
International Journal on Artificial Intelligence Tools

Vol. XX, No. X (2007) 1–18

 World Scientific Publishing Company

1

OutRank: A GRAPH-BASED OUTLIER DETECTION FRAMEWORK

 USING RANDOM WALK

H. D. K. MOONESINGHE

Department of Computer Science & Engineering

Michigan State University

East Lansing, MI 48824

moonesin@cse.msu.edu

PANG-NING TAN

Department of Computer Science & Engineering

Michigan State University

East Lansing, MI 48824

ptan@cse.msu.edu

Received (Day Month Year)

Revised (Day Month Year)

Accepted (Day Month Year)

This paper introduces a stochastic graph-based algorithm, called OutRank, for detecting outliers in

data. We consider two approaches for constructing a graph representation of the data, based on the

object similarity and number of shared neighbors between objects. The heart of this approach is the

Markov chain model that is built upon this graph, which assigns an outlier score to each object.

Using this framework, we show that our algorithm is more robust than the existing outlier detection

schemes and can effectively address the inherent problems of such schemes. Empirical studies

conducted on both real and synthetic data sets show that significant improvements in detection rate

and false alarm rate are achieved using the proposed framework.

Keywords: Outlier detection; random walk; Markov chain.

1. Introduction

Random walk methods have been widely used for a variety of information retrieval tasks,

including web search,
15

 keyword extraction,
13

 and text summarization.
4,14

 These methods

represent the data as a stochastic graph and perform random walk along all the paths on

the graph to assess the centrality or importance of individual objects in the data. For

example, the well-known PageRank algorithm
15

 used for ranking the results of search

queries is based on the model of a random surfer traversing the hyperlinks of a Web

graph. In text summarization,
4
 the random walk method can be used to identify a

sentence that is most representative of other sentences in a collection of documents.

This paper explores the use of random walk models for outlier detection as an

alternative to previously used outlier detection algorithms.
1,2,3,8,10,17

 The heart of this

approach is to represent the underlying dataset as a weighted undirected graph, where

H.D.K. Moonesinghe & P.N. Tan

2

each node represents an object and each (weighted) edge represents similarity between

objects. By transforming the adjacency matrix of the graph into transition probabilities,

we model the problem as a Markov chain process and find the dominant eigenvector of

the transition probability matrix. The values in the eigenvector are then used to determine

the outlierness of each object.

The random walk model is designed to find nodes that are most “central” to the

graph. To illustrate, consider graph A shown on the top left panel of Fig. 1, which

consists of 4 nodes connected to a central node labeled as node 1. Upon applying the

random walk model to the transition matrix constructed from graph A, the probability

score of each node is plotted on the right hand panel of Fig. 1. Clearly node 1 has the

highest score compared to other remaining nodes. To illustrate the effect of outliers on

the random walk model, consider the graph B shown in Fig. 1, which is obtained by

removing the edges between nodes (3,5) and nodes (4,5) of graph A. Node 5 can be

considered as an outlier of the graph. As can be seen from the probability score

distribution for graph B, the random walk model assigns the lowest score to the outlying

node.

Fig. 1. Outlier detection with random walk

A major advantage of using our random walk approach is that it can effectively

capture not only the outlying objects scattered uniformly but also small clusters of

 OutRank: A Graph-based Outlier Detection Framework Using Random Walk

3

outliers. In real-life applications such as intrusion detection,
11

 the small clusters of

outliers often correspond to interesting events such as denial-of-service or worm attacks.

Although existing density-based algorithms show high detection rate over distance-based

algorithms for datasets with varying densities, they can be less effective when identifying

small clusters of outliers. This is because these algorithms consider the density of a

predefined neighborhood for outlier detection, and in some cases small clusters of

outliers with similar density to normal patterns cannot be distinguished. A random walk

based model solves this problem by defining the outlierness of an object with respect to

the entire graph of objects; i.e. it views the outlierness from a global perspective.

Nevertheless, one potential challenge of using the random walk approach is to

determine the neighborhood graph from which the outliers can be detected. We examine

two approaches for doing this: (1) building the graph using an appropriate similarity

measure and (2) building the graph based on the number of shared neighbors. We

perform extensive experiments to compare the performance of our approach against

distance-based and density-based outlier detection algorithms. Experimental results using

both real and synthetic data sets show that our proposed algorithm outperforms other

approaches and yields higher detection rates with lower false alarm rates.

In summary, the main contributions of this paper are as follows:

(i) We investigate the effectiveness of random walk approach for outlier detection.

More specifically, we show that our proposed framework, called OutRank, is capable

of detecting outliers even when the normal patterns have similar densities as outliers.

(ii) We investigate two different approaches for constructing the graph upon which the

random walk model is applied.

(iii) We also analyze the different choices of similarity measures on the random walk

model.

(iv) Our method is based on an automatic, data dedicated threshold for defining the

neighborhood of an object. In contrast, existing algorithms require users to specify a

neighborhood parameter, which is not a trivial task.

The remainder of the paper is organized as follows. In section 2, we introduce our

proposed outlier detection model. Section 3 presents several outlier detection algorithms.

In section 4, we perform an extensive performance evaluation on real and synthetic data

sets. Finally, we conclude our work in section 5.

2. Modeling Outliers Using a Graph

In this section we develop our framework to discover outlying objects in a database.

According to Hawkins,
6
 outliers can be defined as follows:

Definition 1. (Outlier) An outlier is an observation that deviates so much from other

observations as to arouse suspicion that it was generated by a different mechanism.

Most outlier detection schemes adopt Hawkin’s definition of outliers and thus assume

that outliers are isolated points far away from other normal points. As such, these outliers

H.D.K. Moonesinghe & P.N. Tan

4

can be easily detected by existing distance or density based algorithms. However, in this

paper we focus on outliers that might be concentrated in certain regions, thus forming

small clusters of outliers.

We take a graph based approach to solve this problem. Here we model objects in the

database as a graph, where each node represents an object and each edge represents a

similarity between them. Each edge is also assigned a weight, which is equal to the

similarity between the nodes of the corresponding edge. There are two major issues that

need to be addressed: first, how to determine the link structure of the graph based on the

similarity of nodes; second, how to discover the outlying objects using this graph model.

Following sections describe these issues in detail.

2.1. Graph Representation

In order to determine the link structure of the graph we compute the similarity between

every pair of objects. Let X = (x1, x2, …, xd) and Y = (y1, y2, …, yd) be the vector

representation of any two objects drawn from a d-dimensional space R
d
. While there are

many possible choices of similarity measures, we experiment with the following metrics:

Cosine Similarity. The similarity between X and Y is defined as follows:

RBF Kernel. The similarity between X and Y is defined as follows (where σ is a user

specified kernel width parameter):

Note that the similarity between an object to itself is set to zero to avoid self loops in

the underlying graph representation. Such loops are ignored since they are common to

every node, and therefore it is not very useful to distinguish normal objects from outliers.

The relationship between all pairs of objects in the database is represented by the n×n

similarity matrix Sim, where n is the number of objects. We use the similarity matrix to

represent the adjacency matrix of the graph. In the graph representation, each node

corresponds to an object in the database. Two nodes X and Y are connected by an edge if

their similarity is greater than zero, and the weight of the edge is taken as Sim(X, Y).

(1)

 =

=
∑ ∑

∑

= =

= otherwise
yx

y x

Y X if

d
k k

d
k k

d
k k k

1
2

1
2

1

.

0

Y) ilarity(X, cosine_sim

(2)

= −
−

=

otherwise

YX if

Y X
e

2
2

2
|| ||

2 2

1

0

rbf_similarity(X, Y)
σ

σ π

 OutRank: A Graph-based Outlier Detection Framework Using Random Walk

5

2.2. Markov chain model

Based on the graph representation, we model the problem of outlier detection as a

Markov chain process. The Markov chain modeled here corresponds to a random walk on

a graph defined by the link structure of the nodes. We hypothesize that under this

representation, if an object has a low connectivity to other objects in the graph, then it is

more likely to be an outlier.

Connectivity is determined in terms of the weighted votes given by other nodes in the

graph. Here higher connectivity nodes convey votes with more weight than that conveyed

by the lesser connectivity nodes. The weight of the vote from any node is scaled by the

number of nodes adjacent to the source node. The connectivity of a node is computed

iteratively using the following expression.

Definition 2. (Connectivity) Connectivity c(u) of node u is defined as follows:

where a is its initial value, t is the iteration step, adj(u) is the set of nodes linked to node

u, and |v| denotes the degree of node v.

Given n nodes, v1, v 2, …, v n, we can initially assign each node a uniform connectivity

value (e.g. c0(vi) = 1/n , 1≤i≤n) and recursively apply Eq. (3) to refine its value, taking

into account the modified connectivity values computed for its neighboring nodes. This

iterative procedure is known as the power method and is often used to find the dominant

eigenvector of a stochastic matrix. Upon convergence, Eq. (3) can be written in matrix

notation as follows:

cSc
T= (4)

where S is the transition matrix and c is the stationary distribution representing

connectivity value for each object in the dataset. For a general transition matrix, neither

the existence nor the uniqueness of a stationary distribution is guaranteed, unless the

transition matrix is irreducible and aperiodic. These properties follow from the well-

known Perron-Frobenius theorem.
7

The transition matrix (S) of our Markov model is obtained by normalizing the rows of

our similarity matrix (Sim) defined earlier:

∑
=

=
n

k

kiSim

jiSim
jiS

1

],[

],[
],[(5)

 =

=
∑

∈
− otherwisevvc

tifa

uc

uadjv

t

t)||/)((

0

)(

)(

1
(3)

H.D.K. Moonesinghe & P.N. Tan

6

This normalization ensures that the elements of each row of the transition matrix sum

to 1, which is an essential property of a stochastic matrix. It is also assumed that the

transition probabilities in S do not change over time. In general, the transition matrix S

computed from data might not be irreducible or aperiodic. To ensure convergence,

instead of using Eq. (4), we may compute the steady state distribution for the following

modified matrix equation:

cSddc T)1(1. −+= (6)

where S is the row normalized transition matrix, d is known as the damping factor, and 1

is the unit column vector [1 1…1]
T
. For the proof of convergence of this equation,

readers should refer to Ref. 18. Intuitively, the modification can be viewed as allowing

the random walker to transit to any nodes in the graph with probability d even though

they are not adjacent to the currently visited node. As an example, consider the 2-

dimensional data with 11 objects shown in Fig. 2. Clearly object 1 and object 2 are

outliers while the rest of the objects are normal.

Fig. 2. Sample 2-D data set

Table 1. Outlier rank for sample 2-D dataset

Object Connectivity Rank

1

2

3

4

5

6

7

8

9

10

11

0.0835

0.0764

0.0930

0.0922

0.0914

0.0940

0.0936

0.0930

0.0942

0.0942

0.0939

2

1

5

4

3

9

7

6

10

11

8

Object x y

1

2

3

4

5

6

7

8

9

10

11

4.0

4.5

2.0

2.0

2.0

2.5

2.5

2.5

3.0

3.0

3.0

2.0

1.5

4.0

4.5

5.0

4.0

4.5

5.0

4.0

4.5

5.0
0

1

2

3

4

5

6

0 1 2 3 4 5

 OutRank: A Graph-based Outlier Detection Framework Using Random Walk

7

Using uniform probabilities as the initial connectivity vector and after applying Eq.

(6), the connectivity vector converges to its stationary distribution after 112 iterations

(where d is chosen to be 0.1). The final connectivity values and the rank for each object

are shown in Table 1. Note that object-1 and object-2 are correctly identified as the most

outlying objects.

3. Algorithms

This section describes our proposed algorithm based on the above random walk model

for outlier detection. Two variants of the OutRank algorithms are presented.

3.1. OutRank-a: using object similarity

In OutRank-a algorithm, we form the transition matrix for the Markov chain model using

the similarity matrix discussed earlier. We then use the power method to compute the

stationary distribution of its connectivity vector. The connectivity vector is initialized to

be a uniform probability distribution (1/n, where n is the total number of objects) and the

damping factor is set to 0.1. The pseudo code for the OutRank-a algorithm is shown

below.

Algorithm OutRank-a

Input: Similarity matrix Simn×n with n objects, error toleranceε.

Output: Outlier ranks c.

Method:

1: for i=1 to n do // forms transition matrix S

2: let totSim=0.0;

3: for j=1 to n do

4: totSim=totSim+Sim[i][j];

5: end

6: for j=1 to n do

7: S[i][j]=Sim[i][j]/totSim;

8: end

9: end

10: let d=0.1 // damping factor

11: let t=0;

12: let c0 =(1/n).1 // initialization

13: repeat

14: ct+1= d/n + (1-d)ST ct

15: δ = ||ct+1 - ct||1

16: t = t+1;

17: until (δ<ε)

18: rank ct+1 from min(ct+1) to max(ct+1)

19: return ct+1;

3.2. OutRank-b: using shared neighbors

In OutRank-a, nodes are considered adjacent if their corresponding similarity measure is

non-zero. So even nodes with low similarity values might be considered adjacent, and

that similarity value is used as the weight of the link. In this section we propose an

H.D.K. Moonesinghe & P.N. Tan

8

alternative algorithm called OutRank-b, which uses a similarity measure defined in terms

of the number of neighbors shared by the objects. For example, consider two objects, v1

and v2. Suppose v1 has a set of neighbors { v3, v4, v5, v7} and v2 has a set of neighbors { v3,

v4, v6, v7} (see Fig. 3). The set of neighbors shared by both v1 and v2 is {v3, v4, v7}. In this

algorithm, we take the cardinality of this set as the similarity measure.

Fig. 3. Similarity based on the number of shared neighbors

In order to define the shared neighbors we need to find the neighbors of a given

object (i.e. adjacent nodes of the graph representation). Here we limit the neighbors only

to a set of nodes having high similarity values by using a threshold to cutoff low

similarity neighbors. By doing so, outliers will have a fewer number of nodes than the

normal objects in general, and this further helps to isolate outliers. In short the similarity

measure used in OutRank-b corresponds to the number of high-similarity shared

neighbors.

Finding a suitable threshold T is vital to achieve a higher outlier detection rate. If the

threshold is too small, many objects including both outliers and normal ones will have a

higher number of shared neighbors, and therefore it will be harder to distinguish outliers.

On the other hand, if the threshold is too high, then even the normal objects might have

fewer shared neighbors and the algorithm will yield a high false alarm rate. In order to

find a suitable threshold, we consider the distribution of similarity values of the

corresponding data set. Let X be the set of similarity values. Let µ and σ be the mean and

standard deviation of X respectively. Experimentally we observe that any T value within

the interval [µ - σ, µ) gives higher detection rate; i.e. T should be chosen to be any value

within one standard deviation below the mean.

As can be seen, the choice of the threshold T depends only on the dataset (i.e. mean

and standard deviation of the corresponding data set) and can be automatically derived

Existing algorithms such as LOF
2
 and K-dist

8
 use a threshold called minimum points (k)

to define the neighborhood. Selection of threshold k for these approaches is non-trivial

and must be specified by the user. Also, unlike in previous approaches where detection

rate is sensitive to the threshold parameter, the detection rate of our algorithm is not that

sensitive to the value of T. We will demonstrate this further in the experimental section.

The pseudo code for the OutRank-b algorithm is summarized below. The algorithm

forms the transition matrix based on the number of shared neighbors between every pair

v1 v2

v3

v4

v5

v6

v7

Sim(v1,v2)=3

 OutRank: A Graph-based Outlier Detection Framework Using Random Walk

9

of objects. After computing its transition matrix, the rest of the computation is similar to

that of OutRank-a.

Algorithm OutRank-b

Input: Similarity matrix Mn×n, threshold T, error toleranceε..

Output: Outlier ranks.

Method:

1: for i=1 to n do // discretize M using T

2: for j=i+1 to n do

3: if M[i,j] ≥ T

4: M[i][j]= M[j][i]=1;

5: else

6: M[i][j]= M[j][i]=0;

7: end

8: end

9: end

10: for i=1 to n do // compute new similarity scores

11: for j=i+1 to n do

12: let X= {M[i][1] to M[i][n]};

13: let Y= {M[j][1] to M[j][n]};

14: Sim[i][j]=Sim[j][i]=|X ∩ Y|;

15: end

16: Sim[i][i]=0;

17: end

18: call OutRank-a (Sim, ε)

4. Experimental Evaluation

We have performed extensive experiments on both synthetic and real data sets to evaluate

the performance of our algorithms. The experiments were conducted on a SUN Sparc

1GHz machine with 4 GB of main memory. The data sets used for our experiments are

summarized in Table 2. Here D is the dimension of databases and C is the number of

clusters. Thresholds T, KL, and KD are parameters used with OutRank-b, LOF, and K-dist

algorithms respectively.

2D-Data is the synthetic data set. The rest of the data sets are obtained from the UCI

KDD archive. Some of these datasets contains more than one cluster of normal objects.

For example, dataset Zoo contains 2 normal clusters and a smaller outlier cluster of 13

objects.

We employ several evaluation metrics to compare the performance of our algorithms:

Precision (P), False Alarm rate (FA), Recall (R), and F-measure (F). These metrics are

computed as follows:

FPTP
TPP
+

=
TNFP

FPFA
+

=

FNTP
TPR
+

=
FNFPTP

TPF
++

=
2

2
(8)

(7)

H.D.K. Moonesinghe & P.N. Tan

10

where TP (TN) is the number of true positives (negatives) and FP (FN) is the number of

false positives (negatives). In all of our experiments number of actual outliers is equal to

the number of predicted outliers and therefore P=R=F.

Table 2. Characteristics of the datasets

KL KD
Data Set D C

No. of

outliers

No. of

instances
T

euc cos euc cos

2D-Data 2 2 20 482 0.93 10 20 10 16

Austra 14 2 22 400 0.25 4 2 5 12

Zoo 16 3 13 74 0.45 40 40 20 24

Diabetic 8 2 43 510 0.80 30 40 30 32

Led7 7 5 248 1489 0.55 330 390 330 220

Lymph 18 3 4 139 0.90 2 2 2 20

Pima 8 2 15 492 0.70 20 2 10 2

Vehicle 18 3 42 465 0.95 50 56 30 14

Optical 62 8 83 2756 0.65 10 2 20 40

KDD-99 38 2 1000 11000 0.35 500 500 5 200

The remainder of this section is organized as follows. In subsection 4.1, we evaluate

our proposed algorithms against existing approaches, including a distance-based outlier

detection algorithm called K-dist
8
 and a density-based algorithm known as LOF.

2
 In

subsection 4.2 we analyze the performance of our algorithms by varying the percentage

of outliers. In subsection 4.3, we discuss the effect of shared neighbor approach and in

subsection 4.4 we analyze RBF kernel for outlier detection. Subsection 4.5 presents the

effect of threshold selection for OutRank-b.

4.1. Comparison with other approaches

Table 3 shows the results of applying various algorithms to synthetic and real life data

sets. The K-dist algorithm uses the distance between an object to its k-th nearest neighbor

to be the outlier score. The LOF algorithm, on the other hand, computes the outlier score

in terms of the ratio between the densities of an object to the density of its k nearest

neighbors. When experimenting with LOF and K-dist, we used 2 different distance

measures: Euclidean distance and (1 – cosine) distance. In LOF, we have experimented

with various KL threshold values for each dataset and selected the best KL value that

maximizes the precision. We did the same for K-dist algorithm when choosing the

threshold KD (Table 2 shows all such thresholds selected under Euclidean (euc) and 1 –

cosine (cos) distance measures). So the results reported in this paper for LOF and K-dist

represent the optimal precision that these algorithms can achieve.

For OutRank-a, we chose cosine as the similarity measure. We show in subsection

4.4 that the choice of similarity measure (cosine or RBF kernel) does not affect the

 OutRank: A Graph-based Outlier Detection Framework Using Random Walk

11

performance significantly. Meanwhile, the threshold T for OutRank-b is determined

empirically from the data using the approach described in Section 3.

First let us analyze the 2D synthetic dataset, which is designed to view the difference

between existing outlier detection schemes and our random walk based method. This

dataset (see Fig. 4) has two clusters (C1, C2) of normal patterns and several small clusters

of outlier objects (O1 to O5). Note that cluster C1 has a similar density to some of the

outlying objects. Both our algorithms successfully captured all of the outliers and

delivered a precision of 1.0. On the other hand LOF was unable to find some of the

outlying clusters. Fig. 4 shows the outlier objects detected by LOF (denoted with ‘+’

symbol). Many of the outlying objects in O1, O2, and O3 regions were undetected. Even

worse, it identified some of the normal objects in C1 and C2 as outliers.

Table 3. Experimental results

OutRank Euclidean 1 – Cosine
Data Set

a b K-dist LOF K-dist LOF

P 1.0000 1.0000 0.8500 0.5500 0.9500 0.5500
2D-Data

FA 0.0000 0.0000 0.0064 0.0195 0.0022 0.0195

P 0.7727 0.9545 0.0454 0.1363 0.4545 0.0909
Austra

FA 0.0132 0.0026 0.0555 0.0502 0.0317 0.0529

P 0.9230 1.0000 0.7692 0.9230 1.0000 1.0000
Zoo

FA 0.0163 0.0000 0.0491 0.0163 0.0000 0.0000

P 0.8837 0.8139 0.7209 0.5813 0.5116 0.4884
Diabetic

FA 0.0107 0.0171 0.0256 0.0385 0.0450 0.0471

P 0.9516 0.9799 0.8467 0.2217 0.9758 0.7419
Led7

FA 0.0096 0.0040 0.0306 0.1555 0.0048 0.0516

P 0.5000 1.0000 1.0000 0.7500 1.0000 0.7500
Lymph

FA 0.0148 0.0000 0.0000 0.0074 0.0000 0.0074

P 1.0000 1.0000 0.9333 0.9333 0.1333 0.1333
Pima

FA 0.0000 0.0000 0.0020 0.0020 0.0273 0.0273

P 0.6190 0.6428 0.1666 0.3095 0.6190 0.2619
Vehicle

FA 0.0378 0.0354 0.0827 0.0685 0.0378 0.0733

P 0.5300 0.6024 0.1686 0.0722 0.2530 0.0482
Optical

FA 0.0145 0.0123 0.0258 0.0288 0.0232 0.0296

P 0.8880 0.8990 0.0080 0.2520 0.2810 0.3510
KDD-99

FA 0.0112 0.0101 0.0992 0.0748 0.0719 0.0649

We have experimented with various KL values but LOF always had problems finding

the outliers. When the KL value is less than the maximum size of the outlier clusters, then

LOF may miss some of the outlying objects and identifies some of the normal points in

cluster C1 as outliers. This is because LOF computes the outlier score of an object by

taking the ratio between the densities of an object and its KL-th nearest neighbor, and if

the neighborhoods under consideration for an object in C1 and in some outlying cluster

(say O3) have similar densities then it is difficult to distinguish outliers since in this case

the outlier scores computed by LOF can be similar for both objects. Also, when a larger

KL value is used, it can possibly identify normal objects in cluster C2 as outliers. On the

H.D.K. Moonesinghe & P.N. Tan

12

other hand, distance based algorithms such as K-dist suffers from local density problem

as described in Ref. 2. Therefore they fail to identify outlier clusters such as O4. As a

result distance and density based algorithms break down and deliver a higher false alarm

rate.

Fig. 4. Learning results of LOF on 2D-Data

When considering the real life data sets such as Optical (hand written data), kdd-99

(intrusion data) and Austra, both density and distance based algorithms performed poorly.

We speculate that there may be many small clusters of outliers in those datasets and since

these algorithms are less effective in identifying such outliers their performance becomes

low. Our algorithm performed significantly better than both LOF and K-dist with a lower

false alarm rate, since as expected random walk model can handle this situation well.

 Also, when analyzing the datasets with several clusters of objects such as Led7 and

Optical, performance of density based algorithms became low. In both these datasets our

algorithm showed better performance. Also, as shown in Fig. 5, our algorithm shows a

lower false alarm rate in Led7.

When OutRank-b is compared against OutRank-a, we found that, on average, it

delivers a 20% improvement in precision. Also, a significant reduction in false alarm rate

for datasets such as Austra, Zoo and Lymph can be seen. In Diabetic dataset OutRank-b

shows somewhat low precision compared to OutRank-a, and it is because of the choice of

threshold.

4.2. Effect of the percentage of outliers

In this section we compare the performance of various algorithms when the percentage of

outliers is varied. We have compared OutRank-b against both LOF and K-dist with

Euclidean distance on three of the larger data sets as shown in Fig. 5. The performance of

K-dist algorithm on kdd-99 dataset was not graphed because its precision and false alarm

1

2

3

4

5

0 1 2 3 4 5 6 7

C1

C2

O1

O2

O3

O5

O4

 OutRank: A Graph-based Outlier Detection Framework Using Random Walk

13

rate are considerably worse than that for LOF and OutRank-b. In general the precision

values for OutRank-b do not change significantly compared to LOF and K-dist when the

percentage of outliers was varied. OutRank-b also shows a comparably lower false alarm

rate, whereas other approaches deliver typically unacceptable rate for datasets such as

Led7 and kdd-99.

Fig. 5. Precision and false alarm rate while varying the % of outliers

4.3. Effect of the shared neighbor approach

Here we analyze the effect of shared neighbor approach used by OutRank-b on outlier

detection. First we analyze the precision achieved by the shared neighbor approach. For

this analysis we use 3 versions of OutRank algorithm. Apart from OutRank a and b, we

design a new algorithm called OutRank-c, which is similar to OutRank-a but we apply a

Led7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

% of outliers

P
re

c
is

io
n

OutRank
K-Dist
LOF

0% 4% 8% 12% 16%

Led7

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

% of outliers

F
a
ls

e
 A

la
rm

OutRank
K-Dist
LOF

 0% 4% 8% 12% 16%

KDD-99

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

% of outliers

P
re

c
is

io
n OutRank

LOF

0% 2% 4% 6% 8%

KDD-99

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

% of outliers

F
a
ls

e
 A

la
rm

OutRank
LOF

 0% 2% 4% 6% 8%

Diabetic

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1% 2% 4% 6% 8%

% of outliers

P
re

c
is

io
n

OutRank
K-Dist
LOF

Diabetic

0.00

0.01

0.02

0.03

0.04

1% 2% 4% 6% 8%

% of outliers

F
a
ls

e
 A

la
rm

OutRank
K-Dist
LOF

H.D.K. Moonesinghe & P.N. Tan

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1% 2% 3% 4%

% of outliers

P
re

c
is

io
n

OutRank-a

OutRank-b

OutRank-c

threshold T on its similarity matrix to cutoff the low similarity nodes. Note that OutRank-

b computes shared neighbors using this matrix. So, the only difference between OutRank-

b and OutRank-c is that former uses shared neighbors for outlier detection. This way we

can see whether the performance achieved by OutRank-b is resulted from the threshold

effect or the shared neighbors.

Fig. 6 shows the precision for the three OutRank algorithms on the Optical dataset,

while varying the percentage of outliers. In most cases we can see significant

improvement of precision with OutRank-b over other algorithms. Furthermore, in

situations where the percentage of outliers is sufficiently large, applying a threshold on

the similarity matrix can have an adverse effect as shown in Fig. 6 for the 4% case (here,

OutRank-c shows a slightly lower precision than OutRank-a), whereas the shared

neighbor approach can minimize the thresholding effect.

Fig. 6. Precision of algorithms on optical dataset

To further understand the effect of using shared neighbor approach, we have also

analyzed the values of the dominant eigenvector (connectivity) produced by the random

walk model. As shown in Fig. 7 and Fig. 8, there is a sharp distinction between the

connectivity values of nodes identified as outliers from those identified as normal. The

presence of such rising slope is vital towards detecting outliers using the random walk

approach. When comparing the connectivity values of OutRank-a to OutRank-b, it is

clear that the shared neighbor approach tends to push down the connectivity values for

outliers and pulls them up for normal points. This shows that the shared neighbor

approach helps to improve the distinction between outliers and normal nodes, which

makes this approach more suitable for outlier detection task.

4.4. Choice of similarity measures

This section examines the choice of similarity measure for our proposed random walk

framework. The cosine similarity measure that we used in most of our experiments

cannot effectively handle outliers that are co-aligned with other normal points. As an

 OutRank: A Graph-based Outlier Detection Framework Using Random Walk

15

alternative, we consider using the RBF kernel function given in Eq. 2 to define the

transition probabilities of our random walk model. Table 4 compares the precision and

false alarm rates of the OutRank-a algorithm using RBF kernel and cosine similarity

measures.

Fig. 7. Connectivity of objects in Austra dataset

Fig. 8. Connectivity of objects in Led7 dataset

When comparing the precision achieved by OutRank-a using RBF, we can see in six

out of nine data sets, its precision is significantly lower than OutRank-a using cosine

similarity. Nevertheless, when comparing the performance of OutRank-a using RBF

against LOF and K-dist (using Euclidean distance), the RBF approach still shows better

performance in most datasets. K-dist shows better performance in Diabetic, Lymph, and

Austra

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 100 200 300 400 500

Object

C
o
n

n
e
c
tiv

ity

OutRank-a

OutRank-b

Led7

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0 500 1000 1500

Object

C
o
n

n
e
c
tiv

ity

OutRank-a

OutRank-b

H.D.K. Moonesinghe & P.N. Tan

16

Pima datasets and LOF shows better performance in Austra, Zoo, and Lymph datasets.

Even in these datasets performance of RBF approach is not very low.

Table 4. Performance comparison with different similarity measures

Data Set
OutRank-a

(RBF-Kernel)

OutRank-a

(Cosine)

P 0.1000 0.7727
Austra

FA 0.0529 0.0132

P 0.7692 0.9230
Zoo

FA 0.0491 0.0163

P 0.6511 0.8837
Diabetic

FA 0.0321 0.0107

P 0.9597 0.9516
Led7

FA 0.0080 0.0096

P 0.5000 0.5000
Lymph

FA 0.0148 0.0148

P 0.8000 1.0000
Pima

FA 0.0062 0.0000

P 0.4762 0.6190
Vehicle

FA 0.0520 0.0378

P 0.6265 0.5300
Optical

FA 0.0115 0.0145

P 0.2710 0.8880
KDD-99

FA 0.0729 0.0112

4.5. Effect of threshold on the quality of solution

Let us analyze the effect of threshold T on OutRank-b. Note that OutRank-a does not use

any threshold. Fig. 9 and Fig. 10 show precision for led7 and kdd-99 datasets when T is

varied from 0.00 to 0.90. As expected, for higher and lower T values precision becomes

low. Notice the interval [µ - σ, µ), where our algorithm delivers the highest performance.

Also, any T ∈ [µ - σ, µ) shows similar performance in precision, and therefore our

algorithm does not exhibit any unexpected sensitivity on the choice of threshold T.

5. Conclusions

This paper investigated the effectiveness of random walk based approach for outlier

detection. Experimental results using both real and synthetic data sets confirmed that this

approach is generally more effective at ranking most understandable outliers that

previous approaches cannot capture. Also, the results revealed that our outlier detection

model tends to do better when the percentage of outliers is gradually increased. In outlier

detection algorithms, false alarm rate is considered as the limiting factor of its

performance and the algorithms proposed here achieved the lowest false alarm rate using

an unsupervised learning scheme.

 OutRank: A Graph-based Outlier Detection Framework Using Random Walk

17

Fig. 9. Precision for different threshold values

Fig. 10. Precision for different threshold values

In our past work,
5
 we have examined semi-supervised learning techniques for outlier

detection. We plan to further explore random walk based methods in a semi-supervised

setting. Also, we will investigate the application of random walk algorithms for detecting

anomalous substructures in graph databases.

Acknowledgement

We would like to thank the reviewers for their constructive and helpful comments.

References

1. S. D. Bay and M. Schwabacher. Mining distance-based outliers in near linear time with

randomization and a simple pruning rule. In Proc. of the ninth ACM SIGKDD Int’l Conf. on

Knowledge discovery and data mining, pages 29–38, 2003.

2. M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: identifying density-based local

outliers. In Proc. of the 2000 ACM SIGMOD Int’l Conf. on Management of data, pages 93–

104, 2000.

3. E. Eskin. Anomaly detection over noisy data using learned probability distributions. In Proc.

of the 17th Int’l Conf. on Machine Learning, pages 255–262, 2000.

Led7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Threshold

P
re

c
is
io
n

Τ

µ−σ µ

KDD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Threshold

P
re

c
is
io
n

µµ−σ

Τ

H.D.K. Moonesinghe & P.N. Tan

18

4. G. Erkan, D. Radev. LexPageRank: Prestige in Multi-Document Text Summarization. In Proc.

EMNLP, 2004.

5. J. Gao, H. Cheng, and P.-N Tan. A Novel Framework for Incorporating Labeled Examples

into Anomaly Detection. In Proc of SIAM Int'l Conf on Data Mining, Bethesda, MD, Apr 20-

22, 2006.

6. D. Hawkins. Identification of outliers. Chapman and Hall, London, 1980.

7. D. L. Isaacson and R.W. Madsen, Markov chains: theory and applications, Wiley, New York,

1976.

8. W. Jin, A. K. H. Tung, and J. Han. Mining top-n local outliers in large databases. In Proc. of

the Seventh ACM SIGKDD Int’l Conf. on Knowledge discovery and data mining, pages 293–

298, 2001.

9. T. Johnson, I. Kwok, and R. T. Ng. Fast computation of 2-dimensional depth contours. In

Proc. of the Fourth Int’l Conf. on Knowledge Discovery and Data Mining, pages 224–228,

1998.

10. E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers: Algorithms and applications.

VLDB Journal, 8(3-4):237–253, 2000.

11. C. Kruegel and G. Vigna. Anomaly Detection of Web-Based Attacks. In Proc. of 10th ACM

Conf. Computer and Comm. Security (CCS '03), pp. 251-261, Oct. 2003.

12. V. B. T. Lewis. Outliers in statistical data. John Wiley & Sons, Chichester, 1994.

13. R. Mihalcea, P. Tarau. TextRank: Bringing Order into Texts. In Proc. of the Conference on

Empirical Methods in Natural Language Processing, Barcelona, Spain, July 2004.

14. R. Mihalcea. Graph-based Ranking Algorithms for Sentence Extraction Applied to Text

Summarization. In Proc. of the 42nd Annual Meeting of the Association for Computational

Linguistics, companion volume, Barcelona, Spain, July 2004.

15. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order

to the web. Technical report, Stanford University, 1998.

16. F. Preparata and M. Shamos. Computational Geometry: an Introduction. Springer, 1988.

17. S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large

data sets. In Proc. of the ACM SIGMOD Int’l Conf. on Management of data, pages 427–438,

2000.

18. G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 3rd edition, 1998.

