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Abstract— Social networking and content sharing service
providers, e.g., Facebook and Google Maps, enable their users to
upload and share a variety of user-generated content, including
location data such as points of interest. Users wish to share
location data through an (untrusted) service provider such that
trusted friends can perform spatial queries on the data. We
solve the problem by transforming the location data before
uploading them. We contribute spatial transformations that re-
distribute locations in space and a transformation that employs
cryptographic techniques. The data owner selects transformation
keys and shares them with the trusted friends. Without the keys,
it is infeasible for an attacker to reconstruct the exact original
data points from the transformed points. These transformations
achieve different tradeoffs between query efficiency and data
security. In addition, we describe an attack model for studying
the security properties of the transformations. Empirical studies
suggest that the proposed methods are secure and efficient.

I. INTRODUCTION

Consider this scenario: On a trip to Paris, Alice takes photos

with her GPS-equipped camera phone (e.g., Nokia N95) that

automatically geo-tags each photo. She uploads the photos to

a service, such as Flickr or Facebook, in order to share them

with friends. In this scenario, Alice is the private data owner

(PDO), whereas her geo-tagged photos are user-generated

content (UGC). Alice outsources the management of her UGC

to a service provider (SP). She wishes that only her friends,

called trusted query users, can access the UGC. Anybody else,

including the SP, is a potentially malicious attacker who may

take advantage of the UGC for commercial purposes, e.g.,

unsolicited advertisements, or criminal purposes, e.g., robbery.

This paper focuses on the outsourcing of spatial datasets.

It presents methods that protect location data (i.e., a set P of

points) from attackers, while allowing trusted query users to

issue spatial queries that are executed efficiently by the SP.

Non-spatial content (e.g., photo) is assumed to be encrypted

with conventional encryption; it can be decrypted by trusted

users. The PDO maps P to P ′ using a transformation with

a set of secret parameters that constitute the key. The PDO

uploads P ′ to the SP and sends invitations (with the key) to

trusted users through a secure channel. The SP does not know

the key, so it cannot derive P . To issue a range query q, a

trusted user U maps q to q′ by using the key and submits

q′ to the SP. The SP executes q′ against P ′ and returns the

result R′ ⊆ P ′ to U , who uses the key to derive the actual

result R ⊆ P . The transformed dataset P ′ must satisfy two

important criteria: (i) it should be infeasible to reconstruct the

precise points of P from P ′ without the key, and (ii) it should

support efficient and accurate processing of range queries from

trusted users.

A brute-force solution is to apply conventional encryption

(e.g., AES) to the dataset P and then store the encrypted file at

the server. At query time, the client downloads the entire file,

decrypts it, and then searches for the requested results. This

solution is secure, but inefficient for typical queries requiring

a small fraction of the data.

Most related work [1], [2], [3] in database outsourcing

assumes that a tamper-proof device (or trusted software) exists

in front of the SP. In our case, it is not feasible for every PDO

to install her device at the SP. If query processing requires

on-the-fly transformations, these must be done by the user;

furthermore, the methods must have low communication cost.

In summary, our first contribution is an attack model for

assessing the security of transformations. Our second contri-

bution is the proposal of spatial transformations (i.e., HSD,

ERB) and a cryptographic method (i.e., CRT). They cover

different tradeoffs between data security and query efficiency.

The rest of the paper is organized as follows. Section II

reviews related work. Section III defines formally the problem.

Section IV presents an attack model and our spatial transfor-

mation methods. Section V presents the cryptographic method.

An empirical evaluation is presented in Section VI. Finally,

Section VII concludes the paper.

II. RELATED WORK

Hacigümüs et al. [3] addressed the confidentiality of out-

sourced data by storing at the SP the encrypted tuples, with

auxiliary bucketing information to facilitate indexing. This

technique returns a superset of the actual query results, which

calls for expensive filtering. Agrawal et al. [1] pointed out that

bucketing is vulnerable to estimation exposure, i.e., inferring

approximate values of the encrypted data. Motivated by these

limitations, an order-preserving encryption scheme (OPES) for

1D numeric values was proposed that transforms the input

data distribution (e.g., Zipfian) into a user-specified target

distribution (e.g., Gaussian) [1]. This scheme assumes that

an attacker cannot stage a known plaintext attack, unlike our

attack model in Section IV-A. Damiani et al. [2] propose

to build a B+-tree on 1D data and then apply conventional

encryption (e.g., AES) on each node. The decryption key is

required in order to process queries and a trusted front-end

(with tamper-resistant device) at the SP is assumed.

Confidentiality has also been addressed in the context of

privacy-preserving publication of sensitive datasets. The k-



anonymity principle [4] generalizes each tuple such that it is

indistinguishable from at least k−1 other tuples. However, the

generalized tuples prevent exact query answers, rendering the

data useful only for statistic purposes. In contrast, the users in

our setting require exact query results.

In privacy-preserving data mining, a mining task (e.g.,

classification, clustering) is outsourced to the service provider

(SP) for extracting patterns from the perturbed data, without

revealing the original data. Data perturbation techniques [5]

could be used for introducing noise into the data. Unfortu-

nately, these methods do not guarantee accurate region queries

over the perturbed data so they are inapplicable to our problem.

In the context of location privacy, users ask for nearby

points of interest, without revealing their exact locations to

the service. Following the spatial k-anonymity principle, a

trusted location anonymizer [6], [7] is employed to maintain

the locations of all users. At query time, it generalizes the

query user’s location into a region before submitting it to

the service. Other work on private nearest-neighbor queries

[8], [9], [10] adopt alternative privacy definitions other than

spatial k-anonymity. All these location privacy solutions are

orthogonal to our problem, as they do not protect the points

of interest.

A related issue in data outsourcing is the authentication of

query results, which must be sound (the SP does not alter

the data), and complete (the SP returns all valid results). The

Merkle Hash Tree (MH-tree) [11] is a main memory binary

tree for indexing 1D values, and it has been used [12] for the

authentication of range queries. Authentication is orthogonal

to our confidentiality problem, and existing authentication

schemes can be used on top of our transformations.

III. PROBLEM SETTING

This section defines formally the problem of confidential

spatial data outsourcing. We focus on 2D point datasets (i.e.,

common spatial UGC) and the (typical) range query. Given a

rectangle W = [xl, xh] × [yl, yh] and a set P of points, the

range query retrieves each p ∈ P that intersects with W .

We assume the following architecture. In a pre-processing

phase, the PDO chooses a secret transformation key and

converts the original point set P into the transformed point

set P ′. Next, the PDO builds an index T (P ′) over P ′. The

transformed dataset is sent to the SP. The PDO trusts all her

friends (i.e., querying users) and sends them the transformation

key over a secure channel (e.g., SSL). To issue a query q, the

user U encodes q to q′ using the key, and sends q′ to the SP.

The SP evaluates the query over P ′ and returns the encoded

results to U . Finally, U decodes the results using the key, thus

obtaining the original points.

Our objective is to develop transformation techniques that

satisfy the following criteria: (i) hardness for an attacker

(including the SP) to recover precisely the original dataset

P from the transformed dataset P ′, (ii) low transformation

overhead, (iii) efficient support for range query processing at

the SP.

IV. SPATIAL TRANSFORMATIONS

We first formulate the notion of spatial transformation. For

the sake of discussion, we assume that the spatial domain is

fixed to the unit square [0, 1]2, for both the original point set

P and the transformed point set P ′. Given a point p = (x, y)
in P , we compute its transformed point p′ = (x′, y′) in P ′,

by applying the transformation functions FX(·) and FY (·)
to the x and y coordinates, respectively. These functions are

associated with a hidden transformation key, which will be

detailed for each specific transformation technique. The key

length Υ indicates the number of parameters used in the key.

Section IV-A presents an intuitive attack model (for spatial

transformations), by capturing the knowledge available to the

attacker. In Section IV-B, we propose a spatial transformation,

called HSD. Section IV-C discusses a transformation method,

called ERB, that injects errors into the data such that they are

reversible with the help of the key.

A. Attack Model

Our attack model is analogous to the known-plaintext attack

in the cryptography literature, which was not considered in

[1]. Even though the attacker has some prior knowledge of

the dataset, it is worth preventing the attacker from learning

any meaningful information (e.g., distribution, dense regions,

outliers) about the remaining data points.

Let P and P ′ be the original and transformed dataset,

respectively. Assume the attacker knows only the following:

• A set S ⊂ P of m points, S = {s1, s2, ..., sm}.

• The set S′ ⊂ P ′ of transformed points, S′ =
{s′1, s

′
2, ..., s

′
m}, where s′i is the transformed point of si.

Our goal is to protect the original data points. The general

attack is defined as a transformation-independent method that

estimates an approximate original location of some trans-

formed point in P ′−S′, based on the known S and S′ (but not

the key). We define the feature vector of a point p′ ∈ P ′ −S′

over S′ as:

V(p′, S′) = 〈dist(p′, s′1), dist(p′, s′2), ..., dist(p′, s′m)〉

where dist(·) denotes the Euclidean distance. Similarly, for a

given location c in the original domain space, its feature vector

over S is defined as V(c, S). We then define the dissimilarity

between c and p′ as:

Φ(c, p′) = L1

(

V(p′,S′)
|V(p′,S′)| ,

V(c,S)
|V(c,S)|

)

where L1 is the Manhattan distance. Based on this concept,

the attacker estimates the original location of p′ as p∗, which

is defined as the location c having the smallest Φ(c, p′) value.

Since there is no closed form of p∗, we assume that the attacker

applies the Monte Carlo method to obtain an accurate approxi-

mation of p∗. We quantify the attacker’s estimation error using

the Euclidean distance dist(p, p∗) between the original point p

corresponding to p′ and the point p∗ determined by the attack.

B. HSD Spatial Transformation

The hierarchical space-division (HSD) is a spatial trans-

formation that offers security by equalizing the distribution

of points in the transformed space. The intuition is that



by approximating a uniform distribution, the attacker cannot

obtain any insight into the original data through inspection of

the data distribution in the transformed space. HSD achieves

this by employing a kD-tree partitioning of the data points.

Data Transformation. Given an integer E, we first construct

a kD-tree on the dataset P , but with only the top E tree

levels. The resulting tree has 2E − 1 nodes, where each node

stores its splitting X-value (or Y -value) for the original space.

These 2E − 1 splitting values constitute the parameters in the

transformation key. Figure 1a shows an HSD example with

E = 2 levels for the original point set P . In the transformed

space (in Figure 1b), another kD-tree is built to capture

uniform distribution. To transform an original point p = (x, y)
into p′ = (x′, y′), it suffices to find the leaf rectangle A =
[Axl, Axh]×[Ayl, Ayh] that contains p in the original tree, and

then identify the rectangle A′ = [A′xl, A
′xh] × [A′yl, A

′yh]
of the corresponding leaf node of the tree in the transformed

space. We thus compute p′ as:

x′ = FX(x) = A′xl + (A′xh − A′xl) ·
x−Axl

Axh−Axl

The value of y′ is computed similarly.

Figure 1b depicts the (transformed) locations of points in

P ′. For instance, the leaf rectangle A′ = (0, 0.5] × (0, 0.5]
with the transformed point p′3 corresponds to the leaf rectangle

A = (0, 0.4]×(0, 0.7] with the original point p3 (in Figure 1a).

Observe that P ′ is more evenly distributed than P .
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Fig. 1. HSD Transformation Example, E = 2

To decode a transformed point p′ = (x′, y′), we also

apply the transformation procedure described above. The only

difference is that we compute the rectangle A′ that contains

p′ in the transformed space, and then search the tree in order

to derive the corresponding rectangle A in the original space.

Query Transformation. To transform a range query W , we

follow all branches of the tree intersecting W , thus obtaining

multiple leaf rectangles Ai in the original space and corre-

sponding rectangles A′
i in the transformed space. Figure 1c

depicts three example queries, W1, W2, and W3, in the original

space. The transformed queries are shown in Figure 1d. Leaf

rectangles in the original and transformed spaces are labeled

Ai and A′
i, respectively. For instance, query W3 is transformed

into two regions in A′
2 and A′

4. Their minimum bounding

rectangle (MBR) is taken as the transformed range query W ′
3.

Some transformed queries may contain extra space, leading to

the retrieval of false hits, which can be safely discarded by

the user after decoding them.

C. ERB Transformation

Perturbation techniques [5] inject noise into datasets before

outsourcing them. However, this process prevents perfect re-

construction of individual original points from the outsourced

data points. In the following, we present an error-injection

technique that is reversible by the data owner (and users), but

computationally hard to compromise for an attacker.

A secure hash function (e.g., SHA-512) converts an

arbitrary-length plaintext message into a fixed-length digest

message (e.g., 512 bits). It is computationally infeasible for

the attacker to recover the original message from the digest

message. By dividing the digest message with its domain size,

we obtain a pseudo-random real number (in [0, 1]) derived

from the original message. Our error-based transformation

(ERB) is built on top of such a secure hash function.

Data Transformation. The data owner specifies a transfor-

mation key consisting of three parameters: an error threshold

ǫ ∈ [0, 1) and two (cryptographic) key values KX and KY . We

assume that each point has an (unique) identifier id. Given

an original data point p = 〈id, x, y〉, its transformed point

p′ = 〈id, x′, y′〉 is computed as follows:

x′ = (1 − ǫ) · x + ǫ · SHA(KX ◦ id)

where SHA returns a real number in [0,1] and ◦ denotes

concatenation. The value y′ is computed similarly.

Knowing the threshold ǫ and the key values KX and KY ,

it is trivial to use the id and transformed location (x′, y′) of

a point p′ to reconstruct its original location (x, y).

Query Transformation. Note that any SHA value falls

between 0 and 1. To guarantee that range queries are evaluated

correctly, an original query W = [xl, xh]×[yl, yh] is converted

into a transformed query, W ′ = [x′
l, x

′
h]× [y′

l, y
′
h], as follows:

x′
l = (1 − ǫ) · xl ; x′

h = (1 − ǫ) · xh + ǫ

The values of y′
l and y′

h are derived similarly.

Upon receiving the result of the transformed query W ′

(from the server), the client decodes each transformed result

point p′ back into p and then checks whether p is an actual

result. Observe that there may exist false positives (but not

false negatives) among the points returned from the server.

V. CRYPTOGRAPHIC TRANSFORMATION

We proceed to present our Cryptographic Transformation

(CRT) technique. It employs conventional encryption (e.g.,

AES) to achieve provable data confidentiality. Spatial infor-

mation is completely obscured in the transformed data so the

general attack is inapplicable to CRT.

CRT is similar to [2] with the following important differ-

ences: (i) our approach uses an R∗-tree, instead of a B+-

tree and (ii) we do not assume the existence of a tamper

resistance device at the SP. Thus, a query is evaluated through

a distributed, multiple-round protocol between the user and the

SP. Figure 2 exemplifies the functionality of CRT. Data points

(e.g., a, b, c) are stored in an encrypted index (only the relevant

part is shown). To find the result for query q, the encrypted

root (node A) is sent to user U , who decrypts A and determines

that the MBR of node B intersects q. Then U retrieves node

B from the SP and computes the query result (i.e., point b).

Every index node that intersects q must be sent to the user.



The protocol operates in this level-by-level manner and the

number of communication rounds equals the tree height.
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Fig. 2. Query Processing in CRT

VI. EXPERIMENTAL STUDY

In addition to our proposed solutions (HSD, ERB, CRT), we

introduce two benchmark methods in our comparison. BULK

is a secure solution that stores the whole encrypted dataset at

the server; when a query is issued, the client retrieves the entire

dataset. In contrast, OPT is an insecure solution that stores the

original dataset at the server and has optimal communication

cost (i.e., no false hits).

We evaluate the above methods using four real spatial

datasets [13]: Oldenburg (OL), San Joaquin County (TG), San

Francisco (SF), and North America (NA). The domain of each

dataset is normalized to the unit square [0, 1]2. The key size

Υ (default: 64) denotes the number of values in the spatial

transformation key (for HSD). ERB requires an error threshold

ǫ value (default: 0.15), whereas CRT uses a node capacity

parameter (default: 50). Regarding the query distribution, we

randomly generate square region queries with a default side

length of 5% of the dataspace extent. We assess the query

performance in terms of communication cost (in KBytes),

taken as the average over 100 experimental instances.

The general attack is applicable to HSD and ERB, but not

CRT. In the attack scenario, the attacker knows a random

subset S ⊂ P of original points and its transformed set

S′ ⊂ P ′. By default, we set |S| = 10, and the covering radius

r (of S) to be 0.25. We measure security in terms of the

attacker’s estimation error, as mentioned in Section IV-A.

Visualization of Spatial Transformation. We visualize the

proposed transformations using the real dataset NA. Figure 3a

shows the original point set. Figure 3b depicts the data

transformed by HSD, with Υ = 64, i.e., E = 6. The

transformed data distribution is completely different compared

to the original one. Figure 3c illustrates the data transformed

by the ERB, at ǫ = 0.2. The distortion achieved is weaker

than that of HSD. Nevertheless, particular characteristics of

the original dataset are blurred, e.g., the ‘gap regions’ in the

West, the exact densities of dense regions, and outliers.

(a) original points (b) HSD (c) ERB
Fig. 3. Visualization of North America Points

Effect of Data Distribution. Figure 4 shows the communi-

cation cost of the methods and the attacker error for different

datasets. Clearly, the cost of our methods (HSD, ERB, CRT)

is much lower than that of the baseline solution BULK. ERB

is rather expensive because the amount of query expansion

heavily depends on the error threshold ǫ. CRT incurs the

overhead of transferring the intermediate nodes; nevertheless,

this overhead becomes reasonable for larger datasets (e.g., SF,

NA), where CRT incurs a communication cost similar to HSD.

Figure 4 shows the attacker estimation error for all datasets;

the higher this value, the better. The theoretical lower bound

of the maximum possible estimation error is 0.707 (i.e., the

estimated location is the center of the space). HSD achieves

considerable estimation error, which is one-fourth of 0.707.

ERB incurs an error value close to ǫ.
Data Communication cost (KBytes) Attacker error

BULK OPT HSD ERB CRT HSD ERB

OL 119.23 0.28 0.38 6.12 2.91 0.168 0.151
TG 356.69 1.02 2.22 19.84 4.95 0.204 0.139
SF 3417.10 8.73 16.59 182.52 14.83 0.170 0.152
NA 3433.84 11.62 16.38 215.66 18.45 0.135 0.135

Fig. 4. Communication cost and attacker error, default setting

VII. CONCLUSION

Social networking and content sharing services allow sub-

scribers to share private spatial data (e.g., geo-tagged photos)

with trusted query users through an untrusted service provider.

The paper presents methods to encode a dataset such that only

trusted users can access the content, while the service provider

blindly evaluates queries, without seeing the actual data. We

developed spatial transformations (HSD and ERB) and studied

their security using a general attack model. We also proposed a

cryptographic method (CRT), which is computationally secure,

but it incurs multi-round latency for queries.
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