Outstanding HC-SCR of Lean NOx Over Pt/Mesoporous-Silica Catalysts

Tamikuni Komatsu^{*}, Keizou Tomokuni, Mitsuo Konishi and Takashi Shirai

The Noguchi Institute, Asahi-Kasei Corporation, 1-8-1 Kaga, Itabashi-Ku, Tokyo 173-0003, Japan

Abstract: Perfect de-NOx over a wide temperature range above 170 °C was achieved using a new Pt-catalyst supported on mesoporous silica (Pt/MPS) and a stoichiometric amounts of long-chain hydrocarbons as reducing agents for NOx-purification. Kinetic investigation of the HC-SCR of lean NOx over Pt/MPS, Pt/alumina and Pt/zirconia showed that such a remarkable activity of Pt/MPS is due to a large frequency factor but not to activation energy. Acid-treatment of the supports increased the activities of the catalysts and generated new IR-peaks in the range 1000-1200 cm⁻¹, which suggests the support-effects on the catalyst-activities to be related to the special surface functional groups of the supports. The present HC-SCR must be very useful to remove diesel-NOx by means of pulse-injection of diesel fuel into the exhaust.

Keywords: HC-SCR, lean NOx, de-NOx, diesel exhaust, mesoporous, mesoporous silica, diesel fuel.

INTRODUCTION

The regulation of greenhouse warming due to CO₂ discharged by automobiles has become quite severe all over the world. To decrease CO2 emission, changes such as gasoline-autos into diesel-autos with higher fuel efficiency have been expected. However, how to purify diesel-NOx is still unresolved. The O2-content of the gasoline-exhaust is controlled below 0.5% (rich burn) but the O₂-content of the diesel-exhaust is usually 24% O₂ (lean burn). This makes purification of the diesel-NOx very difficult, because of immediate deactivation of the conventional three-way catalysts by oxygen at 1%. Also, comparatively low temperatures of the diesel-exhaust which are usually 100-400 °C make purification very difficult because of the low activities of the conventional catalysts below 200 °C. Dieselfuel consists of C_6 - C_{16} HCs including aromatic compounds. However, the fuel was not directly used as the reducing agents because of low reducing performance, while a usage of diesel-fuel for reduction of NOx is essentially necessary for such de-NOx catalysts as remove NOx by means of pulse-injection of diesel-fuel into the exhaust.

The recent de-NOx methods such as the urea-SCR and NOx-storage-reduction (LNT: lean-NOx-trap) were reviewed [1]: (1) the urea-SCR has unresolved problems that the method requires storing a solution of urea and that a large portion of NOx may be discharged in the form of nitrates and nitrites at low temperatures; (2) the LNT has essential problems such as deactivation of NOx-storage agents by a small SOx-content and very low activities below 200 °C. The other method, the HC-SCR [2-6] has a problem that the purification is limited to narrow temperature ranges around 200 °C, although the catalysts are free from deactivation by SOx [7]. To improve the HC-SCR method, the presentation of Pt-catalysts supported on MCM-41 type mesoporous silica [8], the intermediate addition of reducing agents [9], a secondary fuel-injection method [10], a doublewashed honeycomb coating with two kinds of Pt-catalysts [11], and a fast SCR process [12] were studied. However, the HC-SCR method has not been considered for mainstream lean burn NOx-purification, because of the low activities of the catalysts below 200 °C and a narrow temperature window.

Previously, we presented outstanding low-temperature active Pt/MPS to purify diesel-NOx exhaust [13]. The present study will report the kinetics of HC-SCR of NOx over Pt/MPS and an application to perfect purification of diesel-NOx in a wide temperature range over 170 °C with diesel-fuel.

MATERIALS AND METHODOLOGY

Sample Preparation

Mesoporous silica (MPS) was prepared by a sol-gel method using tetraethyl orthosilicate (TEOS) as a silicasource and dodecylamine as a template. Pt/MPS was prepared by impregnating MPS with an aqueous solution of H₂PtCl₄ as the Pt-source. The experimental details were described in the previous report [13]. For comparison, Pt/silica, Pt/silica-alumina, Pt/alumina, Pt/zirconia and a NOx-absorption-reduction catalyst (LNT) were prepared in a similar manner as above using commercially available support-materials. The precious metal loading was 5 mass % Pt and 0.3 mass % Rh for Pt/MPS, and 2 mass % Pt and 0.12 mass % Rh for Pt/silica, Pt/silica-alumina, Pt/alumina and Pt/zirconia. The LNT was 2%Pt-0.12%Rh/alumina (80%)ceria (10%)-zirconia (10%) including BaCO₃ (3%), La₂O₃ (1%) and KOH (1%). In addition, Pt-catalysts using acidtreated supports of MPS, γ -alumina and zirconia were also prepared. The acid-treatment of the supports was carried out as follows: boiling in a 0.1 mass % solution of equimolar HNO_3 and H_2SO_4 for 3 h, followed by washing with distilled water. A honeycomb catalyst was prepared using the Pt/MPS powders as follows: a slurry of the Pt/MPS powders mixed with alumina-sol was prepared, coated on a full-size cordierite-honeycomb (o143.8 mm×118 mm, 4.5 mil/400 cpsi), followed by calcination at 600 °C for 1h in air. A coating mass of Pt/MPS was 80 g per 1 liter of the

^{*}Address correspondence to this author at 2-24-4 Sakura, Tsukuba-shi, Ibaraki 305-0003, Japan; Tel: +81 29-857-7325; Fax: +81 29-857-7325; E-mail: BRA01367@nifty.com

honeycomb. Assessment of the heat-resistance of Pt/MPS was carried out using the sample after the heat-treatment under each condition of 600 °C-50 h, 700 °C-50 h and 800 °C-50 h in air containing 10% steam.

Characterization of the Samples

The specific surface areas and pore sizes of the supports were measured using nitrogen adsorption at 77 K. The porestructure of the supports was characterized by small-angle Xray diffraction (SAX) and selected-area electron diffraction (SAED). Exposed active sites of Pt/MPS for estimation of turn over frequency (ToF) were measured by COchemisorption. Crystallite sizes of the catalysts were directly measured by high-resolution TEM (HRTEM) observation. The average size of the crystallites was estimated from the half-width of the (111) reflection by powder XRD measurements. Homogeneities of the supported catalysts were confirmed by HRTEM observations.

Measurements of HC-SCR of NOx

The experiment of HC-SCR of NOx was carried out using a three-necked quartz tubular downflow reactor (20 mm i.d and 400 mm length). A mini honeycomb-catalyst (2 ml in volume) or powder catalyst was charged into the reactor, a small amount of glass wool was placed on the catalyst, and 10 ml of sea-sand¹ as a dispersant of reaction gases was placed on the glass wool to initiate the reaction over the catalyst in a homogeneous reaction gas flow. The mini honeycomb catalyst was cut from the full-size honeycomb catalyst. The powder catalyst (160 mg of 5% Ptcatalysts or 400 mg of 2% Pt-catalysts) was mixed in advance with commercially available sea-sand (20-30 mesh) at 2.6 g (2 ml) and charged into the reactor. The reactor containing the catalyst was placed in an electric furnace. As an exhaust gas for NOx-purification experiments, three model-gases, (1) a reaction mixture comprising 250 ppm NO, 400 ppm C_3H_6 and 10% O_2 balanced with He, (2) a reaction mixture comprising 250 ppm NO₂, 400 ppm C₃H₆ and 10% O₂ balanced with He, (3) a reaction mixture comprising 250 ppm NO, 2000-7000 ppm liquid of long chain HCs and 10% O₂ balanced with He, were used. Each model-gas was introduced into a gas-inlet of the reactor at a flow rate of 1000 ml min⁻¹ (SV=30,000 h⁻¹ or GHSV=7.5 m³ h^{-1} per g of Pt) through a mass-flow controller. The liquid HCs were supplied upstream along the inner wall of the reactor by a syringe-type micro-feeder. The temperature of the reactor was increased at a rate of about 10 °C min⁻¹ and was held at the prescribed temperature for 10 min. The NOx measurement of the effluent gas was carried out during a period held at the prescribed temperature using a chemiluminescence NOx-detector². To confirm the mechanism of the HC-SCR, two reactors containing the honeycomb catalyst were connected in series. The first stage (oxidation of NO into NO_2 with O_2) was carried out by introducing a reaction mixture of 250 ppm NO and 10% O₂ balanced with He into the gas-inlet of the first-stage reactor at a flow rate of 1000 ml min⁻¹ (SV=30,000 h⁻¹) and the

second stage (reduction of NOx with propylene) was carried out by introducing 400 ppm C_3H_6 into the gas-inlet of the second-stage reactor at a flow rate of 1000 ml min⁻¹. The result was analyzed using the experimental NOx-conversion and NO:NO₂ ratio³.

RESULTS AND DISCUSSION

Characterization of the Pt-Catalysts

Table 1 shows the characterization of the used Pt-catalysts and supports. The SAX profile of MPS showed a strong singletpeak at $2\theta=2.72$ °(d=3.25 nm). The SAED image showed a hallow pattern. The results mean that MPS is completely disordered in the pore-arrangement differently from wellordered MCM-41. The specific surface area and pore diameter of MPS were 1250 m² g⁻¹ and 2.5 nm, respectively. An estimated thickness of mesopore-walls for MPS was ca. 2 nm, which is about twice larger than that for MCM-41. Relative IRintensity around at 3400 cm⁻¹ showed that MPS is covered with minor amount of hydrolytic OH-groups in comparison to MCM-41. The exposed active site of Pt/MPS which was estimated from the experimental CO-chemisorption was ca. 5%. The HRTEM image of Pt/MPS indicated that many Pt-particles of 1-3 nm in diameter are homogeneously dispersing on the support surface. The average diameter of the Pt-particles was 2 nm which is very close to the pore diameter of MPS. This indicates the Pt-particles of the catalyst to be supported in the inside of mesopores. On the other hand, those for Pt/alumina, Pt/silica-alumina, Pt/silica, LNT and Pt/zirconia were 2, 4, 5, 6 and 21 nm, respectively. Since the average diameter of Pt/silicaalumina is smaller than the pore diameter, the Pt-particles of the catalyst may be in the inside of mesopores. However for Pt/silica and Pt/zirconia, the Pt-particles are supported in the outside of mesopores. Also, the Pt-particles of Pt/alumina and LNT may be supported in the outside of mesopores, because adsorption ability of γ -alumina is much stronger than those of the other supports.

	Pt-Particles Average Diameter/nm	Support	
Pt-Catalysts		Specific Surface Area/m ² g ⁻¹	Pore Diameter/nm
Pt/MPS	2	1250	2.5
Pt/Silica	5	428	non-porous
Pt/Silica-Alumina	4	412	3.8
Pt/Alumina	2	250	6.2
Pt/Zirconia	21	128	7
LNT Type Catalyst	6	210	6-20

 Table 1.
 Characterization of the Used Pt-Catalysts (Powders) and Supports

Heat-Resistance of MPS and Pt/MPS

The specific surface areas and poresizes of MPS before and after the heat-treatment at 700 °C-50 h in air containing

 $^{^1 \}text{Sea-sand}$ (quartz-sand) is generally used as a dispersant because of inactivity in catalysis.

 $^{^{2}}$ The diminished-pressure chemiluminescence NOx detector, Japan Thermo Corp. Model 42 i—HL & 46 C—H, which performs simultaneous detection of NO, NO₂ and N₂O contained in the effluent gas.

³ From the experimental NOx-conversion and NO: NO₂ ratio, contribution of NO or NO₂ to the NOx-conversion can be estimated, since NOxconversion is defined as the conversion of NOx (total of NO and NO₂) into nonhazardous N-containing compounds such as N₂ and N₂O.

10% steam were almost unchanged. The hydrothermal durability of MPS was much higher than that of MCM-41. According to our experiment, MCM-41 lost half of the specific surface area and mesopores after ageing at 600 °C-24 h in air containing 10% steam. Probably the high heatresistance of MPS is due to the thick mesopore-walls and minor amounts of hydrolytic OH-groups, because under hydrothermal conditions H₂O molecules attacks -Si-Oskeletons to destroy mesoporous structures. Fig. (1) shows the relationship between NOx-conversion and ageing conditions for Pt/MPS. Until 600 °C-50 h, a maximum NOx conversion (70%) and corresponding temperature (the lower limit in temperature: 170 °C) were similar to those of fresh Pt/MPS. After 700 °C-50 h, the NOx conversion was not changed but the lower limit in temperature rose to 210 °C (40 °C rise). After 800 °C-50 h, the NOx conversion dropped to 45% (25% drop) and the lower limit in temperature rose to 230 °C (60 °C rise). In order to elucidate whether such a higher temperature shift is due to permanent deterioration or not, the heat-treated Pt/MPS was reduced with hydrogen at 300 °C-1 h, followed by the same HC-SCR of NOx. The result showed remarkable restoration close to the temperature for fresh Pt/MPS. On the other hand, the powder XRD measurements of the heat-treated Pt/MPS showed that an averaged size of Pt-particles was scarcely changed until 600 °C-50 h, increased to 4-5 nm (3 times larger than that of fresh Pt/MPS) after 700 °C-50 h, remarkably increased to 10 nm after 800 °C-50 h. The result teaches that the higher temperature shift for the heat-treated Pt/MPS is due to both oxidation and enlargement of the supported Pt-particles. The former factor may be gradually restored by reduction with HCs contained in rich burn exhausts and the latter greatly influences the activity of the catalyst over 800 °C. A similar relationship between the Pt-size and ageing conditions was observed for conventional Pt/alumina. The high heat resistance of Pt/MPS is found due to mechanically strong encapsulation in the mesopores which is different from chemically strong adsorptive ability of γ -alumina supports, because MPS is much inferior to γ -alumina with respect to adsorptive ability. The activity of Pt/MPS remaining after ageing at 700 °C-50 h corresponds to an estimation of a million km-traveling on the heavy duty diesel cars, on the basis of the Arrhenius plots (the logarithm of ageing hour vs 1/T relationships in the range 400 - 700 °C).

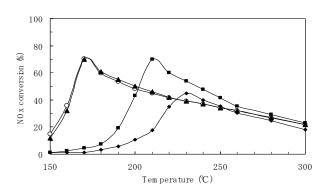
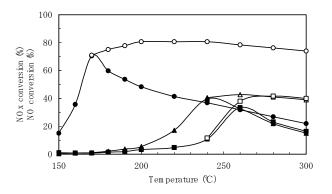



Fig. (1). The heat-resistance of Pt/MPS (powders): (\circ) fresh; (\blacktriangle) after 600 °C-50 h in air containing 10% steam; (\blacksquare) after 700 °C-50 h in air containing 10% steam; (\blacklozenge) after 800 °C-50 h in air containing 10% steam.

Kinetics of HC-SCR of Lean-NOx over the Pt-Catalysts with Propylene

Fig. (2) shows the NOx-conversion over Pt/MPS, Pt/alumina and Pt/zirconia using model-gas (1). Pt/MPS provides a peak NOx-conversion of 70% at 170 °C, while Pt/alumina and Pt/zirconia respectively show 40% at 240 °C and 33% at 260 °C. The ToF of Pt/MPS in terms of NOx conversion, which was calculated on the basis of the experimental exposed active sites, was 0.7 at 70%

NOx-conversion. The gas after the treatment was composed of N₂, N₂O, CO₂ and H₂O, except for unchanged NOx. The selectivity for N₂ was 10-30% below 200 °C and over 95% above 250 °C, which was almost the same as the selectivity of the gasoline-auto emission purification over the conventional three-way-catalysts. The curve of NOxconversion before the peak for each catalyst is almost the same as that of NO-conversion, that is, the NOx-conversion is almost the same as the conversion of NO₂. After the peak, the NO-conversion continues to increase up to 250 °C followed by a slight decrease above 250 °C. The NOxconversion tends to decrease after the peak, which means that an increase in NO₂ does not contribute to the NOxconversion. This is due to wasteful consumption of propylene above 180 °C, because propylene is very combustible with oxygen. According to our experiment, the conversion of propylene over Pt/MPS with 10% O₂ begins at 100 °C and increases rapidly at 110 °C, reaching 100% at 150 °C. Apparent activation energies and frequency factors estimated from the conversion curve were 104 kJ mol⁻¹ and 2.4×10^7 s⁻¹, respectively. The smaller NOx-conversions of Pt/alumina and Pt/zirconia are not only due to the low activities of the catalysts but also to unselective conversion of propylene above 200 °C.

Fig. (2). NOx-conversion over the Pt-catalysts (powders) with model-gas (1): (\bullet), (\blacktriangle) and (\blacksquare) depict the NOx-conversion over Pt/MPS, Pt/alumina and Pt/zirconia, respectively; (\circ), (\bigtriangleup) and (\Box) depict the NO-conversion over the Pt/MPS, Pt/alumina and Pt/zirconia, respectively.

Fig. (3) shows the Arrhenius plots (the logarithm of conversion rate vs 1/T relationships) of the observed NOxconversions shown in Fig. (2). The obtained apparent activation energies E and frequency factors A are summarized in Table 2. These results show that the E-values for NOx-conversions of Pt/MPS, Pt/alumina and Pt/zirconia are scarcely different. The obtained values are slightly different from those reported previously [14-17] (E_{NO} =91.2

Outstanding HC-SCR of Lean NOx Over Pt/Mesoporous-Silica Catalysts

kJ mol⁻¹ and E_{C3H6} =108.5 kJ mol⁻¹ reported by Ioan *et al* [14]), because of the different reaction conditions. The A-value of Pt/MPS is larger by at least two orders of magnitude than those of Pt/alumina and Pt/zirconia. Therefore, the difference in activity among the catalysts must be affected by frequency factors rather than activation energies. On the other hand, the Pt-particle size of Pt/MPS is similar to that of Pt/alumina as shown in Table 1. The results suggest that the remarkable low-temperature activity of Pt/MPS is due to the MPS-support.

Table 2.ApparentActivationEnergiesandFrequencyFactors of Pt-Catalysts (Powders)Estimated fromFig. (2)

Pt-Catalysts	NOx-Conversion		C ₃ H ₆ -Conversion	
	E/kJ mol ⁻¹	A/s ⁻¹	E/kJ mol ⁻¹	A/s ⁻¹
Pt/MPS	102	8.6×10 ⁶	124	1.4×10 ⁹
Pt/Alumina	102	2.6×10^4	—	—
Pt/Zirconia	101	5.9×10 ³	_	—

Estimations of E and A of the C_3H_6 conversion for Pt/alumina and Pt/zirconia were useless because of wasteful combustion of propylene above 200 °C.

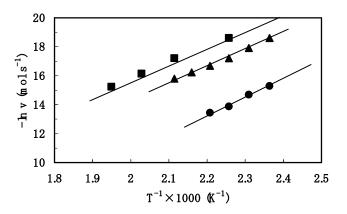


Fig. (3). Arrhenius plots (the logarithm of conversion rate vs 1/T relationships) of the observed NOx-conversions over Pt/MPS, Pt/alumina and Pt/zirconia shown in Fig. (2): (\bullet) Pt/MPS; (\blacktriangle) Pt/alumina; (\blacksquare) Pt/zirconia.

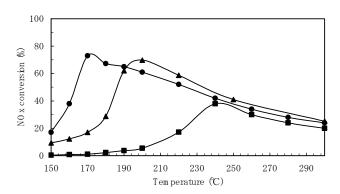
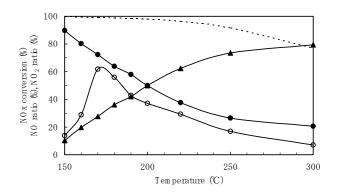
The Effects of Supports on NOx-Conversion

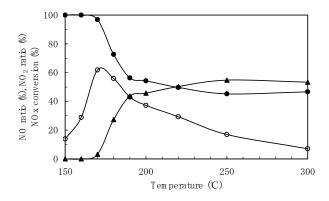
To clarify the above effects of supports to the NOxconversion, acid-treatment of the supports was carried out. Fig. (4) shows the NOx-conversions over the Pt-catalysts using acid-treated γ -alumina and zirconia. As seen from the comparison with Fig. (2), the acid-treatment of the supports gives a remarkable increase in NOx-conversion and lowtemperature shifts of the peak-temperatures. The acidtreatment of MPS also increases the NOx-conversion by several %. The IR spectra of γ -alumina and zirconia after the acid-treatment were investigated. Resultantly, new peaks appeared at 1152 and 1065 cm⁻¹ for γ -alumina and 1211, 1141 and 1047 cm⁻¹ for zirconia. Since the absorption bands in this finger-print region are generally assigned to the stretching bands of SiO₂-skelton, the observed peaks are probably due to protons bonded to the metal oxide skeletons because stretching bands of Si-O in Si-OH groups are generally known to be observed in the range 800-1000 cm⁻¹.

It is also well-known that a portion of active OH-groups on solid-acids is acting as the Brønsted-acid sites. Then, the high activity of Pt/MPS and increased activities of Pt/alumina and Pt/zirconia using the acid-treated supports are probably due to active protons incorporated with the supports.

Mechanism of the HC-SCR of Lean-NOx

To elucidate a mechanism of the HC-SCR of NOx over Pt/MPS, the NOx-purification process was formally divided into two stages: (1) $[1^{st}$ -stage] oxidation of NO into NO₂


Fig. (4). NOx-conversion over the Pt-catalysts (powders) supported on acid-treated supports with model-gas (1): (\bullet), (\blacktriangle) and (\blacksquare) depict the NOx-conversion over Pt/[acid-treated MPS], Pt/[acid-treated alumina] and Pt/[acid-treated zirconia], respectively.

with O_2 , (2) [2nd-stage] successive reduction of NO_x with propylene. From Fig. (5a), it is found that Pt/MPS slowly oxidizes NO to NO₂ with O₂, because the conversion of NO to NO₂ is much lower than that predicted from the equilibrium. The apparent activation energies and frequency factors estimated from Fig. (5a) were 108 kJ mol⁻¹ and 5×10^4 s^{-1} , respectively. Fig. (5b) shows that all of the NO₂ produced in the first stage is reduced into N₂O and N₂ below 170 °C, because the NO₂ ratio is zero % from the beginning of reaction (150 °C) to a maximum NOx conversion (170 $^{\circ}$ C). Fig. (5c) shows the result of HC-SCR of NO₂ over Pt/MPS with propylene. The estimated apparent activation energy was 64 kJ mol⁻¹. That is, [2nd-stage] reduction of NO₂ with propylene is very faster than [1st-stage] oxidation of NO into NO₂. Therefore, oxidation of NO into NO₂ is the ratedetermining step. The results also notify that NO₂-molecules can be purified into N₂O and N₂ over Pt-catalysts with HCs but NO-molecules are difficult. The appearance of the Brønsted-acid sites on the acid-treated supports may influence the rate-determining step. If NO₂ is more effective for NOx-conversion than NO, the HC-SCR of NO₂ may be more advantageous than that of NO, as reported in ref. [5]. As shown in Fig. (5c), in spite of the HC-SCR of NO₂ (E_{NOx} $= 64 \text{ kJ mol}^{-1}$) much faster than that of NO, the maximum NOx-conversion (75%) and its temperature (170 °C) were not much different from those for the HC-SCR of NO. Reduction of NO₂ into NO quickly occurred around 150-160 $^{\circ}$ C (the conversion of NO₂ into NO was 77% at 150 $^{\circ}$ C). That is, the HC-SCR of NO₂ over Pt/MPS is also unselective. The following is a reaction diagram of the HC-SCR of lean-NOx over Pt/MPS which was confirmed from the results.

Oxidation of [NO—O₂] \checkmark NO₂ [equilibrium] E=108 kJ mol⁻¹, A=5×10⁴ s⁻¹ (1)Reduction of $[NO_2-C_3H_6-O_2] \longrightarrow N_2O, N_2, H_2O, CO_2$ [fast below 170 °C] (2) Reduction of $[NO_2-C_3H_6-O_2] \rightarrow NO$ [fast below 170 °C] (3) Partial reduction of $[NO-C_3H_6-O_2] \times N_2O, N_2$ [difficult] (4) Oxidation of $[C_3H_6-O_2]$ \longrightarrow H₂O, CO₂ [fast above 200 °C] E=104 kJ mol⁻¹, A=2.4×10⁷ s⁻¹ (5) Total HC-SCR of $[NO-C_3H_6-O_2] \rightarrow N_2O, N_2, H_2O, CO_2$ [fast below 200 °C] (6) $E_{NOx}=102 \text{ kJ mol}^{-1}$, $A_{NOx}=8.6 \times 10^{6} \text{ s}^{-1} (\le 170 \text{ °C})$, $E_{C3H6}=124 \text{ kJ mol}^{-1}$, $A_{C3H6}=1.4 \times 10^{9} \text{ s}^{-1} (\le 170 \text{ °C})$ Total HC-SCR of [NO₂—C₃H₆—O₂] → NO, N₂O, N₂, H₂O, CO₂ [fast below 200 °C] (7) $E_{N Ox} = 64 \text{ kJ mol}^{-1} (\le 170^{\circ} \text{C})$

Fig. (5a). $[1^{\text{st}} \text{ stage}]$ oxidation of NO into NO₂ over Pt/MPS (honeycomb) with O₂: (•) and (\blacktriangle) depict the NO ratio and NO₂ ratio, respectively; (---) the equilibrium between NO₂ and NO (ref. [5]). The result of the second stage is also shown: (•) NOx-conversion by injection of C₃H₆ into the first stage outlet-gas.

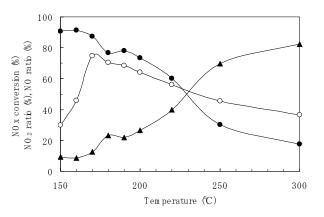


Fig. (5b). $[2^{nd} \text{ stage}]$ reduction of the 1^{st} stage outlet-gas over Pt/MPS (honeycomb) with propylene: (•) and (\blacktriangle) depict the NO ratio and NO₂ ratio, respectively; (\circ) NOx-conversion.

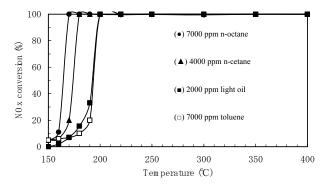

HC-SCR of Lean-NOx over Pt/MPS with Long-Chain HCs

Fig. (6) shows the purification of NOx over Pt/MPS using model-gas (2). The results show that Pt/MPS is able to perfectly purify lean NOx with stoichiometric HCs (where, stoichiometric HCs mean the quantitative HCs required for the perfect consumption of HC with $10\% O_2$) above $170 \degree C$. The apparent order of the reducing activities among the hydrocarbons (in regard to the temperature acting as a reducing agent of NOx) was propylene (100% in NOx-conversion at $170 \degree C$) and n-octane (100% at $170 \degree C$)

> n-cetane (100% at 180 °C) > light oil (100% at 200 °C) and toluene (100% at 200 °C). The NOx-conversion curves and the hydrocarbon-consumption curves were synchronized with each other. The steep slope [Δ (NOx-conversion) / Δ T] of each NOx-conversion curve is almost the same 10% K⁻¹ for each HC. The results show that the HC-SCR of lean NOx with stoichometric HCs proceeds rapidly with the catalytic consumption of HCs. Many HCs are combustible over Pt/MPS with excess amounts of oxygen at comparatively mild temperatures. The difference in reducing activity among HCs is not clearly associated with the chain-length of HCs. Most aliphatic and aromatic HCs can be used as the reducing agents for lean NOx over Pt/MPS.

Fig. (5c). HC-SCR of NO₂ over Pt/MPS (honeycomb) with modelgas (2): (•) and (\blacktriangle) depict the NO-ratio and NO₂- ratio, respectively; (\circ) NOx-conversion.

Fig. (6). HC-SCR of lean NOx over Pt/MPS (honeycomb) with model-gas (3) containing long chain HCs.

CONCLUSION

The HC-SCR of lean NOx at low temperatures below 200 °C was remarkably improved using the Pt-catalyst supported on mesoporous silica (Pt/MPS). Such remarkable low-temperature activity of Pt/MPS is primarily due to the acidity of MPS rather than the sizes of Pt-particles and mesopores. The kinetic investigation of HC-SCR of NOx over Pt/MPS elucidated that the NOx-conversion below 200 °C is determined by the oxidation of NO to NO₂ which is the rate-determining step. The acid-treatment of the supports generates new functional groups assignable to active protons incorporated with the supports and makes the Pt-catalysts increase the activities. The active protons on the supports which may be acting as the Bronsted-acid sites probably influence the rate-determining step. It was also found that the HC-SCR of lean NOx is perfectly achieved with stoichiometric C₆-C₁₆ HCs over a wide temperature range from 170 °C to 400 °C. The present HC-SCR must be very useful for de-NOx of diesel-exhaust by means of pulseinjection of diesel-fuel into the exhaust.

REFERENCES

- Narula, C. K.; Daw, C. S.; Hoard, J. W.; Hammer, T. Materials issues related to cataltsts for treatment of diesel exhaust. *Int. J. Appl. Ceram. Technol.*, 2005, *2*, 452-466.
- [2] Iwamoto, M.; Yahiro, H. Novel catalytic decomposition and reduction of NO. *Catal. Today*, 1994, 22, 5-18.
- [3] Bell, V. A.; Feeley, J. S.; Deeba, M.; Farrauto, R. J. In situ high temperature FTIR studies of NOx reduction with propylene over Cu/ZSM-5 catalyst. *Catal. Lett.*, **1994**, *29*, 15-26.
- [4] Burch, R.; Millington, P. J. Selective reduction of nitrogen oxides by hydrocarbons under lean-burn conditions using supported platinum group metal catalysts. *Catal. Today*, **1995**, *26*, 185-206.
- [5] Iwamoto, M.; Fernandez, A. M.; Zengyo, T. Oxidation of NO to NO₂ on Pt-MFI zeolite and subsequent reduction of NOx by C₂H₄ on In-MFI zeolite: a novel de-NOx strategy in excess oxygene. *Chem. Commun.*, **1997**, 37-38.

Received: August 30, 2009

Revised: October 26, 2009

Accepted: October 27, 2009

© Komatsu et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/ 3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

- The Open Catalysis Journal, 2010, Volume 3 29
- [6] Shichi, A.; Satsuma, A.; Iwase, M.; Shimizu, K.; Komai, S., Hattori, T. Catalyst effectiveness factor of cobalt-exchanged mordenites for the selective catalytic reduction of NO with hydrocarbons. *Appl. Catal. B-Environ.*, **1998**, *17*, 107-113.
- [7] Burch, R.; Watling, T. C. The effect of sulphur on the reduction of NO by C₃H₆ and C3H8 over Pt/Al₂O₃ under lean-burn conditions. *Appl. Catal. B-Environ.*, **1998**, *17*, 131-139.
- [8] Schieβer, W.; Vinek, H.; Jentys, A. Catalytic reduction of NO₂ over transition-metal containing MCM-41. *Catal. Lett.*, **1998**, *56*, 189-194.
- [9] Iwamoto, M.; Zengyo, T.; Hernandez, A. M.; Araki, H. Intermediate addition of reductant between an oxidation and a reduction catalyst for highly selective reduction of NO in excess oxygen. *Appl. Catal. B-Environ.*, **1998**, *17*, 259-266.
- [10] Nakatsuji, T.; Yasukawa, R.; Tabata, K.; Ueda, K.; Niwa, M. Catalytic reduction system of NOx in exhaust gases from diesel engines with secondary fuel injection. *Appl. Catal. B-Environ.*, **1998**, *17*, 333-345.
- [11] Centi, G.; Perathoner, S. Novel catalyst design for multiphase reactions. *Catal. Today*, **2003**, *79-80*, 3-13.
- [12] Irfan, M. F.; Goo, J. H.; Kim, S. D. Co₃O₄ based catalysts for NO oxidation and NOx reduction in fast SCR process. *Appl. Catal. B-Environ.*, 2008, 78, 267-274.
- [13] Komatsu, T.; Tomokuni, K; Yamada, I. Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation. *Catal. Today*, **2006**, *116*, 244-249.
- [14] Ioan, B.; Miyazaki, A.; Aika, K. On the kinetic and structure sensitivity of lean reduction of NO with C₃H₆ over nanodispersed Pt catalysts. *Appl. Catal. B-Environ.*, **2005**, *59*, 71-80.
- [15] Bueno-Lopez, A.; Illan-Gomez, M. J.; Salinas-Martinez de Lecea, C. Effect of NOx and C₃H₆ partial pressures on the activity of Ptbeta-coated cordierite monoliths for deNOx C₃H₆-SCR. *Appl. Catal. A-General*, **2006**, *302*, 244-249.
- [16] Botas, J. A.; Miguel, A.; Gutierrez-Ortiz, M. P.; Gonzalez-Marcos, J. A.; Gonzalez-Marcos, J. R.; Gonzalez-Velasco, Kinetic considerations of three-way catalysis in automobile exhaust converters. *Appl. Catal. B-Environ.*, **2001**, *32*, 243-256.
- [17] Marnellos, G. E.; Efthimiadis, E. A.; Vasalos, I. A. Mechanistic and kinetic analysis of the NOx selective catalytic reduction by hydrocarbons in excess O₂ over In/Al₂O₃ in the presence of SO₂ and H₂O. *Appl. Catal. B-Environ.*, **2004**, *48*, 1-15.