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Abstract The cell of origin of ovarian cancer has been long
debated. The current paradigm is that epithelial ovarian cancer
(EOC) arises from the ovarian surface epithelium (OSE). OSE
is composed of flat, nondescript cells more closely resembling
the mesothelium lining the peritoneal cavity. In light of various
histologic types of ovarian carcinoma (serous, endometrioid,
and clear cell carcinoma), which have a Müllerian phenotype,
it has been argued that the OSE undergoes a process termed
“metaplasia” to account for this profound morphologic
transformation. Recent molecular and clinicopathologic
studies not only have failed to support this hypothesis
but also have provided evidence that EOC stems from
Müllerian-derived extraovarian cells that involve the ovary
secondarily, thereby calling into question the very existence
of primary EOC. This new model of ovarian carcinogene-
sis proposes that fallopian tube epithelium (benign or ma-
lignant) implants on the ovary to give rise to both high-
grade and low-grade serous carcinomas, and that endome-
trial tissue implants on the ovary and produces endometri-
osis, which can undergo malignant transformation into
endometrioid and clear cell carcinoma. Thus, ultimately
EOC is not ovarian in origin but rather is secondary, and
it is logical to conclude that the only true primary ovarian
neoplasms are germ cell and gonadal stromal tumors anal-
ogous to tumors in the testis. If this new model is con-
firmed, it has profound implications for the early detection
and treatment of “ovarian cancer”.
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Introduction

Advances in radical surgery and cytotoxic chemotherapy
have extended survival but have not reduced the overall
mortality in ovarian cancer patients, and there is currently
no effective screening strategy [1•, 2], largely because of
inadequate understanding of the early events of ovarian
carcinogenesis. Unlike cancers arising in the colon, breast,
cervix, endometrium, prostate, and pancreas, where the early
events of carcinogenesis can be studied because their pre-
cursor lesions have been recognized, a precursor lesion of
epithelial ovarian cancer (EOC) has not been identified de-
spite diligent research over the past 30 years. As a result,
efforts at early detection and screening, which have been
highly successful for other cancers (notably cervical cancer),
have not provided a survival benefit for women with EOC
because the screening methods have been empirical instead
of being grounded in a firm understanding of the mecha-
nisms of ovarian carcinogenesis [1•]. In addition, confirma-
tion that the screening test has, in fact, detected ovarian
cancer requires laparoscopy at the minimum because the
ovary lies deep in the pelvis; therefore the screening test
must be highly specific. Also, ovarian cancer appears to
evolve relatively rapidly, unlike cervical cancer, in which
the transit time from a preinvasive to an invasive carcinoma
may be 10 years or longer [3]. Finally, the goal of screening
has been to detect EOC while it is still confined to the ovary
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(stage I), but recent studies strongly suggest that EOC fre-
quently begins outside the ovary. Accordingly, it has been
proposed that the goal of screening should shift from the
detection of disease confined to the ovary to the detection of
low-volume disease anywhere in the pelvis [4]. This review
revisits the issue of the site of origin of ovarian carcinoma
and its possible impact on future ovarian cancer research and
management.

Ovarian Carcinoma is a Heterogenous Group
of Diseases

The ovary has the largest number of tumor types in the body.
Ovarian tumors can be divided into four main categories:
EOC, germ cell tumors, gonadal stromal tumors, and meta-
static neoplasms [5]. The most common ovarian malignancies
are the EOCs, and this review is confined to this group.

EOCs comprise several different histologic types, which
can be grouped into two broad categories, type I and type II
[6]. This categorization not only has clinical utility but also
sheds light on their pathogenesis. Type I tumors, which include
low-grade serous, low-grade endometrioid, clear cell, and mu-
cinous carcinoma, typically present as a large mass confined to
one ovary (stage Ia), and they have a relatively good outcome.
Type I tumors typically display a variety of somatic mutations
that involve ARID1A, BRAF, CTNNB1, KRAS, PIK3CA,
PPP2R1A, and PTEN; only rarely are BRCA1, BRCA2, or
TP53 involved (Fig. 1) [6–9]. These tumors develop in a
stepwise fashion from precursor lesions such as borderline
tumors and endometriosis. In contrast, type II tumors include
high-grade serous carcinoma, high-grade endometrioid carci-
noma, malignant mixed mesodermal tumors (carcinosarco-
mas), and undifferentiated carcinomas, which are highly
aggressive and almost always present in advanced stages
(stages II–IV). High-grade serous carcinoma is the prototypic
type II tumor. It harbors TP53 mutations in more than 95% of
cases, mutations in BRCA1 and BRCA2 in approximately 10–
20% and hypermethylation of theBRCA1 promoter in 10–40%
of cases [10]. These tumors only rarely display the mutations
typically found in the type I group. Based on DNA copy
number alterations, the genome of type II cancers is much less
stable than that of the type I tumors [11, 12].

Conventional View of How Ovarian Cancer Develops

The ovary is composed of germ cells and stromal cells and is
covered by a single layer of epithelium, which is termed the
ovarian surface epithelium (OSE). The OSE is regarded as a
specialized form of mesothelium that is continuous with the
peritoneal lining of the pelvic cavity, with which it is mor-
phologically and immunohistochemically identical [13]. In

addition, small epithelium-lined cysts termed “cortical inclu-
sion cysts” (CICs) can be present in the ovarian cortex. These
cysts are thought to arise as a result of invagination of the
OSE, and a number of investigators have proposed that,
together with the OSE, they may be the site of origin of EOC.

A number of epidemiologic studies have concluded that
ovarian cancer is linked to ovulation, based on a significant
reduction in risk related to parity and oral contraceptive use
[14], both of which are associated with a decrease in ovula-
tion. Consequently the theory of “incessant ovulation” pro-
posed by Fathalla [15] has gained widespread currency.
According to this theory, ovulation, which involves rupture
of the OSE to permit egress of the oocyte, is associated with
repeated trauma and repair, which cause DNA damage and
can lead to neoplastic transformation of the OSE, the CICs,
or both [15]. To account for the Müllerian phenotype of
EOCs from OSE, which is mesothelial in nature, it is argued
that the OSE undergoes metaplastic changes resulting in a
Müllerian phenotype prior to malignant transformation [16].
“Metaplasia” is defined as a benign cellular process that

Fig. 1 Morphologic and molecular genetic features that characterize
each major subtype of ovarian carcinoma. The top panels of photo-
micrographs illustrate their histologic features. The bottom table shows
the frequency of sequence mutations of oncogenes and tumor suppres-
sor genes in a heat map. The frequency of mutation is represented by
the gradient of colors, from green (low frequency) to brown (high
frequency). Of note, the case number is too small to be conclusive
for PPP2R1A mutations in mucinous tumor. HG, high-grade serous
carcinoma; LG, low-grade serous carcinoma; CC, clear cell carcinoma;
EM, endometrioid carcinoma; MU, mucinous carcinoma
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gives rise to different morphologically distinct cell types by
reprogramming the cellular differentiation. For example, the
presence of glands in the endometrium lined by ciliated epi-
thelium is referred to as “tubal (ciliated) metaplasia.” This
complex alteration from resting, nondescript mesothelium to
cells resembling fallopian tube and endometrial tissue is diffi-
cult to comprehend, as has been pointed out by Dubeau [17],
who dismisses the entire concept as a fable. Nonetheless, some
argue that OSE is a specialized mesothelium, which adopts the
Müllerian phenotype because of its anatomic location and
unique microenvironment on the ovarian surface [13]. Con-
vincing evidence for this proposal is lacking. Perhaps the most
cogent evidence arguing against the origin of EOC from the
OSE or CICs is that despite a diligent search for precursor
lesions in the ovary for more than 30 years, no well-accepted
precursor has been found, except in very rare instances. Thus,
in rare cases, cytologic abnormalities in the epithelial lining of
CICs classified as “dysplasia” has been reported in the ovaries
of high-risk women [18–21], but other studies have failed to
confirm these findings [16–19]. It is noteworthy that a signif-
icant pitfall in the studies describing precursor lesions involv-
ing the OSE immediately adjacent to high-grade serous
carcinoma is that they have not taken into account that the
“precursor” lesion is not a real precursor, but instead represents
lateral spread of the carcinoma on the surface. As a result, an
alternative hypothesis has proposed the “secondary Müllerian
system” as the origin of EOCs, to account for the Müllerian
phenotype expressed by ovarian cancers [17]. The secondary
Müllerian system, in contrast to the primary Müllerian system
(which gives rise to the upper part of the vagina, the endome-
trium, and the fallopian tubes), includes a variety of epithelial
structures such as paraovarian and paratubal cysts, endometri-
osis, and endosalpingiosis. Although this system would ex-
plain theMüllerian appearance of EOCs, it is inconsistent with
the fact that primary EOCs have almost never been reported in
these locations.

Tubal Origin of High-Grade Serous Carcinomas

The term “serous” has been used to describe the tumor type
with morphologic features resembling the epithelial cells in
the fallopian tube. However, the possibility that tubal epi-
thelium gives rise to ovarian serous carcinoma has only
recently gained ground. In 2001, Piek et al. [22] described
dysplastic lesions similar to high-grade serous carcinoma in
the fallopian tube, but not in the ovary, of patients with a
genetic predisposition to EOC who were undergoing pro-
phylactic salpingo-oophorectomy. This finding prompted
pathologists to carefully examine fallopian tubes using a
new protocol (SEE-FIM), which involved sectioning and
extensively examining the fimbriated end. In the past, only
a few representative sections of the fallopian tubes were

submitted for microscopic examination because it was pre-
sumed that precursors of ovarian carcinoma would logically
be in the ovaries. As a result of the adoption of the SEE-FIM
protocol, occult intraepithelial and invasive tubal carcino-
mas have been detected in association with EOCs.

The tubal lesion that is related to high-grade serous carci-
noma, termed “serous tubal intraepithelial carcinoma (STIC),”
is morphologically characterized by stratified, disorganized,
enlarged epithelial cells with highly atypical nuclei (Fig. 2).
There are several lines of evidence supporting the tubal origin
of high-grade serous carcinoma. First, STICs and early inva-
sive tubal carcinomas occur not only in 10–15% of women
with a germ-line mutation placing them at high risk for “ovar-
ian” cancer but also in 50–60% of women with sporadic
ovarian cancer (without either family history or known BRCA
mutations) [23•, 24, 25]. Second, molecular genetic studies
have demonstrated identical TP53 mutations in STICs and
concurrent ovarian high-grade serous carcinomas, indicating a
clonal relationship between them [26, 27•]. Third, a genome-
wide gene expression profiling study further showed that the
gene expression signature of high-grade serous carcinoma is
more closely related to fallopian tube epithelium than to OSE
or endometrial or colonic epithelium [28]. Consistent with this
view, immunohistochemical studies demonstrate that high-
grade serous carcinoma expresses PAX8, a Müllerian marker,
but not calretinin, a mesothelial marker. This finding is im-
portant because if high-grade serous carcinoma arises from
OSE, it should express calretinin but not PAX8, because OSE
is embryonically and morphologically related to mesothelial
cells rather than Müllerian epithelium. Fourth, besides co-
expressing p53, STICs and concurrent ovarian high-grade
serous carcinoma also express several tumor-associated onco-
proteins, including fatty acid synthase, Rsf-1, and cyclin E1,
whereas these proteins are rarely detected in the adjacent
normal tubal epithelium [29]. Finally, analysis of telomere
length using in situ hybridization reveals that, like many other
precancerous lesions, STICs have shorter telomeres than the
associated normal epithelium [30]. All these findings lend
further support to the proposal that the tubal epithelium is
the likely cell of origin of high-grade serous carcinoma, and
STIC represents its precursor lesion. Table 1 summarizes the
evidence for and against various ovarian and tubal lesions as
precursors of high-grade serous carcinoma and lists the studies
on each side.

Why the tubal epithelium is vulnerable to neoplastic
transformation and how carcinogenesis proceeds remains
speculative. As previously noted, epidemiologic studies
have shown that the risk of ovarian cancer correlates directly
with the number of ovulations during a woman’s life, as oral
contraceptive use or pregnancy and lactation substantially
reduce the risk of ovarian cancer. Women with more than
two pregnancies have a 50% decrease in EOC risk, and oral
contraceptive use for more than 5 years decreases EOC risk
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by about 50% [31–33]. Several explanations for these obser-
vations have been offered. It has been hypothesized that
oxidative stress, directly related either to exposure of the
fimbria (where most STICs are found) to follicular fluid
containing reactive oxygen species or to other microenvir-
onmental factors associated with rupture of the OSE at
ovulation, results in DNA damage to epithelial cells
[34–36]. Repeated DNA damage in response to multiple

ovulations may facilitate the selection for TP53 mutations,
telomere shortening, or both in tubal epithelial cells, result-
ing in chromosomal instability that leads to a repertoire of
tumor subclones, some of which may acquire malignant
phenotypes, including STICs (Fig. 3). These cells then
detach and implant on the ovary and peritoneal surfaces. It
is likely that the microenvironment in the ovary is more
favorable for further tumor development than in the fallopian

Table 1 Morphologic features and locations of proposed precursors for high-grade serous carcinoma of the ovary

Lesion Morphologic features Location Evidence for precursor
(references)

Evidence against
precursor (references)

STIC Intraepithelial carcinoma closely resembling
ovarian high-grade serous carcinoma

Separate and discrete from ovarian
carcinoma; Sometimes adjacent to
tubal carcinoma

[22, 23•, 24, 27•,
29, 30, 52–59]

Not available

OSE Typically, benign epithelial papillomatosis;
Occasionally, cytologic atypia
“dysplasia”;
Rarely, intraepithelial carcinoma

On surface of ovary but not associated
with a carcinoma; Sometimes adjacent
to and merging with a carcinoma

[18, 60–63] [64–67]

CICs Typically, cysts lined by benign epithelium;
Occasionally, cytologic atypia
“dysplasia”

Beneath OSE in stroma; Sometimes
adjacent to invasive carcinoma

[18, 20, 60, 61, 68–70] [64–67]

STIC serous tubal intraepithelial carcinoma, OSE ovarian surface epithelium, CICs cortical inclusion cysts

Fig. 2 The histology and expression of Ki-67, p53, and p16 in a
serous tubal intraepithelial carcinoma (STIC). Hematoxylin and eosin
(H&E) stained fallopian tube section shows a STIC, composed of
enlarged and highly atypical tumor cells, forming a multilayered archi-
tecture. No evidence of invasion is noted. In contrast, the adjacent
normal fallopian tube epithelium (FTE) contains single-layered,
smaller and homogenous epithelial cells. The area was immunostained

with antibodies reacting to Ki-67, p53, and p16. The percentage of Ki-
67 labeled cells is greater in STIC than in normal fallopian tube
epithelium, indicating a higher proliferative activity in STIC. p53
staining is undetectable in STIC because the lesion harbors a truncating
mutation in TP53. STIC cells demonstrate diffuse p16 immunoreactiv-
ity, suggesting an Rb pathway aberration
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tube, so the tumor enlarges in the ovary and appears to be a
primary ovarian cancer rather than a tubal cancer.

Tubal Origin of Low-Grade Serous Carcinomas

It has been well established that ovarian low-grade serous
carcinoma is distinct from high-grade serous carcinoma [9,
10]. Unlike high-grade serous carcinoma, invasive low-
grade serous carcinoma develops through multiple interme-
diate stages, mimicking the adenoma-carcinoma sequence in
colorectal carcinoma, in which carcinoma evolves through a
continuum of histologically recognizable precursor lesions
[37]. Recent findings based on clinicopathologic and immu-
nohistochemical studies have provided new evidence that
low-grade serous neoplasms of the ovary are more closely
related to tubal epithelium than to OSE, leading to a pro-
posal that low-grade serous carcinoma also develops from

tubal epithelium [38]. The putative precursor lesion has
been designated “papillary tubal hyperplasia” (PTH), in
which hyperplastic tubal epithelium forms small intralumi-
nal buds (micropapillae) often associated with psammoma
bodies that are pinched off, float into the tubal lumen, and
then implant on ovarian and peritoneal surfaces. These
implanted lesions can result in endosalpingiosis, atypical
proliferative serous tumors, and noninvasive implants. We
speculate that the mechanism by which tubal epithelium
implants on the ovary (either in the form of normal tubal
epithelium or PTH) is related to ovulation. At the time of
ovulation, the fimbriated end of the fallopian tubes is closely
applied to the ovarian surface in order to facilitate the
transfer of the oocyte from the ruptured ovarian follicle to
the fallopian tube. At the rupture site, the fallopian tube
epithelium is exposed directly to the ovarian stroma, as well
as to antrum fluid. We hypothesize that the ovarian micro-
environment facilitates tumor progression of the implanted

Fig. 3 Hypothesis for the tubal origin of ovarian high-grade serous
carcinoma (HGSC). We hypothesize that normal fallopian tube epithe-
lium (FTE) is the cell of origin of many “ovarian” HGSCs. Rupture of
the dominant follicle at ovulation exposes the underlying ovarian
stroma to fimbrial epithelium, which can implant on the ruptured
ovarian surface. Inflammation and repair occur in the presence of
follicular fluid, which contains a high concentration of reactive oxygen
species (ROS, red dots). The increased genotoxic effects may facilitate
the selection of TP53 mutations in epithelial cells, which clonally
expand. As a result, telomere shortening occurs and enhances

underlying chromosomal instability (CIN), creating a repertoire of
tumor subclones in serous tubal intraepithelial lesions (STIL), some
of which may acquire malignant phenotypes (serous tubal intraepithe-
lial carcinoma, STIC) and exfoliate onto the ovarian and peritoneal
surfaces. In summary, FTE may lead to ovarian HGSC by two different
mechanisms: (1) normal FTE implants on the ruptured ovarian surface
at ovulation, which invaginates to form an inclusion cyst that subse-
quently undergoes malignant transformation (possibly after a TP53
mutation), or (2) STIC cells implant on the ovary and then form a
tumor mass. In both instances, the ovarian HGSC is of tubal origin
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tubal epithelium (presumably the tubal stem cells) to form a
CIC, followed by clonal expansion into an ovarian serous
cystadenoma. A number of events associated with ovulation
and retrograde passage of menstrual blood may play a role in
malignant transformation: at the follicle rupture site, an in-
flammatory reaction with the release of cytokines, growth
factors, and free oxygen radicals is present in follicular fluid;
hemolyzed blood from the rupture site or retrograde menstru-
ation can release iron and free radicals; or stimulation by the
hormone-rich ovarian stroma may induce neoplastic transfor-
mation. Histopathologic analysis demonstrates that serous
cystadenomas may undergo proliferation to form a tumor
termed “atypical proliferative serous tumor” and an intraepi-
thelial (in situ) carcinoma termed “noninvasive micropapillary
serous carcinoma” (collectively known as “serous borderline
tumors”), which are thought to be the immediate precursors of
invasive low-grade serous carcinoma [39].

Endometrial Origin of Ovarian Clear Cell
and Endometrioid Carcinoma

There is evidence to support the endometrial origin of both
ovarian endometrioid and clear cell carcinoma. The thought
that endometriosis could represent the precursor lesion of some
EOCs dates as far back as 1927 [40]. Since then, numerous
clinical, histopathologic, and (more recently) molecular studies
have supported this concept. Both ovarian endometrioid and
clear cell carcinomas are frequently associated with ovarian
endometriotic cysts, as approximately 40% of ovarian endo-
metrioid carcinomas and 50–90% of clear cell carcinomas are
associated with endometriosis [41]. Moreover, a morphologic
continuum of tumor progression is evident in many cases [42,
43]. Patients with endometriosis have an increased risk (about
2–4 times) of developing ovarian endometrioid and clear cell
carcinoma [44]. Tubal ligation, which prevents retrograde flow
of menstrual endometrium to adnexal tissues, has been found
to reduce the incidence of ovarian endometrioid and clear cell
carcinoma [45]. A clonality study has demonstrated that endo-
metriosis is related to concurrent ovarian endometrioid and
clear cell carcinomas in the same patient [46]. Moreover,
somatic mutations of ARID1A, a gene involved in chromatin
remodeling [47], have recently been reported in a large pro-
portion of endometrium-related neoplasms, including 46–57%
of ovarian clear cell carcinomas [7, 8], 40% of uterine endo-
metrioid carcinomas [48], and 30% of ovarian endometrioid
carcinomas [8], but these mutations are rarely reported (≤ 10%)
in other types of carcinomas [49]. The vast majority of
ARID1A mutations are either non-sense or frameshift muta-
tions, resulting in loss of protein expression [8, 48]. Using
ARID1A as a marker, we and others have shown the same
ARID1A mutations in endometriosis and adjacent clear cell
carcinoma [8], and in most cases ARID1A immunoreactivity

has been lost in both ovarian endometriotic cysts and associ-
ated endometrioid and/or clear cell carcinomas (Ayhan et al.,
unpublished data). These findings support the role of endome-
triosis as a precursor of ovarian endometrioid and clear cell
carcinoma and suggest that loss of ARID1A expression (pre-
sumably due to a mutation) is an early molecular event in the
development of ovarian endometrioid and clear cell carcino-
mas, mostly occurring before malignant transformation.

Impact and Future Perspectives

The purported extraovarian origin of EOCs has profound
biological and clinical implications, especially in the early
detection and prevention of high-grade serous carcinomas.
As STIC cells may disseminate not only to ovarian but also
to peritoneal surfaces early in tumor development, one can
argue that the majority of ovarian high-grade serous carci-
nomas are at an advanced stage even though there are no
grossly detectable tumor nodules outside the ovary. There-
fore, the tubal origin of high-grade serous carcinomas, if
validated, may explain why methods of early detection such
as CA125 and transvaginal ultrasound have neither im-
proved the detection of stage I high-grade serous carcinoma
nor reduced mortality [1•, 3, 50]. In addition, the current
approach to prophylaxis needs to be re-evaluated not only
for women at high risk of developing ovarian cancer but
also for the general female population. Currently, the stan-
dard approach for reducing risk for women with BRCA1/2
mutations or with a family history of ovarian carcinoma has
been bilateral salpingo-oophorectomy with or without hys-
terectomy. For women at high risk, an argument could be
made to remove only the fallopian tubes and conserve the
ovaries before menopause, because high-grade serous carci-
noma develops from the fallopian tubes and involves the
ovaries secondarily. Oophorectomy could be delayed until
after menopause [51]. This approach would preserve fertil-
ity and hormonal function in premenopausal women. Sim-
ilarly, for women who are not considered to be at high risk
but who undergo a hysterectomy for benign uterine causes,
bilateral salpingectomy with sparing of the ovaries may be
considered in order to improve quality of life and overall
survival while still reducing the risk of ovarian carcinoma.
A recent prospective study of nearly 30,000 women showed
that bilateral oophorectomy at the time of hysterectomy,
compared with ovarian preservation, was associated with
increased mortality from all causes and an increased risk
of nonfatal coronary heart disease. Similarly, salpingectomy
rather than tubal ligation would be effective in reducing
ovarian cancer risk for women considering a more perma-
nent type of contraception. Future clinical studies are nec-
essary to confirm the efficacy of these approaches before
they are introduced into clinical practice [51].
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The new paradigm of ovarian carcinogenesis, in which it is
recognized that EOC consists of multiple tumor types with
different clinicopathologic and molecular genetic features and
most carcinomas arise from cells outside the ovary and involve
it secondarily, has refocused research in the field and has
opened up potential new avenues in clinical management.
Studying the early molecular changes associated with STICs
not only will allow the discovery of reliable biomarkers for
detection of low-volume disease but also may ultimately lead
to the identification of molecular targets that may prove useful
for targeted therapy using small molecule inhibitors, neutraliz-
ing antibodies, and novel cell-based immunotherapy. Accord-
ingly, new approaches to management should focus on
prevention and detection of very early lesions such as STICs,
as chemotherapy of established carcinomas is not nearly as
effective. To this end, a previous report demonstrated that
STICs overexpress fatty acid synthase, for which a small
molecule inhibitor has been available [29]. In addition, STICs
upregulate several cancer-associated genes such as cyclin E1
and Rsf-1, which may serve as candidate molecules in devel-
oping prophylactic immunotherapy to eradicate STICs [29].

Conclusions

The failure of radical surgery and chemotherapy to reduce the
overall mortality of ovarian cancer, in contrast to the improve-
ment of outcome for many other major cancer types, can be
attributed to a lack of understanding of its pathogenesis.
Accumulated evidence from recent clinicopathological, im-
munohistochemical, and molecular genetic studies strongly
suggests that the cell of origin of most EOCs resides in
extraovarian organs. In particular, it appears that both high-
grade and low-grade serous carcinomas are probably derived
from fallopian tubal epithelium. The high-grade serous carci-
nomas develop from dissemination of STIC cells or from
CICs in the ovary that are derived from tubal epithelium,
whereas low-grade serous carcinoma progresses from an ovar-
ian borderline tumor, which developed from tubal epithelium
shed from “papillary tubal hyperplasia” or tubal epithelium
that had formed an ovarian CIC. Finally, ovarian endometrioid
and clear cell carcinomas arise from ectopic endometrium
implanted on the ovary (endometrioma). Therefore, it now
appears that most EOCs develop from implanted tumor pre-
cursors imported from either the fallopian tube or the endo-
metrium rather than from the OSE itself. If this hypothesis of
the extraovarian origin of “ovarian” cancer is validated, the
true primary ovarian neoplasms would include only germ cell
and gonadal stromal tumors, analogous to testicular neo-
plasms. Although several critical experiments are still needed
to confirm this model, the new paradigm of the extraovarian
origin of EOCs will have profound implications for research
and clinical management.
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