable control strategy in the therapeutic

intervention cases. So, studying the output tracking problem

of BCNs is very necessary.

To the best of our knowledge, output trajectory regulation

problem with a constant value is first investigated in [9]

and a constructive algorithm is presented to realize optimal

control. The pioneering work for output tracking problem

of BCNs tracking a constant reference is studied in [15].

Actually, our work here is a supplement for the pioneering

works [9], [15]. As we can see, in order to solve the output

112572 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-8179-7426
https://orcid.org/0000-0002-5325-0404
https://orcid.org/0000-0003-4423-6034
https://orcid.org/0000-0001-7188-5828
https://orcid.org/0000-0002-9005-9166


Y. Li et al.: Output Tracking of BCNs Driven by Constant Reference Signal

trajectory regulation problem, or the output tracking problem

in BCNs, one of the most important step is to calculate the

maximum invariant set SMax [10]. The maximum invariant

set, i.e., SMax is also denoted by Z(ye) in [9], and S in [15]

respectively. Actually, more specifically, S ⊂ SMax = Z(ye).

However, the authors in [9] do not give the detailed process

to calculate Z(ye), i.e., SMax in this paper. Therefore, in this

paper, the nonempty set S, i.e., SMax can be found by refer-

ring [15]. In order to find the proper nonempty set S, accord-

ing to Remark 2 in [15], one needs to calculate a series of

matrices, and this is not that computationally tractable. In this

paper, we will provide a more computationally tractable way

to calculate the nonempty set S (SMax). Also, some other tech-

niques are applied to reduce the computational cost during

designing the state feedback matrices. Actually, the output

trajectory regulation problem with a constant value and the

output tracking problem tracking constant reference in BCNs

are the same problem with different description. Therefore

we can only focus on one of their, i.e., the output tracking

problem of BCNs under a constant value.

The main contributions of our paper are listed as below:

• New technique is presented to obtain the maximum

invariant set SMax . Comparedwith the existing result, the

technique proposed here to calculate SMax can dramati-

cally reduce the computational cost.

• Based on the maximum invariant set SMax , the number

of shortest time state feedback matrices K is obtained.

The remainder of this brief is arranged as below.

In Section II, necessary preliminaries are presented. The

main results are presented in Section III. That is, a novel

way to design the output tracking controller is proposed.

In Section IV, a numerical example is worked out to show

our designed method. Finally, a brief conclusion is presented

to end this paper.

II. PRELIMINARIES

Here, preliminaries about the STP are firstly presented.

Definition 1 [50]: The STP of two matrices C ∈ R
i×j and

D ∈ R
k×l is defined as:

C ⋉ D = (C ⊗ Iα/j)(D⊗ Iα/k ), (1)

where ⊗ is the Kronecker (tensor) product, α is the least

common multiple of j and k .

When j = k , A ⋉ B = AB, the STP of two matrices

becomes the conventional matrices product. In the following,

the symbol ‘‘⋉’’ is simply omitted.

Next, necessary notations are presented.

1) 1n := {δin|i = 1, . . . , n}, where δin is the ith column of

identity matrix In.

2) N
+ is the set of positive integers.

3) coli(T ) denotes the ith column of matrix T , and Col(T )

denotes the set of columns of matrix T .

4) D := {1, 0}.

5) An i × j matrix L is called a logical matrix if Col(L)

satisfies Col(L) ⊆ 1i. Li×j denotes the set of i × j

logical matrices.

6) | · | denotes the number of cardinality.

7) Consider a logical matrix M = [δ
k1
n δ

k2
n . . . δ

ks
n ], for

compactness, we have M := δn[k1 k2 . . . ks].

Let 1 ∼ δ12 and 0 ∼ δ22 , we have D ∼ 12. Throughout

this paper, the vector form δ12 (or δ22) is used to denote logical

variable 1 (or 0).

Lemma 1 [50]:For any logical function h(x1, x2, . . . , xw) :

Dw 7→ D, there exists a matrix Mh ∈ L2×2w such that

h(x1, x2, . . . , xw) = Mhx1x2 . . . xw, (2)

whereMh is unique and it is called the structural matrix of h,

xi ∈ 12, i = 1, 2, . . . ,w.

III. MAIN RESULTS

A Boolean control network (BCN) with P outputs can be

described as below:



































































x1(t + 1) = f1(X (t),U (t)),

x2(t + 1) = f2(X (t),U (t)),
...

xn(t + 1) = fn(X (t),U (t));

y1(t) = h1(X (t)),

y2(t) = h2(X (t)),
...

yp(t) = hp(X (t)),

(3)

where X (t) = (x1(t), x2(t), . . . , xn(t)) ∈ Dn, U (t) =

(u1(t), u2(t), . . . , um(t)) ∈ Dm are states and control inputs

of BCN (3), respectively; and fi : Dm+n 7→ D, i = 1, . . . , n

and hj : Dn 7→ D, j = 1, . . . , p are logical functions. Let

Y (t) = (y1(t), y2(t), . . .,yp(t)) ∈ Dp be the output of BCN (3),

and the output of BCN (3) at t is denoted by Y (t;X (0),U ),

where U is a given control sequence, X (0) ∈ Dn is the initial

state.

The output tracking problem investigated in this work is to

find/design controllers in the following form























u1(t) = k1(X (t)),

u2(t) = k2(X (t)),
...

um(t) = km(X (t)),

(4)

such that the output of system (3) and controller (4) is tracking

signal Yr = (yr1, y
r
2, . . . , y

r
p). In other words, for the control

sequence U under the designed control law (4), there exists

an integer λ ∈ N
+ such that Y (t;X (0),U ) = Yr , ∀t > λ,

∀X (0) ∈ Dn. Here ki : Dn 7→ D, i = 1, 2, . . . ,m are to be

designed logical functions.

Based on the vector form of logical variables, letting x(t) =

x1(t)⋉ x2(t)⋉ · · ·⋉ xn(t) ∈ 12n , y(t) = y1(t)⋉ y2(t)⋉ · · ·⋉

yp(t) ∈ 12p , and u(t) = u1(t) ⋉ u2(t) ⋉ · · · ⋉ um(t) ∈ 12m

the equivalent algebraic forms of BCN (3) and controller (4)
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can be obtained respectively by Lemma 1:
{

x(t + 1) = Fx(t)u(t),

y(t) = Hx(t),
(5)

and

u(t) = Kx(t) (6)

where F ∈ L2n×2n+m , K ∈ L2m×2n and H ∈ L2p×2n . The

detailed process to obtain the algebraic form one can refer

to [5]. Let the given reference signal Yr be yr = yr1 ⋉ yr2 ⋉

· · · ⋉ yrp = δα
2p .

Thus, the output tracking control problem becomes design-

ing matrix K .

Considering the reference signal yr = δα
2p , and we define

the 2(δα
2p ) as

2(δα
2p ) = {δi2n |coli(H ) = δα

2p , i = 1, 2, . . . , 2n}. (7)

Apparently, we have that 0 ≤ |2(δα
2p )| ≤ 2n. We can see that

2(δα
2p ) contains all the states of BCN (5) whose output is yr .

Assuming that 2(δα
2p ) 6= ∅ in the paper.

From BCN (5), we split the matrix F into 2n equal blocks

F = [F1 F2 · · · F2n ], Fi ∈ L2n×2m , (8)

and for a given state denoted by δ3
2n ∈ 12n ,

R(δ3
2n ) = {δi2n |δ

3
2n ∈ Col(Fi), i = 1, 2, . . . , 2n}, (9)

which implies that R(δ3
2n ) is the set of states which can be

controlled to δ3
2n in one step, i.e., R(δ3

2n ) is the one step

reachable set of δ3
2n . Further for a set S ⊆ 12n , we have

R(S) =
⋃

δ3
2n

∈S

R(δ3
2n ).

The following process provides a method to construct a

sequence of vector sets, where those sets are crucial for matri-

ces K . For a given set S ⊆ 12n , we can obtain a sequence of

vector sets as follows:

1) �0 = S,

2) �1 = R(�0)\�0,

3) �2 = R(�1)\

1
⋃

i=0

�i,

...

4) �M = R(�M−1)\

M−1
⋃

i=0

�i. (10)

Hence, there exists a positive integerM < 2n, �M+1 = ∅,

and
∑M

i=0 |�i| 6 2n.

A lemma, which is deduced from [9], is presented here.

Lemma 2: [9] The output of BCN (5) tracks signal yr =

δα
2n by (6) if and only if there is a nonempty set S ⊆ 2(δα

2p )

such that

(1) Col(F3)
⋂

S 6= ∅, for any δ3
2n ∈ S,

(2)
∑M

i=0 |�i| = 2n, where �i, i = 0, 1, . . . ,M are

produced by (10) and �0 = S.

If there exists a set S satisfying conditions (1) and (2) in

Lemma 2, the state feedback control matrix K can be further

designed.

For the sets �i, i = 0, 1, . . . ,M satisfying condition (2)

in Lemma 2, we conclude that for any δ3
2n /∈ S, there exists a

unique set �l such that δ
3
2n ∈ �l , l ∈ {1, 2, . . . ,M}. Let

P(3) = {δ
j
2m |colj(F3) ⊆ �l−1, δ3

2n ∈ �l,

j = 1, 2, . . . , 2m}. (11)

Especially, when δ3
2n ∈ S, let

P(3) = {δ
j
2m |colj(F3) ∈ S, j = 1, 2, . . . , 2m}. (12)

Therefore, K can be constructed as K = [κ1 κ2 . . . κ2n ],

with κ3 ∈ P(3), 3 = 1, . . . , 2n.

Theorem 1: The output of BCN (5) can track yr = δα
2n with

u(t) = Kx(t), where K = [κ1 κ2 . . . κ2n ] is constructed as

above.

Proof:Denote the state of BCN (5) at t under control u(t) =

Kx(t) by x(t; x(0), u), where x(0) = δ3
2n ∈ 12n is the initial

state. We have

x(1; x(0), u) = Fx(0)Kx(0)

= F3κ3

= δ
3κ3

2n

∈

{

�0, if δ3
2n ∈ �0,

�l−1, if δ3
2n ∈ �l, 1 6 l 6 M .

Thus,

x(t; x(0), u) ∈ S, ∀x(0) ∈ 12n , ∀t > M .

It follows from the construction of the set S that

y(t; x(0), u) = yr = Hx(t; x(0), u)

for ∀x(0) ∈ 12n , ∀t > M . This completes the proof.

Up to now, according to Theorem 1 and Lemma 2, we can

find set S and construct matrix K which make the output

tracking successful. But there is a hidden problem: the proper

nonempty set S may not be unique. Hence, another impor-

tant issue is that we need to find the set S such that the

corresponding controller (controllers) can steer the output of

BCN (5) tracking the signal in the shortest time (The shortest

time control problem discussed here has been investigated

in [9] from the aspect of optimal control with the problem of

output trajectory regulation.While, the approach presented in

our paper to solve the shortest time control problem comes

from [13] and [15]). In the following, we will give a new

method to find this optimal set S.

In order to find the optimal set S, we construct a sequence

of sets as follows:

1) S0 = 2(δα
2n ),

S◦
0 = {δ

30

2n |Col(F30
) ∩ S0 = ∅, for any δ

30

2n ∈ S0},

2) S1 = S0\S
◦
0 ,

S◦
1 = {δ

31

2n |Col(F31
) ∩ S1 = ∅, for any δ

31

2n ∈ S1},

... (13)
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3) SMax−1 = SMax−2\S
◦
Max−2,

S◦
Max−1 = {δ

3Max−1

2n |Col(F3Max−1
) ∩ SMax−1 =

∅, for any δ
3Max−1

2n ∈ SMax−1},

4) SMax = SMax−1\S
◦
Max−1,

S◦
Max = {δ

3Max

2n |Col(F3Max ) ∩ SMax = ∅, for any

δ
3Max

2n ∈ SMax} = ∅.

There exists a positive integer Max 6 |2(δα
2n )| such that

S◦
Max = ∅, 2(δα

2n ) = (
⋃Max−1

i=0 S◦
i )

⋃

SMax .

Note that the obtained SMax ⊂ 2(δα
2n ) in (13) can also be

called the maximum invariant set of 2(δα
2n ), see [10].

Remark 1: We call SMax the maximum invariant set

of 2(δα
2n ), satisfying condition (1) in Lemma 2. Apparently,

we have that |SMax | 6 |2(δα
2n )|. Based on procedure (13),

we have that any set S∗ satisfying Col(F3∗ )
⋂

S∗ 6= ∅, for

any δ3∗

2n ∈ S∗ must satisfy S∗ ⊆ SMax .

Here, a corollary is deduced as below.

Corollary 1: The output of BCN (5) cannot track the sig-

nal yr = δα
2n under any control, if the set SMax doesn’t satisfy

condition (2) in Lemma 2.

Proof. The result can be immediately proved by contradic-

tion, so we omit it here.

Corollary 2: Based on the sets�i, i = 0, 1, . . . ,M , where

�0 = SMax and according to (11) and (12), the state feedback

control matrices are K = [κ1 κ2 . . . κ2n ], with κ3 ∈ P(3),

3 = 1, 2, . . . , 2n. According to Theorem 1, the output of

BCN (5) can track the signal yr = δα
2n in the shortest time

under u(t) = Kx(t). The total number of K is
∏2n

3=1 |P(3)|

and the shortest time is M .

The state feedback controller u(t) = Kx(t) is designed

based the sets �i, i = 0, 1, . . . ,M , where �0 = SMax ,

and ∪M
i=0�i = 12n . Since the sets �i, i = 0, 1, . . . ,M are

constructed in the greedy criteria, which result in that all the

states in �i can be steered to �0 under some control in the

shortest time. Additionally, as �0 = SMax is also constructed

in a greedy criteria, which result in that all the states belong

to 12n can tracking the signal yr in the shortest time under

the designed controller u(t) = Kx(t).

Remark 2: We proposed a constructive method for obtain-

ing the optimal output tracking controller for BCN (5). The

detailed steps can be summarized as:

1) Calculate 2(δα
2n ) (7).

2) Find the non-empty maximum invariant set SMax (13).

3) Calculate sets �i (10), where �0 = SMax .

4) Construct the matrices K (11, 12).

5) Calculate the total number of matrices K (Corollary 2).

Remark 3: The major difference in solving the output

tracking problem between the method presented in [15] and

the method presented in our paper is that the requirement for

calculating a set of matricesM k
S in [15] has been relaxed, and

reduced the computational cost is O((τ − 1)23n)1.

1 In order to obtain the non-empty set S (SMax ), one needs to calculate a

series of matrices Mk
S , k = 1, . . . , τ , where Mk

S is rely on a 2n × 2n real

matrices. Since the computational cost of two R
2n×2n matrices is O(23n),

the total computational cost for calculating the non-empty S (or SMax ) is

O((τ − 1)23n).

IV. AN EXAMPLE

Consider the following reduced BCN model for the lac

operon in [2].










x1(t + 1) = ¬u1(t) ∧ (x2(t) ∨ x3(t)),

x2(t + 1) = ¬u1(t) ∧ u2(t) ∧ x1(t),

x3(t + 1) = ¬u1(t) ∧ (u2(t) ∨ (u3(t) ∧ x1(t))).

(14)

The output equation is given as follows:
{

y1(t) = x1(t) ∨ x3(t),

y2(t) = x1(t).
(15)

The objective in this brief is to design shortest time con-

troller such that the output of BCN (14) can tracking signal

Yr = (1, 1).

Let y(t) = y1(t) ⋉ y2(t), x(t) = x1(t) ⋉ x2(t) ⋉ x3(t),

and u(t) = u1(t) ⋉ u2(t) ⋉ u3(t), then the algebraic forms

of (14), (15) are
{

x(t + 1) = Fx(t)u(t),

y(t) = Hx(t),
(16)

where H = δ4[1 1 1 1 2 4 2 4], F = [F1 F2 . . .F8],

F1 = δ8[8 8 8 8 1 1 3 4],

F2 = δ8[8 8 8 8 1 1 3 4],

F3 = δ8[8 8 8 8 1 1 3 4],

F4 = δ8[8 8 8 8 5 5 7 8],

F5 = δ8[8 8 8 8 3 3 4 4],

F6 = δ8[8 8 8 8 3 3 4 4],

F7 = δ8[8 8 8 8 3 3 4 4],

F8 = δ8[8 8 8 8 7 7 8 8]. (17)

Then, the objective now is to design u(t) = Kx(t),

K ∈ L8×8 such that the output of BCN (16) tracks

yr = δ12 ⋉ δ12 = δ14 .

After a simple calculation, we have 2(yr ) = {δ18, δ
2
8,

δ38, δ
4
8}.

In order to force the output of BCN (16) tracking yr in the

shortest time, we use procedure (13) to find the set SMax :

1) S0 = 2(δ14) = {δ18, δ
2
8, δ

3
8, δ

4
8}, S◦

0 = {δ48},

2) S1 = S0\S
◦
0 = {δ18, δ

2
8, δ

3
8}, S◦

1 = {∅} (18)

When Max = 1, S◦
Max = {∅}, and hence we have SMax = S1.

Also, we can use the method presented in [15] to obtain the

SMax . According to [15], we have

M = [

2m
∑

i=0

coli(F1) . . .

2m
∑

i=0

coli(F2n )]

=

























2 2 2 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 0 2 2 2 0

1 1 1 0 2 2 2 0

0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 2

4 4 4 5 4 4 2 6

























,
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M2 =

























6 6 6 0 4 4 4 0

0 0 0 0 0 0 0 0

3 3 3 6 2 2 2 4

3 3 3 6 2 2 2 4

2 2 2 0 4 4 4 0

0 0 0 0 0 0 0 0

9 9 9 10 10 10 6 12

41 41 41 40 42 42 30 40

























.

According to Theorem 2 in [13], we have that all columns

of

M2

{δ18 ,δ
2
8 ,δ

3
8}

=





6 6 6 0 4 4 4 0

0 0 0 0 0 0 0 0

3 3 3 6 2 2 2 4





are nonzero. Thus, the maximal non-empty set S is S =

{δ18, δ
2
8, δ

3
8}, which is the same as SMax . Our method can

obtain the SMax without calculating a series of 8 × 8-

dimensional matrices’s product.

Based on the set SMax = {δ18, δ
2
8, δ

3
8}, we have

1) �0 = SMax = {δ18, δ
2
8, δ

3
8},

2) �1 = R(�0)\�0 = {δ58, δ
6
8, δ

7
8},

3) �2 = R(�1)\ ∪1
i=0 �i = {δ48, δ

8
8}. (19)

WhenM = 2, we have |�0|+ |�1|+ |�2| = 8. According to

Lemma 2, we have that the output of BCN (16) tracks yr = δ14
(The above procedure is briefly displayed in Fig. 1).

According to (11) and (12), we have

P(1) = {δ58, δ
6
8, δ

7
8}, P(2) = {δ58, δ

6
8, δ

7
8},

P(3) = {δ58, δ
6
8, δ

7
8}, P(4) = {δ58, δ

6
8, δ

7
8},

P(5) = {δ58, δ
6
8}, P(6) = {δ58, δ

6
8},

P(7) = {δ58, δ
6
8}, P(8) = {δ58, δ

6
8}. (20)

And according to Theorem 1, based on the set SMax , the

state feedback control matrices K are K = [κ1 κ2 . . . κ8],

where κ3 ∈ P(3), 3 = 1, 2, . . . , 8. Further, based on the

set SMax , the total number of matrices K , which make the

output tracking successfully in the shortest time, is obtained
∏8

3=1 |P(3)| = 1296.

Choosing κ1 = δ78 , κ2 = δ78 , κ3 = δ78 , κ4 = δ78 κ5 = δ58 ,

κ6 = δ58 , κ7 = δ58 , κ8 = δ58 , then K = δ8[7 7 7 7 5 5 5 5].

By following the method presented in Chapter 7.1 in [5], the

corresponding logical form for u(t) = Kx(t) is










u1(t) = 0,

u2(t) = ¬x1(t),

u3(t) = 1.

(21)

One can verified that �0 = {δ38} is also an invariant set

of O(yr ). And 18 can be divided into the following five sets

�0 = {δ38}, �1 = {δ58, δ
6
8, δ

7
8}, �2 = {δ48, δ

7
8, δ

8
8}, �3 = {δ18},

�4 = {δ28}. The designed state feedback matrices K are K =

[κ1 κ2 . . . κ8], where κ1 ∈ {δ18, δ
2
8, δ

3
8, δ

4
8, δ

8
8}, κ2 ∈ {δ58, δ

6
8},

κ3 = δ78 , κ4 ∈ {δ58, δ
6
8, δ

7
8}, κ5 ∈ {δ58, δ

6
8}, κ6 ∈ {δ58, δ

6
8},

κ7 ∈ {δ58, δ
6
8}, κ8 ∈ {δ58, δ

6
8}.

FIGURE 1. The horizontal (vertical) block labelled Fi (i=1,. . . ,8) in this
picture is associated with Fi in (17). For example, F1 in the picture is
associated with F1 in (17). The number 4 in F1 in the picture corresponds
to δ4

8
in F1 in (17). In F1 in (17), there is a column equal to δ3

8
(which is

associated with the shadow part in F1 in the picture), which means that
x = δ1

8
can be controlled to x = δ3

8
under some control u. According

to (18), we have �0 = SMax = {δ1
8
, δ2

8
, δ3

8
}, which means that condition (1)

in Lemma 2 is satisfied. Based on (19), 18 was divided into three
partitions �0, �1, �2, which means that condition (2) in Lemma 2 is
satisfied. According to Lemma 2, we conclude that the output of BCN (16)
can tracking yr = δ1

4
.

Choosing κ1 = δ18 , κ2 = δ58 , κ3 = δ78 , κ4 = δ78 κ5 = δ58 ,

κ6 = δ58 , κ7 = δ58 , κ8 = δ58 , then K = δ8[1 5 7 7 5 5 5 5]. And

the corresponding logical form for u(t) = Kx(t) is










u1(t) = x1 ∧ (x2 ∧ x3),

u2(t) = x1 ∧ x2 ∨ ¬x1,

u3(t) = 1.

(22)

One can verify that under controller (22), the system can

track the signal yr in 4 time. While, the shortest time of the

system to realize tracking the signal yr is 2.

Hence, our main results have been well illustrated by the

example.

V. CONCLUSION

In this brief, the output tracking control problem of BCNs

under constant reference signal has been revised. Our method

can be used to calculate the maximum invariant set SMax in a

more tractable way. The BCNs can realize the output tracking

in the shortest time, and the total number of shortest time state

feedback matrices is obtained. Moreover, the computational

cost is reduced. Finally, a numerical example is presented to

verify our main results.
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