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This paper introduces a stochastic graph-based algorithm, called OutRank, for detecting outliers in 

data. We consider two approaches for constructing a graph representation of the data, based on the 

object similarity and number of shared neighbors between objects. The heart of this approach is the 

Markov chain model that is built upon this graph, which assigns an outlier score to each object. 

Using this framework, we show that our algorithm is more robust than the existing outlier detection 

schemes and can effectively address the inherent problems of such schemes. Empirical studies 

conducted on both real and synthetic data sets show that significant improvements in detection rate 

and false alarm rate are achieved using the proposed framework. 
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1.   Introduction 

Random walk methods have been widely used for a variety of information retrieval tasks, 

including web search,
15

 keyword extraction,
13

 and text summarization.
4,14

 These methods 

represent the data as a stochastic graph and perform random walk along all the paths on 

the graph to assess the centrality or importance of individual objects in the data. For 

example, the well-known PageRank algorithm
15

 used for ranking the results of search 

queries is based on the model of a random surfer traversing the hyperlinks of a Web 

graph. In text summarization,
4
 the random walk method can be used to identify a 

sentence that is most representative of other sentences in a collection of documents.  

This paper explores the use of random walk models for outlier detection as an 

alternative to previously used outlier detection algorithms.
1,2,3,8,10,17

 The heart of this 

approach is to represent the underlying dataset as a weighted undirected graph, where 
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each node represents an object and each (weighted) edge represents similarity between 

objects. By transforming the adjacency matrix of the graph into transition probabilities, 

we model the problem as a Markov chain process and find the dominant eigenvector of 

the transition probability matrix. The values in the eigenvector are then used to determine 

the outlierness of each object.  

The random walk model is designed to find nodes that are most “central” to the 

graph. To illustrate, consider graph A shown on the top left panel of Fig. 1, which 

consists of 4 nodes connected to a central node labeled as node 1. Upon applying the 

random walk model to the transition matrix constructed from graph A, the probability 

score of each node is plotted on the right hand panel of Fig. 1. Clearly node 1 has the 

highest score compared to other remaining nodes. To illustrate the effect of outliers on 

the random walk model, consider the graph B shown in Fig. 1, which is obtained by 

removing the edges between nodes (3,5) and nodes (4,5) of graph A. Node 5 can be 

considered as an outlier of the graph. As can be seen from the probability score 

distribution for graph B, the random walk model assigns the lowest score to the outlying 

node. 

 

Fig. 1. Outlier detection with random walk 

A major advantage of using our random walk approach is that it can effectively 

capture not only the outlying objects scattered uniformly but also small clusters of 



 OutRank: A Graph-based Outlier Detection Framework Using Random Walk 

 

3 

outliers. In real-life applications such as intrusion detection,
11

 the small clusters of 

outliers often correspond to interesting events such as denial-of-service or worm attacks. 

Although existing density-based algorithms show high detection rate over distance-based 

algorithms for datasets with varying densities, they can be less effective when identifying 

small clusters of outliers. This is because these algorithms consider the density of a 

predefined neighborhood for outlier detection, and in some cases small clusters of 

outliers with similar density to normal patterns cannot be distinguished.  A random walk 

based model solves this problem by defining the outlierness of an object with respect to 

the entire graph of objects; i.e. it views the outlierness from a global perspective.    

Nevertheless, one potential challenge of using the random walk approach is to 

determine the neighborhood graph from which the outliers can be detected. We examine 

two approaches for doing this: (1) building the graph using an appropriate similarity 

measure and (2) building the graph based on the number of shared neighbors. We 

perform extensive experiments to compare the performance of our approach against 

distance-based and density-based outlier detection algorithms. Experimental results using 

both real and synthetic data sets show that our proposed algorithm outperforms other 

approaches and yields higher detection rates with lower false alarm rates.  

In summary, the main contributions of this paper are as follows: 

(i) We investigate the effectiveness of random walk approach for outlier detection. 

More specifically, we show that our proposed framework, called OutRank, is capable 

of detecting outliers even when the normal patterns have similar densities as outliers. 

(ii) We investigate two different approaches for constructing the graph upon which the 

random walk model is applied. 

(iii) We also analyze the different choices of similarity measures on the random walk 

model.  

(iv) Our method is based on an automatic, data dedicated threshold for defining the 

neighborhood of an object. In contrast, existing algorithms require users to specify a 

neighborhood parameter, which is not a trivial task.  

 

The remainder of the paper is organized as follows. In section 2, we introduce our 

proposed outlier detection model. Section 3 presents several outlier detection algorithms. 

In section 4, we perform an extensive performance evaluation on real and synthetic data 

sets. Finally, we conclude our work in section 5. 

2.   Modeling Outliers Using a Graph  

In this section we develop our framework to discover outlying objects in a database. 

According to Hawkins,
6
 outliers can be defined as follows: 

 

Definition 1. (Outlier) An outlier is an observation that deviates so much from other 

observations as to arouse suspicion that it was generated by a different mechanism. 

 

Most outlier detection schemes adopt Hawkin’s definition of outliers and thus assume 

that outliers are isolated points far away from other normal points. As such, these outliers 
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can be easily detected by existing distance or density based algorithms. However, in this 

paper we focus on outliers that might be concentrated in certain regions, thus forming 

small clusters of outliers.    

We take a graph based approach to solve this problem. Here we model objects in the 

database as a graph, where each node represents an object and each edge represents a 

similarity between them. Each edge is also assigned a weight, which is equal to the 

similarity between the nodes of the corresponding edge. There are two major issues that 

need to be addressed: first, how to determine the link structure of the graph based on the 

similarity of nodes; second, how to discover the outlying objects using this graph model. 

Following sections describe these issues in detail. 

2.1.   Graph Representation 

In order to determine the link structure of the graph we compute the similarity between 

every pair of objects. Let X = (x1, x2, …, xd) and Y = (y1, y2, …, yd) be the vector 

representation of any two objects drawn from a d-dimensional space R
d
. While there are 

many possible choices of similarity measures, we experiment with the following metrics: 

 

Cosine Similarity.  The similarity between X and Y is defined as follows: 

 

 

 

 

 

 

RBF Kernel. The similarity between X and Y is defined as follows (where σ is a user 

specified kernel width parameter): 

 

 

 

 

 

 

Note that the similarity between an object to itself is set to zero to avoid self loops in 

the underlying graph representation. Such loops are ignored since they are common to 

every node, and therefore it is not very useful to distinguish normal objects from outliers.  

The relationship between all pairs of objects in the database is represented by the n×n 

similarity matrix Sim, where n is the number of objects. We use the similarity matrix to 

represent the adjacency matrix of the graph. In the graph representation, each node 

corresponds to an object in the database. Two nodes X and Y are connected by an edge if 

their similarity is greater than zero, and the weight of the edge is taken as Sim(X, Y).  
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2.2.   Markov chain model 

Based on the graph representation, we model the problem of outlier detection as a 

Markov chain process. The Markov chain modeled here corresponds to a random walk on 

a graph defined by the link structure of the nodes. We hypothesize that under this 

representation, if an object has a low connectivity to other objects in the graph, then it is 

more likely to be an outlier.   

Connectivity is determined in terms of the weighted votes given by other nodes in the 

graph. Here higher connectivity nodes convey votes with more weight than that conveyed 

by the lesser connectivity nodes. The weight of the vote from any node is scaled by the 

number of nodes adjacent to the source node. The connectivity of a node is computed 

iteratively using the following expression. 

 

Definition 2. (Connectivity) Connectivity c(u) of node u is defined as follows: 

 

 

 

       

 

where a is its initial value, t is the iteration step, adj(u) is the set of nodes linked to node 

u, and |v| denotes the degree of node v.  

Given n nodes, v1, v 2, …, v n, we can initially assign each node a uniform connectivity 

value (e.g. c0(vi) = 1/n , 1≤i≤n) and recursively apply Eq. (3) to refine its value, taking 

into account the modified connectivity values computed for its neighboring nodes. This 

iterative procedure is known as the power method and is often used to find the dominant 

eigenvector of a stochastic matrix. Upon convergence, Eq. (3) can be written in matrix 

notation as follows: 

 

cSc
T=                                                           (4) 

 

where S is the transition matrix and c is the stationary distribution representing 

connectivity value for each object in the dataset. For a general transition matrix, neither 

the existence nor the uniqueness of a stationary distribution is guaranteed, unless the 

transition matrix is irreducible and aperiodic. These properties follow from the well-

known Perron-Frobenius theorem.
7
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our similarity matrix (Sim) defined earlier: 
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This normalization ensures that the elements of each row of the transition matrix sum 

to 1, which is an essential property of a stochastic matrix. It is also assumed that the 

transition probabilities in S do not change over time. In general, the transition matrix S 

computed from data might not be irreducible or aperiodic. To ensure convergence, 

instead of using Eq. (4), we may compute the steady state distribution for the following 

modified matrix equation: 

cSddc T)1(1. −+=                                                (6) 

where S is the row normalized transition matrix, d is known as the damping factor, and 1 

is the unit column vector [1 1…1]
T
. For the proof of convergence of this equation, 

readers should refer to Ref. 18. Intuitively, the modification can be viewed as allowing 

the random walker to transit to any nodes in the graph with probability d even though 

they are not adjacent to the currently visited node. As an example, consider the 2-

dimensional data with 11 objects shown in Fig. 2. Clearly object 1 and object 2 are 

outliers while the rest of the objects are normal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Sample 2-D data set 

Table 1. Outlier rank for sample 2-D dataset 
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Using uniform probabilities as the initial connectivity vector and after applying Eq. 

(6), the connectivity vector converges to its stationary distribution after 112 iterations 

(where d is chosen to be 0.1). The final connectivity values and the rank for each object 

are shown in Table 1. Note that object-1 and object-2 are correctly identified as the most 

outlying objects. 

3.   Algorithms 

This section describes our proposed algorithm based on the above random walk model 

for outlier detection. Two variants of the OutRank algorithms are presented. 

3.1.   OutRank-a: using object similarity 

In OutRank-a algorithm, we form the transition matrix for the Markov chain model using 

the similarity matrix discussed earlier. We then use the power method to compute the 

stationary distribution of its connectivity vector. The connectivity vector is initialized to 

be a uniform probability distribution (1/n, where n is the total number of objects) and the 

damping factor is set to 0.1. The pseudo code for the OutRank-a algorithm is shown 

below. 

 

Algorithm OutRank-a 

Input: Similarity matrix Simn×n with n objects, error toleranceε. 

Output: Outlier ranks c. 

Method: 

1: for i=1 to n  do           // forms transition matrix S 

2:    let totSim=0.0; 

3:    for j=1 to n do 

4:        totSim=totSim+Sim[i][j]; 

5:    end 

6:    for j=1 to n do 

7:        S[i][j]=Sim[i][j]/totSim;  

8:    end              

9: end 

10: let d=0.1    // damping factor 

11: let t=0; 

12: let c0 =(1/n).1  // initialization  

13: repeat 

14:      ct+1= d/n + (1-d)ST ct 

15:      δ = ||ct+1 - ct||1 

16:      t = t+1; 

17: until (δ<ε) 

18: rank ct+1 from min(ct+1) to max(ct+1) 

19: return ct+1; 

 

3.2.   OutRank-b: using shared neighbors 

In OutRank-a, nodes are considered adjacent if their corresponding similarity measure is 

non-zero. So even nodes with low similarity values might be considered adjacent, and 

that similarity value is used as the weight of the link. In this section we propose an 
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alternative algorithm called OutRank-b, which uses a similarity measure defined in terms 

of the number of neighbors shared by the objects. For example, consider two objects, v1 

and v2. Suppose v1 has a set of neighbors { v3, v4, v5, v7} and v2 has a set of neighbors { v3, 

v4, v6, v7} (see Fig. 3). The set of neighbors shared by both v1 and v2 is {v3, v4, v7}. In this 

algorithm, we take the cardinality of this set as the similarity measure. 

 

 

 

 

 

 

 

 

 

Fig. 3. Similarity based on the number of shared neighbors 

In order to define the shared neighbors we need to find the neighbors of a given 

object (i.e. adjacent nodes of the graph representation). Here we limit the neighbors only 

to a set of nodes having high similarity values by using a threshold to cutoff low 

similarity neighbors. By doing so, outliers will have a fewer number of nodes than the 

normal objects in general, and this further helps to isolate outliers. In short the similarity 

measure used in OutRank-b corresponds to the number of high-similarity shared 

neighbors. 

Finding a suitable threshold T is vital to achieve a higher outlier detection rate. If the 

threshold is too small, many objects including both outliers and normal ones will have a 

higher number of shared neighbors, and therefore it will be harder to distinguish outliers. 

On the other hand, if the threshold is too high, then even the normal objects might have 

fewer shared neighbors and the algorithm will yield a high false alarm rate. In order to 

find a suitable threshold, we consider the distribution of similarity values of the 

corresponding data set. Let X be the set of similarity values. Let µ and  σ be the mean and 

standard deviation of X respectively. Experimentally we observe that any T value within 

the interval [µ - σ, µ) gives higher detection rate; i.e. T should be chosen to be any value 

within one standard deviation below the mean.  

As can be seen, the choice of the threshold T depends only on the dataset (i.e. mean 

and standard deviation of the corresponding data set) and can be automatically derived 

Existing algorithms such as LOF
2
 and K-dist

8
 use a threshold called minimum points (k) 

to define the neighborhood. Selection of threshold k for these approaches is non-trivial 

and must be specified by the user. Also, unlike in previous approaches where detection 

rate is sensitive to the threshold parameter, the detection rate of our algorithm is not that 

sensitive to the value of T. We will demonstrate this further in the experimental section.  

The pseudo code for the OutRank-b algorithm is summarized below. The algorithm 

forms the transition matrix based on the number of shared neighbors between every pair 

v1 v2 

v3 

v4 

v5 

v6 

v7 

Sim(v1,v2)=3 
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of objects. After computing its transition matrix, the rest of the computation is similar to 

that of OutRank-a.  

 

 

Algorithm OutRank-b 

Input: Similarity matrix Mn×n, threshold T, error toleranceε.. 

Output: Outlier ranks. 

Method: 

1: for i=1 to n do   // discretize M using T  

2:   for j=i+1 to n do 

3:       if M[i,j] ≥ T 

4:           M[i][j]= M[j][i]=1; 

5:       else 

6:           M[i][j]= M[j][i]=0; 

7:       end 

8:   end 

9: end  

10: for i=1 to n do    // compute new similarity scores 

11:   for j=i+1 to n do  

12:        let X= {M[i][1] to M[i][n]};   

13:      let Y= {M[j][1] to M[j][n]}; 

14:        Sim[i][j]=Sim[j][i]=|X ∩ Y|; 

15:   end 

16:   Sim[i][i]=0; 

17: end 

18: call OutRank-a (Sim, ε) 

 

4.   Experimental Evaluation 

We have performed extensive experiments on both synthetic and real data sets to evaluate 

the performance of our algorithms. The experiments were conducted on a SUN Sparc 

1GHz machine with 4 GB of main memory. The data sets used for our experiments are 

summarized in Table 2. Here D is the dimension of databases and C is the number of 

clusters. Thresholds T, KL, and KD are parameters used with OutRank-b, LOF, and K-dist 

algorithms respectively.  

2D-Data is the synthetic data set. The rest of the data sets are obtained from the UCI 

KDD archive. Some of these datasets contains more than one cluster of normal objects. 

For example, dataset Zoo contains 2 normal clusters and a smaller outlier cluster of 13 

objects. 

We employ several evaluation metrics to compare the performance of our algorithms: 

Precision (P), False Alarm rate (FA), Recall (R), and F-measure (F). These metrics are 

computed as follows: 
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where TP (TN) is the number of true positives (negatives) and FP (FN) is the number of 

false positives (negatives). In all of our experiments number of actual outliers is equal to 

the number of predicted outliers and therefore P=R=F.  

Table 2. Characteristics of the datasets 

KL KD 
Data Set D C 

No. of 

outliers 

No. of 

instances 
T 

euc cos euc cos 

2D-Data 2 2 20 482 0.93 10 20 10 16 

Austra 14 2 22 400 0.25 4 2 5 12 

Zoo 16 3 13 74 0.45 40 40 20 24 

Diabetic 8 2 43 510 0.80 30 40 30 32 

Led7 7 5 248 1489 0.55 330 390 330 220 

Lymph 18 3 4 139 0.90 2 2 2 20 

Pima 8 2 15 492 0.70 20 2 10 2 

Vehicle 18 3 42 465 0.95 50 56 30 14 

Optical 62 8 83 2756 0.65 10 2 20 40 

KDD-99 38 2 1000 11000 0.35 500 500 5 200 

 

 

The remainder of this section is organized as follows. In subsection 4.1, we evaluate 

our proposed algorithms against existing approaches, including a distance-based outlier 

detection algorithm called K-dist
8
 and a density-based algorithm known as LOF.

2
 In 

subsection 4.2 we analyze the performance of our algorithms by varying the percentage 

of outliers. In subsection 4.3, we discuss the effect of shared neighbor approach and in 

subsection 4.4 we analyze RBF kernel for outlier detection. Subsection 4.5 presents the 

effect of threshold selection for OutRank-b. 

4.1.   Comparison with other approaches  

Table 3 shows the results of applying various algorithms to synthetic and real life data 

sets. The K-dist algorithm uses the distance between an object to its k-th nearest neighbor 

to be the outlier score. The LOF algorithm, on the other hand, computes the outlier score 

in terms of the ratio between the densities of an object to the density of its k nearest 

neighbors. When experimenting with LOF and K-dist, we used 2 different distance 

measures: Euclidean distance and (1 – cosine) distance. In LOF, we have experimented 

with various KL threshold values for each dataset and selected the best KL value that 

maximizes the precision. We did the same for K-dist algorithm when choosing the 

threshold KD (Table 2 shows all such thresholds selected under Euclidean (euc) and 1 –

cosine (cos) distance measures). So the results reported in this paper for LOF and K-dist 

represent the optimal precision that these algorithms can achieve.  

For OutRank-a, we chose cosine as the similarity measure. We show in subsection 

4.4 that the choice of similarity measure (cosine or RBF kernel) does not affect the 
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performance significantly. Meanwhile, the threshold T for OutRank-b is determined 

empirically from the data using the approach described in Section 3.   

First let us analyze the 2D synthetic dataset, which is designed to view the difference 

between existing outlier detection schemes and our random walk based method. This 

dataset (see Fig. 4) has two clusters (C1, C2) of normal patterns and several small clusters 

of outlier objects (O1 to O5). Note that cluster C1 has a similar density to some of the 

outlying objects. Both our algorithms successfully captured all of the outliers and 

delivered a precision of 1.0. On the other hand LOF was unable to find some of the 

outlying clusters. Fig. 4 shows the outlier objects detected by LOF (denoted with ‘+’ 

symbol). Many of the outlying objects in O1, O2, and O3 regions were undetected. Even 

worse, it identified some of the normal objects in C1 and C2 as outliers. 

Table 3. Experimental results 

OutRank Euclidean 1 – Cosine 
Data Set 

a b K-dist LOF K-dist LOF 

P 1.0000 1.0000 0.8500 0.5500 0.9500 0.5500 
2D-Data 

FA 0.0000 0.0000 0.0064 0.0195 0.0022 0.0195 

P 0.7727 0.9545 0.0454 0.1363 0.4545 0.0909 
Austra 

FA 0.0132 0.0026 0.0555 0.0502 0.0317 0.0529 

P 0.9230 1.0000 0.7692 0.9230 1.0000 1.0000 
Zoo 

FA 0.0163 0.0000 0.0491 0.0163 0.0000 0.0000 

P 0.8837 0.8139 0.7209 0.5813 0.5116 0.4884 
Diabetic 

FA 0.0107 0.0171 0.0256 0.0385 0.0450 0.0471 

P 0.9516 0.9799 0.8467 0.2217 0.9758 0.7419 
Led7 

FA 0.0096 0.0040 0.0306 0.1555 0.0048 0.0516 

P 0.5000 1.0000 1.0000 0.7500 1.0000 0.7500 
Lymph 

FA 0.0148 0.0000 0.0000 0.0074 0.0000 0.0074 

P 1.0000 1.0000 0.9333 0.9333 0.1333 0.1333 
Pima 

FA 0.0000 0.0000 0.0020 0.0020 0.0273 0.0273 

P 0.6190 0.6428 0.1666 0.3095 0.6190 0.2619 
Vehicle 

FA 0.0378 0.0354 0.0827 0.0685 0.0378 0.0733 

P 0.5300 0.6024 0.1686 0.0722 0.2530 0.0482 
Optical 

FA 0.0145 0.0123 0.0258 0.0288 0.0232 0.0296 

P 0.8880 0.8990 0.0080 0.2520 0.2810 0.3510 
KDD-99 

FA 0.0112 0.0101 0.0992 0.0748 0.0719 0.0649 

 

We have experimented with various KL values but LOF always had problems finding 

the outliers. When the KL value is less than the maximum size of the outlier clusters, then 

LOF may miss some of the outlying objects and identifies some of the normal points in 

cluster C1 as outliers. This is because LOF computes the outlier score of an object by 

taking the ratio between the densities of an object and its KL-th nearest neighbor, and if 

the neighborhoods under consideration for an object in C1 and in some outlying cluster 

(say O3) have similar densities then it is difficult to distinguish outliers since in this case 

the outlier scores computed by LOF can be similar for both objects. Also, when a larger 

KL value is used, it can possibly identify normal objects in cluster C2 as outliers. On the 
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other hand, distance based algorithms such as K-dist suffers from local density problem 

as described in Ref. 2. Therefore they fail to identify outlier clusters such as O4. As a 

result distance and density based algorithms break down and deliver a higher false alarm 

rate. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 4. Learning results of LOF on 2D-Data 

 

When considering the real life data sets such as Optical (hand written data), kdd-99 

(intrusion data) and Austra, both density and distance based algorithms performed poorly. 

We speculate that there may be many small clusters of outliers in those datasets and since 

these algorithms are less effective in identifying such outliers their performance becomes 

low. Our algorithm performed significantly better than both LOF and K-dist with a lower 

false alarm rate, since as expected random walk model can handle this situation well. 

 Also, when analyzing the datasets with several clusters of objects such as Led7 and 

Optical, performance of density based algorithms became low. In both these datasets our 

algorithm showed better performance. Also, as shown in Fig. 5, our algorithm shows a 

lower false alarm rate in Led7.  

When OutRank-b is compared against OutRank-a, we found that, on average, it 

delivers a 20% improvement in precision. Also, a significant reduction in false alarm rate 

for datasets such as Austra, Zoo and Lymph can be seen. In Diabetic dataset OutRank-b 

shows somewhat low precision compared to OutRank-a, and it is because of the choice of 

threshold. 

4.2.   Effect of the percentage of outliers 

In this section we compare the performance of various algorithms when the percentage of 

outliers is varied. We have compared OutRank-b against both LOF and K-dist with 

Euclidean distance on three of the larger data sets as shown in Fig. 5. The performance of 

K-dist algorithm on kdd-99 dataset was not graphed because its precision and false alarm 
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rate are considerably worse than that for LOF and OutRank-b. In general the precision 

values for OutRank-b do not change significantly compared to LOF and K-dist when the 

percentage of outliers was varied. OutRank-b also shows a comparably lower false alarm 

rate, whereas other approaches deliver typically unacceptable rate for datasets such as 

Led7 and kdd-99.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Precision and false alarm rate while varying the % of outliers 

4.3.   Effect of the shared neighbor approach  

Here we analyze the effect of shared neighbor approach used by OutRank-b on outlier 

detection. First we analyze the precision achieved by the shared neighbor approach. For 

this analysis we use 3 versions of OutRank algorithm. Apart from OutRank a and b, we 

design a new algorithm called OutRank-c, which is similar to OutRank-a but we apply a 
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threshold T on its similarity matrix to cutoff the low similarity nodes. Note that OutRank-

b computes shared neighbors using this matrix. So, the only difference between OutRank-

b and OutRank-c is that former uses shared neighbors for outlier detection. This way we 

can see whether the performance achieved by OutRank-b is resulted from the threshold 

effect or the shared neighbors.  

Fig. 6 shows the precision for the three OutRank algorithms on the Optical dataset, 

while varying the percentage of outliers.  In most cases we can see significant 

improvement of precision with OutRank-b over other algorithms. Furthermore, in 

situations where the percentage of outliers is sufficiently large, applying a threshold on 

the similarity matrix can have an adverse effect as shown in Fig. 6 for the 4% case (here, 

OutRank-c shows a slightly lower precision than OutRank-a), whereas the shared 

neighbor approach can minimize the thresholding effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Precision of algorithms on optical dataset 

 

To further understand the effect of using shared neighbor approach, we have also 

analyzed the values of the dominant eigenvector (connectivity) produced by the random 

walk model. As shown in Fig. 7 and Fig. 8, there is a sharp distinction between the 

connectivity values of nodes identified as outliers from those identified as normal. The 

presence of such rising slope is vital towards detecting outliers using the random walk 

approach. When comparing the connectivity values of OutRank-a to OutRank-b, it is 

clear that the shared neighbor approach tends to push down the connectivity values for 

outliers and pulls them up for normal points. This shows that the shared neighbor 

approach helps to improve the distinction between outliers and normal nodes, which 

makes this approach more suitable for outlier detection task. 

4.4.   Choice of similarity measures 

This section examines the choice of similarity measure for our proposed random walk 

framework. The cosine similarity measure that we used in most of our experiments 

cannot effectively handle outliers that are co-aligned with other normal points. As an 
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alternative, we consider using the RBF kernel function given in Eq. 2 to define the 

transition probabilities of our random walk model. Table 4 compares the precision and 

false alarm rates of the OutRank-a algorithm using RBF kernel and cosine similarity 

measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Connectivity of objects in Austra dataset 

 

 

  

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 8. Connectivity of objects in Led7 dataset 

When comparing the precision achieved by OutRank-a using RBF, we can see in six 

out of nine data sets, its precision is significantly lower than OutRank-a using cosine 

similarity. Nevertheless, when comparing the performance of OutRank-a using RBF 

against LOF and K-dist (using Euclidean distance), the RBF approach still shows better 

performance in most datasets.  K-dist shows better performance in Diabetic, Lymph, and 
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Pima datasets and LOF shows better performance in Austra, Zoo, and Lymph datasets. 

Even in these datasets performance of RBF approach is not very low.   

Table 4. Performance comparison with different similarity measures 

Data Set 
OutRank-a 

(RBF-Kernel) 

OutRank-a 

(Cosine) 

P 0.1000 0.7727 
Austra 

FA 0.0529 0.0132 

P 0.7692 0.9230 
Zoo 

FA 0.0491 0.0163 

P 0.6511 0.8837 
Diabetic 

FA 0.0321 0.0107 

P 0.9597 0.9516 
Led7 

FA 0.0080 0.0096 

P 0.5000 0.5000 
Lymph 

FA 0.0148 0.0148 

P 0.8000 1.0000 
Pima 

FA 0.0062 0.0000 

P 0.4762 0.6190 
Vehicle 

FA 0.0520 0.0378 

P 0.6265 0.5300 
Optical 

FA 0.0115 0.0145 

P 0.2710 0.8880 
KDD-99 

FA 0.0729 0.0112 

 

4.5.   Effect of threshold on the quality of solution  

Let us analyze the effect of threshold T on OutRank-b. Note that OutRank-a does not use 

any threshold. Fig. 9 and Fig. 10 show precision for led7 and kdd-99 datasets when T is 

varied from 0.00 to 0.90. As expected, for higher and lower T values precision becomes 

low. Notice the interval [µ - σ, µ), where our algorithm delivers the highest performance. 

Also, any T ∈ [µ - σ, µ) shows similar performance in precision, and therefore our 

algorithm does not exhibit any unexpected sensitivity on the choice of threshold T. 

5.   Conclusions 

This paper investigated the effectiveness of random walk based approach for outlier 

detection. Experimental results using both real and synthetic data sets confirmed that this 

approach is generally more effective at ranking most understandable outliers that 

previous approaches cannot capture. Also, the results revealed that our outlier detection 

model tends to do better when the percentage of outliers is gradually increased. In outlier 

detection algorithms, false alarm rate is considered as the limiting factor of its 

performance and the algorithms proposed here achieved the lowest false alarm rate using 

an unsupervised learning scheme. 
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Fig. 9. Precision for different threshold values 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Precision for different threshold values 

In our past work,
5
 we have examined semi-supervised learning techniques for outlier 

detection. We plan to further explore random walk based methods in a semi-supervised 

setting. Also, we will investigate the application of random walk algorithms for detecting 

anomalous substructures in graph databases. 
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