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ABSTRACT
The epithelial ovarian carcinomas, which make up more than 85%

of human ovarian cancer, arise in the ovarian surface epithelium
(OSE). The etiology and early events in the progression of these
carcinomas are among the least understood of all major human ma-
lignancies because there are no appropriate animal models, and be-
cause methods to culture OSE have become available only recently.
The objective of this article is to review the cellular and molecular
mechanisms that underlie the control of normal and neoplastic OSE

cell growth, differentiation, and expression of indicators of neoplastic
progression. We begin with a brief discussion of the development of
OSE, from embryonic to the adult. The pathological and genetic
changes of OSE during neoplastic progression are next summarized.
The histological characteristics of OSE cells in culture are also de-
scribed. Finally, the potential involvement of hormones, growth fac-
tors, and cytokines is discussed in terms of their contribution to our
understanding of the physiology of normal OSE and ovarian cancer
development. (Endocrine Reviews 22: 255–288, 2001)
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I. Introduction

THE OVARIAN surface epithelium (OSE), also referred to
in the literature as ovarian mesothelium (OM) (1, 2) or

normal ovarian epithelium (NOE) (3), is the modified pelvic

mesothelium that covers the ovary. It is composed of a single
layer of flat-to-cuboidal epithelial cells with few distinguish-
ing features (1, 4, 5). The OSE was previously referred to as
the “germinal epithelium” as it was once mistakenly believed
that it could give rise to new germ cells. Since this hypothesis
was disclaimed, ovarian research has centered on those com-
ponents of the ovary that carry out its important and highly
complex endocrine and reproductive functions, in compar-
ison to which the OSE appeared singularly uninteresting. As
a result, the OSE remained among the least studied and,
scientifically, most neglected parts of the ovary until the
latter part of the 20th century. Its inconspicuous histological
appearance and apparent lack of significant functions con-
tributed to this situation. Interest in the OSE revived when
it became apparent that approximately 90% of human ovar-
ian cancers, viz the epithelial ovarian carcinomas, might arise
in the OSE (1, 6–8). This group of cancers is the most lethal
among ovarian neoplasms and is the prime cause of death
from gynecological malignancies in the Western world. Until
recently, the implication of OSE as the source of epithelial
ovarian cancers was questioned (9) because it was based
mainly on histopathological and immunocytochemical ob-
servations in clinical specimens. There were no experimental
systems for the study of these neoplasms. Animal models
were not available because, except in aging hens (10), ovarian
tumors in species other than human do not arise in OSE but
in follicular, stromal, or germ cells, and the biology of these
tumors is fundamentally different from that of epithelial
ovarian cancer. The establishment of culture systems posed
problems because OSE is a minute part of the intact ovary,
is difficult to separate from other cell types by physical or
enzymatic means, has a very limited growth potential in
culture, and has no tissue-specific markers for positive iden-
tification. Because of the resulting lack of experimental mod-
els, the etiology and early events in ovarian carcinogenesis
are still among the least understood of all major human
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malignancies. In the 1980s, the first tissue culture systems for
OSE from different species (6, 11–14), including human (15,
16), were developed. Subsequently, information about the
normal functions of OSE and its relationship to ovarian can-
cer expanded rapidly and, recently, the capacity of cultured
OSE to give rise to ovarian adenocarcinomas was demon-
strated experimentally (17, 18). The results of these studies,
which are summarized in the first part of this review, indicate
that OSE is physiologically much more complex than would
be predicted from its inconspicuous appearance, and they
support the hypothesis that the ovarian epithelial cancers
arise in this simple epithelium. In the second part of this
review, we summarize some of the salient features of the
ovarian epithelial carcinomas, i.e., the group of tumors
thought to be of OSE origin, with emphasis on their regu-
lation and function by endocrine factors.

II. Embryonic Development

Early in development, the future OSE forms part of the
celomic epithelium, which is the mesodermally derived ep-
ithelial lining of the intraembryonic celom. It overlies the
presumptive gonadal area and, by proliferation and differ-
entiation, gives rise to part of gonadal blastema (Fig. 1).
Starting at about 10 weeks of development and continuing to
the fifth month of human gestation, the fetal OSE changes
from a flat-to-cuboidal simple epithelium with a fragmentary
basement membrane to a multistratified, papillary epithe-
lium on a well defined basement membrane, but it reverts to
a monolayer by term. It has been postulated that the growth
signals for fetal OSE include intragonadal steroid hormones
because morphological evidence of steroid differentiation of
ovarian stromal cells temporally parallels enhanced OSE
growth and morphogenesis (1). There are differences be-

tween the OSE and extraovarian mesothelium during fetal
development. These differences must be due to local factors
acting in the region of the gonadal ridge, since OSE and
extraovarian mesothelium are otherwise identical to their
origin in celomic epithelium and face a similar environment
as both line the pelvic cavity. One of the most interesting
differences between these two parts of the pelvic mesothe-
lium is the expression of CA125, a cell surface glycoprotein
of unknown function, which, in the adult, is both an epithe-
lial differentiation marker and a tumor marker for ovarian
and Mullerian duct-derived neoplasms (19). CA125 is ex-
pressed by the oviductal, endometrial, and endocervical ep-
ithelia, as well as by the pleura, pericardium, and peritoneum
of first and second trimester human fetuses and of adult
women, but not by OSE. OSE is therefore the only celomic
epithelial derivative that either never acquired this differ-
entiation marker or lost it early in development (20). The
former interpretation would support the idea that OSE is less
differentiated and less committed to a mature mesothelial
phenotype than the remainder of the pelvic peritoneum. The
expression of CA125 in OSE-derived epithelial carcinomas
indicates that the adult OSE has retained the competence of
celomic epithelium to differentiate, at least under patholog-
ical conditions.

The fetal OSE is also a likely developmental source of the
ovarian granulosa cells. There is still controversy whether
granulosa cells are embryologically derived from OSE, from
mesonephric tubules via the intraovarian rete, or from both,
and to what degree these origins vary among species. There
is good evidence though that in the human, OSE is the source
of at least part of the granulosa cells. Furthermore, this dis-
tinction only becomes important in late stages of develop-
ment because OSE and the intraovarian rete have a common
origin in the celomic epithelium that overlies the urogenital
ridges (21–25). In addition to its likely role as a progenitor of
granulosa cells via the fetal OSE, the celomic epithelium in
the vicinity of the presumptive gonads invaginates to give
rise to the Mullerian (paramesonephric) ducts, i.e., the pri-
mordia for the epithelia of the oviduct, endometrium, and
endocervix. Thus, the celomic epithelium in and near the
gonadal area represents an embryonic field with the capacity
to differentiate along many different pathways. The rele-
vance of this close developmental relationship between the
Mullerian epithelia and the OSE to ovarian epithelial carci-
nogenesis will become apparent later in this review.

III. OSE in the Adult

A. Structure

In the mature woman, OSE is an inconspicuous monolay-
ered squamous-to-cuboidal epithelium (Fig. 2). It is charac-
terized by keratin types 7, 8, 18, and 19, which represent the
keratin complement typical for simple epithelia. It expresses
mucin antigen MUC1, 17b-hydroxysteroid dehydrogenase,
and cilia, which distinguish it from extraovarian mesothe-
lium, apical microvilli, and a basal lamina (6, 16, 26–28).
Intercellular contact and epithelial integrity of OSE are main-
tained by simple desmosomes, incomplete tight junctions (6,
16), several integrins (29, 30), and cadherins (31, 32).

FIG. 1. Schematic representation of ovarian embryonic development.
A, Cross-section through the dorsal part of a 13-mm human embryo;
B, sequential changes in the gonadal ridge, which is covered by mod-
ified celomic epithelium (shaded). This epithelium proliferates and
forms cords that penetrate into the ovarian cortex and give rise to the
granulosa cells in the primordial follicles. The follicles become sep-
arated from the overlying ovarian surface epithelium (OSE) by
stroma. The Mullerian ducts (Mul. duct) develop as invaginations of
the celomic epithelium dorsolaterally from the gonadal ridges.
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The cadherins are a family of calcium-dependent adhesion
molecules that mediate selective cell-cell adhesion and also
indirectly influence gene expression through their close as-
sociation with the catenins (32, 33). In the human, OSE,
granulosa cells, and extraovarian mesothelium are connected
by N-cadherin, which characterizes adhesive mechanisms of
mesodermally derived tissues (32, 34–36). E-cadherin, which
is the principal intercellular adhesion molecule in most ep-
ithelia, is constitutively present in human oviductal, endo-
metrial, and endocervical epithelia (37) and also in mouse
and porcine OSE (38, 39). In contrast, E-cadherin expression
in the human OSE is limited to the rare regions where the
cells assume columnar shapes, i.e., where they approach the
phenotype of metaplastic epithelium (31, 32, 36, 40). Thus,
coexpression of E-cadherin with N-cadherin in human OSE
is conditional and signifies a propensity toward the aberrant
epithelial differentiation of metaplastic and neoplastic OSE
(36). Factors regulating E-cadherin expression in female re-
productive tissues appear to involve hormonal controls,
since estrogen and progesterone were reported to increase
E-cadherin mRNA levels in the immature mouse ovary and
uterus in vivo (38, 41). E-cadherin is not only a differentiation
marker for normal Mullerian epithelia, but also an inducer
of epithelial differentiation (42). We recently created an ep-
ithelial tumorigenic OSE-derived cell line closely resembling
ovarian serous adenocarcinoma cells by transfecting the gene

for mouse E-cadherin into a nontumorigenic, SV40 large T
antigen-immortalized OSE line (18). These results support
the hypothesis that E-cadherin has an inductive influence in
the aberrant epithelial differentiation of OSE in ovarian car-
cinogenesis. Like E-cadherin, P-cadherin is absent in the OSE
of adult women but is present in the epithelia of Mullerian
duct derivatives and in ovarian adenocarcinoma cell lines
(36, 37, 43). Thus, the distribution of P-cadherin changes in
association with tissue-specific morphogenetic events and
pathological processes. Both receptor tyrosine kinases and
receptor tyrosine phosphatases have been found to coim-
munoprecipitate with cadherin-catenin complexes. These in-
teractions may be important in the orchestration of different
functions of OSE in various physiological and pathological
circumstances (44, 45).

The OSE is separated from the ovarian stroma by a base-
ment membrane and, underneath, by a dense collagenous
connective tissue layer, the tunica albuginea, which is re-
sponsible for the whitish color of the ovary. It is thinner and
less resilient than the tunica albuginea in the testis, but likely
provides a partial barrier to the diffusion of bioactive agents
between the ovarian stroma and OSE. The OSE differs from
all other epithelia by its tenuous attachment to its basement
membrane, from which it is easily detached by mechanical
means. Until recently, the resulting loss of OSE in surgical
specimens was responsible for the widely held opinion that
OSE is frequently absent in ovaries of older women. Whether
this loose attachment has any physiological consequences is
not known. With age, the human ovary assumes increasingly
irregular contours and forms OSE-lined surface invagina-
tions (clefts) and epithelial inclusion cysts in the ovarian
cortex. It has been suggested that the squamous and cuboidal
forms of OSE cells on the ovarian surface represent cell
groups that, respectively, have or have not undergone pos-
tovulatory proliferation (46). In addition, OSE cells tend to
assume columnar shapes, especially within clefts and inclu-
sion cysts. Whether these shape changes are the result of
crowding or whether they reflect genetically determined
metaplastic changes is not always clear, but they may be
derived by either process. The importance of surface invagi-
nations and inclusion cysts lies in the propensity of the OSE
in these regions to undergo metaplastic changes, i.e., to take
on phenotypic characteristics of Mullerian (usually tubal)
epithelium, which include columnar cell shapes and several
markers found in ovarian neoplasms, including CA125 and
E-cadherin (6, 31, 40, 47–49). Furthermore, OSE-lined clefts
and inclusion cysts, rather than surface OSE, are not only
common sites of benign metaplasia but also of early neo-
plastic progression (50–52). It has been suggested that the
inclusion cysts form from OSE fragments that are trapped in
or near ruptured follicles at the time of ovulation (53, 54).
However, Scully (52) reported that inclusion cysts are more
numerous in ovaries of multiparous women than in nullip-
arous women who ovulate more frequently, and the cysts are
particularly numerous in women with polycystic ovarian
disease, a condition that is characterized by anovulation or
infrequent ovulation. He proposed as an alternative that
inclusion cysts arise through inflammatory adhesions of sur-
face OSE which becomes apposed at sites of surface invagi-
nations, combined with localized stromal proliferation.

FIG. 2. Section through a normal adult ovarian cortex, showing OSE
on top as a cuboidal monolayer and an epithelial inclusion cyst lined
with OSE (IC). The inset illustrates an inclusion cyst that has un-
dergone tubal metaplastic changes as indicated by the densely ar-
ranged, columnar epithelial cells. Hematoxylin and eosin, 380.
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There is currently no definitive explanation for the predi-
lection of inclusion cysts as preferred sites of neoplastic pro-
gression of OSE, but these preferential locations strongly
suggest the presence of specific tumor-promoting microen-
vironmental factors in these sites. Two different scenarios,
which are not mutually exclusive, can be envisaged: 1) OSE
within inclusion cysts is not separated from underlying
stroma by the tunica albuginea. Therefore this OSE likely has
more access to stromally derived growth factors and cyto-
kines as well as to blood-borne bioactive agents that may
promote neoplastic progression. This hypothesis is sup-
ported by the observation that, in inclusion cysts located near
the ovarian surface, metaplastic and dysplastic changes tend
to be more pronounced on the side near the stroma than on
the side adjacent to the tunica albuginea (51, 52). 2) Neo-
plastic progression in OSE-lined cysts and clefts may be
promoted by autocrine mechanisms through OSE-derived
cytokines and hormones, since these agents may accumulate
to bioactive levels in such confined sites but not on the
ovarian surface where they diffuse into the pelvic cavity. The
hypothesis that these factors participate in autocrine loops is
supported by the capacity of normal OSE to secrete bioactive
cytokines including interleukin (IL)-1 and IL-6 (55) and by
reports that IL-1 and IL-6 enhance the proliferation of ovarian
carcinomas (56), that IL-1 causes changes in gene expression
including the induction of tumor necrosis factor (TNF)-a,
which is a mitogen for OSE (57, 58), and that human CG
(hCG) is produced by normal and neoplastic OSE (47) and is
also mitogenic for rabbit OSE cells (59). Finally, the prolif-
erative response to cytokines of cervical cells (which are
developmentally related to OSE) changes with immortaliza-
tion so that the immortalized cells acquire a selective ad-
vantage over normal cells (60). Within inclusion cysts, such
cytokines and hormones might act as immediate autocrine
growth regulators, or they might cause secondary changes in
gene expression that promote neoplasia.

B. Functions

The OSE transports materials to and from the peritoneal
cavity and takes part in the cyclical ovulatory ruptures and
repair. Most of these functions vary with the reproductive
cycle and thus are likely to be hormone dependent (1, 6, 59).
It is well established that OSE must proliferate to repair
ovulatory defects in the ovarian surface, and Osterholzer et
al. (59) demonstrated directly that in rabbit ovaries, this pro-
liferative activity is both localized to the vicinity of the ovu-
latory site and peaks at, and immediately after, the time of
ovulation. Several reports, based on electron microscopy and
histochemistry, have suggested that the OSE contains lyso-
some-like inclusions and produces proteolytic enzymes,
which may contribute to follicular rupture (61). These reports
were supported by direct observations of protease secretion
by cultured OSE (29). However, this concept has been ques-
tioned because of inconsistencies in the timing of the ap-
pearance of the dense lysosome-like granules in the OSE,
their biochemical nature, and the observation that follicles
denuded of overlying OSE can also rupture (reviewed in Ref.
62). Furthermore, electron microscopy in various species has
revealed that OSE cells degenerate and slough off the fol-

licular surface shortly before ovulatory rupture. There is
evidence that this cyclic, localized loss of OSE near the time
of ovulation is due to apoptosis that is induced by prosta-
glandins (63, 64) and perhaps mediated by the Fas antigen
(65, 66). It is possible that, as the tunica albuginea in the area
of the stigma thins and ultimately disappears before ovula-
tion, the OSE in this region is exposed to stromal influences
that induce apoptosis. However, the possibility cannot be
ruled out that the OSE alters the tunica albuginea and un-
derlying stroma in the area of incipient ovulation just before
its disappearance. The proteolytic capacity of OSE might
contribute to the remodeling, as well as the breakdown, of the
ovarian cortex. OSE likely also takes part in the restoration
of the ovarian cortex by the synthesis of both epithelial and
connective tissue-type components of the extracellular ma-
trix (ECM) (27, 29, 67) and by its contractile activity, which
resembles the contractile capacity exhibited by connective
tissue fibroblasts during wound healing (68). Like fibro-
blasts, which convert to myofibroblasts when engaged in
tissue repair, OSE cells in culture contain smooth muscle
actin (our unpublished observations). This is in keeping with
their dual epithelio-mesenchymal phenotype and with the
proposition that OSE cells, like many other cell types, acquire
a regenerative rather than stationary phenotype when they
are explanted into culture. Contraction by OSE cells may also
play a role in the shrinkage of the ovaries that occurs with
age and results in their typical convoluted shape and the
formation of the OSE-lined clefts and inclusion cysts.

C. Differentiation

Normal OSE covering a nonovulating ovary is a stationary
mesothelium with both epithelial and mesenchymal charac-
teristics. In contrast to mesothelia elsewhere, OSE retains the
capacity to alter its state of differentiation along pathways
leading either to stromal or to ectopic (aberrant) epithelial
phenotypes. In response to stimuli that initiate a regenerative
(repair) response, such as ovulatory rupture in vivo or ex-
plantation into culture, OSE cells assume phenotypic char-
acteristics of stromal cells. Alternatively, OSE acquires com-
plex epithelial characteristics of the Mullerian duct-derived
epithelia, i.e., of the oviduct, endometrium, and endocervix,
when it undergoes metaplasia, benign tumor formation, and
neoplastic progression. Together, these characteristics show
that the differentiation of OSE is not as firmly determined as
in other adult epithelia and that OSE is closer to its pleuri-
potential mesodermal embryonic precursor form than other
celomic epithelial derivatives.

Normal stationary OSE has no known tissue-specific dif-
ferentiation markers. In situ, it can be distinguished from
extraovarian mesothelium by the lack of CA125 (20) and by
the differential expression of mucin, cilia, 17b-hydroxy-
steroid dehydrogenase, and several antigenic markers (5, 6,
47, 49, 69, 70). It has classical epithelial features, which in-
clude desmosomes, tight junctions, basement membrane,
keratin, and apical microvilli, but other aspects of epithelial
differentiation are less defined. For example, E-cadherin and
CA125 in human OSE are rare while both markers occur in
oviductal and endometrial epithelium, and CA125 is also
secreted by extraovarian pelvic mesothelium and by abdom-
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inal and pleural peritoneum (1, 6, 20, 69, 70). OSE cells also
constitutively coexpress keratin with vimentin, which is a
mesenchymal intermediate filament, expressed by most ep-
ithelial cells only in response to wounding, explantation into
culture, or pathological conditions (71–73). Expression of the
connective tissue collagen types I and III has been shown in
cultured OSE but not in situ (27).

During postovulatory repair and in culture (see Section IV)
OSE cells have the ability to modulate to a fibroblast-like
form that reflects their close developmental relationship to
ovarian stromal cells. The exact mechanisms regulating this
conversion have not been defined. However, as shown later
in this review, epidermal growth factor (EGF), collagen sub-
strata, and ascorbate are all conducive to epithelio-mesen-
chymal conversion of OSE in culture. In addition, transform-
ing growth factor (TGF)-b, which is an autocrine regulator of
OSE growth (74), causes epithelio-mesenchymal conversion
in a number of epithelial cell types (75). Similar epithelio-
mesenchymal conversions occur in vivo in mesodermally
derived cell types closely related to OSE, such as pleural
mesothelial cells responding to injury (76) and the cells of the
developing Mullerian duct during regression in response to
Mullerian inhibiting substance (77). This capacity of OSE to
undergo epithelio-mesenchymal conversion likely confers
advantages during the postovulatory repair of the ovarian
surface: it increases motility, alters proliferative responses
and capacities to modify ECM, and renders the cells con-
tractile (see below). Epithelio-mesenchymal conversion
might also function as a homeostatic mechanism to accom-
modate OSE cells that become trapped within the ovary at
ovulation, to allow them to become incorporated into the
ovarian stroma as stromal fibroblasts. As a related hypoth-
esis, an inability to undergo epithelio-mesenchymal conver-
sion would preserve the epithelial forms within the ovarian
stroma, which could lead to OSE cell aggregation and sub-
sequent inclusion cyst formation (Fig. 3). Factors that have
been shown in culture to enhance epithelio-mesenchymal
conversion of OSE include EGF (16), ascorbate (our unpub-
lished data), and growth in collagen gels and other three-
dimensional matrices (68, 78) (see Section V). It is important
to note that OSE at the site of ovulatory rupture is exposed
to all these influences. In contrast to epithelio-mesenchymal
conversion, which is part of normal OSE physiology, the
differentiation of metaplastic and neoplastic OSE along the
lines of Mullerian duct-derived epithelia is clearly a patho-
logical process, based on complex epigenetic and genetic
changes that will be discussed briefly in Section IV.

IV. Neoplastic Progression of OSE

A. Epidemiology and etiology of the epithelial

ovarian carcinomas

Ovarian cancer is the fourth or fifth most common cause
of death from all cancers among women in the Western
world and the leading cause of death from gynecological
malignancies. The epithelial ovarian carcinomas, i.e., the
group derived from the OSE, represent approximately 90%
of all human ovarian malignant neoplasms, with the rest
originating in granulosa cells or, rarely, in the stroma or germ

cells. The poor 5-yr survival (30–40%) is largely due to the
fact that most ovarian carcinomas are inoperable when first
discovered and respond poorly to therapy (7). Although
screening tests are available for patient follow-up and for the
detection of advanced cases (79), there are no reliable means
for early detection except for genetic screening in a small
proportion of individuals (80), and to date no test has been
shown to reduce mortality.

The etiology of the epithelial ovarian carcinomas is poorly
understood. Over the years, environmental agents that have
been implicated but not proven to play a role include diet,
talc, industrial pollutants, smoking, asbestos, and infectious
agents (7). Epidemiological studies point to possible racial
and geographic, social, and hormonal causative factors (7,
81–83). There is convincing evidence that nulliparity and,
probably, hyperovulation treatment for infertility increase
the risk of ovarian cancer, while oral contraceptives and
pregnancies are protective. These observations support the
hypothesis, first proposed by Fathalla in 1971 (149) and sub-
sequently supported by epidemiological and experimental
data (84, 85; reviewed in Ref. 8), that frequent ovulation
contributes to increased risk because the repeated rupture
and repair of the OSE at the sites of ovulation provide an
opportunity for genetic aberrations. Recently, it has been
suggested that inflammation may be a contributing factor in
ovarian cancer development, because tubal ligation and hys-
terectomies act as protective factors, perhaps by preventing
passage of environmental initiators of inflammation (86).
Another major known risk factor is a strong family history
of ovarian cancer, which accounts for 5–10% of cases.

B. OSE in women with histories of familial ovarian cancer

At present, a strong family history of ovarian cancer is the
most important and best-defined risk factor for development
of this disease, and it is associated with 5–10% of ovarian
epithelial carcinomas. The risk increases from 1.4% in the
general population to 5% for women with one first-degree
relative and to 8% for women with two first-degree relatives
affected (first-degree relatives include parents, siblings, and
children, while second-degree relatives include grandpar-
ents, uncles, aunts, cousins, and grandchildren). There is also
a strong association with familial breast cancer, and a lesser
association with familial cancers of the colon and endome-
trium. Three hereditary ovarian cancer syndromes with au-
tosomal dominance (reviewed in Ref. 87) are listed below.

1. Hereditary site-specific ovarian cancer, where a family
history of ovarian cancer only is associated with an overall
3.6-fold increase in risk. No specific gene responsible for this
syndrome has been identified.

2. Hereditary nonpolyposis colon cancer/ovarian cancer
(Lynch Syndrome II or HNPCC), where ovarian cancer oc-
curs in families that also have a high incidence of carcinomas
of the colon and endometrium. It is associated with muta-
tions in the DNA mismatch repair genes hMSH1, hMSH2,
hPMS1, and hPMS2 (88). In this syndrome, the increase in
risk has not been defined.

3. Hereditary breast/ovarian cancer. There is a 50% in-
crease in ovarian cancer risk among women with family
histories of breast cancer and a similar increase in breast
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cancer risk among women with family histories of ovarian
cancer. Germline mutations in two genes involved in this
syndrome, BRCA1 and BRCA2, appear to be responsible for

a high proportion of cancers in women with familial cancer
histories. The BRCA1 and BRCA2 proteins regulate DNA
damage responses (89) and have been defined as tumor sup-

FIG. 3. Hypothesis: Epithelio-mesenchymal conversion of OSE cells may represent a homeostatic mechanism to incorporate cells that have been
displaced from the ovarian surface into the stroma. If such conversion does not take place, the cells are more likely to form epithelial inclusion
cysts, which are preferred sites of neoplastic progression. A, diagram outlining two paths by which OSE is displaced into the ovarian cortex.
OSE fragments are displaced into or near the ruptured follicle at ovulation. OSE also lines surface invaginations, or clefts, which form as the
ovary ages. If OSE cells undergo epithelio-mesenchymal conversion, they may migrate into, and become part of, the stroma (str). Alternatively,
the cells remain epithelial, aggregate (aggr), and form inclusion cysts (incl cyst). Cysts may also form through the pinching off of surface clefts.
Inclusion cysts are preferred sites of metaplastic and dysplastic changes that may lead to tumorigenesis. Importantly, the capacity of OSE to
undergo epithelio-mesenchymal conversion is greatly reduced with malignant progression and, to a lesser degree, in women with a genetic
predisposition to develop ovarian cancer (78). B, Illustration of some of the changes proposed in panel A. Paraffin sections of normal ovaries,
stained immmunocytochemically for keratin as an OSE marker. OSE cells are shown on the ovarian surface (A), forming aggregates in the
ovarian cortex (B), and as fibroblast-like cells in the center of a recently ovulated corpus luteum (C). Hematoxylin-eosin staining showed the
central clot being invaded with fibroblasts (not shown). In parallel sections stained immunocytochemically (C), the fibroblast-shaped cells stain
for keratin. D, Higher magnification of the area outlined by the square in panel C. The arrows in A, B, and D indicate darkly staining,
keratin-positive cells. The short arrows in panel c indicate the boundaries between the luteal cells and the scar forming in the central region
of the corpus luteum. Magnification: A, B, D, 3200; C, 380.
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pressor genes. BRCA1, in particular, plays a major role in
ovarian cancer susceptibility (90). Intensive screening for
BRCA1 mutations is ongoing but the large size of the gene
and the great variety of different mutations that have been
found complicate screening and risk predictions (91). The
observation that BRCA1 and BRCA2 germline mutations
cause increases in cancer incidence predominantly in the
breast, ovary, and prostate, although they are present in all
tissues, points to interrelationships with hormonal influ-
ences. Interactions between BRCA1 and estrogen as well as
PRL have indeed been reported in cancer cells (92–94), but
there seems to be no information available on similar inter-
actions in normal OSE. Importantly, not all of the carriers of
these predisposing mutations develop ovarian cancer, which
suggests a role for interactions with other, as yet unidenti-
fied, genetic and epigenetic influences.

There have been several contradictory reports on the oc-
currence of histological changes in the OSE of overtly normal
ovaries that were removed by prophylactic oophorectomy
from healthy women with histories of familial ovarian can-
cer. A nonblind study (95) demonstrated increased papillo-
matosis and pseudostratification of the OSE, as well as an
increase in inclusion cysts and invaginations in ovaries from
women with familial ovarian cancer. In another blind study,
only nuclear changes were observed in the OSE of such
women (96), while in two other reports no significant dif-
ferences were observed (97, 98). Thus, it is still not clear
whether, in situ, overtly normal OSE from women with fam-
ily histories of ovarian cancer is distinct at the phenotypic
level.

C. Epithelial ovarian carcinomas

1. Pathology. Histopathologically and immunocytochemi-
cally, ovarian carcinomas are among the most complex of all
human malignancies (99, 100). One of the most unusual as-
pects of ovarian carcinogenesis is the change in differentia-
tion that accompanies neoplastic progression. As discussed
above, OSE is a simple, rather primitive epithelium with
some stromal features, but as it progresses to malignancy it
loses its stromal characteristics and acquires the character-
istics of the Mullerian duct-derived epithelia, i.e., the oviduct,
endometrium, and uterine cervix. This aberrant differentia-
tion occurs in such a high proportion of ovarian carcinomas
that it serves as the basis for the classification of a high
proportion of these cancers as serous (fallopian tube-like),
endometrioid (endometrium-like), and mucinous (endocer-
vical-like) adenocarcinomas (Fig. 4). Serous adenocarcino-
mas comprise approximately 80% of all epithelial ovarian
cancers. Among the less common forms are clear cell carci-
nomas that express features resembling mesonephros. It has
also been proposed that at least some endometrioid carci-
nomas may arise in endometriotic lesions derived from en-
dometrial implants (101), and that some mucinous ovarian
adenocarcinomas may actually be metastases of gastrointes-
tinal malignancies because the mucus in these lesions is of the
gastrointestinal rather than the endocervical variety (102).

At the cellular level, Mullerian differentiation is expressed
by the appearance of altered cell shapes, E-cadherin, junc-
tional complexes, epithelial membrane antigens, and secre-

tory products including mucins (MUC1, MUC2, MUC3, and
MUC4) and CA125 (6, 28, 31, 40, 99, 100). Histologically, the
tumors form polarized epithelia, papillae, cysts, and glan-
dular structures. Thus, unlike carcinomas in most other or-
gans in which epithelial cells become less differentiated in the
course of neoplastic progression than the epithelium from
which they arise, the differentiation of ovarian carcinomas is
more complex than that of OSE (Fig. 5). Only in the late stages
do these specialized epithelial features diminish although
they can persist even when the tumors are metastatic or in
the ascites form (40). Tissue culture studies have shown that
with neoplastic progression OSE cells not only develop com-
plex epithelial phenotypes, but also become firmly commit-
ted to these phenotypes and unresponsive to signals causing
mesenchymal conversion of normal OSE. Such unrespon-
siveness to environmental cues reflects the autonomy from
normal control mechanisms that characterizes malignant tu-
mors in general.

The high frequency of Mullerian differentiation-associated
changes in early stages of ovarian cancer suggests that they
might confer a selective advantage on the transforming OSE.
The basis for such putative selective advantage(s) is currently
being investigated. Possible hypotheses underlying this con-
cept include the possibilities that 1) E-cadherin-mediated
adhesion prevents anoikis in ovarian cancer cells when they
seed the pelvic cavity (103); 2) with the Mullerian phenotype,
OSE cells acquire changes in hormone/growth factor recep-
tors and responsiveness that promote neoplastic progression
(e.g., estrogens are mitogenic for tubal and endometrial ep-
ithelium, but not for normal OSE) (104); 3) in contrast to the
firmly attached, well vascularized epithelia of the oviduct
and endometrium, normal OSE has only a tenuous attach-
ment to underlying stromal components. Thus, Mullerian
differentiation might enhance epithelio-mesenchymal ex-
changes of blood-borne and paracrine factors that support
malignant transformation and growth.

Histopathologically detectable early malignant changes
occur more frequently in OSE-lined clefts and inclusion cysts
(Fig. 2) than on the ovarian surface that faces the pelvic
cavity. The evidence for inclusion cysts as the preferred sites
of ovarian carcinogenesis was reviewed by Scully (51, 52): 1)
Most early carcinomas appear to be confined within the
ovary without involvement of its surface; 2) tubal metaplasia
is 10 times more common in epithelial inclusion cysts than on
the ovarian surface; 3) inclusion cysts are significantly more
numerous and the OSE lining them is 2–3 times more often
metaplastic in women with contralateral epithelial ovarian
tumors than in women without such cancers (105); 4) several
ovarian carcinoma tumor markers (e.g., CA125, CA19–9) are
significantly more common in the epithelium of epithelial
inclusion cysts than in the surface epithelium itself (20, 47,
106, 107). The localization of early malignant changes in
crypts and cysts has given rise to speculations that neoplastic
progression may be promoted by the particular microenvi-
ronment to which preneoplastic OSE is exposed within these
confined spaces.

2. Genetic changes. The genetic basis of the epithelial ovarian
carcinomas is too complex to be reviewed in detail here, but
numerous excellent reviews exist on this subject. In brief,
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amplification, altered expression, and mutations in a number
of oncogenes and tumor suppressor genes play a role in the
development of ovarian epithelial neoplasms. Oncogenes
that are frequently overexpressed or amplified in ovarian
carcinomas include cMYC, particularly in serous adenocar-
cinomas (108); KRAS, especially in mucinous carcinomas
that may exhibit enteric mucinous differentiation (109); and
ERBB2, EGF-R, and cFMS (the receptor for colony-stimulat-
ing factor 1), all of which are associated with a poor prognosis
(110–112). Recently, phosphatidyl inositol 3 kinase (PI3K)
and its downstream effector AKT2 were also shown to be
amplified in a significant proportion of ovarian carcinomas
(113, 114). Among tumor suppressor genes, p53 is mutated
in about 50% of late-stage tumors but rarely in low-stage
tumors and borderline lesions (115), and the PI3K inhibitor
PTEN is mutated in a significant proportion of endometrioid
ovarian carcinomas (116). As mentioned in Section IV.B., mu-
tations in the tumor suppressor genes BRCA1 and BRCA2
appear to form the basis for most cases of familial ovarian
cancer. The expression of a recently described tumor sup-
pressor gene, NOEY2 (ARHI), is decreased specifically in
carcinomas of the ovary and breast (117).

The epidemiology, histopathology, and clinical course of
OSE-derived ovarian carcinomas differ profoundly from
those of the mesotheliomas, which arise in extraovarian me-
sothelium, e.g., in response to asbestos exposure, and lack
Mullerian phenotypes. This difference reflects, among other
factors, the different developmental histories of these two
components of the pelvic peritoneum, which may include
inductive signals emanating from the ovary and acting on the
developing OSE (2, 6, 26).

V. OSE in Culture

A. Culture methods

The detailed procedures used for isolating and culturing
normal human OSE were summarized previously (118) and
have recently been described in detail (119). Briefly, in our
laboratory, specimens for culture are obtained from overtly
normal ovaries at surgery for nonmalignant gynecological
diseases. Fragments of OSE are gently scraped from the
ovarian surface with a rubber scraper or with the blunt side
of a scalpel or other suitable instrument and immediately
placed into sterile culture medium; it is imperative that the
tissue remain sterile and does not dry, which happens very
rapidly. OSE is also very loosely attached to the underlying
ovarian cortex and is easily lost by excessive handling. If the
surgery involves the removal of the ovaries, the OSE is ob-
tained either by the surgeon while the ovaries are still in situ,
or by a member of the research team after removal from the

FIG. 4. Mullerian differentiation of ovarian tumors. A, Ovarian cor-
tex with metaplastic OSE covering part of the ovarian surface (arrow).
To the left and in the upper part of the figure, a tumor with numerous

papillae and gland-like structures has formed. On the basis of its
resemblance to the complex epithelium of the oviduct, this tumor is
classified as a serous ovarian adenocarcinoma. B, Higher magnifica-
tion of the tumor in panel A, illustrating the formation of papillae,
cilia, and densely packed nuclei characteristic of serous type OSE-
derived neoplasms. C, Mucinous differentiation of an ovarian tumor
of borderline malignancy, resembling endocervix (and also celomic
epithelium) in its differentiation. Hematoxylin and eosin. Magnifi-
cation: A, 380; B and C, 3300.
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patient. OSE can also be obtained by the surgeon laparo-
scopically at the time of minor gynecological procedures that
are carried out by this approach. The OSE fragments are
cultured in medium 199-MCDB 105 (1:1) (Sigma, St. Louis,
MO) with 15% FBS (HyClone Laboratories, Inc., Logan, UT).
In addition, either 50 mg/ml gentamicin or 100 mg/ml of
penicillin/streptomycin is added for the first few weeks. The
cultures are left undisturbed for at least 4 days, grown to
confluence, and then routinely passaged and split 1:3 when
confluent, with 0.06% trypsin (1:250) and 0.01% EDTA. The
cultures usually proliferate for three to four passages (1:3
splits) and then senesce. They are defined as senescent if they
are composed of large flat cells that do not reach confluence
over 1 month. OSE cells in low-passage culture can undergo
epithelio-mesenchymal conversion, which tends to extend
their life span by a few passages (Fig. 6) (27). This phenom-
enon varies in frequency and the underlying mechanisms
have not been defined. Reduced-serum, and serum-free me-
dia were designed for human OSE and used to study mito-
genic effects of growth factors and hormones (120, 121).
Interestingly, rat OSE can be propagated in FBS-supple-
mented Waymouth medium 752/1 (11), while human OSE
cells are stationary under these conditions but proliferate in
FBS-supplemented media 199, MCDB 105, and MCDB 202
(15, 16, 118). For a long time there was no explanation for this
phenomenon. However, it was reported recently that OSE
proliferation is regulated by extracellular calcium by means
of calcium-sensing receptors (122) and that human OSE pro-
liferated only at calcium concentrations above 0.8 mm,
whereas rat OSE grew at concentrations below this level.
Waymouth medium has a calcium concentration of 0.8 mm,
while the calcium concentrations of media 199, MCDB 105,
and MCDB 202 range from 1.0 to 2.2 mm.

Markers to distinguish OSE from cell contaminants in
culture include keratins 7, 8, 18, and 19, which distinguish
OSE from other ovarian cell types (49, 71); 17b-OH steroid
dehydrogenase and mucin, which distinguish it from ex-
traovarian mesothelial cells; laminin, which together with
keratin distinguishes OSE from stromal fibroblasts; and the
absence of factor VIII and Ulex lectin receptors, which dis-
tinguish OSE from the morphologically similar endothelial
cells (1, 16, 27).

B. Properties

1. Differentiation. Cultured OSE is highly responsive to en-
vironmental influences. Over several passages under stan-
dard culture conditions, freshly explanted OSE cells respond
to the culture environment by modulating from an epithelial
to a more mesenchymal phenotype (Table 1). Immediately
upon explantation into primary culture they retain mesen-
chymal markers that are present in vivo, such as vimentin,
and acquire additional mesenchymal characteristics, such as
collagen type III secretion. They rapidly lose some epithelial
differentiation markers, including villin and desmoplakin,
but retain others, e.g., keratin, for longer periods. With pas-
sages in culture, the cells may assume a more definitive
fibroblast-like phenotype as indicated by a change to ante-
rior-posterior polarity, reduced intercellular cohesion, gel
contraction, increased secretion of collagen types I and III,

FIG. 5. E-cadherin expression by normal, metaplastic, and neoplastic
OSE. Frozen sections, stained immunocytochemically for E-cadherin
(40). A, Ovarian surface. Normal, flat-to-cuboidal OSE on the right is
E-cadherin negative. On the left, the cells are columnar and E-
cadherin positive. B, Epithelial inclusion cyst lined with metaplastic
E-cadherin-positive OSE. C, Higher magnification of the epithelium
lining the cyst in panel B. The cells are columnar, ciliated with in-
terspersed secretory cells, resembling oviductal epithelium. D, Epi-
thelial ovarian carcinoma with E-cadherin outlining intercellular
junctions. Magnification: A, C, and D, 3300; B, 380.
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and loss of the epithelial marker keratin (27, 78, 123). Such
epithelio-mesenchymal conversion is more consistent and
prominent in three-dimensional than in two-dimensional
culture (29, 78). It is enhanced by epithelial growth factor
(16), collagen substrata (29), and ascorbate (our unpublished
data). It varies widely in frequency between laboratories and
within laboratories with time. The reasons for this variation
and the precise mechanisms underlying the mesenchymal
conversion of OSE have not been defined, but they most
likely depend on as yet undefined serum factors. Similar
epithelio-mesenchymal conversions occur in the culture of
other mesodermally derived epithelia (reviewed in Refs. 87
and 124). Generally, cells respond to explantation into cul-
ture as they would to wounding and undergo changes in
phenotype and in gene expression that are similar to those
that occur in regenerative responses. In analogy, the response
of OSE cells to explantation into culture likely mimics their
normal response to ovulatory rupture. Thus, the phenotype
observed in culture should perhaps be compared with that
of regenerating OSE rather than to the phenotype of station-
ary OSE covering a nonovulating ovary.

2. ECM. Cultured OSE cells are profoundly influenced by the
ECM and they, in turn, modulate ECM synthesis, lysis, and
physical restructuring (29). OSE cells deposit epithelial as

well as stromal ECM components which, in rat OSE, include
banded collagen type I fibrils (67, 125, 126). Thus, OSE cells
not only modulate to fibroblast-like forms morphologically,
but have the capacity to autonomously produce complex
connective tissue-type ECMs. Whether this autonomy con-
tributes to the spread of OSE-derived tumors by providing
tumor-derived stroma remains to be determined. Human
OSE cells also secrete chymotrypsin-like and elastase-like
peptidases, metalloproteases, and plasminogen activator in-
hibitor. Protease activity varies with the type of ECM on
which the cells are maintained (27, 29). OSE cells from normal
human ovaries do not appear to secrete plasminogen acti-
vator. Plasminogen activator detected in culture medium
conditioned by OSE from an ovary with inflammatory dis-
ease may be derived from contaminating inflammatory cells
(29, 127). OSE also expresses integrins that bind to laminin,
collagens, fibronectin, and vitronectin and vary in type and
amount with the substratum (29, 30). These properties are
likely important in the roles of OSE in ovulation and post-
ovulatory repair and may also influence the phenotypes of
OSE-derived malignancies.

3. Intercellular adhesion. Similar to its in vivo phenotype (31,
32), intercellular contact of cultured OSE is maintained by
N-cadherin, which is expressed constitutively while E-

FIG. 6. Morphology of OSE in culture. A, Primary epithelial culture with a compact, cobblestone-like growth pattern. B, Passage 2 with flat
epithelial OSE cells. Note a small group of granulosa cells in the lower right corner. C, Passage 5 with OSE cells that have undergone
epithelio-mesenchymal conversion and have assumed fibroblast-like shapes. Such cells are initially keratin positive but tend to lose keratin
with time and passages in culture (16, 78). Magnification: 3200.

TABLE 1. Comparison of epithelial and mesenchymal markers on OSE in situ and in culture

Markers In situ
In culture

Primary culture Passages 2–4

1. Epithelial markers
Keratin Present Present Diminished
Mucin Present ND Present
Cytovillin Present Present Absent
E-cadherin Absent Absent Absent
Desmoplakin Present ND Absent
Laminin Present Present Present
Collagen IV Present Present Present

2. Mesenchymal markers
Vimentin Present Present Present
Collagen type I ND ND Present
Collagen type III Absent Present Present

3. Morphology Epithelial Epithelial Epithelial or mesenchymal

ND, Not determined. Features that change in culture are italic.
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cadherin is expressed only conditionally, when OSE cell
shapes approach those of metaplastic epithelium (36). In
contrast to the human, cultured rat OSE expresses E-cadherin
consistently (128). N-cadherin-mediated adhesion appears to
have an antiapoptotic effect in OSE of the rat (129), but
whether it has a similar function in the human is not known.
In general, expression of N-cadherin alone or of N- and
E-cadherin together characterize adhesive mechanisms of
mesodermally derived tissues (reviewed in Ref. 36).

C. Three-dimensional culture systems

Pathological changes in OSE, including neoplastic conver-
sion and endometriosis, often involve three-dimensional for-
mations such as OSE-lined clefts and cysts. To reproduce
OSE growth in such confined spaces, several three-dimen-
sional culture systems have been investigated: 1) rat tail
tendon-derived collagen gel that is rich in collagen type I and
permits differentiation of many cell types; 2) a rat OSE-
derived matrix plus collagen gel to produce OSE “or-
ganoids”; 3) Matrigel (Collaborative Research, Bedford,
MA), a mouse yolk sac tumor-derived basement membrane
substitute rich in laminin and other basement membrane
components (29, 68); and 4) Spongostan (Health Design In-
dustries, Rochester NY), a pig skin-derived denatured col-
lagenous sponge that provides a rigid skeleton (78). In col-
lagen gel cultures, human OSE cells converted to a
mesenchymal form, dispersed in the gel in a manner resem-
bling connective tissue fibroblasts, and then remained sta-
tionary and eventually died (29). However, if cocultured
with endometrial stromal cells in the presence of 17b-estra-
diol, OSE were reported to form structures composed of
monolayered polarized cells surrounding lumina and ex-
pressing markers of endometrial cells. This system may rep-
resent an experimental model for OSE-derived endometri-
osis (130, 131). When cultured on the rat OSE-derived matrix
plus collagen gel, the OSE cells again converted to a mes-
enchymal form and dispersed and then contracted the rel-
atively loose matrix into smaller, denser structures (68). Such
contractile function is generally considered as characteristic
of fibroblasts in the process of wound healing. On Matrigel,
OSE cells aggregated into solid cell clumps. Depending on
the lot of Matrigel, the cells showed a varying propensity to
lyse the matrix and eventually form monolayers on the un-
derlying plastic (29). This variation may have depended on
growth factor contaminants known to occur in Matrigel. In
their ability to lyse this matrix, these presumably normal cells
resembled cancer cells, which are commonly assumed to be
the only cells capable of invading Matrigel. In Spongostan,
cells were grown for several weeks until they filled the
sponges. In contrast to ovarian cancer cells, which form ep-
ithelial linings along the sponge spicules, human OSE cells
under these conditions again underwent mesenchymal con-
version: they assumed morphological and functional char-
acteristics of stromal cells as they dispersed in intercellular
spaces, took on fibroblast-like shapes, and secreted ECM (78).
Thus, in all three-dimensional systems except for Matrigel,
OSE cells converted to mesenchymal phenotypes.

D. Extension of the life span of surface epithelial cells

One of the problems in human OSE research is the small
number and short life span of cells obtained at surgery. To
alleviate this problem, “immortalizing” genes such as SV40
large T antigen (Tag) (132) and the HPV genes P6 and P7 (123,
133, 134) have been introduced into OSE. Expression of these
genes does not truly immortalize human OSE cell lines in that
their population-doubling capacity is greatly extended but
not infinite; however, the lines provide sufficiently large cell
numbers for molecular studies. One advantage of these lines
is that they tend to retain some, although not all, of the
tissue-specific properties of the cells from which they are
derived. For example, many of these lines retain keratin, and
most, if not all of them, continue to express N-cadherin and
lack E-cadherin (in common with normal, and in contrast to
neoplastic OSE). Although such lines are nontumorigenic in
SCID mice (18), their growth controls are profoundly dis-
turbed, which confer on them properties of neoplastic cells
such as genetic instability, increased saturation density
reduced serum requirements, and variable degrees of an-
chorage independence. Tag and E6/E7 inactivate the tumor
suppressor genes p53 and p105RB (135, 136). Importantly,
30–80% of epithelial ovarian carcinomas have p53 mutations
that disrupt controls of the cell cycle, DNA repair, and
apoptosis (137). Sometimes, a few cells of such “immortal-
ized” OSE cultures survive crisis and become truly immortal,
continuous lines. Recently, we introduced constitutively
expressed E-cadherin into an SV40 Tag-immortalized line
derived from normal OSE. The resulting phenotype closely
resembled neoplastic OSE, and the cells formed adenocar-
cinomas in SCID mice (17, 18). These adenocarcinomas re-
sembled Mullerian duct-derived epithelia in that they
formed papillae and cysts and expressed CA125 and E-
cadherin. The line, IOSE-29EC, became not only tumorigenic
but also acquired an indefinite, truly immortal growth po-
tential. While the exact relationships between the introduc-
tion of T-antigen and E-cadherin to tumorigenicity need to be
examined in additional lines, this is the first experimental
transformation of normal human OSE to ovarian adenocar-
cinoma cells and the first direct confirmation that OSE is
capable of such a transformation. The results support the
hypothesis that E-cadherin may act as an inducer of the
Mullerian epithelial differentiation that accompanies neo-
plastic conversion of OSE (36).

E. Variation in OSE characteristics among species

Important issues that are frequently overlooked in the
interpretation of data derived from studies of OSE are the
structural and physiological differences among OSE from
different species. For extrapolations of results to human OSE,
one of the best tissue culture models appears to be bovine
OSE because of the relative similarity between the repro-
ductive systems of these two species (138). One example of
differences between species, discussed in Section III.A, is the
constitutive expression of E-cadherin by OSE of rodents and
pigs but not humans. Other differences include the depen-
dence of human but not rat OSE on high calcium levels in
culture media for growth (122) and the propensity of rat OSE
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but not human OSE to undergo spontaneous transformation
to immortal cell lines in culture (11). Studies of rabbit OSE
have provided some of the earliest and most detailed infor-
mation on hormonal regulation of OSE. In this species, the
responses to hormonal stimulation are associated with mor-
phological changes that differ significantly from those of the
human (2, 59), The differences between OSE from different
sources are likely related to variations in the reproductive
biology of different species and might provide clues for the
striking interspecies variation in their propensity to develop
epithelial ovarian cancers. Therefore, in order to avoid re-
porting confusing and irreproducible results, it is mandatory
to specify species in discussions of OSE.

F. Culture of OSE from women with family histories of

ovarian cancer

One of the pressing problems in ovarian cancer manage-
ment is the lack of markers for the detection of preneoplastic
or early neoplastic changes in the OSE. Our laboratory and
others have investigated this problem by studying the prop-
erties of overtly normal OSE from women with histories of
familial ovarian cancer and, in particular, women with
proven predisposing mutations. As stated in Section IV.B, the
evidence for phenotypic changes in OSE in situ of women
with these predisposing mutations is controversial. How-
ever, it appears that such OSE expresses an altered pheno-
type in culture that might reveal early changes and, perhaps,
be a source of predictive markers for ovarian carcinogenesis
(78, 139, 140).

As discussed earlier in this review, normal OSE cells have
a tendency to undergo epithelio-mesenchymal conversion in
culture. In contrast, ovarian carcinoma cells are nonrespon-
sive to the environmental signals that induce this conversion
and remain epithelial in culture indefinitely. The first indi-
cation to suggest that overtly normal OSE from women with
family histories of ovarian cancer (FH-OSE) differs from the
OSE of women with no family history (NFH-OSE) not only
genetically but also phenotypically came in 1995, when
CA125 in cultured OSE was found to be expressed in more
cells and for longer durations in FH-OSE (141). CA125 is an
ovarian tumor marker used to monitor the clinical progress
of ovarian cancer patients, but it is also an epithelial differ-
entiation marker that is expressed by normal oviductal and
endometrial epithelium. The increased expression of CA125
suggested that FH-OSE cells might have a diminished ca-
pacity for epithelio-mesenchymal conversion. This hypoth-
esis was supported by subsequent observations that showed
an increased tendency of FH-OSE cells to retain an epithelial
cellular morphology and growth patterns in two- and three-
dimensional culture and to express the epithelial markers
keratin and E-cadherin more frequently and over longer
periods in culture than NFH-OSE. At the same time, the
capacities for sponge contraction and collagen type III se-
cretion, which are mesenchymal markers, were reduced
compared with NFH-OSE cultures (36, 78).

Recently, we showed that the Met receptor for hepatocyte
growth factor (HGF) was down-regulated in prolonged cul-
tures of NFH-OSE but was stabilized in FH-OSE cultures at
all passages, similar to ovarian carcinoma lines. As Met is

characteristically expressed by epithelial cells, the presence
of this receptor represents yet another epithelial differenti-
ation marker that persists longer in FH-OSE. In view of the
capacity of HGF to induce glandular morphogenesis (142),
Met expression may enhance the susceptibility of the FH-
OSE cells to the aberrant Mullerian differentiation that ac-
companies ovarian carcinogenesis (139, 143). Our data also
revealed concomitant expression of HGF and Met, sugges-
tive of autocrine regulation by HGF-Met in most cases of
FH-OSE but rarely in NFH-OSE (Fig. 7).

HGF activated several signaling molecules of the PI3K
pathway in NFH-OSE cells. In contrast to NFH-OSE, some of
these molecules, including Akt2 and p70 S6 kinase, were
constitutively phosphorylated in FH-OSE, perhaps through
an autocrine HGF/Met loop (Fig. 8). Similar to other cell
types (144), the appearance of both HGF and Met expression
in FH-OSE may reflect increased autonomy of differentiation
and growth controls that represent an early step in their
(pre)neoplastic progression.

Together, these data suggest that some of the factors that
enhance the expression of epithelial characteristics, includ-
ing Met levels, in the malignant progression of ovarian sur-
face epithelial tumors (145–147) may preexist in FH-OSE, and
that FH-OSE may have acquired some of the autocrine reg-
ulatory mechanisms that characterize malignant cells. Such
increased autonomy would indicate an early step or predis-
position to neoplastic progression by FH-OSE and would
provide a basis for the propensity of such OSE to undergo
neoplastic progression.

An additional difference from NFH-OSE was observed in
SV-40 large T antigen-immortalized FH-OSE cultures, which
were found to exhibit increased telomeric instability and a
reduced growth potential indicative of greater proximity to
replicative senescence (140). These observations are partic-
ularly relevant to the unexplained earlier age of onset that
characterizes ovarian cancer in women with hereditary ovar-
ian cancer syndromes (148).

A possible reason why differences between FH-OSE and
NFH-OSE were detected mainly in culture may relate to the
particular nature of these changes: most of them involve
differences in the stability, rather than type, of phenotypic
characteristics in culture. Since the response of cells to ex-
plantation into culture is thought to mimic their response to
injury, the nature of the changes suggests the interesting
possibility that FH-OSE may respond abnormally to regen-

FIG. 7. Representative examples of Met and HGF mRNA expression
in cultured human OSE. RT-PCR of Met (upper panel) in NFH-OSE,
FH-OSE, and ovarian cancer cell lines. Lanes 1–3, FH-OSE; lanes
4–7, NFH-OSE; and lane 8, ovarian cancer cell line OVCAR-3. In
lanes 1–7, each lane represents a different case. The passages (p.) of
M-CSF (fms) cultures are indicated. Note that Met persists to senes-
cence and HGF mRNA (lower panel) is detected only in FH-OSE and
ovarian cancer cell lines, but not in NFH-OSE cultures.
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erative stimuli. This possibility is particularly intriguing in
view of the apparent role of ovulation as a predisposing
factor in ovarian carcinogenesis (8, 149).

VI. Regulation by Hormones, Growth Factors,

and Cytokines

A. OSE

Normal OSE cells secrete, and have receptors for, agents
with growth- and differentiation-regulatory capabilities.
Compared with the wealth of information available on the
endocrinology of the follicular components of the ovary and
on ovarian cancer, research about the roles of such agents in
OSE physiology has been limited and, as a result, informa-
tion on this topic is fragmentary.

1. GnRH and gonadotropins. Recently, we showed that GnRH
is an autocrine growth inhibitor for normal OSE. Using RT-
PCR and Southern blot analysis, we cloned the GnRH and
GnRH receptor in human OSE cells and found that they have
sequences identical to those found in the hypothalamus and
pituitary, respectively (150). It has been shown that gonad-
otropins stimulate cell proliferation of normal OSE of several
species in vivo and in vitro (59, 151). Human OSE cells also
have receptors for FSH (152). The presence of these receptors
lends support to the hypothesis that the high FSH levels in
peri- and postmenopausal women may play a promoting
role in ovarian carcinogenesis, since this is the age of the peak
incidence of epithelial ovarian carcinomas (153). Human and
rabbit OSE cells express LH receptors since hCG, which is
secreted by human OSE (47), stimulates their proliferation
(120, 154) and LH also stimulates rabbit OSE growth in cul-
ture (59).

2. Steroids. Receptors for estrogen, progesterone, and andro-
gen were found at the mRNA and/or protein level in rat OSE
(12) and human OSE (104, 155). SV-40 large T-immortalized
OSE cells expressed ERa but not ERb (156). No direct effects
of these steroids on OSE proliferation have been demon-
strated (104), but there is increasing evidence for indirect
actions. Expression by OSE of the GnRH receptor appears to
be reduced by estrogen (156a), and estrogen also modulates
levels of HGF (157) and EGF both of which stimulate OSE

growth (see below). Furthermore, in ovarian carcinoma cells,
estrogen and progesterone markedly influence the steady
state levels of mRNA for the HGF receptor Met (145), and
5a-dihydrotestosterone down-regulates the expression of
mRNA for the TGFb receptors (158), suggesting that these
steroids may also have indirect effects on the growth regu-
lation of normal OSE. Although there is no evidence for a
direct mitogenic effect of ovarian steroids on OSE, it has been
known for a long time that corticosteroids enhance OSE
proliferation in culture and that combinations of EGF and
hydrocortisone are among the most potent mitogens for cul-
tured OSE (16) (see below). Steroidogenic factor 1, a tran-
scription factor that regulates the differentiation of granulosa
cells and inhibits their proliferation, is also growth inhibitory
in rat OSE cells (159).

3. EGF family. Among growth factors, those of the EGF family
were among the first reported to stimulate human and rabbit
OSE proliferation either with or without costimulation by
corticosteroids (16, 56, 160, 161). OSE cells express receptors
for EGF and for TGFa , which is a structural homolog of EGF
also binds to the EGF receptor (162). EGF not only stimulates
proliferation of human OSE cells but also profoundly affects
their differentiation: within a few days of EGF treatment, the
cells convert from an epithelial to the spindle-shaped mor-
phology and lose epithelial differentiation markers such as
keratin (16). EGF is not present in large amounts in the
plasma (163) but is released from platelets during the clotting
process. In the ovary, EGF should therefore be present in
increased amounts due to the hemorrhage that occurs during
follicular rupture (164). The resulting localized stimulation of
the OSE likely contributes to its rapid postovulatory prolif-
eration and perhaps also to epithelio-mesenchymal conver-
sion of OSE cells trapped within the ruptured follicle. EGF
has numerous functions in the ovary, which include inhibi-
tion of FSH induction of LH receptors (165), inhibition of
estrogen production (166) and of theca differentiation (167),
and stimulation of progestin biosynthesis (168). TGFa has
been demonstrated immunohistochemically in human OSE
in vivo and in vitro and found to stimulate thymidine incor-
poration by cultured human OSE cells. It was also demon-
strated immunohistochemically in human theca cells, sug-
gesting that it plays a role in the reproductive functions of the
ovary (169). In OSE cells whose life span has been extended
by transfection with SV40 large T antigen, EGF does not
enhance proliferation but promotes survival (170). Amphi-
regulin, another EGF homolog, is also a potent mitogen for
OSE cells and appears to control OSE and ovarian cancer cell
proliferation in a complex manner (171, 172).

Of particular interest for ovarian cancer are the heregulins,
including the heregulin/neu differentiation factor, which are
a family of ligands that cause phosphorylation of the HER2/
neu receptor, a 185-kDs transmembrane protein kinase with
extensive homology to the EGF receptor (reviewed in Ref.
173). HER1 (synonymous with EGF receptor), HER2, HER3,
and HER4 are members of the type I receptor tyrosine kinase
family (RTK I) of epithelial growth factor receptors (174).
These receptors interact in multiple ways that modify their
influence on a variety of cells (reviewed in Ref. 175). Al-
though normal OSE cells express EGF receptors, they express

FIG. 8. Effects of HGF stimulation on protein kinase phosphorylation
assessed by phosphorylation-induced reductions of kinase mobilities
on Western blots. Treatment with 20 ng/ml HGF resulted in apparent
phosphorylation of Akt2 and p70 S6K in NFH-OSE, FH-OSE, and the
ovarian cancer cell line OVCAR-3. The bottom band represents un-
phosphorylated forms of the kinases, whereas the upper bands rep-
resent different phosphorylated forms. Note that phosphorylated
forms of Akt2 and p70 S6K are present in FH-OSE and OVCAR-3 even
in the absence of HGF stimulation.
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little or no HER-2/neu (110, 172, 176, 177). However, HER2/
neu is amplified and overexpressed in 25–30% of ovarian and
breast cancers, and this overexpression is associated with a
poor prognosis (110, 173).

4. Other growth factors. Among other growth factors, basic
fibroblast growth factor (bFGF), a member of the FGF family
of growth factors (178), stimulates the proliferation of rabbit
OSE (161) and maintains viability in cultured rat OSE cells.
The latter function involves alterations in intracellular cal-
cium levels and can be mimicked by N-cadherin-mediated
intercellular adhesion (129, 179). Platelet-derived growth fac-
tor (PDGF) also stimulates proliferation of OSE cells (180).
Finally, TNFa, produced, for example, by macrophages, in-
duces both proliferation and TNFa expression in OSE cells
(57, 58, 181). It is significant that EGF and PDGF, which
stimulate OSE growth, are released from platelets during the
clotting process that occurs at ovulation. Recently, it was
reported that keratinocyte growth factor (KGF) and its li-
gand, Kit, represent an autocrine mitogenic system for bo-
vine OSE and that KGF/Kit may interact with HGF in the
regulation of this system (138).

5. TGFb family of growth-inhibitory factors. Among agents that
inhibit OSE growth are several members of the TGFb family
of growth factors (182), which affect and/or are produced by
OSE. TGFb itself, a widely distributed growth factor with
multiple modes of action, acts as an autocrine growth in-
hibitor for cultured human OSE (74) and also counteracts the
growth-stimulatory effect of EGF (183). In contrast to some
other inhibitory factors, TGFb does not induce apoptosis in
OSE cells (184). TGFb inhibits growth of rabbit OSE (161) and
regulates Kit ligand expression in immortalized rat OSE
(185). A detailed examination by immunohistochemistry and
in situ hybridization of TGFb subtypes, the related protein
endoglin, TGFb receptors, and TGFb-binding protein dem-
onstrated the presence of all of these in human OSE and, with
the exception of the binding protein, levels were lower than
in ovarian cancers (186). Interestingly, 5a-dihydrotestoster-
one down-regulates the expression of mRNA for the TGFb

receptors I and II in ovarian carcinoma lines (158), suggesting
that it might also counteract growth-inhibitory effects of
TGFb in normal OSE. Welt et al. (187) investigated the TGFb-
related factors, activin, inhibin, and follistatin, in normal and
neoplastic ovarian epithelia. OSE, immediately after removal
from the ovary, expressed mRNA for follistatin 288 and 315,
for the activin receptors IA, IB, II, and IIB, as well as for the
a-subunit and (weakly) the b-subunit of the ligands. At the
protein level, OSE produced inhibin only. After 1 month in
culture, the a-subunit was undetectable while the bA-
subunit became abundant. Another member of the TGFb

family, anti-Mullerian hormone (AMH), which causes re-
gression of the Mullerian ducts in male fetuses, is produced
at low levels by granulosa cells throughout the reproductive
life of women (188). In view of the close developmental
relationship between the Mullerian ducts and OSE, it might
be expected that AMH should affect OSE cells; however, no
information on this topic seems to be available.

6. HGF. A growth factor with pleiotropic effects, which has
attracted increasing attention in recent years, is HGF and its

receptor, Met. HGF is produced primarily by mesenchymal
and stromal cells and acts on epithelial cells by a paracrine
mechanism through its receptor tyrosine kinase encoded by
the c-met protooncogene (189, 190). During mouse develop-
ment, HGF is produced by the mesenchyme at the urogenital
region in the vicinity of Met-expressing epithelia, suggesting
that the development and morphogenesis of urogenital or-
gans, including ovary, depend on a paracrine regulation of
HGF-Met (191). In the adult ovary, including human, the
expression of Met persists in the OSE, granulosa cells, and
Mullerian epithelia (145–147, 192, 193). Extraovarian me-
sothelial cells, which share a common embryological origin
and anatomical environment with OSE, lack HGF and Met
(194). This suggests that expression of the Met receptor might
be a feature characteristic of celomic epithelial derivatives at
the urogenital ridge through local differentiation. Immuno-
histochemical studies have localized expression of HGF to
bovine, rat, and human OSE (195, 196), but the mRNA was
not found in OSE of the mouse by in situ hybridization and
Northern blot analysis (197). There are two possible expla-
nations for this discrepancy. First, there may be species dif-
ferences among human, bovine, rat, and mouse OSE. Second,
the detected HGF protein could have been produced by
adjacent mesenchymal cells and bound to the Met receptor
on OSE. The physiological influence of HGF on OSE depends
on the presence or absence of basement membrane compo-
nents. For example, HGF decreases N-cadherin-mediated
cell contacts, increases intracellular calcium concentration,
and ultimately induces apoptosis in vitro if these cells are
cultured on plastic (129). On the other hand, HGF is mito-
genic when OSE cells are plated on a fibronectin-like ECM
(RGD peptide) (154). In vivo, these modulations may regulate
the contributions of OSE to follicular rupture before ovula-
tion and to postovulatory repair. HGF levels are trans-
criptionally regulated by a variety of steroid hormones,
cytokines, and growth factors, including estrogen and go-
nadotropins. Estrogen increases the expression of HGF in the
ovary, but not in other organs such as kidney and liver,
suggesting that this may be a crucial part of the mechanism
through which estrogen mediates cell growth and differen-
tiation in the ovary (157). hCG has also been shown to stim-
ulate OSE cell growth, and this ability is mediated by up-
regulating the expression of HGF (154). The serum levels of
HGF change during the menstrual cycle, which supports the
possibility that HGF secretion is regulated by steroid hor-
mones and/or gonadotropins. The level of HGF is lowest at
ovulation and is highest in the late follicular phase and dur-
ing the luteal phase, suggesting that apoptosis and mitotic
activity of OSE before and after ovulation might be regulated
via HGF (193). Together, these findings illustrate the role of
HGF in normal OSE physiology and show that both cell-ECM
interaction and hormonal regulation during the menstrual
cycle determine the outcomes. In culture, HGF is mitogenic
for both bovine (196) and human (139) OSE.

7. Cytokines. Cultured human OSE also secretes bioactive
cytokines, including IL-1, IL-6, macrophage colony-stimu-
lating factor (M-CSF), granulocyte colony-stimulating factor
(G-CSF), and granulocyte-macrophage colony stimulating
factor (GM-CSF). These agents have regulatory effects on
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follicular growth and differentiation, ovulation, and the dis-
tribution of intraovarian cells of the immune system (55), and
IL-1 enhances OSE proliferation (181). Little is known about
the regulation of cytokine expression in OSE, but it may be
relevant that ovarian steroid hormones regulate GM-CSF
production by uterine epithelial cells, which are develop-
mentally related to OSE (198).

B. Ovarian carcinomas

Ovarian carcinomas also secrete and have receptors for
agents with growth-regulatory capabilities. The potential
roles of peptide hormones, sex steroids, and growth factors
in ovarian cancer are discussed below.

1. Peptide hormones.

a. GnRH. GnRH acts as a key hormone in the regulation of
the pituitary gonadal axis (199, 200). In addition to its well
documented role in gonadotropin biosynthesis and secretion
in the pituitary, an autocrine/paracrine role for GnRH has
also been suggested in tumors of the ovary, breast, prostate,
and endometrium (201–206). This concept is based on the
detection of binding sites for GnRH, as well as the expression
of GnRH and its receptor gene transcripts in these tumors.
Especially noteworthy is the finding that GnRH and its re-
ceptor are expressed in normal and neoplastic OSE cells (Fig.
9). GnRH receptors were detected in approximately 80% of
human ovarian epithelial tumors and in numerous ovarian
cancer cell lines such as EFO-21, EFO-27, and OV-1063 (201,
207, 208). GnRH and its analogs have been shown to be
efficient in treatment of the sex steroid-responsive tumors of
ovary, breast, and endometrium in vivo and in vitro (201–206,
209, 210). In vivo, long acting GnRH agonists are thought to
act by desensitizing or down-regulating the GnRH receptors
in the pituitary, resulting in a subsequent decline in gonad-
otropins that serve as tumor growth factors. The suppression
of endogenous LH and FSH secretion by GnRH-agonist treat-
ment results in growth inhibition of heterotransplanted ovar-
ian cancers in animal models (211). In vitro, GnRH and its
analogs have been shown to inhibit the growth of a number
of GnRH receptor-bearing ovarian cancer cell lines. For in-
stance, Emons et al. (201) reported a time- and dose-depen-
dent inhibition on the growth of two ovarian cancer cell lines,
EFO-21 and EFO-27, by the GnRH agonist [d-Trp6]LHRH. In
other studies, growth inhibition of the ovarian cancer cell
line, OVCAR-3, was observed by the administration of
GnRH agonists such as [d-Trp6]LHRH and Lupron-SR (211,
212). Another GnRH agonist, buserelin, suppressed FSH-
induced proliferation of the DMBA-OC-1 cell line (213).
Interestingly, an antagonistic analog of GnRH, SB75, also
inhibited the proliferation of OV-1063 cells in a dose-depen-
dent manner, as indicated by the reduction in cell number
and DNA synthesis (214). In a clinical trial, the combined
treatment with the GnRH agonist, [d-Trp6]LHRH, and cis-
platin has been shown to improve the positive outcome as
compared with patients on chemotherapy alone (215). To
improve the therapeutic efficiency of GnRH analogs against
cancer cells and reduce cytotoxicity against normal cells,
targeted chemotherapy based on the GnRH receptor has
been developed recently (reviewed in Ref. 216). Targeted

cytotoxic peptide conjugates consist of a peptide that binds
to receptors in tumors and a cytotoxic chemical. Cytotoxic
analogs of GnRH—AN-152 in which a cytotoxic chemical,
doxorubicin (DOX), is linked to a peptide, [d-Lys6]GnRH,
and AN-207, which consists of 2-pyrrolino-DOX (AN-201)
coupled to the same peptide—have been developed. Pre-
liminary studies have demonstrated that these cytotoxic an-
alogs of GnRH showed high-affinity binding for GnRH re-
ceptor in tumor cells and were less toxic and more effective
than their respective radicals in inhibiting the growth of
GnRH receptor-positive human ovarian, mammary, or pros-
tatic cancer cells (217, 218). AN-152 given intraperitoneally
was more effective and less toxic than equimolar doses of
DOX in reducing the growth of GnRH receptor-positive OV-
1063 human ovarian cancers in nude mice (208). In the same
study, AN-152 did not inhibit the growth of GnRH receptor-
negative UCI-107 human ovarian carcinoma, indicating a
targeted cytotoxic effect of the GnRH conjugate. In a recent
study, another cytotoxic analog of GnRH (AN-207) also in-
hibited the growth of ovarian tumor cells, OV-1063, in nude
mice with less toxicity than equimolar doses of its radical
2-pyrrolino-DOX (AN201) (219). AN-152 and AN-207 have
also been shown to inhibit the growth of estrogen-indepen-
dent MXT mouse mammalian tumor cells (220) and PC-82
human prostate cancer cells in nude mice (221).

The exact mechanism underlying the growth-inhibitory
effect of GnRH analogs remains to be elucidated. At the
ovarian GnRH receptor level, the putative endogenous li-
gand may stimulate the proliferation of the cells through the
receptor, which might be down-regulated by continuous
treatment with a potent GnRH agonist. The finding that
continuous treatment with GnRH agonists, which is thought
to induce receptor down-regulation, inhibited ovarian cancer
cell growth, and that this effect was abolished by cotreatment
with a specific GnRH antagonist, corroborated this view (150,
222). Alternatively, the ovarian GnRH receptor might me-
diate direct antiproliferative effects of GnRH analogs. How-
ever, this notion is not corroborated by the observation that
both antagonistic and agonistic analogs have been reported
to induce growth inhibition of ovarian cancer cells (214).
Recently, it has been suggested that the well established
GnRH receptor signaling mechanism mediated by phospho-
lipase C (PLC) and protein kinase C (PKC) is likely not
involved in the antiproliferative effects of GnRH in tumor
cells (223). Rather, GnRH binding in cancer cells could ac-
tivate a downstream phosphotyrosine phosphatase (PTP) in
GnRH receptor-bearing tumors, thereby counteracting the
effects of growth factors that function through receptor ty-
rosine kinase (224, 225). It has been reported that analogs of
GnRH reverse the growth-stimulatory effect of EGF and
insulin-like growth factor (IGF) in cancer cells including car-
cinomas of the ovary (226–228), possibly by down-regulating
their receptor numbers and/or mRNA levels. In addition,
there is evidence that the GnRH receptor is coupled to Gia in
reproductive tract tumors (229, 230). In prostate tumor cells,
the GnRH receptor is coupled to Gia which, by the inhibition
of cAMP accumulation, may mediate the growth-inhibitory
action of GnRH (230). At the ovarian cell level, it has been
demonstrated that GnRH analogs reduce cell proliferation by
increasing the portion of cells in the resting phase, G0-G1
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(222), and inducing cell death or apoptosis (231, 232). Treat-
ment of ovarian cancer cells with GnRH analogs may induce
apoptosis mediated by the Fas ligand-Fas system, which has

been shown to trigger apoptosis in a variety of cell types
(233). Recently, it has been demonstrated that a GnRH analog
may modulate ovarian cancer cell growth by inhibiting te-

FIG. 9. Expression of activin receptors (A), GnRH (B), and GnRH receptor (C) in normal OSE, primary cultured ovarian cancer (PC-OVC), and
OVCAR-3 cells. Total RNA was extracted and cDNA was synthesized from total RNA by reverse transcription (RT). The synthesized cDNA was
used as template for PCR amplification. The primers for each activin receptor were employed in intracellular domain. The 651-bp, 684-bp, 456-bp,
and 699-bp PCR products were obtained in these cells and confirmed as activin receptor IA, IB, IIA, and IIB using Southern blot hybridization,
respectively. The PCR products amplified were subcloned and sequenced and found to be 100% identical to published sequences of activin
receptors (data not shown). The PCR products of GnRH and GnRH receptor were observed on an ethidium bromide-stained gel (B and C, top
panels, respectively). No PCR products were observed or detected in negative controls (without template [Tm(2)] and without reverse
transcriptase [RT(2)] in the reaction) by ethidium bromide staining and Southern blot analysis. Sequence analysis revealed that GnRH and
GnRH receptor mRNAs from human OSE, PC-OVC, and OVCAR-3 cell lines had a nucleotide sequence identical to those found in the
hypothalamus and pituitary, respectively (data not shown). [Adapted with permission from S. K. Kang et al.: Endocrinology 141:72–80, 2000
(150). © The Endocrine Society.]
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lomerase activity without altering the RNA component of
telomerase expression (234).

b. Gonadotropins. The involvement of gonadotropins in ovar-
ian epithelial cancer development is supported by several ob-
servations. A number of epidemiological studies have demon-
strated an increased occurrence of ovarian cancer with exposure
to high levels of gonadotropins during menopause or infertility
therapy (235–237). Clinically, administration of human meno-
pausal gonadotropin (hMG) for ovulation induction may in-
crease the risk of epithelial ovarian tumors (237). Reduced risk
of ovarian cancer is associated with multiple pregnancy, breast
feeding, and oral contraceptive use, which results in lower level
and reduced exposure to gonadotropins (235, 236, 238, 239).
Receptors for FSH and LH/CG were demonstrated to be
present in normal OSE and ovarian tumors (152, 240–242). As
in normal OSE cells, FSH and LH/CG stimulated the growth
of some ovarian cancer cells in a dose- and time-dependent
manner in vitro (243, 244). Elevated levels of gonadotropins may
promote the growth of human ovarian carcinoma by induction
of tumor angiogenesis in vivo (245). Despite these observations,
the roles that elevated levels and prolonged exposure to go-
nadotropins play in ovarian tumorigenesis remain to be eluci-
dated. For instance, in other reports, increased risk of ovarian
cancer development has not been demonstrated in women un-
dergoing ovulation induction for in vitro fertilization (246, 247).
The mechanism by which gonadotropins increase ovarian can-
cer cell growth is unclear. It has been shown that hCG induced
estradiol production in a dose-dependent manner, whereas
FSH had no such effect in primary cultures of epithelial ovarian
cancer cells (248). The combined treatment of hCG with estra-
diol may regulate the growth response of epithelial ovarian
cancer cells through IGF-I and EGF pathway (249). hCG treat-
ment has been demonstrated to suppress cisplatin-induced
apoptosis by 58% in the ovarian carcinoma cell line, OVCAR-3
(250), suggesting that gonadotropins may play a role in pre-
venting apoptosis. Taken together, gonadotropins may be a
contributing factor in ovarian tumorigenesis, presumably by
enhancing cell proliferation and/or inhibiting apoptosis.

c. Activin/inhibin. Activin and inhibin are members of the
TGFb superfamily (251–253). Activin is a dimeric protein
composed of two b-subunits, bA-bA (activin A), bB-bB (ac-
tivin B), or bA-bB (activin AB) (252). Inhibin is composed of
an a- and one of two b-subunits, a-bA (inhibin A) or a-bB
(inhibin B). The main function of these gonadal peptides is
to regulate FSH secretion from the anterior pituitary gland
(254, 255). However, since activin and inhibin are produced
in the ovary (256), it has been hypothesized that they may act
via an autocrine/paracrine mechanism to regulate ovarian
function (256, 257). Activin mediates its cellular effects
through heterodimeric complexes of type I and II activin
serine/threonine kinase receptors (258), which are expressed
in normal and neoplastic OSE cells (Fig. 9).

It has been demonstrated that recombinant activin has no
mitogenic effect on normal OSE that also expresses activin
receptors (187, 258a). Interestingly, activin may function to
support cell survival and stimulate the proliferation of epi-
thelial ovarian carcinoma cell lines, including OVCAR-3,
CaOV-3, CaOV-4, and SW-626 (259, 260), whereas follistatin,

an activin-binding protein, inhibits this action (187, 260).
Most primary epithelial ovarian tumors (96%) synthesize
and secrete activin in vitro, and serum levels of activin are
frequently elevated in women with epithelial ovarian cancer
(187). These findings suggested that, in epithelial ovarian
cancer 1) bA-subunit mRNA is expressed; 2) activin is se-
creted more frequently than inhibin; and 3) bA-subunit
mRNA expression is greater in neoplastic and normal epi-
thelium after culture. Thus, activin may act as an autocrine/
paracrine regulator of epithelial ovarian tumors, but its exact
role in tumorigenesis has yet to be defined (187). Inhibin
a-subunit, which was expressed in 47% cases of normal OSE,
was not found in the epithelial component of ovarian cys-
tadenomas, tumors of low malignant potential (LMP), or
carcinomas. bA-subunit was expressed in 93% cases of OSE,
in the epithelial component of all cystadenomas, in 81% cases
of LMP tumors, and in 72% cases of carcinomas. These ob-
servations suggest that an imbalanced expression of inhibin
and activin subunits in OSE may represent an early event that
leads to epithelial proliferation (261).

Serum inhibin levels are elevated in most postmenopausal
women with mucinous cystadenocarcinomas and mucinous
borderline cystic types of epithelial ovarian tumors (262,
263), whereas immunoreactive inhibin is undetectable or
present at low levels in normal postmenopausal subjects.
a-Inhibin has been proposed to be a serum marker for epi-
thelial ovarian cancer in postmenopausal women (264).
Ovarian neoplasms may produce a variety of peptides re-
lated to the inhibin. It has been shown that inhibin B is
detected in more ovarian cancers than inhibin A (265). The
majority of granulosa cell tumors appear to secrete signifi-
cant amounts of dimeric inhibin-A, whereas mucinous tu-
mors secrete predominantly other forms of inhibin, presum-
ably related to the a-subunit (266, 267). Serous tumors may
also secrete inhibin-related peptides but not dimeric in-
hibin-A (266). The expression of inhibin subunit genes in
granulosa cell tumors and in mucinous or serous epithelial
ovarian tumors revealed that these tumors are the source of
the increased immunoreactive inhibin observed in the serum
of patients with ovarian tumors (268). On the contrary, it has
also been reported that ovarian carcinomatous epithelial cells
do not secrete inhibin and that serum inhibin levels detected
in patients with epithelial ovarian carcinoma may reflect an
ovarian stromal response to the ovarian carcinoma (269).
Thus, the role of inhibin in ovarian cancer remains to be
elucidated.

2. Sex steroids. Both epidemiological and experimental ob-
servations have implicated sex steroids in the pathogenesis
and growth regulation of carcinomas arising from the ovary
(270–274). A number of studies have suggested that the risk
of developing ovarian cancer increases with the usage and
duration of hormone replacement therapy (275, 276). Estro-
gens taken as oral contraceptives during premenopausal
years are protective but, when used in postmenopausal years
as hormone replacement therapy, may increase the risk of
ovarian cancer (235, 239, 275–277). Breast feeding, which
appears to offer protection in a number of studies (278), is
associated with reduced serum concentrations of estradiol. In
addition to estrogens, other ovarian steroids such as andro-
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stenedione, testosterone, and progestins have also been im-
plicated as risk factors for ovarian cancer (235, 239, 277). In
patients with ovarian cancer, elevated plasma levels of 17b-
estradiol, estrone, progesterone, 20a-hydroxyprogesterone,
dehydroepiandrosterone sulfate, androstenedione, and tes-
tosterone have been observed and shown to correlate with
tumor volume (279–283). Elevated levels of sex steroid hor-
mones are thought to be produced by ovarian tumor cells.
This notion is supported by the increased levels of sex ste-
roids in the ovarian vein draining the tumor-bearing ovary,
as compared with the contralateral ovarian vein and the
peripheral blood (284–286). Exogenous estrogen stimulated
the growth of several ER-positive ovarian carcinoma cell
lines in vitro (272–274).

The classical estrogen receptor (ER), now referred to as
ERa, and the progesterone receptor (PR) were found in less
than 50% of ovarian tumors, whereas androgen receptor
(AR) was detected in the majority of cases reported (.80%)
(235, 239, 277). In malignant epithelial ovarian tumors, the
concentration of ER is generally higher, while the concen-
tration of PR is generally lower in malignant lesions as com-
pared with that of benign tumors or normal ovaries (287–
292). Also, the presence of a second isoform of estrogen
receptor (ERb) has been reported in normal and malignant
ovarian cells in primary cultures or ovarian cancer cell lines
(155, 156). Nevertheless, the relationship between receptor
content and prognostic factors such as histology, stage, and
grade is unclear. Several authors found no correlation be-
tween ER content and histological type or grade of differ-
entiation (293–297). Others reported that endometrioid tu-
mors more frequently express PR, while serous tumors were
more frequently found to be to ER positive (296–298). Some
investigators observed that ER positivity was correlated with
poor differentiation (298, 299), whereas others found that
well differentiated tumors more frequently express ER (300,
301) or both ER and PR (302, 303). PR status was found to be
of significant prognostic value in advanced epithelial ovarian
cancer (304). However, in other studies, no clinical signifi-
cance of ER and PR status in epithelial ovarian carcinomas
was reported when correlated with age, parity, race, smok-
ing, surgical stage, histological type, histological grade, pro-
gression-free interval, or patient survival (305). Also, no cor-
relation between the presence of AR and tumor histology
was found (306, 307). The apparent discrepancy of these
observations may be explained by differences in the assay
methods, the criteria for positivity for steroid receptors,
and/or heterogeneity of tumor cell populations with respect
to steroid receptor contents (307). The ERa mRNA mutation
with a 32-bp deletion in exon 1 was found in the SKOV-3 cell
line, which is insensitive to E2 with respect to cell prolifer-
ation and induction of gene expression (155). This may pro-
vide an explanation for the lack of responsiveness and re-
sistance to E2 in some ovarian cancers.

Endocrine therapy for the management of ovarian cancer
is only applied after failure of first and second line chemo-
therapy or in the case of recurrent disease. In a study on the
use of progestins in patients with advanced ovarian cancer,
objective response was reported in about 15% of the patients,
with an additional 10% of patients showing stabilization of
the disease (308). Progestins have also been used in combi-

nation with estrogen, antiestrogens, and chemotherapeutic
drugs (309, 310). Freedman et al. (309) studied the effect of
combination treatment with medroxyprogesterone acetate
(MPA) and ethinylestradiol in 65 patients with refractory
epithelial ovarian carcinoma and reported that 14% and 20%
of patients responded and had stabilized disease, respec-
tively. However, no objective responses were observed in a
phase I study of cyclic therapy with MPA and tamoxifen
(310). The synthetic antiestrogen tamoxifen has been used as
a single agent therapy in the treatment of ovarian cancer with
considerable variation in the reported response rates (311–
313). In a prospective randomized study of 100 ovarian can-
cer patients in advanced stages, no beneficial effect of com-
bined treatment with tamoxifen and cytotoxic chemicals,
cisplatin and adriamycin, was reported (314). A dose-depen-
dent inhibitory effect of antiandrogens and epostane was
observed in ovarian cancer cell lines with AR, suggesting that
blockage of androgen action or synthesis may have thera-
peutic value in ovarian cancer (315).

The exact mechanism of action of steroid hormones in
ovarian cancer remains unclear. Induction of c-myc onco-
protein has been shown to mediate the mitogenic response
to growth stimuli (272). Depending on the levels of ER,
up-regulation of c-myc protein by estrogen has been shown
to mediate estrogen-induced ovarian cancer cell growth.
It has been demonstrated that estrogen interacts with other
growth factors in the normal ovary and ovarian cancer cells. In
the ovarian cancer cell line, PE01, the estrogen-mediated
growth-stimulatory effects were reversed by an EGF receptor-
targeted antibody (316). In addition, estrogen induced a
significant increase in TGFa protein concentration in media and
regulated EGF receptor expression in those cells. These results
suggest that estrogen may act through increasing production of
TGFa and regulation of the EGF receptor. Estrogen produced
a concentration-related potentiation in the growth response to
IGF-I and EGF under conditions in which the growth responses
to EGF and IGF-I were submaximal (249). Estrogen has been
shown to exert its enhancement of EGF- and IGF-I-mediated
growth through increased binding affinity for EGF receptor and
IGF-I receptor number (249). In other studies, estrogen caused
a marked decrease in insulin-like growth factor binding pro-
tein-3 (IGFBP-3) mRNA, but increased IGFBP-5 mRNA levels,
suggesting that IGFBP expression can be regulated in estrogen-
responsive ovarian cancer by E2 (317).

As discussed above, germline mutations in the BRCA1
gene are associated with increased cancer risk in breast,
ovary, and prostate, but not in other tissues. The obvious
implication, that BRCA1 mutations therefore affect neoplas-
tic transformation in conjunction with hormonal factors, is
supported by recent reports that showed that estrogen and
PRL stimulate proliferation of ovarian and breast carcinoma
cells and concurrently up-regulate BRCA1 mRNA and pro-
tein (92, 94). Subsequently, Fan et al. (93) demonstrated that,
in breast and prostate cancer cells, BRCA1 inhibits signaling
by ligand-activated ER-a and blocks its transcriptional acti-
vation function. Together, these data suggest that BRCA1
functions as a negative feedback inhibitor of growth induced
by estrogen and PRL. It is important to note that some ovar-
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ian carcinoma cells proliferate in response to estrogen (156a,
318) while normal OSE cells do not (104, 156a).

3. Growth factors. Trends in the expression and response to
growth regulators include the secretion of, and responses to,
factors also found in the normal OSE (56) as well as factors
that may be typical for ovarian malignancies (319, 320). The
former includes growth inhibition by TGFb (74) and growth
stimulation by bFGF (321), EGF, and TGFa (176).

a. TGFb. TGFb is a multifunctional peptide that is involved
in cell growth regulation, tissue remodeling, immune sup-
pression, and other crucial cellular functions through both
autocrine and paracrine mechanisms (322). Three mamma-
lian TGFb isoforms (TGFb1, TGFb2, and TGFb3) that are
encoded by different genes have been identified (323). The
peptides share extensive homology in amino acid sequence
(70–80%) and exist as homodimeric chains of between 111
and 113 amino acids, with molecular masses of 25 kDa. Three
types of receptors for TGFb (TbRI, TbRII, TbRIII) that belong
to the family of serine/threonine kinase membrane receptors
have been identified (324, 325). TGFb binds to a type II TGFb

receptor (TbRII), which recruits and phosphorylates a type
I TGFb receptor (TbRI) (326–328). TbRIII, also known as
betaglycan, has no known signaling motif (327, 328) and
appears to bind and present TGFb to TbRII (329–331). The
expression of TGFb has been demonstrated in ovarian tu-
mors, suggesting an autocrine and/or paracrine role of TGFb

(332–334). TGFb inhibited the proliferation of monolayers of
normal human ovarian epithelial cells by 40–70% (74) and by
95% in primary epithelial ovarian cancer cell cultures ob-
tained directly from ascites (335). Daniel et al. (336) reported
that TGFb inhibited colony formation of seven of nine fresh
ovarian cancers in soft agar. In contrast, epithelial ovarian
cancer cell lines are found to be relatively resistant to the
growth inhibition of exogenous TGFb treatment (74, 337).
These data suggest that TGFb may act as a growth inhibitor
that prevents inappropriate proliferation of normal OSE
cells, while loss of this autocrine inhibitory pathway may
lead to cancer development in vivo and/or immortalization
of cells in vitro. Several possible mechanisms have been pro-
posed to explain the loss of responsiveness to TGFb in pri-
mary culture of ovarian carcinomas and/or ovarian cancer
lines. Some cells may become resistant to the effects of en-
dogenous TGFb because they cannot produce and/or acti-
vate secreted latent TGFb. In this regard, it has been shown
that normal ovarian epithelial cells can produce and activate
TGFb1 and -2, whereas production or activation does not
occur in several ovarian cancer cell lines (74). As in other
cells, defective ligand binding to the cell surface caused by
absence of TbRII or expression of truncated form or splice
variant of TbRII may account for the resistance to activated
TGFb in ovarian cancer cells (328, 338–341). It is also possible
that alterations in signal transduction pathways may account
for the development of resistance to TGFb during the trans-
formation process. In this regard, the binding of TGFb to its
cell surface receptors has shown to down-regulate c-myc, a
DNA-binding protein whose expression is induced by
growth factors that stimulate proliferation (342). The loss of
TGFb responsiveness has been associated with the inability
of TGFb to down-regulate c-myc in some, but not all, cases

of ovarian tumors (343). It has been suggested that inacti-
vation of the p53 or Rb tumor suppressing gene products due
to deletion, mutation, or binding of viral oncoproteins may
be responsible for the loss of TGFb responsiveness (344).
However, in most ovarian cancers, it is thought that mutation
and overexpression of p53 frequently occur, but this may not
lead to the development of resistance to TGFb (335, 345, 346).

The molecular mechanisms that mediate the growth-
inhibitory effect of TGFb are poorly understood (325). Bind-
ing of TGFb to its receptors initiates a cascade of molecular
events that are thought to decrease activity of cyclin-depen-
dent kinase (CIP1/WAF1/p21), resulting in arrest of cell
cycle from G1 into S phase of DNA synthesis in normal and
neoplastic ovarian cells (325). In addition to the cell cycle
inhibition, it has been shown that TGFb can induce apoptosis
in both normal and malignant cells under certain circum-
stances (184, 347). It is reported that malignant ovarian cells
are more susceptible to apoptosis in response to TGFb than
their normal nontransformed counterparts (184).

b. EGF and TGFa. The EGF receptor (also known as
c-erbB1/HER1) is a membrane tyrosine kinase that forms
homodimers after binding to either EGF or TGFa (348). Ho-
modimerization activates tyrosine kinase activity and auto-
phosphorylates several tyrosine moieties in the cytoplasmic
domain of the receptor, thereby transmitting the growth-
stimulatory signal to the nucleus (348). The presence of EGF
receptor has been shown in 33–75% of ovarian tumors using
ligand binding, immunohistochemistry, or Northern blot
analysis (162, 176, 177, 349–353). The level of EGF receptor
has been demonstrated to be higher in malignant ovarian
tumors than in benign tumors or the normal ovary (354, 355),
implicating its prognostic importance. The contribution of a
TGFa/EGF receptor autocrine loop to the growth of epithe-
lial ovarian cancer cells is corroborated by several studies.
TGFa levels in the normal ovary increase after menopause,
i.e., at the peak incidence of ovarian neoplasms (177, 356).
Exogenous treatment with TGFa promotes the growth of
several ovarian cancer cell lines in vitro and enhances direct
clonogenic growth of ovarian tumor cells (357–359). Coex-
pression of EGF receptor with TGFa, but not EGF, in primary
ovarian tumors was reported (352). Neutralizing antibodies
against either TGFa or the EGF receptor induced growth
inhibition in primary ovarian cancer cell cultures (169, 352).

The amplification and/or overexpression of the c-erbB-2
(HER2/neu) oncogene product (p185c-erbB-2), frequently ob-
served in different types of tumors, was seen in 30–70% of
human ovarian cancers (360, 361), but in only 5–10% of nor-
mal ovarian cells (362). At the mRNA level, c-erbB-2 has
extensive homology with EGF receptor, c-erbB-3, and
c-erbB-4 (363–365). Immunohistochemically, increased ex-
pression of c-erbB-3 and c-erbB-4 proteins has been demon-
strated in malignant ovarian tumors as compared with be-
nign ones (366). In spite of marked sequence homology
between the EGF receptor and HER2, EGF and TGFa do not
bind to HER2 (348). It has been demonstrated that HER2 can
be transactivated by EGF through heterodimerization with
EGF receptors (348, 367) or by heregulin through het-
erodimerization with HER-3 or HER-4 receptors (368–370).
In addition to cell proliferation, activation of EGFR and
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p185c-erbB-2 has been shown to play an important role in cell
motility (371), which is mediated in vitro by several polypep-
tide growth factors, including HGF and EGF (372, 373). In
this regard, overproduction of proteinases of the plasmino-
gen activator (PA) and matrix metalloproteinase (MMP) fam-
ilies have previously been reported in ovarian cancer cells
and tissues (374). In vitro, EGF-dependent stimulation of
migration, and induction of MMP-9 (gelatinase B) were ob-
served in two ovarian cancer cell lines (OVEA6 and
OVCA429) (375). These findings suggest that the EGF- or the
p185c-erbB-2-dependent enhancement of cell motility may con-
tribute to peritoneal spread and invasion of tumor cells,
resulting in tumor metastasis.

Clinical studies indicate that overexpression of the
c-erbB-2 (HER2/neu) gene correlates with poor prognosis
(376, 377). No correlation between the presence of EGF re-
ceptor mRNA and pathological subtype was reported in the
majority of studies, even though some authors observed
higher expression of EGF receptor mRNA in the serous form
of ovarian tumor (352, 378). The presence of EGF receptor
mRNA was correlated with an advanced stage of ovarian
tumors in some studies. Serum level of TGFa can be used as
a tumor marker to distinguish malignant ovarian tumors
from benign ones (379). The observations of overexpression
of the EGF receptor and c-erbB-2 (HER2/neu) in ovarian
tumors have stimulated preclinical investigations targeting
growth inhibition of HER2-expressing ovarian tumor cells as
novel cancer therapies (380–382). Treatment of an ovarian
cancer cell line with a human-mouse chimeric anti-EGF re-
ceptor monoclonal antibody (mAb) or an anti-HER2 mAb
resulted in growth inhibition (383). Concurrent treatment
with two mAbs resulted in augmentation of inhibition.
TGFa-stimulated growth of ovarian cancer cell lines was
completely inhibited by treatment with an EGF receptor-
specific tyrosine kinase inhibitor, ZM252868, suggesting that
blocking of receptor activation may have therapeutic value
(384). Antisense molecules that are designed to specifically
block encoded genetic information from sense DNA have
been developed for targeting the c-erbB-2 oncogene. Wiec-
hen and Dietel (385) and Wu et al. (386) have shown
the ability of c-erbB-2 antisense oligonucleotide to reduce
p185c-erbB-2 levels and thereby inhibit growth of an ovarian
cancer cell line. Single-chain immunoglobulin (scFv) mole-
cules that retain antigen-binding specificity but lack other
functional domains have been designed to modulate the
expression levels of oncogenes and the intracellular mobili-
zation and function of oncoproteins. A gene encoding
an anti-erbB-2-scFV with a signal peptide sequence that
directs its localization to endoplasmic reticulum has been
constructed and transfected into the ovarian cancer cell line,
SKOV3, which overexpresses erb-B2 (387). Introduction of
anti-erbB-2-scFV resulted in down-regulation of cell surface
erbB-2 gene expression and marked inhibition of cellular
proliferation (387). In addition, scFV-mediated erbB-2
ablation caused phenotypic alteration in tumors cells,
including increased sensitivity of cells to chemotherapy and
radiotherapy.

c. HGF. The HGF/Met system is considered to be a prin-
cipal paracrine mediator of normal mesenchymal-epithelial

interaction (388) and is also involved in the growth and
spread of tumors (144). The Met/HGF receptor was over-
expressed in a significant proportion of well differentiated
ovarian carcinomas (145–147). Although little is known
about the regulation of HGF and Met expression in ovarian
tumors, the level of Met may be regulated by gonadotropin,
steroids, certain cytokines and growth factors in vivo, and in
various cell lines (145, 155, 389). HGF itself has been shown
to autoregulate c-met mRNA levels (145, 390). High levels of
HGF are found in cystic fluids or ascites of ovarian cancer
patients compared with the peritoneal fluid of normal
women (391). Recombinant HGF increased migration and
proliferation of ovarian cancer cell lines that express high
levels of Met protein (392, 393). Thus, high levels of Met
expression in ovarian cancer cells may facilitate HGF-medi-
ated tumor growth and dissemination (392).

d. IGFs. IGF affects the growth and differentiation in nor-
mal and neoplastic cells (394–396). IGF-RI mRNA was de-
tected in ovarian cancer cell lines and primary or metastatic
ovarian cancer tissues, suggesting a role of the IGF system in
neoplastic ovarian cells (397–399). Expression of IGF-I, its
receptor, and IGFBPs in epithelial ovarian cancer cells and its
mitogenic effect on these cells in vitro implicate a role for
IGF-I in the regulation of human ovarian cancer (397, 400,
401). IGF-II is also expressed in both normal ovary and ovar-
ian cancer, and the expression level of IGF-II is elevated in
ovarian cancer (402). The treatment of OVCAR-3 cells with
hCG suppressed cisplatin-induced apoptosis via up-regula-
tion of IGF-I expression, suggesting that LH/hCG may in-
fluence the chemosensitivity of ovarian cancer cells (250). In
addition, the overexpression of IGF receptor-I transformed
ovarian mesothelial cells to become resistant to apoptosis
caused by down-regulation of Fas expression (403). These
results support the notion that the IGF system plays a role in
tumor growth and apoptosis of ovarian cancer.

IGFBPs appear to bind to IGFs and deliver them to target
organs. A limited number of studies (404–406) have impli-
cated the involvement of IGFBPs in ovarian cancer. IGFBP-2,
a major binding protein in benign and malignant ovarian
cancers, is highly expressed in malignant as compared with
benign neoplasms (404, 405), suggesting that IGFBP-2 may
serve as a marker for ovarian cancer. Further, IGFBP-2 cor-
related positively with the serum tumor marker, CA 125. By
contrast, the serum IGFBP-3 level was decreased in patients
with ovarian cancer as shown by RIA and Western ligand
blotting (405). Treatment with estradiol induced a marked
decrease in IGFBP-3, but IGFBP-5 levels were enhanced by
estradiol, indicating that IGFBP expression is differentially
regulated by estradiol in estrogen-responsive ovarian cancer
(406).

Considering that IGFs induce cell growth and mitogenesis
mediated with IGF receptors in ovarian cancer, antisense or
antibody therapy against IGFs and/or IGF receptors can be
considered as a potential management strategy of ovarian
cancer patients. Treatment of cells with antisense IGF-I re-
ceptor oligonucleotides markedly inhibited cell proliferation
(407, 408). Further, the effects of antisense oligonucleotide to
IGF-II to induce apoptosis in human ovarian cancer cells
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were evaluated, suggesting that IGF-II may also be a poten-
tial target in the therapeutic approach of ovarian cancer (409).

e. Vascular endothelial growth factor. Angiogenesis is a crit-
ical phenomenon in the growth, progression, and metastasis
of solid tumors. Vascular permeability factor/vascular en-
dothelial growth factor (VPF/VEGF) is a 34- to 50-kDa
dimeric, disulfide-linked glycoprotein synthesized by nor-
mal and neoplastic cells (410–413). Through binding to the
specific membrane tyrosine kinase receptors that are ex-
pressed in vascular endothelial cells (414), VEGF has been
shown to be an important regulator of tumor angiogenesis.
Abundant levels of VPF have been identified in the malig-
nant effusions of ovarian tumors (415–417), indicating that
VPF may be an important mediator of ascites formation and
tumor metastasis observed in the neoplastic ovary. The ex-
pression of VEGF mRNA and protein (416–418) has been
demonstrated in ovarian carcinoma, suggesting that
neoplastic OSE is one source of VEGF production. In vitro, the
conditioned medium from VEGF-positive ovarian cancer
cell lines has been shown to stimulate DNA synthesis of
vascular endothelium (416). In vivo, treatment of mice car-
rying tumor engraftment with a function-blocking VEGF
antibody (A4.6.1) specific for human VEGF significantly in-
hibited subcutaneous SKOV-3 tumor growth as compared
with controls (419). In mice bearing intraperitoneal tumors,
ascites production and intraperitoneal carcinomatosis were
completely inhibited by treatment with a VEGF antibody
(419). These results suggest that neutralization of VEGF ac-
tivity may have clinical application in inhibiting malignant
ascites formation in ovarian cancer. Angiogenesis has been
correlated with prognosis in patients with ovarian cancer.
Higher positive immunostaining for VEGF and serum VEGF
levels was observed in ovarian carcinoma compared with
that in LMP tumors and benign cystadenoma (420). High
VEGF expression in epithelial ovarian carcinomas was found
to be associated with poor overall survival (421). Serum
VEGF levels decreased after surgical removal of tumor in
ovarian cancer patients, suggesting that serum VEGF could
be used as a marker for monitoring tumor progression and
ascites formation (422–425).

f. Other growth factors and cytokines. PDGF is a dimeric
protein composed of two related A- and B-chain polypep-
tides encoded by separate genes. Two distinct receptors for
PDGF have been found according to affinity (PDGF-Ra and
PDGF-Rb). A functional role of PDGF via autocrine growth
stimulation has been suggested. Expression of PDGF and
PDGF-Ra in ovarian tumor cells is related to progression of
malignant ovarian tumors, suggesting an independent role
for PDGF-Ra as a prognostic factor (426). However, there
was a contradictory report that many ovarian carcinomas
lose the PDGF receptors, while PDGF stimulates growth of
normal OSE in culture and the cells have both a- and b-
receptors (180). The loss of PDGF-Ra and PDGF-Rb may be
indicative of independence from hormonal influences to cell
growth. Platelet-derived endothelial cell growth factor (PD-
ECGF) is associated with angiogenesis and the progression
of human ovarian cancer. The levels of PD-ECGF and its
mRNA were higher in ovarian cancers than in normal ova-

ries, suggesting that PD-ECGF might be related to advanced
stages of ovarian cancers associated with neovascularization
(427). Thus, prevention of angiogenic activity of PD-ECGF
may have a potential role in ovarian tumor therapeutics
(428).

bFGF and other members of the FGF family share several
biological properties that have the potential to mediate neo-
plastic cell growth. It has been shown that ovarian cancer cell
lines produce and respond to bFGF and other members of the
FGF family (429). The bFGF and its receptor are also ex-
pressed in epithelial ovarian tumors (430). In advanced pri-
mary ovarian tumors, the levels of bFGF mRNA and protein
were significantly higher regardless of histological types
(431), indicating that this growth factor may contribute to
growth, invasion, and metastasis with neovascularization. It
is hypothesized that bFGF may induce a fibroblastic re-
sponse, which causes tumors with a high bFGF to be less
aggressive than those with less stromal tissues (432).

While the secretion of cytokines is a normal OSE function
(55), their recruitment into autocrine loops may be important
during neoplastic progression. Cytokines produced by and
growth stimulatory for ovarian carcinomas include M-CSF
(433), GM-CSF (434), IL-1 and IL-6 (435, 436), and TNFa (57,
58, 181, 437, 438). High levels of M-CSF and IL-6 in blood and
ascitic fluid correlate with a poor prognosis in ovarian cancer,
as does overexpression of the M-CSF receptor fms (433),
which has also been associated with increased invasiveness
in endometrial and breast cancer (439, 440). Interestingly, fms
is expressed by many ovarian cancers but not by benign
ovarian tumors (433) or normal OSE (56). Thus, M-CSF, when
secreted by normal OSE, acts in a paracrine manner but
becomes an autocrine-regulatory factor with malignant pro-
gression. GM-CSF is a regulatory glycoprotein that stimu-
lates the production of granulocytes and macrophages. Re-
combinant human GM-CSF stimulates colony formation in
human ovarian cancer cell lines, IGROV-1, A2774, ME-180,
Pa-1, and A2780 (434).

IL-1 and IL-6 enhance tumor cell motility and metastasis
(435) and cause changes in gene expression including the
induction of TNFa, which is mitogenic for OSE cells but
growth inhibitory for ovarian cancer cells (181). Proliferation
of OSE cells was stimulated by IL-1 and TNFa (181). Stim-
ulation of proliferation by IL-1b could be partially blocked by
an antibody against TNFa or by a soluble TNFa receptor (58).
Thus, TNFa may function as an autocrine/paracrine growth
factor in normal and malignant ovarian epithelial cells. Ep-
ithelial ovarian cancer cells produce IL-6, a multifunctional
cytokine with diverse biological effects, in both ovarian can-
cer cell lines and primary ovarian tumor cultures (441). IL-6
may be a useful tumor marker in some patients with epi-
thelial ovarian cancer, as it correlates with the tumor burden,
clinical disease status, and survival (442). Inhibition of IL-6
gene expression by exposure to IL-6 antisense oligonucleo-
tides resulted in greatly decreased cellular proliferation
(443). However, the addition of exogenous IL-6 failed to
restore the proliferation of the antisense-treated cells, and
antibodies to IL-6 did not consistently inhibit cell growth
(441), suggesting that IL-6 is not an autocrine growth factor
for these established ovarian tumor cell lines. As the majority
of epithelial ovarian cancers produce IL-6, the direct specific
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inhibition of IL-6 gene expression may be of potential ther-
apeutic value (443). Many of these agents are produced nor-
mally by various ovarian cell types and by cells of the im-
mune system that reside in the ovary. Factors from these
sources may contribute to the metaplastic and neoplastic
changes in the OSE.

Interferon-g (IFNg) is known to modulate many cellular
functions. A clinical relevance of IFNg has been suggested be-
cause IFNg has an antiproliferative activity on the majority of
the established human ovarian carcinoma cell lines (444). It has
been shown that IFNg decreases constitutive tyrosine phos-
phorylation of erbB-2 and inhibits erbB-2 kinase activity in an
ovarian cancer cell line, SKOV3 cells, which overexpress erbB-2
(445). The elevated expression of tumor-associated antigens and
major histocompatibility complex (MHC) antigens by IFNg

may improve immunogenicity of ovarian tumor cells and ex-
plain the therapeutic effects observed in IFN therapy of ovarian
cancer (444).

A potent growth-stimulatory factor from ascites of ovarian
cancer patients has been purified and characterized as ovar-
ian cancer-activating factor (OCAF), which plays a role in
ovarian tumorigenesis both in vitro and in vivo (446, 447). In
addition, this purified OCAF induced a proliferation of ovar-
ian cancer cells. OCAF is composed of various species of
lysophosphatidic acid (LPA), including LPAs with polyun-
saturated fatty acyl chains (linoleic, arachidonic, and doco-
sahexaenoic acids) (446). LPA is a bioactive phospholipid
with mitogenic and growth factor-like activities that acts via
specific cell-surface receptors present in many normal and
transformed cell types. LPA has been implicated as a growth
factor present in ascites of ovarian cancer patients (448).

As reviewed above, multiple factors including peptide
hormones, sex steroids, growth factors, and cytokines have
been implicated as stimulatory or inhibitory growth regu-
lators in ovarian cancer. These regulators appear to exert
their actions through specific receptors in an endocrine, para-
crine, or autocrine manner. A better understanding of the
potential cross-talk between these regulator pathways in nor-
mal and neoplastic OSE cells will be a necessary first step in
understanding ovarian tumorigenesis.

VII. Concluding Remarks

The observations summarized in this review (Fig. 10)
demonstrate that, contrary to its unassuming appearance
and limited functional significance, OSE in adult women
has the capacity to participate in ovulation-related func-
tions in a variety of ways that are regulated by a complex
set of hormone/growth factor responses. OSE can lyse and
synthesize ECM and it can contract connective tissues.
These properties allow the OSE to contribute to ovulation-
related changes in the tunica albuginea and the ovarian
cortex and to the major alterations in ovarian contours that
occur with pregnancies and aging. It is tempting to spec-
ulate that the posttranscriptional regulation and shape-
dependent expression of E-cadherin by OSE are adapta-
tions that permit rapid modifications in intercellular
adhesion in response to changes in ovarian contours. The
physiological significance of the secretion by OSE of sev-
eral growth factors and cytokines is presently unknown,
as are the roles of most of the steroids and peptide hor-
mones for which OSE has receptors. In addition to ovary-
related functions, it is likely that OSE, in common with the
extraovarian pelvic peritoneum, maintains the homeosta-
sis of the pelvic cavity. However, in contrast to extrao-
varian mesothelium, OSE has retained properties of rel-
atively uncommitted pleuripotential cells as reflected by
its growth potential, its capacity to modulate phenotypi-
cally in response to environmental variables, and its ability
to differentiate along several pathways. This immature
state may be responsible, in part, for the propensity of OSE
to undergo neoplastic transformation, a process during
which the cells acquire characteristics of Mullerian epi-
thelial phenotypes. Changes in overtly normal OSE from
women with histories of hereditary ovarian cancer indi-
cate that an increased commitment to epithelial pheno-
types and/or reduced responsiveness to environmental
signals may be among the earliest changes in the process
of ovarian carcinogenesis. Normal OSE and ovarian car-
cinomas secrete and have specific receptors for hormones

FIG. 10. Origin and fate of the ovarian
surface epithelium.
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and growth factors, indicating the role of these factors in
normal OSE physiology and in the transformation and
progression of ovarian cancers. In particular, overexpres-
sion of several receptors such as HER2/neu and fms in
ovarian tumors emphasizes the importance of these factors
in neoplastic transformation of normal OSE and as prog-
nostic indicators. OSE-derived epithelial ovarian carcino-
mas encompass a diverse, biologically complex group of
malignant neoplasms with a dismal clinical prognosis. A
comparison of the properties of these neoplasms with
normal OSE is summarized in Table 2. It should be em-
phasized that this table represents a major simplification
and, in its selection of information, reflects the bias of the
authors. There is an urgent need for a better understanding
of regulatory mechanisms that control growth and differ-
entiation of their source, the OSE, for better means to
therapeutically exploit the hormone/growth factor re-
sponsiveness and dependence of ovarian carcinomas, and
for the identification of new, clinically useful detection
markers.
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