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Abstract: The accurate estimation of how future demand will react to prices is central to the optimiza-
tion of pricing decisions. The systems responsible for demand prediction and pricing optimization
are called revenue management (RM) systems, and, in the airline industry, they play an important
role in the company’s profitability. As airlines’ current pricing decisions impact future knowledge of
the demand behavior, the RM systems may have to compromise immediate revenue by efficiently
performing price experiments with the expectation that the information gained about the demand
behavior will lead to better future pricing decisions. This earning while learning (EWL) problem has
captured the attention of both the industry and academia in recent years, resulting in many proposed
solutions based on heuristic optimization. We take a different approach that does not depend on
human-designed heuristics. We present the EWL problem to a reinforcement learning agent, and
the agent’s goal is to maximize long-term revenue without explicitly considering the optimal way
to perform price experimentation. The agent discovers through experience that “myopic” revenue-
maximizing policies may lead to a decrease in the demand model quality (which it relies on to take
decisions). We show that the agent finds novel pricing policies that balance revenue maximization
and demand model quality in a surprisingly effective way, generating more revenue over the long
run than current practices.

Keywords: revenue management; reinforcement learning; demand learning; price experimentation;
earning while learning; exploration–exploitation trade-off; active learning

1. Introduction

Revenue management (RM) practices are very important for airlines and many other
industries, such the as car rental, hotel, retail industries, etc. Perhaps one of the most
remarkable aspects of RM is how much airline companies must price their products to
maximize their revenue. By setting the prices too high for its products, an airline may drive
away potential customers, conversely by choosing to price too low, it may lose potential
profits. These pricing decisions are often critical to the airline’s success.

The optimization of pricing decisions is usually delegated to a specialized revenue
management system (RMS). The RMS first calibrates, from historical booking data, the
parameters of a demand model that forecasts how future demand will answer to prices,
then the forecast is used to optimize the pricing policy that indicates how to vary prices
according to the airline’s current inventory capacity. Only the booking decisions made by
customers are stored in a fixed-size historical database for future use (no-booking decisions
cannot be captured by airlines), and the oldest records are deleted (first-in, first-out).
Figure 1 illustrates the process.

The quality of the prediction of future demand obtained by the calibrated demand
model is fundamental to price optimization. For example, in the airline industry, it has
been calculated that a bias of ±20% in the estimation of the demand price sensitivity (i.e.,
how the expected demand increases or decreases with respect the offered price) can reduce
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revenue by up to 4% [1]. Optimizing pricing decisions under the assumption that the
demand behavior is unknown, which must be discovered from historical data, has come to
be known as the “earning while learning” (EWL) problem. At every moment, the airline
faces a choice of selecting the “perceived” optimal price that maximizes revenue according
to its current beliefs or selecting another price that increases the amount of information the
airline has about the demand behavior.

The EWL problem has attracted strong interest from academia and the airline industry
in recent years, most notably after the COVID-19 pandemic, when demand behavior
changed significantly from historical behavior as a consequence of an important shift in
competitor presence and customer interests [2–5]. Even though we only consider stationary
demand in this work (i.e., no shocks), we believe that many changes in RMSs will be
needed to efficiently rediscover new demand behavior during the following years of
recovery, effective price experimentation being perhaps one of the most important pieces of
the puzzle. Even though the research performed for this study can be extended to the case
of market shocks, for simplicity we analyze its performance in well-understood stationary
environments, i.e., where the amount of data collected from interactions with the demand
is limited.

Most of the work conducted with the aim of solving the EWL problem relies on expert-
designed heuristics. Some of these heuristics are very effective; however, they often come
with constraints that make them difficult to apply to real-world airline RM. RMSs use
complex optimization methods to adjust prices according to a flight’s remaining inventory
capacity, requiring such heuristics to be adaptable to the optimization method that is being
used. Moreover, airlines manage several flights simultaneously (e.g., daily flights between
destinations), and the booking data of each flight are appended to the historical database
and used for demand model estimation, suggesting that the heuristic methods need to
adapt price experimentation across many concurrent flights.

Similar questions to the EWL problem arise in the literature of statistics as optimal
experimental design, or in machine learning as active learning [6], or in the field of rein-
forcement learning (RL) as the exploration–exploitation trade-off [7]. In fact, many of the
heuristic methods tackling the EWL problem take inspiration from other disciplines, such
as Thompson sampling [8], upper confidence bound [9], and many others. Nonetheless,
the methods that arise from these disciplines are based on heuristics. Instead, in this work,
we take a different approach.

Given the success of artificial intelligence (AI) in recent years [10–12] and inspired by
the “reward is enough” hypothesis [13], we demonstrate that an RL agent can discover
solutions to the EWL problem without any guidance from human-designed heuristics. We
show that the RL agent develops pricing policies that generate more long-term revenue
than state-of-the-art heuristic methods, while effectively controlling the uncertainty of the
unknown model parameters of the demand function.

This work makes major contributions to how RL is applied to RM and to the EWL
problem. RL is often seen as an online model-free alternative to RMSs that traditionally
require a demand model [14–16]. The issue with such an approach is that data from real
customers are not abundant enough to perform online training, and model-free RL methods
are shown to be far less data efficient than model-based RMSs. Instead, we propose to use a
sample model of the demand for offline training [10,17], thus focusing on the improvement
of the pricing optimization only. Furthermore, we also call attention to the continuing nature
of the EWL problem; balancing between earning and learning is a task that never finishes. In
contrast to the optimization of the episodic revenue performed by RMSs (which maximizes
the revenue of each flight, ignoring long term consequences of learning), we present an
alternative modeling of the problem that maximizes the revenue of all concurrent flights in
a combined way, allowing us to express the system’s revenue-maximization objective over
an infinite horizon. Then, we demonstrate how to adapt RL to optimize the pricing policy
for this new objective through the average reward.
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In Section 2, we overview the algorithms proposed in literature for solving the EWL
problem. Next, in Section 3, we briefly introduce the monopolistic single-leg problem
and how price optimization is typically performed by RMSs in this problem. In the same
Section, we also review some basic concepts behind RL that we believe to be required for
understanding our method. Then, in Section 4, we present how to formulate the EWL
problem so it can be addressed by an RL agent. Following this, in Section 5, we present
comparative simulation studies between the heuristic methods and the solution found by
RL. To demonstrate the ability of the RL agent to solve more complex and realistic settings,
we compare RL to traditional RMS in scenarios where the heuristic methods are not defined.
We close this work with a discussion about our method in Section 6, and we present our
vision for future research in Section 7.

Historical
Database

Forecasting Optimizationdemand

predictions

pricing

decisions

historical

bookings

Figure 1. Inside revenue management systems.

2. Heuristic Methods for Earning While Learning

The EWL problem has its roots into the research fields of price optimization and opti-
mal control (earning), and statistical learning and economics (learning about the demand
behavior). Even though these research fields are each more than a century old, they were
studied independently for a long time. The first attempts to combine these two fields [18,19]
did not receive much attention, perhaps due to the technical difficulties of the time, such
as implementing pricing variation (e.g., updating catalogs), obtaining reliable estimates
of the demand behavior, and tracking competition pricing. It was not until the digital
and information era, when changing prices and accurately keeping track of how demand
responds to them became much more effective, that academia and industry started to pay
attention to the EWL problem.

The literature of EWL is often organized based on how learning about the demand be-
havior happens. Many papers that investigate the EWL problem assume that the unknown
demand behavior parameters are learned by the decision maker through the Bayesian
framework [20–22], while others concentrate on the parametric framework [23,24], and yet
some others are oriented towards non-parametric models [25,26]. Even though we have a
special interest in the parametric model framework, many important discoveries generalize
across frameworks, and thus we present them below.

One of the most influential early works addressing the EWL problem proposes to
learn the demand model parameters in a Bayesian fashion [27]. In theory, the optimal
Bayesian policy could be computed via dynamic programming, but, in many situations
of interest, no closed-form analytical expression exists. Thus, the proposed workaround,
today known as certainty equivalent pricing (CEP), consists of selecting at each time
step the price that would be optimal if the current demand model parameter estimates
were correct. CEP is shown to be optimal under certain conditions, such as when only
the intersect of a linear demand function is being estimated, but it is sub-optimal when
estimating both the slope and the intersect of a linear demand model [28]. However,
further analytical studies [29,30] pointed to a more fundamental problem: the sequence
of prices may converge to a sub-optimal price even with infinite data. This phenomenon
has been named incomplete learning, and it has been demonstrated theoretically that, to
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avoid incomplete learning while maximizing revenue, the system must follow a policy
that accumulates information about the demand behavior at an adequate rate without
deviating too much from the greedy policy [24]. Several heuristic methods combining this
principle with a classical parametric demand model [4,8,20,31,32] have been studied, in
which controlled variance pricing (CVP) [2] has arguably been the most influential method.
The CVP algorithm imposes a constraint on the greedy pricing policy that requires the
selected prices not be too close to the average of previously selected prices. This constraint
seeks to guarantee sufficient price dispersion by imposing a “taboo interval” over prices
which the system is not allowed to select.

Recently, a novel heuristic method [3] was found to outperform CVP in simulated
studies and real-world benchmarks. This heuristic combines the revenue maximization
and the accumulation of information into a single objective function in the form of

U( f ) = R( f )− η

Å
σψ( f )

ψ

ã
, (1)

where η is the trade-off parameter, R( f ) represents the expected revenue for fare f , and
σψ( f ) represents uncertainty of the demand behavior after selecting fare f . At each time
step, the system selects the fare that maximizes the objective function U( f ). The main
idea of this heuristic is to include the uncertainty of the demand model parameters in the
optimization objective as a penalty term. If the uncertainty over the parameters becomes
too large, the system shifts from a revenue-maximizing to an information-maximizing fare.
The trade-off parameter, η, can be used to tune the importance that the system should pay
to the uncertainty of the demand model parameters. In a recent study, this method was
successfully adapted to airline RM under the assumption of unconstrained capacity (i.e.,
infinite inventory capacity) [33], making it only useful for flights with small load factors
(flights that have much more capacity than demand).

Another stream of research brings to the light the similarities between the EWL prob-
lem and questions that arise in the field of machine learning, such as active learning [34]
and the exploration–exploitation trade-off [30,35,36]. The literature around these topics
is large, where some of the most popular techniques are Thompson sampling [37], up-
per confidence bound [38], the E3/R-max algorithms [39,40], and intrinsic curiosity [41].
However, in the EWL problem, a model of the demand behavior is present, and the model
describes how each possible price relates to the others. This is very different from solving
the exploration–exploitation trade-off in the general case, which often assumes that each
possible choice delivers a response independent of the others. The ability to exploit the
existence of a demand model is key for solving the EWL problem.

We organize the key studies in Table 1 with respect to the important requirements we
believed to be needed to a successful integration with airline RM. For the first requirement,
we seek methods that are directly compatible with parametric demand models. Further-
more, these methods need to either consider pricing under limited inventory capacity, or
they need to be adaptable to current practices for pricing optimization. For our last require-
ment, the methods need to consider that the historical booking data are generated by many
flights simultaneously (multi-flight), or they need to be easily integrated to this scenario.
These three requirements sum up the core conditions to apply the earning-while-learning
methods to airline RM.

In summary, due to the absence of a general well-defined tractable optimization ob-
jective, the EWL literature has focused on finding human-designed heuristic methods for
balancing between revenue maximization on one hand and model learning on the other. In
the next sections, we present a novel method going beyond these human-designed heuris-
tics. We demonstrate that, using RL, we can discover more effective pricing policies directly
from the maximization of the standard reward signal (i.e., pure revenue maximization
without any engineering of the reward signal) in the challenging single-leg problem.



Algorithms 2022, 15, 142 5 of 20

Table 1. Earning-while-learning literature review.

Study Method Demand Model Capacity Constraining Multi-Flight

CEP [27] heuristic
Bayesian,

non-parametric,
parametric

X X

CVP [2] heuristic parametric
(Ningyuan and

Gallego) [26] heuristic non-parametric X

(Elreedy et al.), see
Equation (1) [3] heuristic parametric

(Gatti Pinheiro
et al.) [33] heuristic parametric X

This work RL parametric X X

3. Background

This section is devoted to the description of the single-leg problem and how it is
typically solved. We also briefly review important concepts concerning RL that will be
used throughout this work.

3.1. The Single-Leg Problem

We consider the monopolistic, capacity-constrained single-leg problem. In this prob-
lem, there is only one airline operating a single leg from point A to point B. Every day a
new flight is open for sale and another flight departs, closing for new bookings. Each flight
is open for sale T days prior to departure (also called the booking horizon), and the airline
must manage T active flights simultaneously. The customers are only willing to book the
flight departing on a specific day, and they either choose to book or not to book at all. The
RMS’s goal, then, is to select the prices for every active flight so as to maximize the airline’s
long-term revenue. For simplicity, we assume that overbooking and cancellations are not
possible and that the flight has a single cabin class (e.g., first class, business, or economy),
with C being the flight’s capacity for this unique cabin. We consider that the RMS must
select the prices from a discrete fare structure F = { f0, . . . , fn−1}, where fi is a price point.
Furthermore, for the sake of generality, from now on we call a “day” a “time step” (because
in principle it could be any unit of time).

We assume that demand behaves according to a parametric demand function d( f ; ψ)
that returns the expected number of customers willing to pay for fare f , and ψ represents a
generic set of parameters of the demand function. A demand model extensively used in
the literature is the exponential model [14,42], with ψ = (ν, φ), given by

d( f ; ν, φ) = ν · Pr{purchase| f } = νe−φ( f
f0
−1),

where customers arrive according to a Poisson distribution with mean ν, called the arrival
rate parameter, and φ is the price sensitivity parameter. The constant f0 is the lowest fare in
the fare structure such that the customer’s purchase probability is one Pr{purchase| f0} = 1.
Perhaps the most straightforward way to simulate this demand model consists of generating
customer arrivals for each time step according to the Poisson distribution, and, for each
arriving customer, we sample a random value between zero and one, and, if the sampled
value is smaller than the purchase probability at the selected fare f , the customer accepts
the offer, proceeding with the purchase, otherwise the customer rejects the offer, and no
booking is made.

As the true demand behavior (ν∗, φ∗) is unknown by the RMS, it must estimate the
demand model parameters from historical booking data, which can be performed with an
ordinary least squares or a maximum likelihood estimation [33,43].
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Next, the RMS uses the calibrated demand model d( f ; ν, φ) to optimize the pricing
policy π for each active flight independently of the others. This pricing policy adjusts the
price according to flight’s current inventory state (e.g., the remaining capacity and the time
steps to departure), that is, when the flight has excess capacity, the policy may decrease
prices aiming to capture more customers, on the contrary, when the flight has a deficit of
capacity, the policy may increase prices aiming to capture only customers that are willing
to book at higher prices.

For each active flight, the pricing optimization is modeled and solved as a finite
Markov decision process (MDP) [44], which is defined by a tuple M = 〈S ,A, r, p〉, where
S is the state space, A is the action space, r : S × A → R is the reward function, and
p : S ×A×S → R is the transition probability function. At each time step t (e.g., day), the
RMS observes the inventory state of an active flight St ∈ S , denoted by the tuple St = (τ, c),
where τ = T− t is the number of time steps to departure, and c is the flight’s remaining
capacity. Then, it takes an action (i.e., it selects a fare) At ∈ A = F according to its pricing
policy π : S → A. Multiple customers can arrive and interact with the RMS by choosing
whether to book or not at the selected action At = f . At the time step t + 1, with probability
p(St+1|St, At; ψ), the remaining capacity c decreases by the number of bookings made at
the previous time step. Finally, the RMS receives a reward equal to the immediate expected
revenue given by

Rt+1 = r(St, At) = f
c

∑
i=0

i · Pr{i bookings | c}.

Interactions with customers continue until the flight departs, at which point no further
action can be taken, and the flight reaches the terminal state ST = (0, c). The MDP is
illustrated in Figure 2.

Once the parameters of the demand model are obtained, the system needs to search
for the policy πψ that maximizes the expected return E[Gt | At, . . . , AT−1 ∼ πψ], where the
return is defined as Gt

.
= ∑T−1

i=0 γiRt+i+1. The parameter γ ∈ [0, 1] is called the discount
rate, and it defines how farsighted the system is with respect to the revenue maximization
(in the case of the airline’s RM; the discount rate is very often chosen to be γ = 1 [14,42],
because the MDP has no loops, and the episode’s horizon T is finite, thus guaranteeing that
the return is a finite quantity). The optimal policy according to the demand model defined
by ψ can be computed through finite-state dynamic programming (DP) methods, where
we first solve the action value function qψ(s, a) by making use of the Bellman optimality
equation after setting the boundary condition qψ(ST , a) .

= 0,

qψ(s, a) = r(s, a) + γ ∑
s′∈S

p(s′|s, a; ψ) max
a′

qψ(s′, a′). (2)

St St+1At = �(St) 

�, c �–1, c

�–1, c–1

�–1, c–2

p(St+1|St, At)

Fares

a1

a2

a3

..
.

..
.

Rt+1 = r(St, At) 
0 bookings

1 booking

2 bookings

�  : remaining time

c  : remaining capacity

ai : price

States

Figure 2. Backup diagram for optimization of a flight.
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Finally, the pricing policy for the flight is obtained by computing πψ(s) = arg maxa qψ(s, a).
In principle, this optimization procedure must be replicated for each active flight; however,
given the simplicity of the assumed demand model (no seasonality nor day of week
variation), the same policy function can be used across all active flights.

3.2. Reinforcement Learning

RL also uses the same underlying concepts behind DP to optimize MDPs. The RL
agent’s goal is to find the policy π that maps the observed state s to actions that maximize
the expected return, and the procedure very often involves the computation of value
functions. In contrast to DP, RL methods have strong emphasis on learning through the
interaction with an environment. RL methods have mainly two important advantages over
DP methods that we will exploit [7]. The first one is that they do not require an explicit
distribution model, such as the one defined by p(s′|s, a), that describes every possible outcome
weighted by their probabilities when transitioning from one state to another. Instead, RL
methods use a sample model, that produces just one example from all possible outcomes. In
many applications, sample models are often much easier to obtain, particularly when the
number of possible outcomes is very large, and/or the computation of the probability of
each outcome is complex. Secondly, RL does not suffer from the curse of dimensionality that
occurs when the state–action space of a problem is so large that computing q(s, a) for all the
state–action pairs becomes intractable. Alternatively, RL generates trajectories in the state–
action space, and it performs updates at the pairs encountered along the way, directing
the learning towards the pairs that occur more frequently, thus focusing computational
resources where they are most currently needed to succeed in the task.

There are many classes of RL algorithms, but we focus on the important class of actor–
critic methods. Generally, these methods seek to compute the stochastic policy function
π(a|s), also known as the actor, which returns the probability of selecting action a given
state s, and the value function vπ(s), also called the critic, which outputs the expected return
from state s while following policy π. In practice, the actor–critic methods usually model
these two functions by the parameterized policy π(a|s; θ) ≈ π(a|s) and parameterized
value function v(s; w) ≈ vπ(s). The main idea behind actor–critic is to perform updates for
parameters (θ, w) to maximize the performance metric J(θ) .

= vπ(S0) while following the
policy gradient in a stochastic gradient ascent manner:

θj+1 = θj + α∇θ J(θj). (3)

The most used policy gradient estimator ∇θ J(θj) has the following form (see policy
gradient theorem [7] for details)

∇θ J(θj) ≈ Êπ

î(
Rt+1 + γv(St+1; wj)− v(St; wj)

)
∇θ ln π(At|St; θj)

ó
,

where Êπ indicates the empirical average over a finite batch of samples while following
policy π. The parameters for the value function v(s; w) can be updated according to

wj+1 = arg min
w

Êπ

[Ä
Rt+1 + γv̂(St+1; wj)− v̂(St; w)

ä2]
, (4)

which can be computed through stochastic gradient descent. The actor–critic framework
provides a wide range of RL algorithms (e.g., deep deterministic policy gradient [45],
asynchronous advantage actor–critic [46], trust region policy optimization [47], proximal
policy optimization [48], etc.), each having their respective pros and cons. In principle, for
our work, any of these algorithms could be used.

Later, we present the EWL problem in its continuing nature, that is, the task of
balancing between earning and learning never finishes, because, for every day, new booking
data are added to the historical database and old data are deleted. For tasks with such
a continuing nature (when the episode length T → ∞), we cannot choose the discount
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rate to be one (γ = 1), because the agent’s goal, which is maximizing the expected return,
would diverge [7]. Thus, choosing the discount rate may be a difficult task. If too large,
learning can be unstable, whereas, if too small, the agent can be too shortsighted, preferring
short-term reward to long-term goals. To overcome this limitation, an alternative classical
setting for formulating the goal in MDPs, called the average reward [7], defines the quality
of a policy π as the average rate of reward while following that policy, denoted by

r(π) .
= lim

h→∞

1
h

h

∑
t=1

E[Rt|S0, A0:t−1 ∼ π]. (5)

The value function vπ(s) = Eπ[Gt|St = s] is then defined in terms of the differential return:

Gt
.
= Rt+1 − r(π) + Rt+2 − r(π) + Rt+3 − r(π) + . . . . (6)

There are several methods for computing the differential return [49], and it has been
already successfully extended to the actor–critic framework [50].

4. Revisiting Earning While Learning through Reinforcement Learning

To solve the single-leg problem, the standard approach followed by legacy RMSs
breaks down the problem of optimizing T active flights into T smaller optimization prob-
lems, each flight being optimized with DP as described in Section 3, by making use of
Equation (2), as illustrated in Figure 3 (left). This approach would be correct if each flight
was truly independent of the others. However, the data collected for each flight are aggre-
gated and used for model calibration, which in turn is used for optimization in future
time steps. Thus, the pricing decision of each flight has longstanding consequences for the
quality of future model calibration that goes beyond the flight’s departure. Furthermore,
each price decision contributes to the quality of the estimation of future demand models,
making each decision a small part of a whole, suggesting that some collaboration across
flights may be needed. In fact, the policy collecting data in legacy RMSs is rather a result of
a set of T uncoordinated policies, each seeking to maximize its own revenue independently.

Figure 3. Comparison between episodic and continuing formulations for revenue maximization.

To address this problem, we want to give the agent the ability to specify a unified
policy that can coordinate pricing decisions across flights and that maximizes revenue
beyond individual flights. Therefore, we propose to compute a policy that outputs the
price decisions across the active flights altogether as illustrated in Figure 3 (right). We
denote the i-th active flight on the selling horizon with superscript [i], such that S[i]

t implies
the inventory state at time step t for the i-th active flight on the selling horizon. The
agent’s action is a tuple containing the selected fare for each one of the T active flights,
i.e., At = (A[0]

t , . . . , A[T−1]
t ). Similarly, the observation space is defined as the tuple of

the inventory state for each one of the T active flights and the current estimated model
parameters, i.e., St = (S[0]

t , . . . , S[T−1]
t , ψ). A natural consequence of this choice is that

we need to redefine the reward signal as the sum of the immediate revenue obtained for
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each one of the active flights, i.e., Rt = ∑T−1
i=0 r(S[i]

t , A[i]
t ), addressing the second point of

maximizing the combined revenue across all flights.
Our goal is to find the pricing policy that maximizes the combined revenue. Note that

the dimensionality of the problem makes it impossible to solve it with exact methods such as
DP. The cardinality of the action space alone is |A| = |F |T, which makes it impractical even
for toy problems. The observation space has a discrete component with size (T · C)T and
a continuous component representing the estimated model parameters ψ. The transition
probabilities, which we enumerate in Section 3.1, is now one set too large (|S| · |A|) to be
computed exactly. These characteristics make this problem very appealing to address with
RL, because RL approximates the policy and value functions, enabling us to represent large
state–action spaces, and it uses a simple and cheap sample model to perform trajectory
sampling, in contrast to the expensive computation of the transition probabilities required
by DP.

Among the many RL methods in literature, algorithms that use policy parameteriza-
tion, such as actor–critic methods, are well suited to large action spaces [51]. In Algorithm 1,
we present the training pseudocode of the actor–critic framework to the EWL problem. We
compute a parameterized policy π(a|s; θ) and a parameterized value function v(s; w) as
usual (see Section 3.2). The training environment uses a sample model, where each active
flight interacts with a simulated demand following the ordinary assumptions (Poisson ar-
rivals, negative exponential purchase probability), and the estimation of the demand model
parameters is also performed also as usual [33,43]. Perhaps the only difference from the
standard methods is how the total return is computed. When we redefined the state–action
space and the reward signal to contain the aggregation of the state and rewards for all
active flights, the “episodic” concepts of the starting and terminal states from Section 3.1
disappeared with it. At each time step, the RL agent observes the sequence of the inventory
states and the latest model parameters, and it selects the fares for each active flight. This
continues from any particular starting point without termination. The continuing nature of
the task suggests the use of the average reward defined in Equation (5).

Algorithm 1: Actor–critic for EWL.
Input: The training range ψ∗ ∈ [ψmin, ψmax] and the episode horizon H � T

1 Loop forever
2 initialize an empty training batch B;
3 sample ψ∗ uniformly within training range;
4 warmup historical booking database according to d( f ; ψ∗) and while following

the random policy;
5 for t = 1, . . . , H − 1 do
6 estimate ψ̂ from historical booking data;
7 set St = (S[0]

t , . . . , S[T−1]
t , ψ̂);

8 select At = (A[0]
t , . . . , A[T−1]

t ) ∼ π(a|St; θ);
9 simulate demand response according to d( f = At; ψ∗);

10 observe St+1 and Rt+1 = ∑T−1
i=0 r(S[i]

t , A[i]
t );

11 store St, At, Rt+1, St+1 to B;
12 end
13 recompute the rewards R′i = Ri − r(π) ∀Ri ∈ B, see Equation (6);
14 update θ and w according to Equations (3) and (4), respectively, using the

collected experience B;
15 end

The way the EWL problem is formulated for the RL agent is related to multitask
reinforcement learning (each set of true demand parameters define a new transition proba-
bilities and thus to a new task) and partial observability (the true demand parameters are
unknown to the system). The RL agent is not informed which task it is solving, and it needs
to discover which task it is solving along the way through the unreliable estimated demand
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parameters. In fact, we borrow some ideas from these fields, such as the use of universal
function approximators (inputs of the value function) [52], and the use of a (supervised)
state-estimator function (which corresponds to the forecasting module that computes the
estimated model parameters) [53].

With regard to the modeling of the policy and the value functions in Algorithm 1,
we suggest the use of artificial neural networks. We recognize that there may be many
possible designs for the artificial neural network (ANN), and finding the best one is not the
focus of our work. We find that the architecture illustrated in Figure 4, which uses a long
short-term memory (LSTM) [54], the Luong-style attention mechanism [55] following the
encoder–decoder architecture [56], delivers stable training and good performance results.
Perhaps the most important aspect of our design is the use of the LSTM decoder in the actor
network. The number of output units grows linearly with respect to the number of parallel
active flights (i.e., for each active flight, the agent must compute the probability of selecting
each fare in the fare structure), and it can quickly cause the ANN to have too many outputs
to learn. By using an LSTM decoder, the ANN can share the learned parameters between
the outputs of each active flight, allowing a more compact and efficient representation.

Actor Network

LSTM

Encoder

LSTM

Decoder

Linear Linear

Softmax Softmax

�
[0]

�
[T–1]

c[0] �[0] �[T–1]

LSTM

Decoder

LSTM

Encoder
... ...

......

� c[T–1] �

Critic Network

c[0]

... v

� c[T–1] �

Figure 4. The artificial neural network architecture consists of two separate networks. The critic
network approximates the value function, and the actor network approximates the policy function.
The long short-term memory (LSTM) encoder takes the remaining capacity inputs c[i], and the LSTM
decoder takes the remaining time inputs τ[i], and it outputs the probability of selecting each fare in
the fare structure π[i] for each active flight.

5. Experiments

We separate our experiments into two distinct scenarios. In the first one, we compare
the RL agent to the heuristic method defined in Equation (1) while estimating a single
demand-model parameter (price sensitivity φ). The heuristic method can be adapted to the
single-leg problem under the assumption of unconstrained capacity (i.e., infinite inventory
capacity) [33]. Even though the unconstrained capacity is an unrealistic assumption for
most real-world scenarios in airline RMs, this experiment provides a baseline to measure
the effectiveness of the RL agent when solving the EWL in the single-leg problem. In the
second, we compare the solution obtained by RL with the standard RMS (which behaves as
certainty equivalent pricing, as described in Section 2) when capacity is constrained, and
we assume the system must estimate two model parameters from historical booking data
(arrival rate ν, and price sensitivity φ). This scenario aims to demonstrate that our method
can learn how to solve more complex settings (such as controlling the uncertainty over
two model parameters), and that it can also learn how to optimize pricing under capacity
constraints (which is not possible with the work developed in [33]).
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Throughout the experiments, we assume that each flight has the capacity C = 50
(representing, for example, the number of seats in the business cabin), the fare structure
has 10 price points F = {$50, $90, . . . , $230}, the booking horizon has T = 22 time steps,
the demand follows the exponential model, and the historical database keeps the booking
data for the most recent T flights. Furthermore, we refer to the price sensitivity in terms of
the fare ratio of the lowest fare at which the purchase probability is 50% [57], abbreviated
as frat5, which is defined as

F5
.
= ln(2)/φ + 1.

The frat5 greatly simplifies interpretation, because it has a linear relationship to
revenue-maximizing fare under the assumption of the exponential demand model.

As illustrated in Figure 5, for the RL training set up we use the proximal policy
optimization algorithm (PPO) [48] because of its simplicity and stability, and we use
RLLib [58] to distribute training computation in a cluster with 4 GPUs and 24 CPUs. The
training hyperparameters set for the PPO algorithm for the two investigated scenarios can
be found in Table 2.

Roll-out Workers

Muti-GPU Learner
eqs.  (2) and (4)

sample batch B

new policy parameters �

synchronous sampling

synchronous broadcasting

Figure 5. The proximal policy optimization algorithm training architecture for earning while learning.
A copy of actor network is deployed to each roll-out worker responsible for generating training
experience according to the true demand behavior specified by ψ∗. The agent cannot observe
the true demand behavior parameters directly, and its decisions rely on exclusively the estimated
demand behavior parameters ψ instead. The training experience generated by all roll-out workers
are aggregated into a batch and then sent to the learner which is responsible for updating the neural
networks weights.

Table 2. Training hyperparameters. “ep.” abbreviates episode. The RLLib implementation of PPO
dedicates one CPU to the master thread, which is not used for generating experience.

Experiment Hyperparameter Value

unconstrained
capacity

train batch size 102 eps.
CPU × 440 time steps

ep. × 23 CPUs = 1,032,240
learning rate (α) 3× 10−5

entropy coefficient
(see [48])

0.005

value function clip
(see [48])

30

eligibility trace
(see [59])

0.15

constrained
capacity

train batch size 175 eps.
CPU × 440 time steps

ep. × 23 CPUs = 1,771,000
learning rate (α) 3× 10−6

entropy coefficient 0.015
value function clip 30
eligibility trace 0.1



Algorithms 2022, 15, 142 12 of 20

5.1. Estimating Only the Price Sensitivity under Unconstrained Capacity

In this section, we follow the experimental settings proposed in [33]. We consider
the case where the system must estimate only the price sensitivity parameter φ, and that
the true arrival rate ν∗ = 4/22 is fixed and known at all time steps (no estimation of
this parameter is needed). We evaluate the methods under a low number of arrivals,
because the scarcity of booking data for estimating the demand price sensitivity makes
the problem very challenging, being efficient price experimentation essential to success
in the task. Even though the capacity is finite, C = 50, given the very low arrival rate
ν∗ = 4/22, it is extremely unlikely that the flight’s capacity will ever exhaust even if
the lowest fare (the fare for which purchase probability is one) f0 = $50 is selected at
all time steps (Pr{50 bookings | A0, . . . , AT−1 = f0} < 10−16). Therefore, from the opti-
mization perspective, the capacity is practically infinite, allowing us to implement the
heuristic method as presented in [33]. Moreover, we perform model calibration at every
time step, and we evaluate both the heuristic method from [33] and RL within the interval
F5 ∈ [2.1, 3.8]. In this interval, the revenue-maximizing fare if the true demand behavior
were known covers almost the entirety of the fare structure. In theory, the system does not
know anything about the evaluation interval, and any positive value of the price sensitivity
could be assumed. However, to avoid extreme evaluations for the price sensitivity param-
eter, we limit its estimates to be within the range F5 ∈ [1.5, 4.3] (this parameter clipping
applies to all methods: RL, RMS, and heuristic). Safety mechanisms such as this one are
often present in real-world systems. In Figure 6, we illustrate the relationship of these
two intervals with the revenue-maximizing policy when the true price sensitivity of the
demand is known by the system at all time steps.

Algorithm 1 requires two inputs. The first input is the value that the model parameters
may assume. Given our settings, we have two natural choices: we can either choose to
train under the evaluation interval or under the “clipped” interval. We choose the clipped
interval (F5 ∈ [1.5, 4.3]), because the two most extreme price points are never optimal in
the evaluation interval, and RL could easily learn how to exploit this fact. For example, if
the estimation of the price sensitivity parameter is too unreliable to be useful, RL could
still learn that the most extreme price points should never be chosen (as illustrated in
Figure 6), whereas the heuristic methods would require to be informed of this fact explicitly.
One could argue that this is an advantage, but we believe that the comparison is fairer
between heuristic and RL if the agent cannot know the true range of the evaluation interval
during training. With respect to the second input, the episode horizon, we can choose
any arbitrary value larger than the booking horizon T = 22. If this value is too small, the
agent might never actually observe the long-term consequences of its choices. We find that
H = 20× T = 440 time steps is appropriate for our goals.

F5
e alua ion

in er al

clipped interval

�
ϕ

(a
|

s)

fares

$50
$70

$210
$230

�
ϕ

(a
|

s)

fares

$50
$70

$210
$230... ...

1.5 4.3

Figure 6. An illustration of the clipped and evaluation intervals and their corresponding revenue-
maximizing policies.

We focus our analysis on the revenue performance, represented by the average col-
lected revenue normalized with respect to the revenue-maximizing policy (which knows
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the true demand price sensitivity at every time step) and the random policy (that selects
fares from a uniformly random distribution). Furthermore, we also look at the mean square
error (MSE) of the estimated price sensitivity (representing the demand model quality),
which is given by

MSE .
=

1
n

n−1

∑
i=0

(φi − φ∗)2,

where φi is a sample estimation of the price sensitivity. We perform each evaluation run
following the same training procedure from in Algorithm 1, that is, first we set the true
demand behavior parameters, then we warm up the historical database using the random
policy, and finally we roll out each method’s policy for 440 steps (the computation of the
average reward and the update of the neural network weights are not performed during
the evaluation). In contrast to the training algorithm, we discard the first 3× T = 66 time
steps of data, because we want to compare each method in its stable regime.

We separate the analysis into two distinct parts. In the first part, we compare how each
method behaves within the evaluation interval, then we perform a more detailed analysis
of the final pricing policy obtained for each method.

In Figure 7, we set the true frat5 parameter to the fixed values of the evaluation interval,
and, for each frat5, we compute the average revenue performance and the price sensitivity
MSE for 3565 independent evaluation runs. For the heuristic method, we choose a constant
value for the trade-off parameter η = 2197 (see Equation (1)), which is the value that
maximizes the expected revenue for the evaluation interval. In Figure 7 (left), we observe
that RL outperforms both RMS and the heuristic method in the entire interval, except for
F∗5 = 3.8. The reason why RL does not perform as well as the heuristic method for F∗5 = 3.8
will be explained in the second experiment of this section, when we illustrate the final
policy obtained for both methods. In Figure 7 (right), we plot the MSE over the estimation
of the price sensitivity. We see that all methods have larger values for price sensitivity
MSE for lower values of frat5, which decreases as the frat5 increases. The same effect is
observed and explained in [33]. In short, this is because the true arrival rate parameter ν∗ is
known by the system. As the frat5 increases, so does the optimal fare, and the higher the
selected price is, the more information is obtained about the customers’ price sensitivity.
Moreover, we see that RL also produces lower price sensitivity MSE than the RMS and the
heuristic method. The RL agent pricing policy displays a better estimation of the demand
price sensitivity, and it also generates more revenue on average than the heuristic method
and RMS.
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Figure 7. The comparison between the average performance of the revenue management system
(RMS), the heuristic method from [33] and reinforcement learning (RL) (99% confidence level). The
system’s performance is better the higher the average normalized revenue is (the best theoretical
response that requires the perfect knowledge of the demand parameters of all time steps is normalized
to be one). On the right chart, we show the estimation mean squared error of demand model, which
indicates that smaller errors are better.
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In Figure 8, we show the pricing policy obtained through Monte-Carlo roll-outs for
both heuristic and RL methods. When true frat5 F∗5 = 2.71 (Figure 8a), RL shows a large
performance advantage with respect to the heuristic method (see Figure 7) and also a
smaller price sensitivity MSE. The reason is clear when comparing the two policies. RL
tends to price closer to the true optimal fare, that is, it prices fares $110, $130, and $150
more frequently (83.6%) than the heuristic method (69.9%). RL is also slightly more efficient
than the heuristic method with respect to the price sensitivity MSE, because RL tends to
price the higher fares f ≥ $130 more frequently (70.7%) than the heuristic method (65.1%)
(in this problem setting, higher fares contain more information about the demand price
sensitivity than the lower fares). When true frat5 F∗5 = 3.8 (Figure 8b), RL generates less
revenue than the heuristic method, and they both display the same price sensitivity MSE.
Analyzing the heuristic and RL policies closely, we see that the largest difference is that
the heuristic method selects the highest fare $230 often (39.6%), while RL rarely selects the
same fare (2.4%). This is very surprising, because, under the evaluation settings, the highest
fare is near optimal for revenue maximization and also near optimal for the estimation of
the demand price sensitivity (see eq. (2) from [33]). The reason the fare $230 is preferred
by the heuristic is because, at frat5 F∗5 = 3.8, price sensitivity clipping happens frequently
F5 = 4.3 (20.1%; same number is observed with RL), causing the heuristic algorithm to
select the fare of $230. When the price sensitivity parameter is clipped (and the estimated
uncertainty of the price sensitivity is unavailable), it is impossible for the system to know
whether it was clipped due to large errors or if it was clipped because the true value is
close to the limits. Compared to the heuristic (which has access to the estimation of the
price sensitivity uncertainty, see Equation (1)), RL takes a more conservative approach,
distrusting the parameter estimation and pricing fares ($170, $190 and $210) that are often
better for the estimation of the demand price sensitivity and that work well for high values
of frat5.
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(a) F∗5 = 2.71.

50 70 90 110 130 150 170 190 210 230

fare ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 (
�

)

50 70 90 110 130 150 170 190 210 230

fare ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 (
�

)

(b) F∗5 = 3.8.

Figure 8. Comparison between heuristic and reinforcement learning (RL) roll-out policies. For
convenience, we represent the revenue-maximizing policy.

5.2. Estimating the Price Sensitivity and Arrival Rate under Constrained Capacity

For our second experimental setting, we consider that the systems must estimate both
demand model parameters, i.e., the arrival rate ν and the price sensitivity φ, from historical
bookings. The true arrival rate can assume any value in the range ν∗ ∈ [55/22, 80/22],
making the flights’ capacity C = 50 finite in practice. As in the previous experiment, we
consider that the true price sensitivity can assume any value in the range F∗5 ∈ [2.1, 3.8].
For the same reasons as in the previous experimental setting, we train the RL agent
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over a clipped interval that is larger than the evaluation interval (ν ∈ [50/22, 85/22] and
F5 ∈ [1.5, 4.3]).

As in the previous section, we first analyze how the RMS and the RL agent per-
form in the evaluation interval with respect to revenue performance and model qual-
ity. Then, we compare how the two policies differ for a specific value of true demand
behavior parameters.

In Figure 9a, we can see how the average normalized revenue and the MSE for the
demand model parameters respond to different values of true price sensitivity within
the evaluation interval. From the left chart, we can see that RL outperforms RMS in the
entire interval, with a larger advantage occurring with higher values of frat5. In the center
and right charts, we see that the MSE errors for both parameters are close to each other,
but RL consistently demonstrates a worse MSE performance. The same behavior is also
present when the true customer price sensitivity is fixed, and we only vary the arrival
rate, as in Figure 9b. This may seem paradoxical: how can RL perform better from the
revenue maximization perspective while having a worse estimation of the demand model
parameters? Unfortunately, we do not have a complete understanding of RL strategy to
precisely answer this question, thus we can only speculate about its strategy. As we observe
in the following analysis, instead of reducing model uncertainty, the agent can learn to
select the “safe price” which it is certain will not lose too much revenue, especially when
the estimated demand model parameters are found to be too extreme (i.e., close to the
clipping limits).
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(a) ν∗ = 70/22.
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(b) F∗5 = 2.9.

Figure 9. The comparison between the average performance of the revenue management system,
reinforcement learning, and revenue-maximizing policies (99% confidence level).

For the second analysis, in Figure 10, we display the RMS and the RL agent pricing
policies when the true arrival rate and price sensitivity are fixed at ν∗ = 70/22 and F∗5 = 2.9.
We choose this point because the flights’ average load factor is 70%, which brings a nat-
ural price variability and a high amount of booking data to estimate the demand model
parameters (the historical data contains an average of 1078 bookings). Given these two
properties, obtaining a good estimation of the demand model parameters is relatively easy
for the RMS, which puts in question the value of price experimentation. The RMS achieves
a normalized revenue performance of 80.6%, with an MSE for a price sensitivity and an
arrival rate of 0.007 and 0.20, respectively. The agent is better for revenue maximization,
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with a normalized revenue performance of 89.9%, but it has a worse model quality with
an MSE for a price sensitivity and an arrival rate of 0.008 and 0.26, respectively. When
comparing the two policies, we see that the major difference is that the agent prefers to
price center fares $130, $150, and $170 more frequently (72.1%) than the RMS (65.3%). This
strategy has a negative impact on the overall model quality, because it decreases the price
variability in the historical data, but it turns out that center fares are better for revenue
maximization than higher fares such as $210 and $230, because they are a less extreme
given the true demand behavior. This aligns with our intuition that the RL agent tends to
prefer “safer prices” when “price experimentation” is less suitable.

In Table 3, we present a summary of the performance of each method for the two
investigated scenarios. The results represented in the table correspond to the average
behavior of 3565 episodes for each method in the evaluation range.
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Figure 10. Comparison between revenue management system (RMS) (left) and reinforcement learn-
ing (RL) (right) roll out policies for ν∗ = 70/22, F∗5 = 2.9. The reinforcement learning policy performs
better (89.9%) than the revenue management system policy (80.6%) with respect to the revenue
performance but has worse mean squared errors for both demand model parameters.

Table 3. Summary of experimental results.

Experiment Method
Average

Normalized
Revenue

Price Sensitivity
MSE

Arrival Rate
MSE

Unconstrained
capacity

RMS (CEP) 0.702 ± 0.007 0.0401 ± 0.0026 —
heuristic [33] 0.783 ± 0.003 0.0148 ± 0.0008 —

RL 0.868 ± 0.002 0.0109 ± 0.0005 —

Constrained
capacity

RMS 0.862 ± 0.003 0.0072 ± 0.0002 0.162 ± 0.003
RL 0.912 ± 0.002 0.0090 ± 0.0003 0.219 ± 0.004

6. Discussion

Perhaps one of the most important keys to the success of RL was the simplification
the dual optimization aspect of the EWL problem into a single optimization dimension,
which is the revenue maximization. Instead of describing the EWL problem as an explicit
requirement of balancing revenue maximization and model learning common to heuristic
methods [2,3,33], we ask the RL agent to maximize only revenue, and RL has the flexibility
to trade-off between earning and learning as it finds best suitable. In Figure 11, we show
how RL trades earning and learning throughout its training. This figure is computed
according the same experimental settings which the RMS must use to estimate both ar-
rival rate and price sensitivity, and the true demand behavior parameters are sampled
uniformly in the evaluation interval. Prior to the start of training, RL starts following a
near-random policy at the bottom right, and, as training progresses, RL policy improves
its revenue performance (earning) at the expense of the demand behavior parameter’s
accuracy (learning). At some point in training, RL displays the same revenue performance
of RMS while presenting a better estimation of the demand model parameters. As training
continues, RL is able to further improve revenue by sacrificing the demand model quality,
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ultimately converging towards the point of equilibrium represented by the dot at the end
of its trajectory, where it cannot further improve revenue.

Since controlling model uncertainty is required to succeed in the task, we leave the
mission of identifying when and how much price experimentation should be conducted to
the agent. Such an approach has strong connections to the “reward is enough” hypoth-
esis [13], which states that any associate abilities of intelligence (e.g., social intelligence,
perception, knowledge representation, planning, etc.) can be understood as sub-serving the
maximization of reward (i.e., the measure of success in the task). In our case, we claim that
controlling the quality of the estimated demand model is the associated ability needed by
the agent to achieve the maximization of reward (or revenue). We trust RL to find out the
solution to all the complexities of the EWL problem from nothing more than the standard
RMS raw inputs, without any human guidance.

Even though we did not investigate how our method behaves in the face of market
shocks, we believe that the adaptation should be straightforward. In principle, to train the
agent to react to market shocks, we can simply introduce simulated examples of market
shocks by making the true demand behavior parameters a function of time ψ∗(t) in the
inner loop of Algorithm 1. Indeed, this illustrates how human experts can interact with the
agent in the offline setting; the expert’s mission is to define what task they want the agent
to solve (in this example, the expert specifies the functional form of a market shock).

Last but not least, our method also displays some practical benefits when compared to
heuristic methods such as in [33]. The RL agent has no need for any external indication of
the level trust of the estimated demand model parameters (represented by the estimation
of demand model uncertainty σψ in heuristic methods). The advantage of not requiring a
measure of uncertainty is that, for realistic-sized demand models that have many param-
eters to be calibrated, computing these quantities and balancing their importance in the
optimization heuristic may not be so a trivial task. Furthermore, training the RL agent
imposes a different set of constraints, such as computation requirements and fine-tuning the
algorithm’s hyperparameters, which may be easier to address and less time consuming than
heuristic-based methods that often require significant expert time to develop, implement,
and calibrate.
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Figure 11. RL trajectory in the earning–learning space. The earning axis represents the average
normalized revenue for the evaluation interval, while the learning axis represents the average
estimated demand parameter’s accuracy 1− ||ψ−ψ∗ ||

||ψ∗ || . The revenue-maximizing policy is obtained by
providing the true demand behavior parameters to the optimizer while keeping the estimation of
parameters of the demand model as usual. The balance found by the revenue-maximizing policy is
unstable, thus not being an answer to the problem.

7. Conclusions and Future Work

In recent years, the EWL problem has attracted attention from academia and indus-
try, in particular since the COVID-19 pandemic, which significantly impacted the global
economy, especially the airline industry. We believe that recovery requires effective price
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experimentation to learn the new and potentially evolving demand price sensitivity. In this
work, we investigate the EWL problem in the challenging single-leg problem, where the sys-
tem must control the pricing strategy of many active flights while learning the parameters
of the demand model from historical bookings.

Throughout the decades, many analytical studies and heuristic methods have been
proposed to address the EWL problem, with different revenue performance and imple-
mentation constraints. To the best of our knowledge, none of these methods have been
successfully deployed in the airline industry yet, despite their good performance in sim-
ulation studies and real-world benchmark datasets, perhaps because of the complexity
of computing the estimation of the parameter errors in realistic demand models, and the
difficulty of integrating these methods with current price optimization techniques.

Inspired by recent advances in AI, we propose a novel method that does not rely on
any heuristics. Instead of trying to solve the EWL problem through human design, we
describe the problem to an RL agent, and we leave the agent the task of finding the solution
to the problem by itself. The RL agent searches for pricing policies that maximize revenue
while controlling the overall demand model quality, and the learned policies generate more
revenue on average than the state-of-the-art methods. We also show that our method can
be extended to more complex settings, which heuristic methods fail to address. Our results
suggest that, contrary to expert intuition (expressed in most heuristic methods), “earning
is enough” to solve the EWL problem; no specification of an objective balancing revenue
maximization and model learning nor explicit optimization involving the uncertainty of
the demand model parameters is needed.

We believe that better future solutions to the EWL problem will be found through AI
improvements rather than human-designed heuristics. We suggest that RL experts should
focus on investigating different ANN architectures, more adapted RL methods, enhance
computation capabilities, or changes in the modeling of the observation/action space. At
the same time, RM experts could concentrate on designing the training environment (the
sample demand model) that the RL agent relies upon for training. Finally, we leave to
the agent the task of discovering how to solve the problem, while the human designer
concentrates on specifying what problem needs to be solved. We hope that our successful
experience will inspire researchers to try to solve problems that rely on expert intuition
through RL instead.
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