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Abstract

Trypanosoma cruzi, the causative agent of Chagas disease, presents wide genetic diver-

sity. Currently, six discrete typing units (DTUs), named TcI to TcVI, and a seventh one

called TcBat are used for strain typing. Beyond the debate concerning this classification,

this systematic review has attempted to provide an inventory by compiling the results of 137

articles that have used it. A total of 6,343 DTU identifications were analyzed according to

the geographical and host origins. Ninety-one percent of the data available is linked to

South America. This sample, although not free of potential bias, nevertheless provides

today’s picture of T. cruzi genetic diversity that is closest to reality. DTUs were genotyped

from 158 species, including 42 vector species. Remarkably, TcI predominated in the overall

sample (around 60%), in both sylvatic and domestic cycles. This DTU known to present a

high genetic diversity, is very widely distributed geographically, compatible with a long-term

evolution. The marsupial is thought to be its most ancestral host and the Gran Chaco region

the place of its putative origin. TcII was rarely sampled (9.6%), absent, or extremely rare in

North and Central America, and more frequently identified in domestic cycles than in syl-

vatic cycles. It has a low genetic diversity and has probably found refuge in some mammal

species. It is thought to originate in the south-Amazon area. TcIII and TcIV were also rarely

sampled. They showed substantial genetic diversity and are thought to be composed of

possible polyphyletic subgroups. Even if they are mostly associated with sylvatic transmis-

sion cycles, a total of 150 human infections with these DTUs have been reported. TcV and

TcVI are clearly associated with domestic transmission cycles. Less than 10% of these

DTUs were identified together in sylvatic hosts. They are thought to originate in the Gran

Chaco region, where they are predominant and where putative parents exist (TcII and

TcIII). Trends in host-DTU specificities exist, but generally it seems that the complexity of

the cycles and the participation of numerous vectors and mammal hosts in a shared area,

maintains DTU diversity.
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Author Summary

Trypanosoma cruzi, the causative agent of Chagas disease, has been classified into six

genetic groups (discrete typing units, DTUs) named TcI-TcVI and a seventh one called

TcBat. Currently, several genetic molecular markers are used to classify the strains after

their isolation in culture or directly from biological samples. The current inventory com-

piling the published works aiming to identify the DTUs of T. cruzi strains accumulated a

total of 6,343 identifications. Although this inventory is not free of sampling bias, like all

samples, it is the largest sampling to date and hence likely represents the closest picture of

the current diversity of T. cruzi strains (i) circulating throughout the endemic area from

the southern United States to Argentina and (ii) circulating in vectors as well as in wild

and domestic mammals, and humans. Data analysis helps identify trends and provides a

basis for further comparisons of new data, in a context where human factors (migration,

vector control, urbanization, deforestation, agricultural expansion, resource exploitation)

influence the epidemiological patterns of Chagas disease.

Introduction

Trypanosoma cruzi is a pathogenic microorganism, the causative agent of Chagas disease, char-

acterized by high genetic and phenotypic intraspecific diversity. Population genetics suggests

that clonality is an important mode of propagation of the natural populations of T. cruzi [1],

although, likely sexual reproduction [2, 3] and recombination events occur to some extent and

are important mechanisms that generate genetic diversity within the taxon, as discussed in a

recent review [4].

The consensual nomenclature recognizes six discrete typing units (DTUs) named TcI to

TcVI and a recently proposed seventh, Tcbat [5–7]. This classification is widely used as a refer-

ence in epidemiological studies. However, there is not consensus on the best method to identify

the different DTUs. Similarly, the evolutionary relationships between the DTUs and therefore

the evolutionary history of T. cruzi continue to be researched [8]. Several mechanisms of evolu-

tion have been recognized such as clonality, hybridization, and conventional and nonconven-

tional genetic exchanges. In addition, several studies have demonstrated the extraordinary

plasticity of the T. cruzi genome. The evolutive relationships among these DTUs has not been

fully elucidated, but two of them (TcV and TcVI) clearly have a hybrid origin with TcII and

TcIII as putative parents [9] according to the authors, TcIII and TcIV could also originate from

a hybrid between TcI and TcII [10, 11] but some claim that is not the case [12, 13]. TcI and

TcII remain two pure lines that are evolving separately from a common ancestor dating from

approximately 1–3 million years ago [11, 13].

The main properties of the different DTUs have been reported previously [3, 5, 14, 15].

Briefly, (i) TcI has a wide distribution, from the southern United States to northern Argentina

and Chile; this DTU is the most frequently sampled in sylvatic cycles, but it is also frequent in

domestic cycles and it is the dominant DTU responsible for the transmission of Chagas disease

in endemic countries located north of the Amazon basin; (ii) studies show that TcII, V and VI

are more likely to be associated with domestic cycles and patients with chronic Chagas disease

in the Southern Cone countries and Bolivia; (iii) TcIII and IV are mainly sampled in rainforest

sylvatic cycles; (iv) Tcbat previously identified in bats, has recently been found in humans [7,

16–18]. It is well known that various DTUs can coexist in the same vector and in a single host

[19–21].

The different DTUs present substantial genetic diversity. Various reports have shown that

the parasite’s genetic diversity has a profound impact on its epidemiological, biological and
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medical characteristics [22]. Consequently, it is indispensable to characterize the genotypes

that are circulating in space and in hosts. Moreover, the tracking of the different genotypes is

of great interest in eco-epidemiology, providing a better understanding of epidemiological

systems.

After the biogeographic overview of T. cruzi DTUs by Miles and his colleagues [23], no

other exhaustive review has been done, while very numerous new genotyping studies using

new genetic markers and additional parasite strains have been conducted. Although we are

conducting studies on the limits of DTUs classifications of T. cruzi strains and their actual exis-

tence as genetically separated units, it seemed important to take all existing data that refer to

the current classification and to examine the geographic properties and host specificities of the

different DTUs.

Methods

Data were obtained from a total of 137 articles (including our own published results) selected

after searching PubMed (http://www.ncbi.nlm.nih.gov/pubmed) with “DTU”, “genetic charac-

terization”, “lineage”, “genotype”, “isozyme”, “isoenzyme”, and “Trypanosoma cruzi” as key

words. This research, as exhaustive as possible, was updated to April 27, 2016. Research has

also been conducted by authors having worked on the genetic characterization of T. cruzi

strains. For our published data, additional data, not present in the publications, was included

in the current inventory because this information was available from our own records. For

example, the names and data concerning the strain origins analyzed in Barnabé et al. [24] were

added here. The publications included in the inventory used genetic markers that allowed

DTU typing according to the consensual nomenclature in 6–7 DTUs [5, 6]. Moreover, in some

cases correspondences between typing methods with different markers were used for the data

interpretation [6, 25]. The data are shown in an Excel spreadsheet (S1 Table) where each line

corresponds to a single determination from an isolate, a strain, a laboratory clone, mammal

blood or tissue samples, and different vector digestive tract samples (“sample type” column in

S1 Table). Several lines were recorded when different DTUs were detected in a strain and its

laboratory clones. When more than 1 DTU was detected in one vector or mammal host (mixed

infection), several lines corresponding to each DTU were recorded in the file. A total of 6,343

determinations were compiled. Each of them has a code corresponding to the strain/sample

name reported in the publications, except for the records not identified with a name but only

counted in publications, which we have labeled “anonymous”. In a few publications, undistin-

guished DTUs were reported for part of the identifications; consequently, additional categories

were created for them: TcI/TcII (three cases), TcII/TcV/TcVI (26 cases), TcII/TcVI (two

cases), TcIII/TcIV (31 cases), and TcV/VI (47 cases). These undistinguished DTUs accounted

for 1.7% of the total inventory. The geographical origin was informed by the country name (no

missing data), the upper continental subdivision of North, Central, and South America, the

upper administrative divisions such as state, province, department or region, and the lower

administrative divisions such as municipality, province, or community according to the infor-

mation existing in the publications. The collection dates of the strain or biological samples

were not always documented (52.5% of missing year data). Host origin was generally informed

by the species (31 missing data), and columns were added indicating the order, genus and tribe

for the triatomines. Also, the cycles to which the different hosts belonged were classified as

“domestic” when the hosts were living and/or were captured in the intra- and peridomicile

areas, and “sylvatic” when the hosts were captured in the field outside domestic areas. When

the location of the capture site was missing, the wild mammals where classified in the sylvatic

cycle except for the synanthropic species such as opossums and rodents for which the
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information was considered as unknown (uk). The information on the methods used for the

characterization of the DTUs is also included in S1 Table. The first column indicates if the

DTU was characterized at nuclear or mitochondrial level or both, the second one indicates the

method(s) used, and the third one on the markers, the names of the genes, or the number of

loci for MLMT (multilocus microsatellite typing) and MLEE (multilocus enzyme

electrophoresis).

Results

General overview of available data

The 6,343 samples of T. cruzi DTUs compiled in this review were identified in vectors and

mammalian hosts from 19 different countries, covering an area from the southern United

States to Argentina (S2 Table). No data is available from Belize in Central America, and Uru-

guay and Guyana in South America. The vast majority of data relate to South America (90.7%).

The DTUs were identified in 86 genera (32 missing cases), 158 different species of which 42 are

vectors belonging to 7 genera (Dipetalogaster, Eratyrus,Meccus,Mepraia, Panstrongylus, Rhod-

nius, and Triatoma). Approximately of the identifications in South America 49.3% were from

vector species; however, in North and Central America most of the identifications were from

vectors (69.3% and 65.8% respectively). The mammal species belong to nine orders of which

the most represented is the Primate order (61.5%), because 59.4% of the identifications in

mammals were made in samples from humans (n = 1902). One-third of the DTU identifica-

tions (31.0%) corresponded to parasites from hosts (vectors and mammals) captured in sylvatic

ecotopes, 57.6% from intra- and peridomestic hosts, and the others were undetermined

(n = 719, 11.3%) because in several studies the origin of the vectors was not specified.

Overall distribution of the DTUs (TcI-TcVI and Tcbat)

In 1.7% of the samples, the DTU (n = 109) was reported as a group of DTUs: (i) in one dog, 15

coati from Brazil, and ten triatomines from Argentina, TcII, TcV, and TcVI were not distin-

guished; (ii) TcII or TcVI was reported in two T. infestans from Paraguay; (iii) 47 infections

with TcV or TcVI in dogs, humans, T. infestans from Chile and Bolivia and P.megistus in Bra-

zil were reported; (iv) in 31 vectors and mammal hosts from Brazil and Mexico TcIII/TcIV

were not discriminated; and (v) in three cases TcI and TcII were not discriminated in T. pallidi-

pennis. In the 6234 other records, TcI was found in approximatively 60.0% of the overall identi-

fications; TcII, TcV and TcVI were identified in around 10% each; and TcIII, TcIV and Tcbat

were rarer with percentages � 3.6%. Fig 1 presents the proportions of DTUs observed, exclud-

ing from the calculation the ambiguous DTU determinations over the entire endemic area, and

in North, Central and South America (see below).

Geographical distribution of the DTUs

According to the current available records, the DTU distribution was different between North,

Central, and South America (Fig 1). In Central America only two DTUs (TcI and TcIV) were

identified while all DTUs were detected in South America. In North America the latest studies

have identified TcII, TcV and TcIII in addition to TcI and TcIV, which remain the major

strains, in Central America. In South America the DTU distribution was highly variable

depending on the country, and the current trend is a predominance of TcI north of the Ama-

zon and the presence of all DTUs south of the Amazon with abundance of TcV and TcVI

(Fig 2).
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Tcbat is a recently proposed DTU that is genetically more closely related to TcI than to any

other DTU. Therefore this DTU is probably underestimated because it is not recognized by the

markers used in many publications, and consequently it may have been erroneously equated

with TcI. This DTU was identified in 59 bats belonging to 12 different species in Brazil,

Fig 1. T. cruziDTUs distribution (TcI-TcVI and Tcbat) over 6234 determinations in vector andmammalian hosts from
19 endemic countries in the overall endemic area: In North America (n = 459), Central America (n = 120) and South
America (n = 5655). The ambiguous determinations of DTUs were deleted from the samples.

doi:10.1371/journal.pntd.0004792.g001
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Colombia, and Ecuador [16, 17, 26, 27], in one specimen of T. sordida from the State of Mato

Grosso do Sul State in Brazil [28], and in a Colombian patient infected with a mixture of TcI

and TcBat [18].

As mentioned above, TcI was the most frequently identified DTU in the overall sample,

with a lower percentage in South America (58.2%) than in North America (79.5%) and Central

America (93.3%). It was identified in all the countries included in the study. In South America,

the low frequencies of TcI in Argentina (19.9% of 589 determinations) and Paraguay (2.8% of

181) contrasted with the proportions of this DTU in the other South American countries (at

least> 47.0%) (Fig 2).

TcII was much more rarely identified (9.6% of overall DTUs identified). It was not identified

in Central America out of 120 identifications, and only 13 identifications were reported from

North America out of 459 (2.8%). Eight of these 13 TcII were found in Mexico, four in T. dimi-

diata captured in domestic cycles in the state of Veracruz [29] and four inMeccus pallidipennis

collected in Michoacan [30]. The five other identifications were from mice and rats captured in

the immediate surroundings of the dwelling of the first described autochthonous case of T.

cruzi transmission in Louisiana, near New Orleans [31, 32]. In South America, TcII presents a

higher proportion, reaching 10.4% and was reported in Colombia, Surinam, Peru, Bolivia, Bra-

zil, Argentina, Paraguay and Chile.

TcIII and TcIV, which are thought to result from ancestral hybridization between TcI and

TcII, reached 3.4% and 3.6% of the identifications, respectively. In North America, both of

Fig 2. T. cruziDTU distribution per country in South America out of a total of 5655 identifications. The ambiguous
determinations of DTUs were deleted from the samples.

doi:10.1371/journal.pntd.0004792.g002
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these DTUs were reported in Mexico in several publications [29, 30, 33, 34], but for the

moment only TcIV has been identified in the US [24, 31, 35, 36]. In Central America, only

TcIV has been identified in Guatemala in humans and vectors [37, 38]. In other Central Amer-

ican countries, neither TcIII nor TcIV has been reported. In South America, TcIII could be

more cosmopolitan (Argentina, Bolivia, Brazil, Chile, Colombia, Paraguay, Peru and Venezu-

ela) than TcIV, which has not yet been identified yet in Argentina, Chile and Paraguay.

The last two DTUs, TcV and TcVI, were the recent hybrids, derived from hybridizations

between TcII and TcIII. These DTUs showed the most differential geographical distribution.

Indeed, TcV was identified in North America in exceptional cases in Mexico (Veracruz) in T.

dimidiata as well as above-mentioned TcII [29]. TcV and TcVI have never been identified in

US in 148 determinations, nor in Central America in 120 cases. In contrast, in South America,

these DTUs together have frequently been identified in several countries, Argentina (76.9%),

Bolivia (44.6%), Chile (28.6%) and Paraguay (55.2%)—but very rarely in others such as in

Colombia (1.1%) [24, 39–41], Ecuador (3.3%) [42], and Brazil (1.5%) [24]. In Peru they were

identified in 13.0% [24, 43, 44]. Moreover, when the two DTUs coexist, different proportions

can be observed in the different countries. The most remarkable case was the identification of

TcV and TcVI in Bolivia with 43.1% and 1.0% respectively, while in Argentina TcVI was more

common (50.0%) and TcV less frequently detected (26.5%).

Eco-epidemiology of the DTUs

Domestic versus sylvatic cycles. T. cruzi circulates in nature in different environments

and two categories are usually distinguished: (i) the domestic cycles where T. cruzi evolves

between domestic vectors, domestic and synanthropic mammals, and humans that are living in

dwellings or/and around dwellings in the peridomestic areas; see Walter et al. for a comprehen-

sive definition of peridomicile [45]; and (ii) the sylvatic cycles where T. cruzi evolves between

wild mammals and vectors living outside domestic areas. The current results (Fig 3) show that

all DTUs, including Tcbat and taking into account the two cases described in the domestic

cycle [18, 28], participate in domestic and sylvatic cycles in some places. According to the

Fig 3. Differential T. cruzi DTUs distributions in wild and domestic cycles. The ambiguous determinations of DTUs were deleted from the
samples.

doi:10.1371/journal.pntd.0004792.g003
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current inventory, TcBat, TcI and TcIII are significantly more frequently identified in sylvatic

cycles than in domestic cycles (X2 test, p< 10−4) and inversely for TcII, TcIV TcV and TcVI

(X2, p< 10−4). Nevertheless, these tests are only indicative because they correspond to a very

gross approach that ignores sampling bias, which obviously exists.

Vector infections. To date, TcI is the major DTU identified in vectors (78.1%). TcI was

also the only DTU identified in the genus Eratyrus (n = 6) or was very predominant (> 91%)

inMeccus (n = 176), Panstrongylus (n = 715), and Rhodnius (n = 525) (Table 1).

For these genera where TcI was found highly prevalent, it is useful to detail which are the

other DTUs identified: (i) in the genusMeccus TcII, TcIII, and TcIV were identified in one

report in the speciesM. pallidipennis collected in municipalities of the State of Michoacan de

Ocampo in Mexico [30]. In this study, of 26 specimens of this species, TcI only reached 42.3%;

TcIII or TcIV have also been detected in T. longipennis in Jalisco state [34]. (ii) In the genus

Panstrongylus, besides TcI, the dominant DTU (96.7%), TcII was identified in Brazil, TcIII in

sylvatic cycles in three countries (Brazil, Colombia and Venezuela) and in domestic cycles in

Bolivia [46], and TcIV [47] and TcV or TcVI were identified once in Venezuela and Brazil

respectively [13, 47]. The hybrid strains (TcV or TcVI) were identified in P.megistus collected

in Minas Gerais (Brazil) in a domestic environment. These results suggest a remarkably high

diversity of DTUs in this genus. (iii) In the genus Rhodnius, besides TcI, the other DTUs were

very scarce. Among them, TcIV was the most common (4.0%). It was identified in three spe-

cies: R. brethesi and R. robustus in the Brazilian Amazon and R. prolixus in Colombia [24, 39],

Venezuela [47] and Guatemala [37]. TcII was identified in only three R. neglectus and R. pic-

tipes bugs in the state of Para in Brazil [48, 49]. Finally, TcIII and TcVI were reported in a sin-

gle individual each (R. brethesi and R. prolixus respectively) [39, 50].

In contrast, in the generaMepraia and Triatoma although TcI remains a major strain

(51.4% and 66.3% respectively), the other DTUs were found more frequently.

InMepraia, the identifications were made in two species (M. gajardoi andM. spinolai) cap-

tured in a sylvatic environment for which, in addition to TcI, remarkably high percentages of

TcII (23.6%), TcV (13.2%) and TcVI (11.8%) were identified [51–53].

In the genus Triatoma, the data were available for 18 species (Table 2), but the results con-

cerned principally T. infestans (1081 identifications, 73.8%). Lower numbers of DTU identifi-

cations were available for T. dimidiata (170), T. sordida (50), T. barberi (46), T. rubida (24) T.

maculata (19), T. eratyrusiformis (14) and T. protracta and T. braziliensis (12). For the remain-

ing species, there were fewer than ten identifications.

In this set of species, TcI was very dominant (>80%) except in T. infestans and T. brazilien-

sis where it was less abundant (59.1% and 66.6%respectively). In T. infestans all DTUs were

identified. TcI, TcV and TcVI dominated (93.5%), while TcII and TcIII accounted for about

Table 1. DTUs of T. cruzi currently detected in seven genera of T. cruzi vectors.

Vector genus DTU of T. cruzi

TcBat TcI TcII TcIII TcIV TcV TcVI Total

Dipetalogaster 1 1

Eratyrus 6 6

Meccus 161 4 2 9 176

Mepraia 113 52 29 26 220

Panstrongylus 689 5 20 1 715

Rhodnius 499 3 1 21 1 525

Triatoma 1 952 48 43 12 180 200 1436

Total 1 2421 112 66 43 209 227 3079

doi:10.1371/journal.pntd.0004792.t001
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6.4% together and TcIV was only detected once in an endemic valley in southern Peru.

Although T. brasiliensis has an epidemiological importance in Brazil, few strains were identi-

fied in this vector, all from states located in the Northeast region in Brazil (N = 12) mostly

from domestic cycles: six TcI, three TcII, and three TcIII or TcIV.

In the other species where TcI predominated, other DTUs were identified. In T. dimidiata,

TcI was the only DTU identified except in one study in which of 33 specimens of the Mexican

state of Veracruz, TcI (nine cases) as well as TcII, TcIII, TcIV and TcV were identified, the lat-

ter accounting for 72.7% of the sample. In T. sordida, TcII was detected in Brazil [28, 54], and

TcV and TcVI in Argentina [55], and most of the insects were captured in domestic cycle.

For the following nine species with a sample size< 10 (T. carrioni, T. gerstaeckeri, T.mato-

grossensis, T. nigromaculata, T. nitida, T. pseudomaculata, T. rubrovaria, T. sanguisuga, and T.

venosa), TcI was a major DTU (28/37, 75.7%), TcII was identified in one T.matogrossensis

[28], TcIII was the only DTU identified in T. rubrovaria from one study in the State of Rio

Grande do Sul in Brazil [7], and TcIV was identified in one T. sanguisuga in the US. The hybrid

DTUs (TcV and TcVI) were not identified [24].

Mammal infections. Domestic cycles. Considering domestic cycles and their mammalian

hosts, most of the identifications made were from samples isolated from humans (1902 identi-

fications, 84.0%). Those in dogs reached 220, from nine countries. Sixteen identifications were

from cats from Argentina [56, 57], 91 others were from small rodents in six countries that read-

ily nest in peridomestic structures (e.g., in sheds and piles of building materials), including 52

reports in Rattus rattus from Venezuela. There was also a single study of DTU identification in

24 goats in Chile [58]. In North America and Central America together (n = 112), there were

76 identifications in humans, accounting for 4.0% of the total number of human identifica-

tions, ten in dogs, and 26 in small rodents; mostly TcI was found (85.7%). The other DTUs

were TcII in small rodents from the US [31] and TcIV from three human cases in Guatemala

Table 2. DTUs of T. cruzi currently detected in the genus Triatoma.

Species DTU of T. cruzi

Tcbat TcI TcII TcIII TcIV TcV TcVI Total

Triatoma barberi 46 46

Triatoma brasiliensis 6 3 9

Triatoma carrioni 3 3

Triatoma dimidiata 143 4 5 9 9 170

Triatoma eratyrusiformis 6 1 7

Triatoma gerstaeckeri 7 7

Triatoma infestans 627 37 31 1 170 194 1060

Triatoma maculata 19 19

Triatoma matogrossensis 1 1

Triatoma nigromaculata 3 3

Triatoma nitida 1 1

Triatoma protracta 11 1 12

Triatoma pseudomaculata 4 4

Triatoma rubida 24 24

Triatoma rubrovaria 7 7

Triatoma sanguisuga 8 1 9

Triatoma sordida 1 40 3 1 5 50

Triatoma venosa 2 2

Total 1 950 48 43 12 180 200 1434

doi:10.1371/journal.pntd.0004792.t002
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[37] and in the US two rodents [31] and six dogs [35]. In South America, all DTUs except

Tcbat were identified in humans and dogs, and their distribution was rather similar, except for

the hybrid DTUs TcV and TcVI (Fig 4). TcV was more abundant than TcVI in humans and

conversely in dogs. In both cases, the DTUs TcI, and the hybrid DTUs TcV or TcVI were the

most frequently identified, reaching at least 25% each. For goats in Chile, TcI and hybrid

strains were found to be abundant, but TcII also reached 29.2% [58]. For small rodents, TcI

predominated. However, TcII and TcIV were, together with TcI, recently identified in the peri-

domestic area of a house surrounded by forest in Louisiana [31]. Moreover, TcV was found in

R. rattus caught in peridomiciles of dwellings in the region of Chiquitania in Bolivia where T.

sordida is the main vector species [59].

Sylvatic cycles. In the wild environment, the identifications of T. cruzi strains isolated from

mammals involved nine orders and 106 species for which very few characterizations were avail-

able for each one. Currently, TcI appears to be the most frequent DTU (58.3%) in the overall

samples. For the orders, Artiodactyla [47, 60] and Pilosa [10, 24, 61, 62], which included no more

than five identifications each, all were TcI. For the order Xernathra the two strains identified

were TcIII or TcIV [63] (Table 3). For the other orders, several specific trends are detailed below.

Examining the DTU distribution in the main orders and species (Table 3), it is worth noting

that TcI reached 94.2% in the order Didelphimorphia, while TcIII reached a similar percentage

in Cingulata (94.0%). The 278 identifications in Didelphimorphia were from 12 countries in

Fig 4. Comparative distribution of the T. cruzi DTUs in humans and dogs.

doi:10.1371/journal.pntd.0004792.g004
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North and South America, and from 20 species. In this order, only a few of the other DTUs

were identified: TcII in Chile [58], TcIII in Brazil [7, 63, 64] and Paraguay [65], TcIII or TcIV

in Mexico [34] and TcV and TcVI in Bolivia [24, 59] and Chile [58]. Species from the order

Cingulata were sampled in six countries (Bolivia, Brazil, Colombia, Paraguay, United States,

and Venezuela) where TcIII was the main DTU, and in the US out of three samples, two were

TcIV and one TcI. Two other identifications in Paraguay were TcII and TcV.

In the order Chiroptera, 145 identifications were reported in 23 species, all from South

America. Tcbat and TcI were similarly identified (around 40% each), while TcII identified in

Brazil, Colombia and Surinam was less frequent (14.5%), and TcIII and TcIV were very rare

(2.7% each) [66, 67].

In the order Carnivora, TcI (37.1%) and TcIV (58.1%) were principally identified, but of the

36 TcIV samples, 35 were from Procyon lotor captured in the US, also infected with TcI (two

cases) and one Nasua nasua from Brazil, both belonging to the same Procyonidae family. Four

TcIII were identified in Conepatus chinga in Argentina. In the order Rodentia, the DTU distri-

bution was quite different with high percentages of TcII (20.0%), TcIII (5.5%), TcV (13.1%)

and TcVI (10.1%) in addition to TcI (49.7%). However, the majority of the sample was from

Chile (61.7%) and Brazil (27.9%); TcV and TcVI were abundant only in Chile and not in Brazil

where TcI was 78.4% and TcIII 17.6%. For the wild primates, a total of 51 identifications were

made in 15 monkey species mostly sampled in Brazil (82.8%); TcI (67.2%), TcII (15.6%), TcIV

(15.6%) and TcIII in one specimen were the four DTUs identified, TcI (Brazil, Colombia, Ecua-

dor, France and Venezuela) and TcIV (Bolivia, Brazil, USA and Venezuela) were from different

countries, while TcII was sampled only in Brazil.

Discussion

For many years, the characterization of T. cruzi strains was mostly conducted with specific

goals in limited geographical areas and consequently with a limited number of strains. The cur-

rent compilation, based on the consensus nomenclature of six DTUs, reached an accumulated

number of 6,343 identifications. However, T. cruzi genotyping is associated with many biases

and trapping methods, and several caveats must be considered, such as (i) unequal distribu-

tions of the research groups in the eco-epidemiology of T. cruzi in different countries, resulting

in nonhomogeneous information; (ii) selection of some DTUs during the culture step; (iii) dif-

ferential parasitemia levels in hosts, facilitating the isolation by hemoculture or xenodiagnosis,

or facilitating the direct detection of some DTUs over others; (iv) markers’ differing ability to

detect the different DTUs; (v) overrepresentation of humans in the overall sample; (vi) scarcity

Table 3. Inventory of DTUs of T. cruzi identified in 960 wild mammals belonging to nine orders.

Mammal orders DTU of T. cruzi

Tcbat TcI TcII TcII/TcV/TcVI TcIII TcIII/TcIV TcIV TcV TcVI Total

Artiodactyla 3 3

Carnivora 46 1 15 4 8 36 110

Chiroptera 59 57 21 4 4 145

Cingulata 2 1 78 1 1 83

Didelphimorphia 262 1 7 3 3 2 278

Pilosa 5 5

Primate 43 10 1 10 64

Rodentia 91 37 10 1 24 20 183

Xernathra 2 2

Total 59 509 71 15 104 14 51 28 22 873

doi:10.1371/journal.pntd.0004792.t003
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of mammals that are difficult to trap; (vi) difficulties discriminating closely related DTUs; and

(vii) use of a nonstandardized set of reference strains. Despite of this nonexhaustive list of

biases, the data reported herein constitute the most complete picture of the DTU distribution

in the endemic area of Chagas disease.

The purpose of this review is not to discuss the current nomenclature of T. cruzi in six

DTUs. Indeed, there is an increasing number of new genetic analyses of T. cruzi strains, espe-

cially from sylvatic cycles, which show that it is increasingly difficult to obtain a relevant

genetic structure that divides into six statistically supported clusters with the most in vogue

genetic markers, microsatellites and nuclear sequence polymorphisms [68–70]. Moreover, at

the mitochondrial level, we recently assessed that three robust clusters that we named mtTcI,

mtTcII and mtTcIII actually exist [8]. The mtTcI cluster includes only strains belonging to the

TcI DTU, the mtTcII includes only those belonging to the TcII DTU and mtTcIII includes

strains belonging to several DTUs: TcIII and TcIV (ancient hybrids of TcI/TcII), TcV and

TcVI (recent hybrids TcII/TcIII) and even TcI (a result of mitochondrial introgression for

some strains labeled TcI with nuclear markers). These last few years, a number of studies aim-

ing to characterize T. cruzi strains have used the nomenclature of six DTUs, so we proposed to

examine the eco-epidemiological features of these DTUs and highlight new knowledge that

may challenge the current paradigm.

Geographical distribution and origin of the DTUs

Based on the available typing data, the first outstanding result is the predominance of TcI strains.

This DTU, genetically diversified, is found throughout the geographic distribution of T. cruzi and

in all cycles where it is always dominant. There are probably no ecological systems (i.e. geograph-

ical areas where the parasite evolves between mammalian hosts and vectors specific species)

where TcI is absent. However, it appears that TcI strains do not develop well in some mammal

species such as those within the order Cingulata since this order is rarely infected with TcI

(Table 3). The ecological systems are usually complex networks of relationships involving many

species of mammals and vectors, and strain diversity may be maintained because of differential

interactions between the parasite’s hosts and genotypes. TcI is an old DTU that has evolved since

3–16MYA as previously proposed [71], and its very high genetic diversity is consistent with a

long-term evolution. Moreover, recombination between TcI strains appears to be more frequent

than previously thought [2, 3, 72]. The recombination events (i.e. sex) generally increase the vari-

ability of the organisms and thus increase their resilience, allowing new areas to be conquered

and especially new hosts that have probably played a key role in the large dispersion and adapta-

tion of TcI. Another question is the geographical origin of TcI. A North-South clustering was rec-

ognized, even if some incongruence remains to be explained [73–75]. In an analysis of TcI, the

Gran Chaco region was proposed as an origin, while human TcI may have a North/Central

American origin [75–77]. It should be noted that if the current trend is to propose sub groups

within TcI, the presence of subunits, evolving separately, must be previously evidenced which is

not yet the case. Also, it has been proposed that marsupial species of the family Didelphidae fam-

ily are the ancestral hosts of TcI [78] given that, among others, TcI predominates in these ani-

mals. Based on our recent analysis of COII and CytB gene sequences previously deposited in

GenBank [8], we evaluated the haplotype and nucleotide diversities of TcI within the order

Didelphimorphia, and we observed that these indices were comparable to those obtained for all

the other orders of wild mammals combined. This assesses the larger genetic diversity in marsu-

pials than in other animals, supporting a longer association. The remarkable expansion of TcI,

which invaded most of environments, does not allow its origin to be determined from the picture

of its geographical distribution alone.
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TcII is a DTU as old as TcI, but it has been sampled much more rarely. The strains belong-

ing to this DTU carry mitochondrial genes (mtTcII mitochondrial cluster) whose sequences

show substantial genetic divergence from TcI. Moreover, this DTU presents a much lower

genetic diversity than TcI. For example, the haplotype diversity of COII and CytB genes are

0.39 and 0.48, while for mtTcI they are 0.81 and 0.58 respectively [8]. A similar level of differ-

ences is also observed for nucleotide diversity. The available data on the geographical distribu-

tion of TcII suggest that it is absent or extremely rare in some ecosystems (Central and North

America). It seems that TcII strains would not have had the same expansion capacity as TcI

among the wild cycles, and they probably found refuge mostly in certain wild mammals. TcII is

already reported in different wild mammals of the Chiroptera, Cingulate, Didelphimorphia

and Primate orders. However, its strong association with primates in the Atlantic Coastal Rain-

forest in Brazil should be noted [79]. In humans, it is relatively abundant, accounting for 20%

of human strains, but it is highly abundant in Brazil (66% of human strains identifications) and

rare in most other countries except Colombia (15%) and Chile (30%). For now, its geographical

distribution is more consistent with a South American origin, and further south than north of

the Amazon basin where this DTU is more abundant.

TcIII and TcIV are DTUs that do not seem to be present throughout the entire endemic

area. First, it is important to note that the genetic data do not clearly define these two groups

separately. The genetic diversity of TcIII-TcIV is very large and the monophyly of each DTU is

not really highlighted. Several studies showed that these strains are the result of ancient hybrid-

ization(s) between TcI and TcII strains, which suffer over time from genetic rearrangements,

decreasing their level of heterozygosity at the expense of mosaic mitochondrial and nuclear

genes [80]. Recombination events have probably occurred several times and this would have

given a mtTcIII group composed of polyphyletic subgroups of strains. Therefore, the wild

strains from the US, attributed to TcIV, seem to be a monophyletic subgroup differing from

the others long ago [81], but whose closest ancestors have probably disappeared. There is little

doubt that TcIII and TcIV DTUs have a sylvan origin, but these strains infect humans more

than occasionally: the current database shows that TcIV is reported in 84 human cases in six

countries (Brazil, Colombia, Ecuador, Guatemala, Peru and Venezuela), and 11 canine cases.

Similarly, TcIII is reported in 26 human cases in Brazil and Paraguay.

The two TcV and TcVI DTUs include strains derived from the hybridization of TcII and

TcIII strains [9]. They are usually considered hybrids and they are heterozygous at several loci

and SNPs (single nucleotide polymorphisms). In our database, a total of 21.3% of the determi-

nations belong to these DTUs. Some of these strains have spread across large geographic areas

through the clonal propagation mode [82]. Both DTUs are clearly associated with domestic

cycles since only 10.5% of them are identified in hosts from wild cycles. They are identified in

some Didelphimorphia and in different species of rodents but only in the Southern Cone coun-

tries and Bolivia. Previously, the Gran Chaco region was proposed as the original location of

these DTUs, where they are very abundant and where the putative parents are also present

[15], and this hypothesis fits well with the current observed distribution of these DTUs.

Host specificity

The universe of Hemiptera vectors of T. cruzi or potential vectors is huge since currently over

141–147 triatomine species are recognized, about 130 occur in the Americas, and it appears

that all of these are able to transmit the parasite. Most of these species are involved in wild

cycles with at least 100 species of mammals playing a role of host and/or reservoir. In the cur-

rent data, only 37 species of vectors are included and for the majority of them, very few DTU

determinations were made, even though these vectors are generally widely distributed.
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Similarly, the knowledge of the parasite genetic variants that infect mammals, except for

humans, and to a lesser extent for Didelphidae, is very limited. In various regions, in a context

of high anthropization and climate changes, it is urgent to study the impact of these environ-

mental modifications on potential vectors and their hosts.

Several studies of experimental infections of vectors with different strains of T. cruzi showed

differences in susceptibility [83] and even suggested that the strains are pathogenic and induce

more or less deleterious effects in bugs [84]. Few studies relate comparisons of DTUs in experi-

mental infections in a single triatomine species. For T. infestans in which this was done, signifi-

cant developmental differences in the vector were observed depending on the DTU it was

infected with, and after experimental double infections: in 50% of cases, only one of the two

DTUS was detected after a few days of infection [85, 86]. As a field observation, we can report

the case of Triatoma sordida, a primary vector in the northeast of the city of Santa Cruz, in

Bolivia, in which TcI was predominantly detected while in mammals of the same area, TcV

was a major strain [59]. In wild mammal hosts, experimental infections of two important reser-

voirs in the US (placental and marsupial) showed DTU-mammal association [87].

Examples could be multiplied but we can already conclude that the vectors and even the

wild mammal hosts can influence the distribution of DTUs. Whatever the host, there is a bal-

ance between parasite genotypes and hosts which probably depends on environmental condi-

tions such as outside temperature for vectors or immune and nutritional status for mammals.

The diversity of hosts, and environmental conditions certainly explain the maintenance of par-

asitic diversity and the emergence of new variants by natural selection. Therefore the distribu-

tion of DTUs reported here, although very informative, is only a temporary picture that will

inevitably evolve over time, above all if drastic environmental changes occur such as deforesta-

tion, intensive farming, urbanization, and unexpected climatic upheavals.
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