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BACKGROUND: Anti-cancer therapy is often a cause of premature ovarian insufficiency and infertility since the ovarian follicle reserve is
extremely sensitive to the effects of chemotherapy and radiotherapy. While oocyte, embryo and ovarian cortex cryopreservation can help
some women with cancer-induced infertility achieve pregnancy, the development of effective methods to protect ovarian function during
chemotherapy would be a significant advantage.

OBJECTIVE AND RATIONALE: This paper critically discusses the different damaging effects of the most common chemotherapeutic
compounds on the ovary, in particular, the ovarian follicles and the molecular pathways that lead to that damage. The mechanisms through
which fertility-protective agents might prevent chemotherapy drug-induced follicle loss are then reviewed.

SEARCH METHODS: Articles published in English were searched on PubMed up to March 2019 using the following terms: ovary, fertility
preservation, chemotherapy, follicle death, adjuvant therapy, cyclophosphamide, cisplatin, doxorubicin. Inclusion and exclusion criteria were
applied to the analysis of the protective agents.

OUTCOMES: Recent studies reveal how chemotherapeutic drugs can affect the different cellular components of the ovary, causing rapid
depletion of the ovarian follicular reserve. The threemost commonly used drugs, cyclophosphamide, cisplatin and doxorubicin, cause premature
ovarian insufficiency by inducing death and/or accelerated activation of primordial follicles and increased atresia of growing follicles. They
also cause an increase in damage to blood vessels and the stromal compartment and increment inflammation. In the past 20 years, many
compounds have been investigated as potential protective agents to counteract these adverse effects. The interactions of recently described
fertility-protective agents with these damage pathways are discussed.

WIDER IMPLICATIONS: Understanding the mechanisms underlying the action of chemotherapy compounds on the various components
of the ovary is essential for the development of efficient and targeted pharmacological therapies that could protect and prolong female fertility.
While there are increasing preclinical investigations of potential fertility preserving adjuvants, there remains a lack of approaches that are being
developed and tested clinically.
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Introduction

The effects of cancer and its treatment on female reproductive function

are increasingly well documented. Overall, compared to the general

population, women are 38% less likely to have a pregnancy after cancer

diagnosis and treatment, with all diagnostic groups of cancer being

associated with a reduction in the likelihood of subsequent pregnancies

(Anderson et al., 2018). Given this situation, there is now a pressing

need to develop methods to protect patients from the damaging

effects of treatment. This review therefore assesses the effectiveness

of potential treatments to protect the ovary against chemotherapy-

induced damage, with the work to date reported for only pre-clinical

studies, primarily animal models.

Over the last several decades, cervical cancer and breast cancer

have had the greatest impact on reducing the number of pregnancies

achieved, due to a combination of their high prevalence, the marked

effect of their associated treatments and patient age. Recent years have

seen improvements for these two particular malignancies and for other

cancers, such as Hodgkin lymphoma, although some diagnoses have

seen little, if any, change in their impact on subsequent chances of

pregnancy (Anderson et al., 2018).While radiotherapy and surgery can

have very significant adverse effects on female reproductive function,

this review focuses on the adverse effects of chemotherapy and on

possible approaches to reduce its impact. The adverse effects of

chemotherapy on ovarian function have long been recognised (Fig. 1A)

and there are increasingly detailed data documenting the effects of

different regimens on short-term markers of ovarian function, longer-

term fertility and risk of early menopause (Jayasinghe et al., 2018; van

Dorp et al., 2018). The impact of estrogen deficiency as a result of loss

of ovarian function on quality of life, bone function and cardiovascular

and neurological health are also critical aspects of the longer-term

effects of chemotherapeutic damage to the ovaries (European Society

of Human Reproduction and Embryology, 2015; Lobo, 2017). This has

led to the development of methods for female fertility preservation

(Anderson et al., 2015). The advent of oocyte vitrification was a key

advancement in the ability to successfully preserve postpubertal female

fertility (Argyle et al., 2016), while ovarian tissue cryopreservation

has had a growing evidence base with increasing documentation of

success rates; it is feasible prior to puberty and is now recognised as

an established rather than an experimental form of treatment in some

countries (Donnez and Dolmans, 2017).

Alongside the cryopreservation of gametes, a number of approaches

have also been explored with the aim of protecting ovarian follicles and

the oocytes they contain from chemotherapy-induced damage; these

are reviewed in this paper.

The use of GnRH analogues to protect ovarian function has been the

subject of a number of large randomised controlled trials, particularly

in breast cancer, and these results have been widely analysed and

discussed. It is now clear that this approach does reduce the prevalence

of premature ovarian insufficiency (POI) in women treated for breast

cancer (Lambertini et al., 2018) although it appears that relatively little

ovarian function, as reflected by anti-Müllerian hormone (AMH), may

be preserved by this approach (Leonard et al., 2017). The effectiveness
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of this approach in other cancers is not clear, with the largest trial

in women with lymphoma showing no apparent benefit (Demeestere

et al., 2016). Additionally, the benefits of this approach in terms of

subsequent pregnancy and the avoidance of the consequences of POI,

e.g., in bone health, remain to be clearly demonstrated in trials designed

with those outcomes as a primary objective. As this approach has been

extensively reviewed and is the subject of a number of meta-analyses

(including Del Mastro et al., 2014; Lambertini et al., 2018; Vitek et al.,

2014), it will not be discussed further here.

Methods

A thorough searchwas carried out for relevant articles in order to carry

out an extensive study on the ovarian damage induced by chemother-

apy and on new approaches to its protection. All authors contributed

to the search and to establish the inclusion and exclusion criteria. As

an analysis of published data, approval of an ethics committee is not

relevant.

The research was performed using PubMed and Medline as sources,

up to March 2019. The following keywords were used: chemotherapy,

cyclophosphamide (CPM), cisplatin (CIS), doxorubicin (DOX), fertility

preservation, adjuvant therapy, ovary, follicle death.

For the sections concerning the protective agents, the selection of

the papers was performed using PRISMA guidelines (Moher et al.,

2009), as described below and as reported in a PRISMA diagram

(Fig. 2). The research was performed using PubMed and Medline

as sources, up to March 2019. The following keywords were used:

chemotherapy, alkylating agents, anthracycline, female, ovary, adjuvant

therapy, fertoprotective therapy, fertility preservation, follicle death. All

relevant articles were carefully evaluated. Initially, titles and abstracts

were assessed to evaluate the eligibility of the studies. After this

selection, the authors proceeded with the complete reading of the

papers to identify those relevant for final inclusion. Reference lists of

these papers were checked to identify other studies that should be

included in this review. Only published articles, written in English and

peer-reviewed, were included. The search included both animal and

human studies. No restriction to any publishing year was applied, even

though the search showed that relevant papers were dated starting

from year 2000. Manuscripts were selected concerning protective

agents towards CPM, cisplatin and doxorubicin on the ovary, while

those concerning protective agents only against other chemotherapeu-

tic drugs and radiotherapy were excluded from the review. Manuscripts

describing no effect or adverse effects of the agents were included.

Reports only presented as conference proceedings were excluded.

Dynamics of the ovarian reserve

Underpinning the interpretation of the impact of chemotherapy on

ovarian function are the established findings that oogonia enter meiosis

during fetal life, and that the primordial follicle (PMF) pool is formed

early on, in utero in humans and around the time of birth in rodents.

These PMFs are located around the edge of the ovarian cortex, an area

with relatively little vasculature (Delgado-Rosas et al., 2009). There is a
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Figure 1 The damaging effects of chemotherapy drugs on the ovary and potential protectants against that damage.

(A) Chemotherapy drugs can damage the ovary by inducing prenatal loss of oogonia, direct loss of primordial follicles, accelerated activation of

primordial follicles, follicular atresia, stromal tissue damage, damage to the vasculature or inflammation. (B) Protectants examined to date have been

shown to protect against all ovarian damage pathways other than that to stromal tissue. Other protectants are designed to reduce drug delivery to the

ovary. PMF: primordial follicle; TRNS: transitional follicle.
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676 Spears et al.

Figure 2 PRISMA flow diagram of literature search methodology for publications examining the effectiveness of potential

fertility protective agents. Search results, study screening, and study inclusion, following a review of the literature carried out using PRISMA

guidelines (Moher et al., 2009). Selected key words were searched in PubMed until March 2019, with 24 additional references identified through other

sources, resulting in examination of 1357 papers. After the analysis of all publications for the inclusion and exclusion criteria, 40 articles from the initial

search were used in this review.
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steady rate of activation of PMFs throughout the reproductive lifespan,

with its depletion resulting in the menopause. The biochemical path-

ways that regulate this activation of PMFs include growth factors acting

through pathways, including the PI3K/PTEN/Akt pathway and the

Hippo pathway (Ernst et al., 2017; Kawamura et al., 2013; Grosbois and

Demeestere, 2018). The Akt pathway is of particular importance here,

because it is modulated by both chemotherapy drugs and protectants,

as discussed below. This pathway acts via FOXO3a, which in rodents

is considered to be a key transcription factor in the maintenance of

resting follicles, with activation of a PMF marked by translocation of

FOXO3a from the nucleus to the cytoplasm (John et al., 2008; Chang

et al., 2015). Activity of this PI3K/PTEN/Akt pathway within oocytes

is a critical determinant of the size of the remaining PMF pool (Reddy

et al., 2008). Inhibitory factors are also important, including AMH

(Durlinger et al., 1999), but how these pathways and factors interact to

provide precise regulation of the activation of PMFs remains unclear.

Given the poor vasculature in the outer layer of the ovarian cortex

where the PMFs are located (Fig. 1A), it is possible that PMFs are

exposed to lower concentrations of chemotherapy drugs than the

well-vascularised later-stage follicles, as the drugs primarily reaching

PMFs via diffusion. The extent to which PMFs can be lost directly

through atresia or apoptosis is also unclear, although genetic studies

have documented a number of factors relating to apoptosis which

appear to have major roles in the regulation of the size of the PMF

pool. Some of these, such as the apoptotic regulator PUMA (Nguyen

et al., 2018; Myers et al., 2014), may be future targets for intervention in

the regulation of PMF loss, since they have particular roles in regulating

DNA damage-induced oocyte death once follicle growth has been

initiated, at least in the mouse (discussed more fully below), although

its role in humans is not yet known. The great majority of follicles will

become atretic at some stage during the follicular growth phase, and

the high proliferation rate of granulosa cells in growing follicles makes

them a sensitive target of many chemotherapy agents. Furthermore,

the need to maintain chromosomal and DNA integrity in the oocyte,

from PMF formation all the way through to subsequent ovulation and

thus potentially for decades, also renders the oocyte itself a key site

for the adverse effects of DNA-damaging chemotherapy agents.

Regulation of the rate at which PMFs undergo activation has an

added complexity arising from the interaction between PMFs and the

population of growing follicles. AMH produced by growing follicles is

thought to have an important inhibitory effect on the rate of PMF

activation (Durlinger et al., 1999), although evidence for this is much

clearer in the rodent than in the human or in other larger mono-

ovulatory mammalian species (Schmidt et al., 2005; Campbell et al.,

2012). Inhibitory interactions between neighbouring PMFs slowing

down the rate of activation have also been proposed (Da Silva-

Buttkus et al., 2009); since the spatial distributed of PMFs is in clusters,

particularly in the adult ovary (Gaytan et al., 2015), loss of some PMFs

would reduce the inhibitory influence on other PMFs within the cluster.

As such, loss of PMFs in chemotherapy-treated ovaries could be a result

of a direct pathway whereby PMFs become damaged and die and/or

due to an indirect pathway resulting in accelerated PMF activation, a

loss that can be thought of as an accelerated version of ovarian ageing.

Indirect loss of PMFs as a result of accelerated activation could be

due to a loss of inhibitory factors from growing follicles that have

undergone atresia (Kalich-Philosoph et al., 2013; Roness et al., 2013).

It is important to bear in mind that chemotherapy drugs can also have
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damaging effects on the ovarian stroma and vasculature (Oktem and

Oktay, 2007; Meirow et al., 2007), either of which can, in turn, impact

negatively on the health of the follicular reserve, as well as impairing

normal follicle development.

Together, these considerations of both direct and indirect effects

on follicle pools at different stages of development provide a basis for

interpretation of the effects of chemotherapy and thus approaches

towards prevention of these adverse effects. Few such studies have

examined effects on human ovary, with most using rodent models.

As such, there is a pressing need for the effectiveness and safety of

the most promising potential protectants to be determined in the

human, a crucial step towards any subsequent clinical development.

This will require studies to ensure that the protectants do not interfere

with the efficacy of the cancer treatment and that they do not impair

the developmental competence of oocytes or lead to the survival

of oocytes with DNA damage in the form of genetic or epigenetic

mutations (Clarke and Vieux, 2015; Kirsch-Volders et al., 2019).

Ovarian damage from
chemotherapy and its potential
protection

The effects of chemotherapy treatment on future fertility are relevant

for both childhood cancers and those that affect women up to

the age of menopause. The most common childhood cancers are

leukaemia (around 26% of all registered cases), followed by central

nervous system tumours and lymphomas. In youngwomen, carcinomas

(around 30% of cases), followed by lymphomas, melanomas and

central nervous system tumours are most frequent, while in older

pre-menopausal women, the relevant diseases are breast cancer

(over 40% of cases), followed by melanoma, cervix and central

nervous system tumours (https://seer.cancer.gov/statistics/; https://

www.cancerresearchuk.org/health-professional/cancer-statistics/

incidence/ageheading-Two; Cronin et al., 2018). Chemotherapy drugs

are also used in the treatment of a wide range of non-malignant

diseases, including auto-immune illnesses, with chemotherapy con-

ditioning prior to stem cell transplant being increasingly used for

haematological conditions, such as sickle cell anaemia.

With such an extensive group of diseases, treatment can involve

administration of a wide range of chemotherapeutic classes and drugs,

including alkylating agents (CPM, busulphan and others); alkylating-like

platinum complexes (such as cisplatin [CIS]; anthracyclanes (including

doxorubicin [DOX]); taxanes (docetaxel and others); topoisomerase

inhibitors (such as etoposide); and vinca alkaloids (including vincristine).

The effects of chemotherapy drugs on female reproduction began to

be reported in the 1970s, initially associated primarily with CPM treat-

ment (see, for example, Miller et al., 1971; Fries et al., 1973; Koyama

et al., 1977), with reports of amenorrhea, ovarian suppression and

follicle destruction. From early in the development of chemotherapy

drug use, administration of one drug alone became rare, with patients

instead being treated with drug combinations. Given this, it has become

increasingly difficult to determine which particular drug is responsible

for the fertility-damaging effects, with relatively little known about the

ovarian toxicity of some drugs. Nonetheless, there is strong clinical

evidence that ovarian damage is particularly severe after administration

of alkylating and alkylating-like agents (Chow et al., 2016; van Dorp
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et al., 2018; Meirow and Nugent, 2001), while DOX, which is used

to treat a wide range of cancers, is amongst the non-alkylating agents

most closely linked to female reproductive problems (Bar et al., 2003;

Green et al., 2009; Bedoschi et al., 2016; Bedoschi et al., 2019). Conse-

quently, many of the chemicals currently being investigated as potential

protectants have been specifically tested to ameliorate damage induced

by CPM, CIS or DOX. As such, the mechanism of action of, and

potential protection against damage by, each of these three drugs are

examined in detail below. It should be borne in mind that other drugs

also have moderate or strong ovarian toxicity, particularly the alkylating

agent busulphan (Chow et al., 2016). Some potential protectants,

such as AMH, should, in theory, be effective against a wide range of

chemotherapy drugs and are discussed separately.

Cyclophosphamide

Action of cyclophosphamide (CPM) and main uses in treatment

CPM is an alkylating agent, capable of covalently binding alkyl groups

to DNA. Alkylating agents, originally derived from the mustard gas

chemical warfare agents, were the first drugs shown to result in tumour

regression. CPM itself is a pro-drug, metabolised by cytochrome P450

in the liver to form 4-hydroxycyclophosphamide, which is in turn

converted to phosphoramide mustard and acrolein. Phosphoramide

mustard is the primary active metabolite (Plowchalk and Mattison,

1991;Madden and Keating, 2014), inducingDNA crosslinking that leads

to the formation of adducts that prevent DNA replication. Phospho-

ramide mustard also affects mitochondria, leading to a reduction in

transmembrane potential and cytosolic cytochrome c accumulation.

CPM is used in the treatment of a wide range of cancers, particularly

the more frequent childhood cancers, melanomas and breast cancer,

including the treatment of pregnant cancer patients (Hahn et al., 2006).

It is also used in the treatment of auto-immune diseases, such as

systemic lupus erythematosis and rheumatoid arthritis.

Effect of CPM on the ovary

Human ovary studies. CPM was the first chemotherapy drug to be

linked to amenorrhea/POI and ovarian dysfunction (Miller et al.,

1971; Fries et al., 1973; Koyama et al., 1977), and it continues to

be regarded as one of the most gonadotoxic agents (Overbeek et al.,

2017; Chemaitilly et al., 2017). Nevertheless, there are only a limited

number of studies that have examined the effect of CPM on human

ovarian tissue. From these, it is difficult to determine the precise effects

of CPM on PMFs: while the PMF population has been shown to be

reduced in size following CPM-exposure (Meng et al., 2014), there are

reports both of direct damage to this follicle population (Li et al., 2014)

and of a reduction in PMF numbers following accelerated activation,

with the authors also suggesting that phosphoramide mustard itself

may even directly induce accelerated PMF activation (Kalich-Philosoph

et al., 2013; Lande et al., 2017). Direct effects have, however, been

clearly demonstrated on PMFs in the mouse (see below) and on

growing follicles in human ovarian tissue examined in vitro, with CPM

inducing increased granulosa cell apoptosis and follicular atresia (Asadi

Azarbaijani et al., 2015; Yuksel et al., 2015).

Non-human ovary studies. As with the clinical work, CPM was the

first drug shown to induce ovarian damage and follicle loss in the

mouse (Miller and Cole, 1970), and CPM exposure is regularly used

as a pre-treatment to induce widespread follicular atresia in a variety
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of experiments where the research examines the physiology of an

ovary devoid of follicles (see, for example, Goldman et al., 2017;

Kano et al., 2017; Melekoglu et al., 2018; Tsuyoshi et al., 2015). For

growing follicles, there is now a large body of evidence linking CPM

exposure to follicle atresia and granulosa cell apoptosis (Jarrell et al.,

1991; Ezoe et al., 2014; Piasecka-Srader et al., 2015; Yuksel et al., 2015;

Chen et al., 2016). Exposure of growing follicles to CPM, particularly

at earlier stages, has also been linked to embryo abnormalities and

to malformation in the next generation in later pregnancies (Barekati

et al., 2008; Meirow et al., 2001, respectively). The PMF pool is clearly

affected by CPM exposure (Meirow et al., 1999; Kalich-Philosoph et al.,

2013; Saleh et al., 2015; Chen et al., 2016; Goldman et al., 2017;

Pascuali et al., 2018; Nguyen et al., 2018; Luan et al., 2019), although

as with studies in the human ovary, it is not always clear whether PMF

loss is due to direct damage and/or a result of indirect loss due to

accelerated activation. Inflammation and vasculature damage have also

been reported (Ezoe et al., 2014; Saleh et al., 2015; Luo et al., 2017;

Pascuali et al., 2018). With CPM also administered to pregnant cancer

patients, the effects of CPM on the developing ovary has also been

investigated, with formation of fewer follicles formed (Fig. 1A) and

acceleration of PMF activation (Ray and Potu, 2010; Comish et al.,

2014). One recent study has demonstrated that maternal CPM expo-

sure prior to conception can affect the competence of the offspring’s

oocytes, which was associated with altered methylation of three

imprinted genes (H19, Igf2r and Peg3) (Di Emidio et al., 2019).

Molecular pathways of CPM-induced ovarian damage

Most of our understanding of precisely how CPM induces ovarian

damage has come from studies trying to prevent that damage (Table 1).

As expected, given what is known about its action on cancer cells,

there is clear evidence that CPM leads to an upregulation in apoptosis

in the ovary, as is evident from the rapid induction of DNA breaks

(Piasecka-Srader et al., 2015) and from a change in the expression

levels of pro- and anti-apoptotic genes (Petrillo et al., 2011; Pascuali

et al., 2018; Luan et al., 2019). Recent studies have demonstrated that

the DNA damage-induced pro-apoptotic protein PUMA plays a key

role in inducing oocyte apoptosis in rodents following CPM treatment

(Nguyen et al., 2018), as is also the case following irradiation (Kerr

et al., 2012). A decrease in production of antioxidant enzymes, such as

superoxide dismutase, has also been shown (Khedr, 2015; Melekoglu

et al., 2018). Work has also examined whether CPM stimulates the

mTOR/PTEN/Akt pathway, resulting in accelerated PMF activation.

Kalich-Philosoph et al. (2013) have shown induction of Akt, mTOR and

FOXO3a within 24 h of CPM exposure. Increased phosphorylation of

Akt and other parts in the pathway have also been shown by Goldman

et al. (2017), although in that instance, the tissue was examined

7 days after the end of treatment. One study has now demonstrated

that CPM specifically induces apoptosis in the oocytes of primordial

follicles, while also not finding increased activation of such follicles

(Luan et al., 2019). An inflammation response has been shown through

increased levels of the pro-inflammatory cytokines IL-6 and -8 and

TNFα alongside reduced levels of the anti-inflammatory IL-10, although

this was in response to administration of both CPM and busulfan (Luo

et al., 2017). CPM also leads, in mouse oocytes, to an increase in the

expression of the cell redox state sensor SIRT1, as the result of the

adaptive response to oxidative stress (Di Emidio et al., 2017). In fact,

SIRT1 is involved in both inflammation and oxidative stress, by inhibiting
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Protecting the ovary against chemotherapy 679

NF-kB signalling and stimulating the expression of antioxidants through

FoxO transcription factors, respectively (Xie et al., 2013; Salminen

et al., 2013).

Agents used to protect ovaries from CPM-induced damage

Potential protectants from CPM-induced damage have been investi-

gated to determine protection against direct loss of PMFs, accelerated

activation of PMFs, increased atresia of growing follicles and damage to

the ovarian vasculature (Fig. 1B, Table II). At present, only Sphingosine-

1-phosphate (S1P) and tamoxifen have been examined in the human

ovary (see below).

S1P and Ceramide 1 phosphate. Bioactive sphingolipids, S1P and

ceramide 1 phosphate (C1P), produced through ceramidemetabolism,

are inhibitors of the ceramide-induced death pathway and regulate

angiogenesis, vascular stability and permeability in a variety of tissues,

in both physiological and pathological conditions (Bonnaud et al., 2007;

Cuvillier et al., 1996). S1P prevents CPM-induced apoptotic follicle

death in both human ovarian xenografts (Li et al., 2014; Meng et al.,

2014) and isolated granulosa cells obtained from assisted reproduction

techniques (Li et al., 2017). Intrabursal C1P administration ameliorates

ovarian follicular and vascular development and restores fertility in

CPM-treated mice, with reduced TUNEL staining and decreased

cleaved caspase 3 and BAX expression, together clearly indicating

a reduction in apoptosis in all follicles analysed (Pascuali et al., 2018).

AS101. The immunomodulator AS101 is a non-toxic, tellurium-

based compound that modulates the PI3K/PTEN/Akt pathway,

reducing the Akt and rpS6 phosphorylation that is induced by CPM

(Makarovsky et al., 2003). It is used in clinical trials for neovascular

age-related macular degeneration due to its immunomodulating

characteristics and in the treatment of chemotherapy-induced

thrombocytopenia and psoriasis. In vivo treatment of mice with AS101

lowers CPM-induced loss of PMFs, as well as apoptosis of granulosa

cells in growing follicles, leading to improved reproductive outcomes

(Kalich-Philosoph et al., 2013). Mice born to dams whose fertility is

protected by AS101 treatment show no abnormalities, indicating that

the quality of the rescued oocytes is also protected. Importantly, it has

been demonstrated that not only does AS101 not interfere with the

primary anti-neoplastic activity of CPM in vivo, but, in fact, it also may

improve the efficiency of the anti-cancer activity of CPM, possibly due

to reduced inflammation (Roness et al., 2016; Kalich-Philosoph et al.,

2013; Kalechman et al., 1991; Roness et al., 2014).

Crocetin. Crocetin is a diapocarotenedioic acid, the main bioactive

compound in saffron, which protects primordial and growing follicles

from CPM-induced injury. Crocetin can also provide protection against

toxicant-induced oxidative stress along with underlying disorders in

numerous organs, tissues and cells (Xi et al., 2007). Crocetin admin-

istration (as with AS101) prevents an increase in SIRT1 expression,

suggesting that preservation of the redox balance can help the ovary

counteract CPM-induced ovarian damage (Di Emidio et al., 2017).

Despite this, crocetin and AS101 were not able to fully counteract

effects on oocyte imprinting in offspring (Di Emidio et al., 2019).

mTORC inhibitors. mTOR is a serine/threonine kinase and ametabolic

sensor that regulates cell growth, proliferation, autophagy and survival

(Wullschleger et al., 2006). Deletion of components of the mTOR

pathway, including PTEN- and TSC1-negative regulators, can induce

accelerated PMF activation in mice (Reddy et al., 2008; Adhikari

.
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et al., 2010; Chen et al., 2015). As such, in animal models, mTOR

stimulators accelerate activation of PMFs, while mTOR inhibitors

block the PMF-to-primary follicle transition (Sun et al., 2015). To

determine if inhibition of the mTOR pathway could be used as a

pharmacologic approach to prevent chemotherapy drug-induced POI,

CPM-treated mice were administrated one of two mTOR complex

(mTORC) inhibitors, either the clinically approved drug everolimus

(RAD001) that inhibits mTORC1 or the experimental drug INK128

that inhibits mTORC1 and 2. Both treatments preserved the ovarian

reserve, with ovaries containing PMF numbers that were comparable

to those in control mice; furthermore, fertility was restored (Goldman

et al., 2017). Similar results were obtained with the use of another

inhibitor of mTORC1, rapamycin (Zhou et al., 2017; Adhikari et al.,

2013).

Tamoxifen. The estrogen receptor modulator tamoxifen is widely

used in the treatment of estrogen receptor-positive breast cancers

and has been tested as an ovarian protectant against chemotherapy-

induced damage. In cultured neonatal rat ovaries, tamoxifen treat-

ment decreasedCPM-induced follicle loss, probably through decreased

expression of multiple genes related to inflammation, as well as tissue

remodelling and vasodilation (Piasecka-Srader et al., 2015). Further-

more, tamoxifen was able to prevent CPM-induced toxicity in PMFs

in vivo, protecting the fertility of treated rats (Ting and Petroff, 2010).

However, when tamoxifen was given in a randomised-controlled trial

to women treated with CPM, methotrexate and 5-fluorouracil, no

effect was observed on their ovarian function (Sverrisdottir et al., 2011;

Sverrisdottir et al., 2009).

Tyrosine kinase inhibitors. The use of inhibitors for the ATR-CHK2-

p63 apoptotic pathway was effective in vitro in protecting primordial

follicles from CPM-induced death (Luan et al., 2019).

Cisplatin

Action of CIS and main uses in treatment

CIS is a member of the platinum-based family of compounds. The

ability of CIS to inhibit cell division was first identified in the 1960s, and

it became the first FDA-approved platinum compound for cancer treat-

ment in 1978 (Kelland, 2007). It is of heavy metal composition and acts

as a DNA cross-linking agent that interferes with DNA repair mecha-

nisms, blocks cell division, elicits DNA damage and triggers apoptotic

cell death (Dasari and Tchounwou, 2014). The toxicity of CIS is partic-

ularly evident in tissues with a rapid cell turnover (Ozcelik et al., 2010).

CIS interacts with several different cellular components, but DNA is

its primary biological target (Roberts and Pera Jr, 1983). It exerts its

cytotoxic mode of action through binding to DNA, by preferentially

binding to N-7 positions of guanine and adenine to produce inter-

and intra-strand DNA adducts (Kalil and McGuire, 2002). The CIS-

induced DNA adducts are recognised by damage recognition proteins

which transduce the DNA damage signal downstream and modulate

several signal transduction pathways, such as Akt, c-ABL, ATR and

MAPK/JNK/ERK (Siddik, 2003;Wang and Lippard, 2005). CIS-induced

DNA damage activates cell cycle checkpoints, resulting in cell cycle

arrest (Siddik, 2003). Cell cycle checkpoints are necessary to allow the

cell repair mechanisms that enable the nucleotide excision repair com-

plex to remove DNA adducts and promote cell survival. When DNA

damage is minor, the DNA repair protein PARP detects the presence

of DNA strand breaks and activates their repair; if, however, DNA
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680 Spears et al.

Table 1 Molecular pathways involved in chemotherapy-induced ovarian damage.

Molecular marker Drug Species Reference
.....................................................................................................................................................................................

Akt CPM Mouse Kalich-Philosoph et al. 2013; Goldman et al. 2017

CIS Mouse Chang et al. 2015; Jang et al. 2016; 2017

DOX Marmoset monkey Salih et al. 2015

ATM DOX Mouse Soleimani et al. 2011

Atr/CHEK1/CK1 CIS Mouse Kerr et al. 2012; Nguyen et al. 2018

Caspase activation CIS Human

Mouse

Bildik et al. 2015; Yuksel et al. 2015

Barberino et al. 2017

DOX Human

Marmoset monkey

Soleimani et al. 2011;

Salih et al. 2015

Mouse Xiao et al. 2017

DNA damage assessed by TUNEL CPM

CIS

DOX

Rat

Mouse

Mouse

Piasecka-Srader et al. 2015; Yeh et al. 2006

Barberino et al. 2017

Jang et al. 2017; Ben-Aharon et al. 2010;

Morgan et al. 2013; Roti Roti et al. 2014

DSBs CPM Rat Piasecka-Srader et al. 2015

DOX Marmoset monkey Mouse Salih et al. 2015; Soleimani et al. 2011;

Roti Roti et al. 2012, 2014; Xiao et al. 2017

Foxo3a CPM Mouse Kalich-Philosoph et al. 2013

CIS Mouse Chang et al. 2015; Jang et al. 2016; 2017

Glutathione CIS Rat

Mouse

Li et al. 2013

Barberino et al. 2017

GSK3 CIS Mouse Chang et al. 2015; Jang et al. 2016; 2017

γH2AX CIS Mouse Gonfloni et al. 2009; Rossi et al. 2017

DOX Marmoset monkey Mouse Salih et al. 2015; Soleimani et al. 2011;

Roti Roti et al. 2012, 2014; Xiao et al. 2017

MAPK, ERK CIS Human Mouse Damia et al. 2001; Chang et al. 2015;

Jang et al. 2016; 2017

MMP DOX Mouse Bar-Joseph et al. 2010; Zhang et al. 2017

mTOR CPM Mouse Kalich-Philosoph et al. 2013

NOXA & PUMA CPM

CIS

Mouse

Mouse

Nguyen et al. 2018

Kerr et al. 2012

PARP CIS Mouse Morgan et al. 2013; Chang et al. 2015

DOX Mouse Morgan et al. 2013; Bar-Joseph et al. 2010

Phosphorylation of PTEN CIS Mouse Chang et al. 2015; Jang et al. 2016; 2017

Pro-apoptotic, anti apoptotic genes

(Bax, Bcl-2, p53)

CPM

CIS

DOX

Mouse

Human

Mouse

Petrillo, et al. 2011

Pascuali et al. 2018

Damia et al. 2001

Zhang et al. 2017

Pro-inflammatory cytokines

(IL-6, IL-8, TNFα)

CPM Mouse Luo et al. 2017

Reactive oxygen species CIS

DOX

Rat

Mouse

Ozcan et al. 2015

Bar-Joseph et al. 2010; Zhang et al. 2017

SIRT1 CPM Xie et al. 2013; Di Emidio et al. 2017

StAR, P450scc DOX Mouse Zhang et al. 2017

Superoxide dismutase reduction CPM

CIS

DOX

Rat

Rat

Mouse

Mouse

Khedr 2015

Melekoglu et al. 2018

Li et al. 2013

Barberino et al. 2017; Bar-Joseph et al. 2010;

Zhang et al. 2017

Tap63 CIS Mouse Gonfloni et al. 2009; Kim et al. 2018;

Tuppi et al. 2018
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Protecting the ovary against chemotherapy 681

damage is extensive and DNA repair is not completed, PARP activation

can initiate cell death through apoptosis or necrosis (Soldani and

Scovassi, 2002). In addition to binding covalently to DNA, CIS can also

bind to nuclear and cytoplasmic proteins which can cause adverse toxic

effects in patients (Kalil and McGuire, 2002; Chovanec et al., 2017), and

it is possible that these mechanisms may add to its gonadotoxicity.

Effect of CIS on the ovary

Human ovary studies. There are limited clinical data available on the

ovarian toxicity of CIS. Female patients treated with CIS have usually

received it as part of a multiple-drug regimen, making it difficult to

elucidate exact mechanisms of CIS-induced ovarian toxicity. CIS is

generally considered to have moderate ovarian toxicity, although, to

the best of our knowledge, only one clinical study has reported this,

finding mild to moderate rates of amenorrhea and an increased risk

of ovarian failure and infertility following treatment with a multi-drug

regimen that included CIS (Maneschi et al., 1994). Others have found

no detrimental effects on fertility following CIS treatment, particularly

for germ cell tumours (Brewer et al., 1999; Weinberg et al., 2011),

although effects on male fertility are clear (Chow et al., 2016). CIS-

induced damage has been found in studies that have cultured human

ovarian cortical pieces or granulosa cells in its presence, resulting in a

decrease in follicle numbers and a reduction in steroidogenic activity

(Bildik et al., 2015; Yuksel et al., 2015).

Non-human ovary studies. Most of the information on the ovarian

toxicity of CIS has been derived from animal studies. There is a

growing body of evidence demonstrating a loss of ovarian reserve

and increased follicular atresia following CIS exposure in mouse and

rat ovaries (Gonfloni et al., 2009; Yuksel et al., 2015; Kim et al., 2013;

Morgan et al., 2013; Rossi et al., 2017; Nguyen et al., 2018), with imma-

ture oocytes being particularly susceptible (Rossi et al., 2017; Morgan

et al., 2013). Studies examining effects of CIS exposure on follicles

frequently report the loss of PMFs, through PMF death directly and/or

indirectly due to accelerated activation; in either case, this would

ultimately lead to POI (Yucebilgin et al., 2004; Chang et al., 2015). If CIS

targets growing follicles, their death will result in decreased secretion of

factors, such as AMH, that can inhibit PMF activation, and CIS has been

shown to reduce circulating AMH and inhibin-α levels, corresponding

with a decrease in the percentage of AMH-positive follicles (Yeh et al.,

2006; Li et al., 2014; Ozcan et al., 2015; Yeh et al., 2008).

Molecular pathways of CIS-induced ovarian damage

Despite the therapeutic potential of CIS being discovered over 40 years

ago, its mechanisms of action are still not fully understood. The

proposed pathways to damage include CIS eliciting DNA damage that

leads to the activation of apoptotic pathways through the p53 family of

signalling and damage through oxidative stress and production of free

radicals (Table 1). Exposure to CIS increases DNA damage in ovarian

cells, resulting in apoptosis, as is evident from increased DNA damage,

TUNEL and activation of apoptotic genes, such as caspase 3 (Bildik

et al., 2015; Yuksel et al., 2015; Barberino et al., 2017; Jang et al.,

2017). The tumour-suppressor p53 protein and members of its family

play a crucial role in the degree to which CIS-induced DNA damage

is repaired, ultimately determining cell fate. ATR, a kinase involved in

checkpoint activation, is activated by CIS, and in turn can activate p53,

as well as specific pathways of the MAPK cascade (Damia et al., 2001).

The p53 homologue p63, specifically its isoform TAp63α, is expressed
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in dormant and growing oocytes (Suh et al., 2006). This protein is a key

mediator of the DNA damage response within the ovary. CIS activates

TAp63α thorough an ATR/CHEK1/CK1 pathway (Tuppi et al., 2018;

Kim et al., 2018); this increases the expression of PUMA and NOXA,

leading to apoptosis of those oocytes that are irreparably injured fol-

lowing CIS treatment, directly inducing follicle death (Kerr et al., 2012;

Nguyen et al., 2018). CIS-exposure also leads to increased reactive

oxygen species and a decrease in the ovarian antioxidant capacity

(Ozcan et al., 2015). This has been correlated with decreased activities

of the antioxidant enzyme superoxide dismutase (Bansod et al., 2017)

and the thiol anti-oxidant glutathione (GSH) following CIS exposure

(Li et al., 2013; Barberino et al., 2017). Exposure to CIS results in

increased phosphorylation of key proteins in the PTEN/Akt/FOXO3a

pathway, including PTEN, Akt, GSK3, FOXO3a and ERK, leading to

nuclear export of FOXO3a which in turn suppresses its transcription

activities, together leading to accelerated activation of PMFs (Jang et al.,

2016; Chang et al., 2015).

Agents used to protect ovaries from CIS-induced damage

There is now a range of agents aiming to protect the ovary against

CIS-induced damage, preventing direct loss of PMFs, accelerated PMF

activation or follicular atresia (Fig. 1B, Table II). However, there are

no published data on the potential of any of these to protect against

damage in the human ovary.

Tyrosine kinase inhibitors. The p53 family member TAp63α is respon-

sible for DNA damage-induced apoptosis of oocytes within PMFs.

TAp63α is the only isoform of TAp63 expressed by the oocyte and

becomes activated after DNA damage; tyrosine kinase signalling is

involved in this key regulatory pathway (Suh et al., 2006). Recently,

CHK2 and the executioner kinase CK1 have been identified as impor-

tant for the elimination of mouse oocytes following double-stranded

breaks in DNA (Bolcun-Filas et al., 2014; Tuppi et al., 2018), and their

function is essential for downstream activation of TAp63 (Kehrloesser

et al., 2018). In vitro, pharmacological inhibition of CHK2/CK1 was

shown to be effective at rescuing oocytes from TAp63-mediated apop-

tosis induced by CIS or by DOX (see below) or following γ -irradiation

(Rinaldi et al., 2017; Tuppi et al., 2018). The same results have been

obtained using inhibitors of ATM and ATR (Tuppi et al., 2018; Kim et al.,

2018), indicating that the TAp63 pathway could be an effective target

for developing protective strategies in oncofertility. Pharmacological

inhibitors of ATM, ATR, CHK2 and CK1 are already being used in

preclinical and clinical trials (Rundle et al., 2017), potentially expediting

their application to this field, while inhibitors of the downstream targets

of TAp63α, NOXA or PUMA still need to be discovered.

Imatinib is an inhibitor of the oncogenic BCR-Abl tyrosine kinase

enzyme and is itself used in the treatment of cancers, such as chronic

myeloid leukaemia and gastro-intestinal stromal tumours. Data on

the efficacy of imatinib against damage by CIS have been conflicting,

with some studies finding protective effects (Gonfloni et al., 2009;

Maiani et al., 2012; Kim et al., 2013), and others finding either no

evidence of protection or even deleterious effects (Kerr et al., 2012;

Zamah et al., 2011). All published studies have been carried out using

the mouse as a model, and there are no data on effects on the

human ovary. Recent work examining the mechanism of activation of

TAp63α has demonstrated that imatinib is able to protect oocytes from

CIS-induced death without interfering with TAp63α tetramerization

(Tuppi et al., 2018). The same conclusion was reached in another study
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682 Spears et al.

Table II Agents used to protect ovaries from chemotherapy-induced damage.

Protectant Drug Target action Species Reference
.....................................................................................................................................................................................

AMH/MIS CPM Accelerated PMF

activation

Mouse Kano et al. 2016

DOX Sonigo et a.l 2018

Carboplatin

ATM inhibitors: CIS Direct loss of PMFs Mouse Tuppi et al. 2018

ETP-46464 DOX Kim et al. 2018

KU55399

ATR inhibitors: CIS Direct loss of PMFs Mouse Kim et al. 2018

ETP-46464 DOX Luan et al. 2019

AZD6738 CPM

AS101 CPM Accelerated PMF activation Mouse Kalich-Philosoph et al. 2013

Di Emidio et al. 2017

Bortezomib DOX Atresia Mouse Roti Roti et al. 2014

Ceramide-1-phosphate CPM Direct loss of PMFs Mouse Pascuali et al. 2018

Atresia

Vascularization

CHK2 inhibitors: CIS Direct loss of PMFs Mouse Rinaldi et al. 2017

BML277 DOX Tuppi et al. 2018

LY2603618 CPM Luan et al. 2019

LY2606368

CK1 inhibitors: CIS Direct loss of PMFs Mouse Tuppi et al. 2018

MK-8776 DOX

CHIR-124

PMF670462

PMF4800567

PMF5006739

Crocetin CPM Accelerated PMF activation Mouse Di Emidio et al. 2017

Dexrazoxane DOX Atresia Mouse Kropp et al. 2015

Ghrelin CIS Accelerated PMF activation Mouse Jang et al. 2017

G-CSF CIS Atresia Mouse Skaznik-Wikiel et al. 2013

Vascularisation Akdemir et al. 2014

Imatinib CIS Direct loss of PMFs Mouse Kim et. 2013

Atresia Maiani et al. 2012

Zamah et al. 2011

Rinaldi et al. 2017

Tuppi et al. 2018

Gonfloni et al. 2009

Kim et al. 2018

Luteinizing Hormone CIS Direct loss of PMFs Mouse Rossi et al. 2017

Atresia Tuppi et al. 2018

MDR1 CPM Delivery to ovary Mouse Brayboy et al. 2013; 2017

Salih 2011

Wang et al. 2018

Melatonin CIS Accelerated PMF activation Mouse Jang et al. 2016

Mesna CIS Atresia Rat Li et al. 2013

Mirtazapine CIS Atresia Rat Altuner et al. 2013

mTORC inhibitors: CPM Accelerated PMF activation Mouse Adhikari et al. 2013

(Continued)
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Protecting the ovary against chemotherapy 683

Table II Continued

Protectant Drug Target action Species Reference
.....................................................................................................................................................................................

Everolimus (RAD001) CIS Goldamn et al. 2017

INK128 Zhou et al. 2017

Rapamycin Tanaka et al. 2018

Resveratrol CIS Atresia Rat Ozcan et al. 2015

Sphingosine-1- phospate CPM Direct loss of PMFs Mouse Morita et al.2000

Rat Li et al. 2017

Human Li et al. 2014

Meng et al. 2014

Sildenafil Citrate CIS Atresia Rat Taskin et al. 2015

Tamoxifen CPM Direct loss of PMFs Rat Ting and Petroff 2010

Inflammation Human Piasecka-Srader et al. 2015

Sverrisdottir et al. 2009

Sverrisdottir et al. 2011

which generated a conditional knockout mouse with an oocyte-specific

deletion of Abl1 and Abl2; ovaries from these mice treated with CIS

show no protection against apoptosis (Kim et al., 2018). Imatinib is

not an inhibitor of a specific tyrosine kinase signalling pathway, but can

affect a range of pathways, including those downstream of c-Kit, the

PDGF receptor and, to a lesser extent, c-Src (Seeliger et al., 2007). As

tyrosine kinase signalling is involved in several key regulatory processes

in the ovary, it could be that the mixed reports about the action of

imatinib results from both beneficial and detrimental effects on the

ovary due to its range of actions, and that inhibiting specific tyrosine

kinase signalling pathways could provide the ovary with more effective

protection.

Luteinizing Hormone. In addition to its cardinal roles in ovulation and

induction and maintenance of the corpus luteum and its use in fertility

programs for assisted reproduction techniques, recent research has

shown that luteinizing hormone (LH) is also able to protect PMFs

from the deleterious effects of CIS in prepubertal mice (Rossi et al.,

2017). When CIS is administered concomitantly with LH, there is little

degeneration of PMFs and mice maintain their fertility. LH is able to

stimulate the DNA repair mechanisms and at the same time block

CIS-induced apoptotic pathways in oocytes, an effect shown to be

indirect, since the oocyte lacks LH receptors. LH does not counteract

the activation/tetramerization of TAp63α (Rossi et al., 2017; Tuppi

et al., 2018); its mechanism of action remains to be elucidated.

Melatonin and ghrelin. Melatonin (N-acetyl-5-methoxytryptamine)

is a hormone synthesised and secreted mainly by the pineal gland

(Venegas et al., 2012; Reiter et al., 2013; Reiter et al., 2014). Apart

from its use in sleep disorders, melatonin can also reduce the side

effects of anticancer drugs by removing hydrogen peroxide, singlet

oxygen, superoxide anion radicals and peroxyl radicals (Casado-Zapico

et al., 2010; Pariente et al., 2016). Its potential protective effect was

first investigated in the male; in mouse testis, melatonin prevents

CIS-induced testicular toxicity by scavenging free-radical products

(Atessahin et al., 2006). More recently, protection has also been found

in the female, where co-administration of CIS and melatonin has been

shown to lead to a reduction in TUNEL in granulosa cells, resulting in
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reduced atresia of growing follicles and suppression of phosphorylation

of the PTEN/AKT/FOXO3a pathway, thus limiting PMF activation

(Jang et al., 2016).

Ghrelin is a hormonal peptide produced by cells in the gastrointesti-

nal tract. Although it is known as the “hunger hormone,” increasing evi-

dence supports a more complex role in the regulation of metabolism.

As with melatonin, ghrelin has protective activity against CIS-induced

testicular damage (Garcia et al., 2015;Whirledge et al., 2015). Oocytes

within PMFs express receptors for both ghrelin and melatonin, and the

combination has been tested for activity against CIS-induced damage

(Jang et al., 2017). Co-administration of the two hormones blocks

PMF loss by reducing PTEN and FOXO3a phosphorylation. Given the

presence of their receptors in the oocyte, it is possible that these

hormones have a direct action on PMFs, potentially affecting their

capacity to remain in a quiescent state.

Antioxidants. Four different antioxidants, mesna, mirtazapine, resver-

atrol and sildenafil citrate, have been tested for their protective effects

on the ovarian reserve of rats treated with CIS (Li et al., 2013; Ozcan

et al., 2015; Taskin et al., 2015; Altuner et al., 2013). Mesna, sildenafil

citrate and resveratrol prevented the loss of AMH-positive follicles;

mirtazapine also improved fertility. The antioxidative enzymatic activity

of superoxide dismutase and glutathione were increased after co-

administration of mesna ormirtazapine with CIS. These results indicate

that the maintenance of low levels of free radicals in the ovary is

important to promote the survival of the ovarian reserve.

mTORC inhibitors. Everolimus prevents the loss of primordial follicle

in cisplatin chemotherapy-induced treated mice, in which the activation

of the PI3K/PTEN/AKT pathway was detected (Chang et al., 2015;

Tanaka et al., 2018).

Doxorubicin

Action of DOX and main uses in treatment

The anthracycline antibiotic DOX (14-hydroxydaunomicyn) is a com-

monly used chemotherapy agent often known by its main trade names,

Adriamycin or Rubex. It was originally isolated from Streptomyces

peucetius in the 1970s and is now used to treat a large range of cancers,
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including breast, lung, gastric, ovarian, bladder, thyroid, leukaemia,

sarcoma, lymphoma, neuroblastoma, Wilms’ tumours and paediatric

cancers (Blum and Carter, 1974; Roti Roti et al., 2014; Xiao et al.,

2017). The main and most widely recognised mechanism of DOX is

the inhibition of the nuclear enzyme topoisomerase II. Topoisomerase

II prevents supercoiling and twisting of the DNA during replication

by producing double-strand nick and resealing of the cleaved DNA

and is, therefore, particularly abundant in the G2/M cell cycle phase

transition. DOX prevents topoisomerase II-DNA complex formation

after the nicking phase, with an accumulation of DNA fragments

which ultimately induces cell death. In addition, DOX stimulates the

production of oxygen-free radicals and other reactive oxygen species

(Tokarska-Schlattner et al., 2006) and is responsible for mitochondrial

dysfunction (Clementi et al., 2003). Both free radical production and

mitochondrial damage have a negative impact on cellular metabolism

and membrane integrity, resulting in severe side effects. DOX also

intercalates into DNA, impairing DNA replication and RNA and

protein synthesis (Kiyomiya et al., 1998; Thorn et al., 2011; Paik et al.,

1998; Zhang et al., 2017).

Effect of DOX on the ovary

Human ovary studies. Amongst other off-target effects, infertility has

been reported in both adult and childhood patients as a consequence

of regimens that include the use of DOX (Lipshultz et al., 2017). The

probability of amenorrhea following treatments that includes the use

of DOX ranges from 7% to 80%, primarily depending on the age

of the woman at the time of exposure (Ben-Aharon et al., 2010;

Letourneau et al., 2012; Knobf, 2006). However, as with many studies

that investigate the effect of chemotherapy on fertility by examining

time until menses resumption, these findings may not accurately reflect

the full degree of gonadotoxic damage or the total effect on fertility

lifespan, since full examination of either requires very long-term follow-

up studies. Moreover, as with CPM and CIS, it is difficult to clearly

isolate the role of a single drug, such as DOX when drugs are adminis-

tered in combination. Only two studies have investigated the direct

role of DOX on the human ovary (Li et al., 2014; Soleimani et al.,

2011), with both studies using human ovarian cortex examined either

in vitro and/or after xenotransplantation into immunocompromised

mice. This work has also highlighted DOX-induced damage to the

microvasculature as well as necrosis of the ovarian stromal tissue

(Soleimani et al., 2011).

Non-human ovary studies. DOX affects cortical blood vessels in

the mouse model, as well as in the human ovary, inducing fibrosis

(Ben-Aharon et al., 2010). DOX has been shown to cross the follicle

basement membrane and accumulate in the DNA and mitochondria

of the oocyte (Bar-Joseph et al., 2010). A dose-dependent depletion

of follicles, both primordial and early growing, has been found in many

studies (Morgan et al., 2013; Perez et al., 1997; Roti Roti and Salih, 2012;

Roti Roti et al., 2014; Aliotta et al., 2005; Tuppi et al., 2018). Later

stages of follicle development are also affected by DOX treatment,

resulting in a reduction in secondary and antral follicles. Furthermore,

DOX decreases the ovulation rate, and although the ovulated oocytes

appear morphologically normal, blastocyst number (Bar-Joseph et al.,

2010), litter size (Kropp et al., 2015), and pup birth weight (Roti Roti

et al., 2014) are reduced. The main DOX-induced damage in follicles

appears to be in the mitotically active granulosa cells, with damage to

oocytes being a consequence of follicle disruption (Bar-Joseph et al.,
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2010; Morgan et al., 2013; Roti Roti et al., 2012; Roti Roti et al., 2014;

Wang et al., 2018). Ultimately, DOX exposure causes a reduction in

fertile lifespan (Roti Roti et al., 2014).

Molecular pathways of DOX-induced ovarian damage

Apoptosis is the main, and certainly the most studied, process of cell

death triggered by DOX in the ovary, although the exact pathway

(s) is still somewhat unclear. Exploration of DOX-triggered apoptosis

has made possible identification of several markers of programmed

cell death in both human and animal model tissues (Table 1). PMFs

in DOX-treated human ovarian cortex show increased expression

of γH2AX and cleaved caspase 3 (Soleimani et al., 2011). Mouse

granulosa and stromal/thecal cells isolated from growing follicles, as

well as oocytes, have double-strand DNA breaks after DOX injection

(Roti Roti et al., 2014; Roti Roti et al., 2012; Xiao et al., 2017). Double-

strand breaks and γH2AX are also increased in antral follicles in

marmoset monkey ovary exposed to DOX (Salih et al., 2015), as are

metaphase II oocytes which undergo apoptosis after DOX exposure

in vitro (Perez et al., 1997; Soleimani et al., 2011). As downstream

effectors of the apoptotic pathway, the death regulating genes Bax

and Bcl-2 appeared to be involved (Zhang et al., 2017), with oocytes

collected from Bax-deficient animals resistant to DOX-induced apop-

tosis (Perez et al., 1997). As previously described, TAp63α becomes

activated after oocyte DNA damage, and DOX can act on the TAp63

pathway to directly induce PMF loss (Tuppi et al., 2018). Granulosa

cells exposed in vitro to DOX exhibit an increase in expression of p53

mRNA (Zhang et al., 2017), while the neonatal mouse ovary exhibits

an increase in the apoptotic marker PARP (Morgan et al., 2013).

As a late marker in the apoptotic pathway, TUNEL-positive cells are

increasedwhen the ovary is exposed toDOX (Ben-Aharon et al., 2010;

Morgan et al., 2013; Roti Roti et al., 2014). Other molecular pathways

have also been suggested to play a role in the gonadotoxicity caused

by DOX. Accumulation of reactive oxygen species and superoxides,

along with a decrease in mitochondrial membrane potential, have been

observed in DOX-treated granulosa cells, suggesting involvement of

oxidative stress mitochondrial-mediated apoptosis (Bar-Joseph et al.,

2010; Zhang et al., 2017). Only preliminary indications are available as

to whether the PI3K signalling pathway is activated byDOX,with AKT1

but not PTEN expression increased in marmoset ovary (Salih et al.,

2015).

Agents used to protect ovaries from DOX-induced damage

Protectants against ovarian damage by DOX resulting in reduced

activation of PMFs or follicular atresia have all been developed using

the mouse as a model (Fig. 1B, Table II). However, none of these have

been tested for their ability to protect against damage in the human

ovary.

Sphingosine-1-phosphate. Morita et al. (2000) reported the first use

of the sphingolipid S1P as a protector from oocyte apoptosis when

induced by exposure to 0.1 Gy of ionizing radiation. To confirm the

role of S1P, knockoutmice lacking the acid sphingomyelinase genewere

generated; in that mouse, germ cells were resistant to apoptosis and to

DOX-induced DNA damage. In the human ovary, S1P prevents DOX-

induced apoptotic follicle death in ovarian xenografts (Li et al., 2014;

Meng et al., 2014).

Dexrazoxane. The iron-chelating EDTA derivative dexrazoxane can

reduce DOX-induced DNA double-strand breaks, by chelating iron
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and inhibiting topoisomerase II. It is already used in cancer therapies,

protecting the heart and skin from other off-targets effects of DOX

without altering the effectiveness of DOX as a chemotherapeutic

drug (Reichardt et al., 2018; Langer, 2014). In vitro and in vivo co-

administration of DOX and dexrazoxane reduces ovarian DNA

double-strand breaks and granulosa cell death, with dexrazoxane

pre-treatment significantly restoring fertility in vivo (Kropp et al.,

2015).

Bortezomib. Proteasome inhibitors have been developed as anti-

cancer agents and several are either approved for clinical use to treat

melanomas and lung cancers or currently in trials (Kouroukis et al.,

2014). MG-132 and bortezomib both directly compete with DOX for

proteasome binding, thus preventing nuclear accumulation of DOX in

a leukemia cell line and also in cardiac cells (Amiri et al., 2004; Huang

et al., 2012; Pajonk et al., 2005). Female mice treated in vivo with

bortezomib show reduced DOX-induced DNA damage in all ovarian

cell types, resulting in reduced preantral follicle atresia. Fertility studies

have shown that bortezomib pretreatment leads to an increase in litter

size and pup weight following DOX treatment, thus improving post-

chemotherapy fertility (Roti Roti et al., 2014).

Tyrosine kinase inhibitors. Pharmacological inhibition of ATM, ATR,

CHK2 or CK1 are all effective in vitro at rescuing oocytes from DOX-

induced TAp63-mediated apoptosis (Rinaldi et al., 2017; Tuppi et al.,

2018), although imatinib was not found to confer protection against

DOX-induced damage to ovarian follicles (Morgan et al., 2013). The

kinetics of DOX action are reported to be faster than that of CIS,

probably because DOX directly induces double-strand breaks while

CIS creates DNA adducts (Tuppi et al., 2018).

Protective agents acting independently of

specific chemotherapy drug actions

Most of the research into potential protectants discussed above has

been designed with the aim of protecting the ovary against a spe-

cific chemotherapy drug or drug class. Other potential protectants

should, at least in theory, provide protection against a wide range of

chemotherapy drugs, either by blocking a common damage pathway

or by reducing the delivery of drugs to the ovary.

Protectants against specific damage pathways

Protection against increased PMF activation: AMH. AMH is primarily

produced by granulosa cells of developing follicles and can inhibit

activation of PMFs, at least in rodents. The situation in the human ovary

is less clear, with publications showing both initiation and suppression

of primordial follicle growth in response to AMH (Carlsson et al.,

2006; Schmidt et al., 2005). The hypothesis that accelerated activation

of PMFs, following the chemotherapy drug-induced death of growing

follicles, is an important pathway leading to depletion of the PMF pool

has led to the suggestion that AMH treatment might be an effective

protectant against a wide range of drugs. Two recent studies have

investigated this, examining the effectiveness of AMH at protecting

the mouse ovary from CPM- and DOX-induced damage, along with

damage from the platinum-containing agent carboplatin (Kano et al.,

2017; Sonigo et al., 2018).

Kano and colleagues showed a significant protective effect of AMH

administration from damage induced by each of CPM, DOX and

carboplatin, particularly in terms of protecting the PMF pool. AMH
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appeared most effective against DOX-induced damage, but it is difficult

to draw conclusions from this study about the comparative effective-

ness of AMH against the different drugs, since the doses that were

administered for each chemotherapy drug resulted in a lowering of

the PMF pool to a different extent in each case (Kano et al., 2017).

Nonetheless, this work highlights the importance of studying a range

of chemotherapy drugs in this research.

More recently, Sonigo et al. (2018) also found that AMH reduced

the loss of follicles induced by CPM, with protection against the

reduction in number of oocytes that could be recovered following

ovarian stimulation, although an effect on fertility was not shown.

That study also provided data suggesting that AMH regulates FOXO3a

phosphorylation and induces autophagy in ovaries. These results lead

the authors to discuss the hypothesis that AMH reduces PMF loss

induced by CPM through autophagy activation.

Both studies highlight the potential value of AMH as a protec-

tive agent in the field of oncofertility, with activity against several

chemotherapeutic drugs. Additionally, since it is thought to be only

involved in the regulation of reproductive function, it may not interfere

with the therapeutic effects of chemotherapy.

Protection of ovarian blood vessels: Granulocyte-colony stimulating factor.

Granulocyte-colony stimulating factor (G-CSF) is a cytokine that stim-

ulates hematopoietic progenitor cell growth and has been successfully

used alongside cancer therapy to overcome chemotherapy-induced

myelosuppression (Ciurea et al., 2019). G-CSF increases microvessel

density and decreases follicle loss in CPM- and busulfan-treated female

mice compared to control groups: moreover, G-CSF can partially

restore fertility (Skaznik-Wikiel et al., 2013). G-CSF, with or without

stem cell factor, also extends the time until the onset of POI in mice

treated with alkylating chemotherapy (Skaznik-Wikiel et al., 2013). An

effect has also been seen against CIS in the rat, where all follicle counts

(primordial, primary, secondary and tertiary) and serum AMH levels

were significantly increased in the G-CSF-CIS treated group compared

to the control group (Akdemir et al., 2014). Despite the clinical use

of G-CSF in cancer treatment, making it a good ovarian protectant

candidate to test clinically, there are no data on the effectiveness of

G-CSF at protecting the human ovary against damage by chemotherapy

drugs.

Protectants against chemotherapy drug delivery to the ovary

Upregulation of multidrug resistance gene 1. Multidrug resistance gene

1 (MDR1) is a phase three drug transporter enzyme involved in the

metabolism, elimination and detoxification of chemotherapy drugs.

By promoting the transport and efflux of various lipid-soluble anti-

cancer agents, upregulation of MDR1 has been linked with resistance

to chemotherapy (Fojo et al., 1987; Lepper et al., 2005). Retroviral

transduction has been used to upregulate MDR1 in a granulosa cell

line in order to reduce the uptake of chemotherapeutic agents into

these cells. This upregulation of MDR1 was reported to protect

granulosa cells from the toxic effects of both DOX and paclitaxel

in a dose-dependent manner, with the MDR1-transduced granulosa

cells showing significantly increased cell survival following treatment

with either drug (Salih, 2011). These results are supported by other

studies, where the inhibition of MDR transporters in human andmouse

oocytes, as well as deletion of the gene in mice, has led to increased

susceptibility to CPM toxicity (Brayboy et al., 2017; Wang et al., 2018;

Brayboy et al., 2013).
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Nanoparticles. A novel approach to ovarian protection, and indeed to

reduce other toxicities, has been to encapsulate the chemotherapeutic

drug arsenic trioxide inside nanoparticles that specifically target cancer

cells (Ahn et al., 2013), with the result being decreased plasma levels

and toxicity of these drugs. This strategy could be applied to other

chemotherapeutic agents, to target more specifically target the cancer

cells while protecting the gonads from damage.

Conclusion

The last decade has seen the development of a number of potential

methods for protecting the ovary against damage from chemother-

apy drugs (Fig. 1B, Table II). Such protectants are needed not only

to preserve fertility but also to allow females to retain endocrine

function and avoid the detrimental health consequences of POI. Most

of that work has been carried out using rodent models, primarily the

mouse. One strategy for such animal model studies, which has been

used infrequently to date, is to examine protectants in an animal that

has cancer (Qin et al., 2018), although this could be very effective.

Surprisingly, few studies to date have examined the effectiveness of

potential protectants directly in human ovarian tissue, although this

strategy has been used to investigate the potential of S1P and tamoxifen

to protect against CPM-induced damage. In the near future, it is vital

for more studies to determine the effect of these drugs in the human

ovary and/or for research to use large, monovulatory mammalian

species as models. With that work, the hope then is that some of

these protectants will be able to be taken into clinical trials. Clearly,

any protectant will need to not only shield the ovary from damage but

will also need to be shown not to interfere with the efficacy of the

chemotherapy treatment. In light of that, potential protectants that are

already administered to cancer patients are of particular interest here,

including AS101, imatinib and G-CSF.

Notwithstanding our improved understanding of female reproduc-

tion in recent years, we still do not know what determines whether

or not an individual PMF will undergo activation and initiate growth

at a particular time. A number of potential protectants under cur-

rent investigation involve manipulating the Akt pathway, stressing the

importance of greater understanding of its role, including in the human

ovary. The expression of p-Akt in mice pups is usually restricted to

stromal cells and often the evaluation of p-Akt is by Western blotting

on whole ovaries. Nevertheless, only recently, its co-expression in

primary oocytes upon exposure to CPM with the activated apoptotic

protein PARP was shown (Luan et al., 2019). We also have only a

limited understanding of what constitutes a healthy oocyte, and it is of

course vital that any clinically used protectant maintains the health and

developmental competence of the oocyte. Therefore, the implications

for the developmental competence of oocytes exposed to potential

protectants, as well as chemotherapy agents, should be explored,

taking into consideration the long reproductive lifespan of women,

and the background deterioration of oocyte “quality” and repair

mechanisms with age (Kujjo et al., 2011; Vandenbroucke et al., 2017;

Momen et al., 2017). CPM treatment in particular is well established to

result in abnormalities in rodent offspring following sub-sterilising dose

exposure, although there is no evidence of increased risk of abnormal-

ities or of genotoxicity in humans following maternal radiotherapy or

chemotherapy exposure (Signorello et al., 2012; Winther et al., 2009;

Winther et al., 2012; Vandenbroucke et al., 2017). Future studies will
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need to examine whether or not there is evidence of such effects

after administration of protectants, as well as of chemotherapeutics.

Epigenetic inheritance through the germ line or the potential for

transgenerational effects should also be considered in future studies

(Wei et al., 2015; Clarke and Vieux, 2015; Di Emidio et al., 2019). It is

notable that most protectants under investigation focus on protecting

against ovarian follicle death but it is also important to bear in mind

that the stromal environment contributes to the health of follicles,

and not focus research exclusively on direct effects on the follicles. At

present, protecting the ovary against stromal damage appears to have

had little attention (Fig. 1B), possibly one consequence of the majority

of research using rodents as models. Overall, however, recent years

have seen the development of many potential protectants, acting on

a wide range of different pathways and with evidence for efficacy in

the mouse model, offering hope for the subsequent development of

clinically effective treatment.
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