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Abstract

Ovarian cancer is the leading cause of death from gynecologic malignancies. One of the reasons for the high mortality rate associated

with ovarian cancer is its late diagnosis, which often occurs after the cancer has metastasized throughout the peritoneal cavity. Cancer

metastasis is facilitated by the remodeling of the extracellular tumor matrix by a family of proteolytic enzymes known as the matrix

metalloproteinases (MMPs). There are 23 members of the MMP family, many of which have been reported to be associated with ovarian

cancer. In the current paradigm, ovarian tumor cells and the surrounding stromal cells stimulate the synthesis and/or activation of various

MMPs to aid in tumor growth, invasion, and eventual metastasis. The present review sheds light on the different MMPs in the various types

of ovarian cancer and on their impact on the progression of this gynecologic malignancy.
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Ovarian cancer

Ovarian cancer is the fifth leading cause of cancer death
in women today according to the National Cancer
Institute’s (NCI) 2014 statistics. It is diagnosed in
w22 000 women in the USA and accounts for at least
14 000 deaths each year. Approximately two-thirds of
women are diagnosed with stage III or stage IV of the
disease, wherein the 5-year survival rate is 25–30% or
less, as compared to an 80–95% 5-year survival rate for
those with stage I or stage II ovarian cancer (Tingulstad
et al. 2003).

There are three main types of ovarian cancer,
including epithelial ovarian cancer, sex cord stromal
tumors, and germ cell tumors. Of these, epithelial tumors
account for about 90% of ovarian cancers (Table 1), and
they are the leading cause of death from gynecological
malignancies (Zhang et al. 2005, Choi et al. 2007). Sex
cord stromal and germ cell tumors account for the
remaining w10% (Choi et al. 2007). Generally, germ
cell tumors present at an earlier age than epithelial
ovarian cancer, affecting women in their late teens and
early twenties. The average age of women with epithelial
ovarian cancer is around 60 years old, and it therefore
affects mostly peri- or post-menopausal women. Differ-
ent epithelial tumors are classified according to the cell
types found in the reproductive tract, and they include
serous, mucinous, endometrioid, clear cell, and transi-
tional cell types (Table 2).
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The risk factors associated with the development of
ovarian cancer are based on an increased number of
ovulatory cycles, and they include nulliparity, early
menarche with late menopause, increasing age, and the
use of fertility drugs, although the relationship of the
latter to ovarian cancer remains controversial (Rossing
et al. 1994, Venn et al. 1999, Dor et al. 2002).
Consequently, the incidence of ovarian cancer decreases
with multiparity, the use of oral contraceptives, and
breastfeeding (Collaborative Group on Epidemiological
Studies of Ovarian Cancer 2008, Koshiyama et al. 2014).
The observation that ovarian cancer increases with
ovulation rate led to the ‘incessant ovulation’ hypothesis,
which was first proposed by Fathalla (1971). According
to that hypothesis, follicular rupture results in an
inflammatory reaction that damages the ovarian surface
epithelial cells in the vicinity of the ovulatory stigma
through DNA-altering reactive oxygen species. Such
alterations result in potentially mutagenic lesions, such
as P53 or BRCA (Fathalla 2013, Koshiyama et al. 2014).
Hence, a family history of ovarian cancer is a risk factor
mainly because of the genetic mutations of BRCA1 and
BRCA2 as well as the presence of Lynch syndrome,
which is hereditary (NCI). These mutagenic insults to the
ovarian surface epithelial cells then direct the cells
toward a malignant fate. Other risk factors may include
the use of talc and obesity (NCI).

Histological similarities between serous cancers that
arise in the ovaries and those that arise in the fallopian
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Table 1 Classification and incidence of the major types of ovarian
cancer.

Type of ovarian cancer Incidence

Epithelial 90%
Germ cell 5%
Sex cord 5%
Primary peritoneal Rare
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tubes have led to the proposal that some ovarian cancers
are of fallopian tube origin (Crum et al. 2007a).
Ovulation results in the distal fallopian epithelial cells
being bathed with follicular fluid that contains high
levels of steroids, inflammatory cytokines, and reactive
oxygen species. All of these molecules could lead to
mutagenic changes in the tubal epithelial cells, which
then give rise to metastasis to the ovary and result in
ovarian carcinoma (Crum et al. 2007b, Fathalla 2013).

These cellular changes set in motion the events that
change the phenotype in ovarian or fallopian tube cells
from benign to malignant and allow the tumor to grow,
acquire vascularization, and gain the characteristics that
lead to metastasis. Chief among these changes in the
tumor cell is the ability to modify the surrounding
extracellular matrix (ECM). The ECM is a key regulatory
component in cellular physiology that provides an
environment for cell migration, allows differentiation,
and, in some cases, decides the ultimate fate of cell
survival or cell death (Birkedal-Hansen et al. 1993). In
order for tumor cells to grow, invade, and metastasize,
it is crucial for the cells to be able to disrupt the surro-
unding ECM. This matrix degradation allows tumor cells
to proliferate, easily detach from their primary site,
extravasate, and invade other tissues (Schropfer et al.
2010). Matrix metalloproteinases (MMPs) are known to be
important players in the physiological process of cancer
progression (John & Tuszynski 2001, Kessenbrock et al.
2010). The present review focuses on the recent literature
on the involvement of the MMPs in ovarian cancer.
The MMP system

The MMP family in humans encompasses 23 related
proteolytic enzymes that share common structural and
functional similarities (Kleiner & Stetler-Stevenson 1993,
Murphy et al. 1999). These functional similarities
include: i) the presence of zinc in the active site of the
catalytic domain, ii) the synthesis of the enzyme in an
Table 2 Major cellular subtypes of ovarian epithelial cancer.

Type of epithelial cancer Subtypes

Serous Cystomas, benign cystadenomas, c
Mucinous Cystomas, benign cystadenomas, c
Endometrioid Benign cysts, adenocarcinomas, en
Clear cell Cystomas, benign cystadenomas, c
Undifferentiated/unclassified Tumors that do not fall into any of
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inactive or latent form, iii) the activation of the latent
zymogen, and iv) the inhibition of enzyme action by
both serum-borne and tissue-derived metalloproteinase
inhibitors in the extracellular environment. Based on
their structural similarities, the MMPs are classified
into four broad categories: collagenases, gelatinases,
stromelysins, and membrane type enzymes (MT-MMPs),
as illustrated in Fig. 1. However, a few MMPs
exhibit different characteristics and are classified outside
of these four broad classes, as discussed later in the
present review.

Studies have shown that the MMPs act on a diverse
group of ECM components, including the collagens,
gelatins, fibronectins, and laminins (Murphy et al. 1999,
Nagase & Woessner 1999, Curry & Osteen 2003,
Berchuck et al. 2009). Yet the MMPs also exhibit activity
toward other MMPs, growth factors, and cytokines, such
as insulin-like growth factor (IGF) binding proteins
(IGFBP), epidermal growth factor, tumor necrosis factor
a, and substance P (Sternlicht & Werb 2001). The ability
of these enzymes to cleave binding proteins as well as
growth factors has expanded the repertoire of MMP
actions to include the modulation of cell growth. In the
tumor microenvironment, MMPs may be the key
regulatory point in disrupting the balance between
growth and antigrowth signals, and they may thereby
influence the bioavailability of growth factors to
stimulate tumor cell growth, as reviewed by Kessenbrock
et al. (2010). For example, one of the main pathways that
is typically altered in cancer cells is the transforming
growth factor-beta (TGF-b) receptor system, which leads
to increased invasion and the metastatic potential of
cancer cells (Massague 2008). TGF-b is activated via
proteolytic conversion by MMPs, such as MMP2, MMP9,
and MMP14 (Mu et al. 2002). The ability of the MMPs to
turn on TGF-b activity suggests that MMPs have indirect
tumor-promoting effects (Kessenbrock et al. 2010).

The regulation of ECM turnover and cell growth by
MMPs is rigorously controlled by MMP inhibitors. There
are two major classes of inhibitors, the serum-borne and
the tissue-derived inhibitors (Curry & Osteen 2003). The
serum-borne inhibitors include the macroglobulins,
which have a potent ability to inhibit a broad range of
proteinases. The tissue inhibitors of metalloproteinases,
or TIMPs, are a family of four inhibitors that are locally
produced, and they specifically inhibit MMPs. The
TIMPs differ in their selectivity for different MMPs. For
example, TIMP2 has a high affinity for MMP2, whereas
Incidence

ystadenomas, cystadenocarcinomas 7/10
ystadenomas, cystadenocarcinomas 1/10
dometrioid tumors, adenocarcinomas 1/20
ystadenomas, cystadenocarcinomas 3/100
the other groups 1/10
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Figure 1 Schematic of the different classes of MMPs. The overall
structure of the MMPs contains a signal peptide, a pro-peptide, a furin
site, a catalytic domain, a hinge region, and a pexin-like domain. The
gelatinases differ insofar as they also contain a fibronectin type II
domain. Matrilysins lack the pexin-like domain, and the membrane
types contain a cytoplasmic or GPI domain. Figure modified from
Nagase & Woessner (1999) and Curry & Osteen (2003).
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TIMP1 preferentially binds to MMP9 (Gomez et al.
1997). TIMP3 is able to inhibit the membrane type 1
MMP (MT1-MMP or MMP14), unlike TIMP1, which
cannot act on MT1-MMP. However, unlike TIMP1 or
TIMP2, TIMP3 is secreted and then bound to the ECM,
and it has been suggested that the ECM allows TIMP3 to
act as an additional regulatory stop point by working at
the site of MMP action (Gomez et al. 1997).
MMPs and ovarian cancer

The collagenases: MMP1, MMP8, MMP13

The three collagenases share structural similarities and
have the ability to act on a broad variety of substrates.
Although all of the collagenases cleave fibrillar collagen,
these proteases have different affinities toward type I,
type II, and type III collagen. MMP14, which is a
membrane type MMP, also acts on collagens and will be
discussed in the membrane type MMP section later in the
present review. The collagenases also have different
mechanisms for reaching the extracellular environment
(Nagase & Woessner 1999, Borkakoti 2000). For
example, MMP8 is predominately found in neutrophils,
where it is synthesized and stored in granules until
it is needed. Unlike MMP8, MMP1 and MMP13 are
produced and secreted in a wide range of cell types in
response to specific stimuli without being stored. The
collagenases have been implicated in ovarian cancer
because of their expression patterns, which are depen-
dent on the stage and tumor type (Behrens et al. 2001,
Hantke et al. 2003, Stadlmann et al. 2003). For example,
www.reproduction-online.org
MMP1 and the gelatinase MMP9 were shown to be
strongly expressed in both stromal and epithelial tumor
cells of serous invasive carcinomas and to be up-
regulated in the fibroblastic stroma of borderline tumors,
but they were shown to be expressed at very low levels in
serous benign cystadenomas (Behrens et al. 2001).

In a herculean effort, Stadlmann et al. (2003)
examined MMP expression in 302 patients using
immunohistochemistry on tissue cylinder specimens.
In their study, they collected 119 serous, 40 mucinous,
68 endometrioid, 16 undifferentiated, 16 mullerian, 24
clear cell, five malignant Brenner, ten sex cord, and four
yolk sac tumors. The tumors were graded and correlated
with prognosis and also processed for microarrays
and immunohistochemistry. Numerous MMPs were
expressed in all of the ovarian cancers as discussed in
detail within each MMP class in the following sections.
Interestingly, only MMP8 expression levels correlated
with tumor grade, tumor stage, and a poor prognosis.
MMP8 was up-regulated by interleukin-1b, which
suggests that that pro-inflammatory cytokines may
promote the invasive potential of ovarian cancer by
stimulating MMP8 expression.

Because MMP13 has been associated with ovarian
cancer, it has been studied as a potential prognostic
indicator. Hantke et al. (2003) investigated the protein
levels of MMP13 in ascitic fluids of 30 patients with
advanced ovarian cancer. Using an ELISA, they stratified
MMP13 values into two subpopulations, one population
with short survival (median 16 months) and one with
long overall survival (median 36 months). MMP13 was
shown to be associated with shorter survival. Thus, the
levels of MMP13 in ascitic fluid may identify a patient’s
risk and potential survival outcome.

Overexpression of the MMPs may transduce the
signals for tumor cell migration and invasion through
a cell surface receptor that is coupled to G proteins,
protease-activated receptor 1 (PAR1). PAR1 is cleaved
by MMP1, which promotes breast cancer migration and
invasion (Boire et al. 2005). PAR1 has also been
identified in ovarian cancer. Agarwal et al. (2008)
identified a metalloprotease cascade, wherein pro-
MMP1 was activated to MMP1, which in turn directly
activated PAR1. This activation of MMP1–PAR1 induced
the secretion of several angiogenic factors from ovarian
carcinoma cells, which caused endothelial cell prolifer-
ation, endothelial tube formation, and migration
(Agarwal et al. 2010) as well as epithelial ovarian cancer
cell invasion (Wang et al. 2011a). Further investigation
of PAR1 has demonstrated that serum levels of PAR1 are
elevated in patients with epithelial ovarian cancer, but
serum levels were not of predictive nor of prognostic
value in that group of patients (Karabulut et al. 2014).

Polymorphisms in the MMP promoter may lead to the
overexpression of MMPs in ovarian cancer. For example,
Kanamori et al. (1999) reported that a guanine (G)
insertion/deletion polymorphism within the promoter
Reproduction (2015) 150 R55–R64
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region of MMP1 possesses greater transcriptional
activity, that the proportion of patients who contained
the polymorphism was elevated in patients with ovarian
cancer, and that MMP1 expression was elevated in
ovarian cancer tissue. Subsequent investigation into
the association between promoter polymorphisms and
cancer risk has questioned the role of promoter
mutations in the expression of MMP1 (Wenham et al.
2003, Li et al. 2006), but it has also indicated a
possible association between polymorphisms in the
MMP7, MMP8, MMP12, or MMP13 promoters and the
susceptibility to epithelium ovarian cancer in various
populations (Li et al. 2006, 2009, Arechavaleta-Velasco
et al. 2014).
The gelatinases: MMP2 and MMP9

MMP2 and MMP9 have been extensively studied in
cancer, and there is a plethora of literature that
documents their expression in ovarian cancer and
cancer progression. Hence, the overview in the present
review highlights some of these findings and emphasizes
their similarities and controversies. Brun et al. (2008,
2012) have extensively characterized the localization
and expression levels of MMP2, MMP7, MMP9, and
MT1 in different types and stages of ovarian cancer. They
report that serous tumors express higher levels of MMP2,
MMP7, and MMP9 as compared to mucinous tumors.
However, in the surrounding stromal tissue, the
expression of MMP2 and MMP9 did not differ between
tumor types. When classified into benign, borderline,
and malignant tumors, the expression levels of these
MMPs were different across the tumor subtypes. For
example, MMP2 expression was higher in benign tumors
than it was in borderline and malignant tumors, whereas
MMP9 was higher in malignant tumors as compared to
borderline tumors. In the stroma of serous tumors, the
expression of MMP2 was highest in benign and border-
line tumors as compared to malignant tumors. As for
MMP9, it was highest in malignant tumors. In mucinous
tumors, both MMP2 and MMP9 expression was highest
in malignant tumors (Brun et al. 2008).

Although MMP2 staining was present in 76% of
malignant tumors and 54% of benign tumors on
immunohistochemical analysis, other studies have
indicated that high levels of epithelial MMPs are not
necessarily specific to malignant tumors. In fact, MMP2
is more frequently expressed in benign tumors than it is
in carcinomas (Brun et al. 2012). These discrepancies
may be a result of the different methods that the
investigators used to analyze the samples as well as
the arbitrary thresholds that were put in place by the
different groups to determine staining intensity upon
immunohistochemistry analysis (Brun et al. 2012).

Both MMP2 and MMP9 have been extensively studied
in relation to their role in the migration and invasion of
ovarian cancer. MMP2 and MMP9 have been shown
Reproduction (2015) 150 R55–R64
to be secreted and activated in ovarian cancer, to be
closely correlated with the invasion and metastasis of
cancer cells, and to correlate with poor survival
(Davidson et al. 1999).

When MMP9 was silenced using siRNA, the invasive
ability of cancer cells decreased, which suggests a role
for MMP9 in invasiveness (Hu et al. 2012). MMP9 has
also been shown to be involved in the release of vascular
endothelial growth factor from tumor cells and to cause
ascites in ovarian cancer (Belotti et al. 2003). MMP9 was
also suggested to play two potential roles in tumor
development, where it acts as a tumor promoter when it
is present in ovarian tumor stroma but prevents tumor
advancement when it is expressed in the epithelium
(Sillanpaa et al. 2007).

MMP2 has been previously shown to control the
attachment and adhesion of metastatic ovarian cancer
cells to peritoneal surfaces by cleaving ECM proteins and
enhancing their binding to integrins (Kenny et al. 2008).
Similarly, Kenny & Lengyel (2009) showed that the
presence of MMP2 in ovarian cancer regulates the ability
of the ovarian cancer to metastasize. MMP2, like MMP7,
was measured in the serum of ovarian cancer patients,
and serum levels of MMP2 in those patients were lower
than those of healthy controls (Acar et al. 2008).

Both MMP2 and MMP9 levels have been investigated
in the urine of patients in combination with CA125.
Coticchia et al. (2011) showed that MMP2 and MMP9
levels in the urine may be clinically helpful for
diagnosing ovarian cancer, and their results were
independent of CA125 levels. Platelet-derived growth
factor-D (PDGF-D) has been also shown to promote
ovarian cancer invasion, and this increase in invasion is
caused by PDGF-D increasing the expression of MMP2
and MMP9 (Wang et al. 2011b). Finally, in a meta-
analysis of 30 published studies on MMP9 and its
prognostic use in ovarian cancer, the expression of
MMP9 was shown to be generally positively correlated
with poor prognosis (Li et al. 2013).
The stromelysins: MMP3, MMP10, and MMP11

MMP3 plays a significant role in regulating ECM
remodeling as well as activating other MMPs. MMP3 is
known to be overexpressed in cancerous hen ovaries as
well as other human cancers (Choi et al. 2011). The
activation of MMP3 in ovarian cancer has been linked to
the down-regulation of miRNA200, wherein the induc-
tion of MMP3 overexpression caused a decrease in the
ability of miR200 to inhibit ovarian cancer invasiveness.
Similarly, an increase in the expression of miR200 has
been shown to inhibit the expression of MMP3 (Sun et al.
2014). In humans, MMP3 expression is present in the
cystic fluids of ovarian tumors and appears to be
correlated with the activation of MMP7 and MMP9
(Furuya 1999).
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Figure 2 MMPactivation. Certain MMPs are activated by the membrane
type MMPs. (A) TIMPs attach to the active site of the MT-MMPs. This
allows MMPs surrounding the cell in proximity to the MT-MMPs to be
bound by TIMPs, thereby forming a MT-MMP:TIMP:ProMMP complex.
(B) The complex is in close proximity to other MT-MMPs on the cell
surface, which are capable of cleaving the pro-peptide (C) and cause
the MMP to become active (D).
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MMP10 is known to play a role in vascular remodeling
(Rodriguez et al. 2008) and other functions, including
cancer progression (Nabeshima et al. 2002), yet there
have been very few studies on its role in ovarian cancer.
Davidson et al. (2014) observed that when TP53 was
mutated in ovarian cancer cell lines and exposed to
hypoxic conditions, 40% (five genes) of the genes that
were up-regulated were involved in ECM degradation,
and one of them was MMP10. Our lab has shown that
the activation of the PKC pathway in human ovarian
cancer cell lines caused an increase in MMP10
expression, and this increase potentially plays a role
in ovarian cancer migration (Al-Alem et al. 2013). In
chemotherapeutic treatment, MMP10 was highly
induced in ovarian cancer cells that became resistant
to platinum-based chemotherapy as compared to cells
that were non-resistant (Solar & Sytkowski 2011).
Furthermore, MMP3 and MMP10 expression was
increased in rat ovarian surface epithelia following Ras
activation (Ulku et al. 2003).

MMP11 is known to be involved in tumor remodeling;
however, a study that explored the protein expression of
MMP2 and MMP11 in 100 tissue samples from patients
with stage III ovarian cancer showed that MMP2, but not
MMP11, was correlated with aggressive cancer cells
(Perigny et al. 2008). In contrast, Mueller et al. (2000)
showed that there was a higher percentage of low
malignant tumors that express MMP11 in the stroma that
is adjacent to the tumor. This expression correlated
positively with tumor stage.
The membrane type MMPs: MMP14–17, MMP24,
and MMP25

The membrane type MMPs are unique among the MMP
family because they are not secreted into the extracellu-
lar space; rather, they contain a domain that anchors
them into or onto the plasma membrane (Fig. 2). An
extracellular domain directs the proteolytic component
of the enzyme to the exterior surface of the cell. There
are six members of this family, and they are divided into
type I and type II MT-MMPs (Sounni & Noel 2005). The
type I MT-MMPs include MT1 (MMP14), MT2 (MMP15),
MT3 (MMP16), and MT5 (MMP24), and they have
a transmembrane domain and an intracytoplasmic
domain. The type II MT-MMPs, MT4 (MMP17) and
MT6 (MMP25), have a glycosylphosphatidylinositol
(GPI) link domain that anchors them onto the cell
membrane (Curry & Osteen 2003, Sounni & Noel 2005).
By virtue of their presence on the surface of the cell, all
of the MT-MMPs are thought to participate in pericellular
proteolysis to promote cell growth and migration, which
are hallmarks of cancer metastasis (Murphy et al. 1999).
For example, high local concentrations of active MT1 on
the cell membrane of metastatic cancer cells have been
proposed to play an important role in cell migration
(Sabeh et al. 2004, Wolf et al. 2007, Kessenbrock et al.
www.reproduction-online.org
2010). MMPs are mostly activated via serine proteinases
that cleave pro-domain peptide bonds. In addition,
MT-MMPs can cleave pro-forms of other enzymes,
including secreted pro-MMPs such as MMP2 and
MMP9, as discussed in the earlier section on the
gelatinases, which contributes to their involvement in
ovarian cancer. MMP14 in particular activates MMP2,
whereas MMP15 and MMP24 fail to activate MMP2
(Zucker et al. 1998, Miyamori et al. 2000). MT-MMPs are
inhibited via TIMP2, whose C-terminal acts as a receptor
for the pro-MMP2. A nearby uninhibited MT-MMP
cleaves the adjacent pro-MMP2, which is further cleaved
to the active form of MMP2 (Strongin et al. 1995,
Deryugina et al. 2001) (Fig. 2).

An association has been described between ovarian
cancer and the MT-MMPs. For example, MT1 and MT2
have been reported to be associated with ovarian
carcinoma (Fishman et al. 1996, Stack et al. 1998).
MT1 has been associated with aggressive tumor behavior
(Drew et al. 2004) and a shorter disease-specific survival
in epithelial ovarian cancer (Kamat et al. 2006). In
contrast to MT1 and MT2, MT3 mRNA was not detected
in malignant pleural or peritoneal effusions (Davidson
et al. 2001).

There are extremely limited reports on the association
of MT4, MT5, and MT6 with ovarian cancer. In the
normal ovary, we have observed an increase in MT6
around the time of ovulation (Puttabyatappa et al. 2014).
In ovarian cancer, the data that do exist have been
performed in cell lines. For example, Delassus et al.
(2010) reported that MMP25, along with other MMPs,
was differentially regulated in SKOv3 ovarian cells.
However, in their provocative study, these investigators
reported striking variability in MMP expression in cancer
cell lines. A comparison of the MMP signaling pathways
Reproduction (2015) 150 R55–R64
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Figure 3 Schematic of ovarian cancer formation. The ovary is
comprised of several cell layers, including the surface epithelium and
the underlying tunica aluginea, which are separated from each other by
a basement membrane. The theca layer lies under the tunica albuginea
and is separated from the granulosa cell layer by a basement membrane
(A). The presence of an insult or a spontaneous mutation to the cells of
the surface epithelium causes cells to transform (B). This transformation
leads to an uncontrolled growth of cells and the increased expression of
growth factors, immune factors, MMPs, and others. More importantly,
for continuous cell growth, cells need to degrade the surrounding
matrices; hence, ovarian cancer cells utilize an increased expression of
specific MMPs to destroy the type of matrix adjacent to the
tumor cells (C).
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in the ovarian cancer SKOV3 cells with those from lung,
brain, prostate, or breast cancer cells revealed that the
induction of MMP expression differed so widely that
almost 90% of the pathways were different in cells from
one cancer to another (Delassus et al. 2010). In 18 out
of 51 signaling pathways, a known suppressor of cancer
progression stimulated, rather than inhibited, MMP
expression. Likewise, ten signaling pathways that up-
regulated MMP expression in the cells of some cancers
resulted in the down-regulation of MMP in other cancer
cells. These results highlight that there are pronounced
differences in the signaling pathways between cells from
different cancers (Delassus et al. 2010).

Support for the role of the MT-MMPs in ovarian cancer
invasion is forthcoming from cell culture studies. OVCA
433 cells, which express a mutated form of MT1 that
resulted in sustained cell surface activity by MT1, caused
a cellular phenotypic epithelial–mesenchymal transition
characterized by enhanced migration and collagen
invasion (Moss et al. 2009). Likewise, MT1 increased
the invasion of ovarian carcinoma cells through the
activation of pro-MMP2 (Fishman et al. 1996).

In addition to their role in invasion, the MT-MMPs may
play a key role in the vascular changes or vasculogenic
mimicry associated with ovarian tumor formation and
growth. MT1 is known to activate the pro-form of MMP2
to the active enzyme (Sood et al. 2004). Together, MMP2
and MMP14 appear to regulate the development of
vasculogenic-like networks and matrix remodeling by
aggressive ovarian cancer cells (Sood et al. 2004), which
may allow further cell growth and proliferation (Fig. 3).
The matrilysins: MMP7 and MMP26

MMP7, also known as matrilysin-1, is the smallest
member of the MMP family and acts on a variety of
substrates (Wang et al. 2005). It is also one of the few
MMPs that is secreted by tumor cells rather than stromal
cells, and it has been shown to be expressed in almost all
organ tumors in the body (Wielockx et al. 2004, Ii et al.
2006). MMP7 overexpression has been implicated in
numerous cancers and is linked to advanced cancer
stages and poor prognosis (Ii et al. 2006). In particular,
MMP7 has been shown to be elevated in 80% of
malignant human ovarian cancers as compared to 40%
in normal or benign samples. MMP7 has also been
shown to be expressed in stromal ovarian cancer tissues,
particularly those of serous cancers (Brun et al. 2008).
Polymorphisms in the MMP7 promoter region have
shown that single nucleotide polymorphisms in MMP7
are significantly higher in ovarian cancer patients than
they are in controls (Li et al. 2006). In addition, the serum
levels of MMP7 were higher in patients with ovarian
serous (Meinhold-Heerlein et al. 2007) and mucinous
(Shigemasa et al. 2000) cancers as compared to controls.
MMP7 serum levels were also higher in preoperative as
compared to post-operative patients (Tanimoto et al.
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1999) and were also higher before chemotherapy
(Gershtein et al. 2010), which indicates that MMP7
may be useful as a biomarker. In contrast, Sillanpaa et al.
(2006) showed that the 10-year disease-related survival
was better when the tumor expression of MMP7 cells
was elevated.

MMP7 secretion has been shown to correlate with
metastasis (Shiomi & Okada 2003, Wang et al. 2005).
One potential mechanism for the increased invasiveness
seen with MMP7 is its activation of MMP2 and MMP9
(Ii et al. 2006). MMP2 has been previously shown to
control the attachment and adhesion of metastatic
ovarian cancer cells to peritoneal surfaces by cleaving
ECM proteins and enhancing their binding to integrins
(Kenny et al. 2008). Another mechanism for MMP7
action is the degradation of IGFBP, which thus increases
the bioavailability of IGF and increases the growth of
cancer cells (Ii et al. 2006).

Very few reports have examined MMP26 (matrilysin-
2) expression in ovarian cancer. MMP26 was not
detected in ovarian cancer cell lines, such as BG-1 and
OAW-42 (Schropfer et al. 2010), nor was it significantly
elevated in tissues from ovarian cancer patients
(Zhao et al. 2009). In contrast, Ripley et al. (2006)
reported that immunostaining of MMP26 was increased
with ovarian carcinoma tumor stage III/IV, which
indicates that the invading tumor cells possess the
strongest staining for MMP26.
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The metalloelastase: MMP12

MMP12 shares homology with the other MMPs in
that it has a similar domain structure with both the
collagenases and stromelysins 1 and 2. However, MMP12
is distinct from the other MMPs insofar as it only shares a
33–48% amino acid homology with the other members of
this family (Shapiro et al. 1993). MMP12 is produced by
macrophages, degrades elastin, and has been shown to be
associated with inflammatory skin diseases, atherosclero-
sis, angiogenesis, and cancer (Nenan et al. 2005, Chen
et al. 2013). Very few studies have explored the role of
MMP12 in ovarian cancer. Polymorphism studies indi-
cate that an 82A/G polymorphism of MMP12 may be a
risk factor for the development of epithelial ovarian
cancer progression (Li et al. 2009).
Conclusion

There is an extensive body of literature to suggest that MMP
overexpression is associated with an increased metastatic
potential of ovarian tumors, which leads to poor prognosis
and decreased survival. However, as the present review
highlights, the expression pattern of each individual MMP
varies depending on the type of tumor, tumor stage, patient
diagnosis, means of MMP identification (such as PCR),
enzyme activity or immunohistochemistry, and even
potentially the patient population. This variability is high-
lighted by studies that have examined the overexpression of
MMPs related to polymorphisms in the respective MMP
promoter or the differences in MMP expression in different
cancer cell lines. Variability in the ability to detect MMP
expression and activity may obfuscate any conclusions
regarding any one MMP in the initiation, progression,
metastasis, and invasion of a specific tumor.

Additionally, emerging evidence suggests that MMPs
may have non-proteolytic actions working through the
hemopexin domain (Correia et al. 2013). With sensitive
advances in technology, such as RNAseq, proteomics,
and 3D modeling, a more concise picture of the
involvement of the MMP family in the development
and progression of ovarian cancer should emerge. This
will allow for the development of small-molecule MMP
inhibitors that block both the proteolytic and non-
proteolytic actions of the MMPs that could be used as
an adjuvant therapy in conjunction with existing
therapies to combat ovarian cancer.
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