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Over-the-air Computation for IoT Networks:

Computing Multiple Functions with Antenna Arrays
Li Chen, Nan Zhao, Senior Member, IEEE, Yunfei Chen, Senior Member, IEEE,

F. Richard Yu, Fellow, IEEE, and Guo Wei

Abstract—Over-the-air computation combines communication
and computation efficiently by utilizing the superposition prop-
erty of wireless channels, when Internet of Things (IoT) networks
focus more on the computed functions than the individual
messages. In this work, we study the computation of multiple
linear functions of Gaussian sources over-the-air using antenna
arrays at both the IoT devices and the IoT access point (AP).
The key challenges in this study are the intra-node interference
of multiple functions, the non-uniform fading between different
IoT devices and the massive channel state information (CSI)
required at the IoT AP. We propose a novel transmitter design
at the IoT devices with zero-forcing beamforming to cancel the
intra-node interference and uniform-forcing power control to
compensate the non-uniform fading. In order to avoid massive
CSI requirement, receive antenna selection is adopted at the IoT
AP and a corresponding signaling procedure is proposed utilizing
the “OR” property of the wireless channel. The performance
of the proposed transceiver design is analyzed. The closed-form
expression for the mean squared function error (MSFE) outage
is derived. Due to the complexity of the expression, an asymptotic
analysis of the MSFE outage is further provided to demonstrate
the diversity order in terms of the transmit power constraint and
the number of IoT devices. Simulation results are presented to
show the performance of the proposed design.

Index Terms—antenna array, distributed data aggregation,
function computing, Internet of Things, multiple access scheme,
wireless sensor network

I. INTRODUCTION

The 5th generation cellular system is predicted to provide

an Internet of Things (IoT) that interconnects up to 1 trillion
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devices with a million connections per square kilometer [1].

This raises new challenges to the distributed data aggregation

for IoT networks [2].

Unlike conventional wireless networks whose main objec-

tive is to provide end-to-end information transmission, IoT

networks are more interested in the functions of the observa-

tions rather than the individual observations. For example, an

IoT-based monitoring system does not care about the abundant

individual observations but the computed functions thereof,

such as the sum and the mean [3]. The big data computing was

made to extract meaningful data from a large dataset for large-

scale smart grid in [4], which deleted a large amount mean-

ingless data before communication. In [5], the traffic volume

was predicated before making service degradability to alleviate

the communication pressure if the network has a heavy load.

A statistical machine learning approach was employed to

identify the anomalies within the incoming dataset collected

via various probes in the network [6]. Many event-driven IoT

applications define the triggering event based on the functions

of observations, such as the weighted linear combination [7].

This makes the traditional “communication-and-computation

separation” method inefficient. Reconstructing a function over

wireless multiple-access channel (MAC), referred to as “over-

the-air computation”, provides great potential for IoT network

to compute the target function using a summation structure

in an efficient way. It utilizes the superposition property of

wireless channel instead of making the interference between

different IoT devices orthogonal.

The study in over-the-air computation first started from the

information-theoretic point of view. In the seminal work [8],

B. Nazer and M. Gastpar pointed out that it is beneficial to

compute the sum of Gaussian sources over a Gaussian MAC,

which combines communication and computation efficiently

and harnesses the interference between different nodes. The

achievable aggregation rate of type-sensitive functions (e.g.

mean, mode, median, etc.) and that of type-threshold functions

(e.g. max, min, range, etc.) was defined and derived in [9].

These works lay formulation in over-the-air computation for

IoT network. When the target functions match the algebraic

structure of channel, there is significant performance gain can

be obtained by jointly designing communication and compu-

tation [10]. When there is mismatch between the target func-

tions and the channel structure, the impact on the achievable

performance gains with joint communication and computation

designs over separation-based designs has been analyzed in

[11]. Considering the correlation of sources, the information-

theoretic performance has been studied for linear functions
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analog computation of two correlated Gaussian sources in [12].

In order to achieve reliable function, the use of channel cod-

ing in over-the-air computation has also been widely studied.

Using nested lattice coding to compute the noisy modulo sum

was investigated in [13] based on the linear property of nested

lattice coding. Nested lattice coding has also been applied to

compute-and-forward network to recover the combination of

transmitted messages [14]. M. Goldenbaum et al. proposed a

unified digital scheme to compute structured functions over-

the-air in [15], where each node in the network first quantizes

its real-valued pre-processed readings and then employs a

nested lattice code to protect the sum of messages against

Gaussian channel noise. Using randomized network coding

through appropriate choice of the subspace codebooks at the

source nodes was proposed for function computing in [16],

where a lower bound on the number of transmissions required

to ensure successful computation was provided. The over-the-

air computation for a generalized IoT model consisting of

multiple clusters was studied in [17], where the network was

divided into several clusters with independent target functions

computed. The risky virtual machines were captured in prior

based on real data trace, thus guaranteeing high reliable virtual

machines transferring among data centers in [18].

Since the nodes in IoT networks are generally low-power

and low-cost, a practical way to realize over-the-air computa-

tion is through analog scheme. Uncoded transmission where

the channel input of IoT devices is merely a scaled version

of its noisy observation has been proved to be optimal for a

standard Gaussian multiple-access channel in [19]. A robust

analog function computation scheme was proposed in [20]. By

employing random sequences, the proposed scheme is robust

against synchronization errors. Utilizing retransmission to in-

crease reliability, the achievable rate for analog computation

was defined and analyzed in [21]. Considering the difficulty

of gathering the channel state information (CSI) of all nodes,

the effect of channel estimation error was studied in [22],

[23]. The work in [24] selected a subset of sensors in an

opportunistic way to improve the performance of function

computation, which achieves a nonvanishing computation rate

even when the number of sensors approaches infinity. Various

experimental platforms have been built to verify the idea of

analog over-the-air computation in [25]–[27].

To the best of our knowledge, the use of multiple functions

in over-the-air computation has never been studied before.

Although multi-antenna has been applied to compute-and-

forward network [28], [29], it was intended to improve the

communication rate using the multiplexity gain of multi-

antenna and its key challenge is integer coefficient selection for

adapting to the fading MAC [30], [31]. In the case of over-the-

air computation, the coefficient of multiple functions becomes

arbitrary and the key challenge becomes the transceiver design

to create an equivalent MAC with the target coefficient.

Motivated by this observation, we study how to compute

multiple functions over-the-air with antennas arrays at the IoT

devices and the IoT access point (AP), where multiple linear

combinations with arbitrary coefficient of Gaussian sources are

computed over the Gaussian MAC. The main contributions of

the work can be summarized as follows.

slot3slot2slot1

observation communication computation

(a) Computation after data aggregation.
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(b) Computation over-the-air.

Figure 1. The communication and computation model of the IoT network

• A novel transceiver design: The transmitter is designed to

cancel the intra-node interference between multiple func-

tions and compensate the non-uniform fading between

different IoT devices. Also, receive antenna selection

and its corresponding signaling procedure is proposed to

avoid massive CSI requirement at the IoT AP.

• The computation performance: We define the mean

squared function error (MSFE) to analyze the perfor-

mance of the computation. The closed-form expression

of MSFE outage is derived for Gaussian sources over

Gaussian MAC. Due to its complexity, the asymptotic

analysis with large transmit power constraint and large

number of IoT devices is provided.

• The diversity order: The diversity order of MSFE outage

is further derived in terms of the transmit power constraint

and the number of IoT devices, which depends on the

number of antennas, the number of functions and the

correlation coefficient between different sources.

The remainder of this paper is organized as follows. Section

II presents the system model. The transceiver and signaling

procedure are designed in Section III. The performance is

analyzed in Section IV. Simulation results and discussions are

present in Section V, and conclusion is given in VI.

Throughout the paper, we will use boldface lowercase to

refer to vectors and boldface uppercase to refer to matrices.

The real and complex numbers are denoted as R and C
respectively. Let A

H denote the conjugate transpose of a

matrix A and let A−1 denote inverse of a matrix A. Let ‖a‖
denote the norm of a vector a, and let aT denote the transpose

of a vector a.

II. SYSTEM MODEL

We consider a IoT network composed of K IoT devices

indexed by k ∈ {1, · · · ,K} as illustrated in Fig. 1. Each

IoT device observes L sources (e.g. temperature, humidity,
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pressure, etc.) indexed by l ∈ {1, · · · , L}. The observations

of IoT device k are expressed as an L-dimensions vector

dk ∈ RL. And the target functions at the IoT AP are linear

combinations of the observations which is expressed as

d =

K
∑

k=1

wkdk, (1)

where wk = diag {wk1 · · ·wkL} is the function coefficient

matrix.

As illustrated in Fig. 1(a), the AP can aggregate the ob-

servations first and then computes the target function. The

distributed data aggregation requires multiple access schemes

(e.g. time division multiple access (TDMA), carrier sense

multiple access (CSMA)), which requires multiple time slots

and incurs a high latency.

If we utilize the summation property of wireless MAC to

reconstruct the target function, we can avoid the multiple

access scheme for data aggregation and compute the target

function in one time slot as illustrated in Fig. 1(b).

The transmit vector sk ∈ RL of IoT device k is

sk = dk + vk, (2)

where vk ∈ RL is the observe noise vector. The elements

of dk and vk are assumed to be Gaussian distributed, i.e.,

dkl ∼ N
(

0, σ2
dl

)

and vkl ∼ N
(

0, σ2
vl

)

. Thus, the elements of

sk are also Gaussian distributed, i.e., skl ∼ N
(

0, σ2
dl + σ2

vl

)

.

Each IoT device is equipped with Nt antennas and the AP

is equipped with Nr antennas. We assume that Nt ≥ L and

Nr ≥ L. After coherent MAC, the estimated functions at the

AP can be written as

d̂ = A

K
∑

k=1

HkBksk +An, (3)

where Bk ∈ CNt×L is the transmitter matrix of IoT device

k, Hk ∈ CNr×Nt is the channel matrix between IoT device

k and the AP with each element distributed as CN (0, 1),
A ∈ CL×Nr is the receiver matrix of the AP, and n ∈ CNr

is the receive noise vector with each element distributed as

CN
(

0, σ2
n

)

.

Comparing the target functions in (1) with the estimated

ones in (3), the corresponding error vector is e = d̂− d. We

define the metrics of MSFE and MSFE outage to evaluate the

performance of over-the-air computation.

Definition 1. (MSFE and MSFE outage) Given the target

functions d and the estimated ones d̂, the estimation error

vector can be calculated as e = d̂ − d. Then, the MSFE is

defined as

MSFE =
E
(

‖e‖2
)

E
(

‖d‖2
) . (4)

Given a MSFE threshold ξ ∈ [0, 1], the corresponding MSFE

outage is defined as

Pout = Pr (MSFE > ξ) . (5)

III. TRANSCEIVER DESIGN FOR MULTIPLE FUNCTIONS

According to the system model, the key challenges to

compute multiple functions over-the-air are the intra-node

interference of multiple functions, the non-uniform fading

between different IoT devices, and the massive CSI gathering

at the AP. In this section, we design the transceiver to combat

these challenges. The signaling procedure is proposed to avoid

massive CSI gathering at the AP.

A. The case that Nr = L

We first consider the case that Nt ≥ L and Nr = L. The

case that Nr > L will be discussed in the subsection III-B. In

this case, the pseudo-inverse matrix of channel matrix exists.

The transmitter matrix of IoT device k is designed as

Bk =
√
ηHk

H
(

HkHk
H
)

−1

wk, (6)

where wk is the function coefficient matrix in (1), and η is

the power control factor considering transmit power constraint

of the IoT device. Then the estimated functions in (3) can be

rewritten as

d̂ = A

K
∑

k=1

√
ηHkHk

H
(

HkHk
H
)

−1

wksk +An

=
√
ηA

K
∑

k=1

wksk +An

, (7)

where the non-uniform fading is compensated to the uniform

level
√
η. If

A =
IL√
η
, (8)

we have that

d̂ =

K
∑

k=1

wkdk +

K
∑

k=1

wkvk +
n√
η
. (9)

The transmit power of IoT device k is

Pk = ‖Bksk‖2

= η (wksk)
H
(

HkHk
H
)

−1

(wksk)

=
η

τk

(10)

where

τk =

[

(wksk)
H
(

HkHk
H
)

−1

(wksk)

]

−1

, (11)

and τk is “the ratio between the channel power gain to the

effective signal power”. Considering a special case that Nt =
Nr = 1, τk can be rewritten as τk = |hk|2/|wksk|2, where

|hk|2 and |wksk|2 are the channel power gain and the effective

signal power of IoT device k respectively.

With a instantaneous power constraint considered, i.e., Pk ≤
P0, the power control factor η can be calculated as
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η = P0 min
k

(τk) , (12)

which depends on the IoT device with the minimum ratio

between the channel power gain to the effective signal power.

Remark 1. (To avoid massive CSI gathering) The transceiver

design avoids massive CSI gathering at the AP. According

to transmitter matrix in (6), each IoT device needs its own

CSI Hk and the power control level η to determine Bk. Hk

can be estimated based on the broadcasting pilots. And η
is determined at the AP and broadcated to all IoT devices

subsequently. According to receiver matrix in (8), the AP only

needs η to determine A. It seems that the AP requires all IoT

devices’ CSI to determine η in (12), which may incur massive

CSI gathering at the AP. In the subsection III-C, we will

propose a novel signaling procedure to determine η without

gathering all IoT devices’ CSI.

B. The case that Nr > L

When Nr > L, we adopt receive antenna selection to select

L receive antennas from Nr. Although it is not optimal, it also

avoids massive CSI gathering at the AP and only needs the

power control level η. The selected subset from Nr receive

antennas is Φi, where i ∈
{

1, · · · , CLNr

}

. The corresponding

receiver matrix AΦi
is composed of L rows of INr

/
√
η, where

the index set of selected rows is Φi. The equivalent channel

matrix after receiver is

HkΦi
= AΦi

Hk. (13)

Then the transmitter matrix for IoT device k can be rewritten

as

Bk =
√
ηHkΦi

H
(

HkΦi
HkΦi

H
)

−1

wk, (14)

The optimal selection criterion for subset Φi is

Φopt = argmax
Φi

min
k
τkΦi

, (15)

where

τkΦi
=

[

(wksk)
H
(

HkΦi
HkΦi

H
)

−1

(wksk)

]

−1

. (16)

The optimal antenna selection algorithm is based on exhaus-

tive search and sort, whose complexity is related to the search

space. Thus, the complexity of the optimal antenna selection

algorithm in terms of the search space will be O
(

CLNr

)

, where

CLNr
is the size of the search space. In order to avoid the

prohibitive complexity, we adopt a sub-optimal algorithm as

illustrated in Algorithm 1. Instead of comparison and selection

over CLNr
possible subsets, we simplify the search and sort

into M = ⌊Nr/L⌋ disjoint subsets. The corresponding receive

antenna subset Φm consists of antennas from (m− 1)L+1 to

mL, where m ∈ {1, 2, · · · ,M}. Thus, the complexity of the

Algorithm 1 in terms of the search space will be O (⌊Nr/L⌋).
Also, due to the independence between antennas subsets, the

analytical evaluation of Algorithm 1 becomes tractable, which

will be provided in Proposition 6.

Algorithm 1 Antenna selection with disjoint subsets

• Step 1 IoT device k estimates its own CSI Hk based on

the broadcasting pilots of AP. It further calculates τkΦm

for receive antennas subset Φm according to (16).

• Step 2 The AP determines the τΦm
= mink τkΦm

for

each selected antennas subsets m respectively. Then it

sorts τΦm
, and selects the Φm with the largest τΦm

.
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Figure 2. The signaling procedure to avoid massive CSI gathering

C. Signaling Procedure

According to the transceiver design above, both the IoT

devices and the AP requires the power control level η in (12).

In order to avoid gathering all IoT devices’ CSI to calculate

η, we utilize the ”OR” property of the wireless channel [32]

to determine the max (1/τk), i.e., min (τk).
Firstly, each IoT device k locally calculates its own τk based

on its own CSI according to (11) and quantizes the (1/τk) into

a binary representation as

1

τk
=

bM
∑

b=−bL

νb2
b, (17)

where νb ∈ {0, 1}, bM is the most significant bit (MSB)

and bL is the least significant bit (LSB). Then the AP uses

several rounds of inquiry from MSB bM to LSB bL in order

to determine the max (1/τk), i.e., min (τk). It can be described

in Algorithm 2.

The whole signaling procedure is illustrated in Fig. 2. The

time complexity of Algorithm 2 is related to the length of

the quantized 1/τk. According to the definition of τk in (11),

the value range of τk can be defined as τk ∈ [τmin, τmax],
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Algorithm 2 Utilizing “OR” property of the wireless channel

to determine min (τk)

• Step 1 In the first inquiring round, IoT devices with 1

in the MSB respond, while IoT devices with 0 in the

MSB keep silent. The AP detects the signal to determine

whether the MSB of max (1/τk) is 1. If so, the MSB of

max (1/τk) is set as 1. Otherwise, it is set as 0.

• Step 2 In the second inquiring round, if MSB is set

as 1, the AP inquires the IoT devices with MSB as 1

whether they have 1 in the second MSB. Otherwise, the

AP inquires all IoT devices whether they have 1 in the

second MSB. Then the second MSB is determined.

• Step 3 The AP inquires in this way until the LSB

is determined. Then max (1/τk), i.e., min (τk), can be

determined according to (17).

where τmin and τmax are the minimum value and maximum

value of τk . The MSB bM is determined by the 1/τmin,

i.e., 2bM > 1/τmin. And the LSB bL is determined by the

maximum tolerable quantization error ∆, i.e., 2−bL 6 ∆.

Thus, the length of the quantized 1/τk satifies

b = bM + bL > log2
1

τmin∆
. (18)

The pilot signal for each IoT device should be an Nt ×Nt
matrix for estimating an Nr ×Nt channel matrix. It takes at

least Nt symbol slots to complete the channel training process

in Algorithm 2. According to the length of the quantized 1/τk,

it takes b symbol slots to determine the min (τk). Thus, it takes

Nt + b symbol slots for Algorithm 2.

In contrast, the conventional channel training process for

each IoT device takes at least Nt symbol slots for estimating

an Nr ×Nt channel matrix. Thus, it takes KNt symbol slots

to obtain all IoT devices CSI at the AP. Consider a typical

dense sensor network with K = 100 and Nt = 2, it takes 200

time slots for conventional channel training process. Assuming

b = 18, it only takes 20 time slots for the proposed channel

training process in Algorithm 2, which achieves 10-time of

time complexity reduction in this example.

IV. PERFORMANCE OF MULTIPLE FUNCTIONS

COMPUTATION

In this section, we further provide the performance of

multiple functions computed over the air based on the defined

MSFE in Definition 1. Both the exact and asymptotic analysis

is given, and the diversity order in term of the transmit power

and the number of devices is also derived.

A. Exact analysis of MSFE

Proposition 1. (The expression of MSFE) Assuming that

different observation sources are i.i.d. and the observation

sources of different IoT devices are correlated, the MSFE of

multiple functions computed over-the-air with the transceiver

designed above can be calculated as

MSFE =

L
∑

l=1

K
∑

k=1

wkl
2σ2
vl + Lσ2

n

/

η

L
∑

l=1

K
∑

k1=1

K
∑

k2=1

wk1lwk2lρ
(l)
k1k2

σ2
dl

, (19)

where ρ
(l)
k1k2

is the correlation coefficient between IoT device

k1 and IoT device k2 for the observation source l.

Proof. According to the target functions in (1) and the esti-

mated ones in (9), the error vector is

e =

K
∑

k=1

wkvk +
n√
η
. (20)

Due to the distribution of vk and n, the lth element of
∑K
k=1 wkvk satisfies N

(

0,
∑K
k=1 wkl

2σ2
vl

)

and the lth el-

ement of n
/√

η satisfies CN
(

0, σ2
n

/

η
)

. For dk, the target

function dl satisfies N
(

0,
∑K
k1=1

∑K
k2=1 wk1lwk2lρ

(l)
k1k2

σ2
dl

)

.

Then according to Definition 1, the expression of MSFE in

(19) can be given.

Remark 2. (A case that MSFE is a function of K) We

consider a special case that the target function has the same

coefficient, and the data sources have the same spacial corre-

lation coefficient, i.e., wkl = 1 and ρ
(l)
k1k2

= ρc for k1 6= k2.

Also, the observation data and noise for different sources obey

the same distribution, i.e., σ2
dl = σ2

d and σ2
vl = σ2

v . Then the

corresponding MSFE in (19) is a function of the number of

IoT devices K and can be simplified as

MSFE =
σ2
v + σ2

n

/

Kη

σ2
d + (K − 1) ρcσ2

d

. (21)

The MSFE is a function of power control factor η, and η in

(12) is a function of τk. We first provide the following lemma

about the distribution of τk.

Lemma 1. (The distribution of τk) τk in (11) is a transforma-

tion of Wishart distributed matrix HkHk
H , which obeys a chi-

square distribution with 2 (Nt − L+ 1) degrees of freedom.

Specifically,

2µkτk ∼ χ2 (2 (Nt − L+ 1)) , (22)

where µk is defined as

µk = ‖wksk‖2 =

L
∑

l=1

(wklskl)
2. (23)

Proof. The proof of Lemma 1 is provided in Appendix A.

Then with fixed µk, the cumulative distribution function

(CDF) of τk can be given as

Fτk (τk, µk) =
γ (Nt − L+ 1, µkτk)

Γ (Nt − L+ 1)
, (24)

where γ(·) is the lower incomplete gamma function, Γ(·) is the

gamma function, and µk in (23) can be regard as ”the effective

signal power gain” with the distribution approximated in the

following lemma.
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Lemma 2. (The distribution of µk) µk in (23) is the linear

combinations of independent chi-square random variables,

which can be approximated as a chi-square distribution.

Specifically,

bkµk
ak

∼ χ2 (bk) (25)

where the constant ak and bk are given as

ak =

L
∑

l=1

wkl
2
(

σ2
dl + σ2

vl

)

(26)

and

bk =

(

L
∑

l=1

wkl
2

)2

L
∑

l=1

wkl4
. (27)

Proof. The proof of Lemma 2 is provided in Appendix B.

Then the probability distribution function (PDF) of µk is

fµk
(µk) =

1

2bk/2Γ (bk/2)

(

bk
ak

)(

bkµk
ak

)bk/2−1

e
−

bkµk
2ak ,

(28)

where ak and bk are given in (26) and (27) respectively.

According to Lemma 1 and Lemma 2, we can further derive

the closed-form expression of MSFE outage.

Proposition 2. (The expression of MSFE outage) The MSFE

outage can be calculated as

Pout
(a)
= Pr

[

P0 min
k

(τk) < ψ

]

(b)
= 1−

[

1− Fτk

(

ψ

P0

)]K

,

(29)

where

ψ =
Lσ2

n

ξ
L
∑

l=1

K
∑

k1=1

K
∑

k2=1

wk1lwk2lρ
(l)
k1k2

σ2
dl −

L
∑

l=1

K
∑

k=1

wkl2σ2
vl

,

(30)

Fτk (·) is the CDF of τk given as (31) at the bottom and 2F1 (·)
is the Gauss hypergeometric function.

Proof. The procedure (a) is calculated according to (19).

The procedure (b) is because the ordered distribution of the

minimum one of K i.i.d. variables. The CDF of τk can be

derived by

Fτk (τk) =

∫

∞

0

Fτk (τk, µk)fµk
(µk) dµk

(c)
=

(

bk
ak

)

bk
2∫∞

0
µk

bk
2 −1e

−
bkµk
2ak γ (Nt−L+1, µkτk) dµk

2
bk
2 Γ
(

bk
2

)

Γ (Nt − L+ 1)
,

(32)

where Fτk (τk, µk) and fµk
(µk) are given in (24) and (28)

respectively. The integral (c) can be calculated according to

[33, 6.455.2]. That is

∫

∞

0

xµ−1e−βxγ (ν, αx) dx

=
ανΓ (µ+ ν)

ν(α+ β)
µ+ν 2F1

(

1, µ+ ν; ν + 1;
α

α+ β

) (33)

B. Asymptotic Analysis of MSFE

The exact closed-form expression of MSFE outage in Propo-

sition 2 is too complex to give us any insights. Thus, we will

provide some asymptotic analysis to illustrate the diversity

order in terms of the transmit power constraint and the number

of IoT devices.

We first give the definition about the diversity order of

MSFE outage in terms of the transmit power constraint and

the number of IoT devices.

Definition 2. (The diversity order) The MSFE outage Pout is

a function of the transmit power constraint P0 and the number

of IoT devices K, the diversity order of MSFE outage in terms

of the transmit power constraint is defined as

DP = lim
P0→∞

log Pout (P0)

logP0
, (34)

and the diversity order of MSFE outage in terms of the number

of IoT devices is defined as

DK = lim
K→∞

log Pout (K)

logK
. (35)

Then we provide the asymptotic analysis with a large

transmit power constraint P0. Based on series expansion of

the MSFE outage expression in Proposition 2, we have the

following results.

Proposition 3. (Asymptotic MSFE outage with large P0)

As the transmit power constraint P0 is sufficiently large, the

MSFE outage can be approximated as

log Pout
a→− (Nt − L+ 1) logP0. (36)

Fτk (τk) =
Γ
(

Nt − L+ 1 + bk
2

)

τk
Nt−L+1

(

bk
2ak

)

bk
2

Γ (Nt − L+ 2)Γ
(

bk
2

)

(

τk +
bk
2ak

)Nt−L+1+
bk
2

2F1

(

1, Nt − L+ 1 +
bk
2
;Nt − L+ 2;

τk

τk +
bk
2ak

)

(31)
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where
a→ means asymptotically converging to (as P0 becomes

large).

Proof. The Proposition 3 is proved in Appendix C.

Remark 3. (The diversity order DP ) According to Definition

2, the diversity order of MSFE outage in terms of transmit

power constraint P0 is DP = Nt − L + 1, which depends

on the number of the transmit antennas and the number of

computed functions.

Then we provide the asymptotic analysis with a large

number of IoT devices. According to the extreme value theory

of ordered statistics, if some specific convergence conditions

are satisfied, the distribution of mink (τk) with large K
approaches to Weibull-α distribution with CDF given by

FW (x) = 1− exp (−xα) , x > 0, (37)

where α > 0 is the shape parameter.

The specific convergence conditions are provided by the

following lemma, and the value of α is also determined

accordingly.

Lemma 3. (The extreme value theory of ordered statistics)

F (·) is the CDF of X . iff F−1(0) is finite and

lim
ε→0+

F
(

F−1 (0) + εx
)

F (F−1 (0) + ε)
= xα (38)

for all x > 0. When n is sufficiently large, one can choose

a∗n = F−1 (0) and b∗n = F−1 (1/n)− F−1 (0) such that

(Xn:n − a∗n)/b
∗

n

d→W, (39)

where W is a Weibull distribution variable with CDF given in

(37), Xn:n is the nth large (minimum) variable from n i.i.d.

random x, and
d→ means convergence in distribution.

Proof. [34, Theorem 8.3.5 & 8.3.6]

Proposition 4. (Weibull approximation of mink (τk)) The

distribution of mink (τk) satisfies the convergence condition

in Lemma 3. And we have

min
k

(τk)

K−
1

Nt−L+1C−1

d→W (Nt − L+ 1) , (40)

where

C =

[

Γ (Nt − L+ 1 + bk/2)

Γ (Nt − L+ 2)Γ (bk/2)

]
1

Nt−L+1
(

2ak
bk

)

. (41)

Proof. The Proposition 4 is proved in Appendix D.

In order to make the analysis tractable, we consider the

MSFE in Remark 2, which is an explicit expression of the

number of IoT devices K. Based on the Weibull approxima-

tion, the asymptotic MSFE outage for large number of IoT

devices can be given as follows.

Proposition 5. (Asymptotic MSFE outage with large K) As

the number of IoT devices K is sufficiently large, the MSFE

outage in (21) can be approximated as

log Pout
a→



















− (Nt − L) logK, ρc = 0

− (2Nt − 2L+ 1) logK

− (Nt − L+ 1) log ρc,
ρc > 0

. (42)

Proof. The Proposition 5 is proved in Appendix E.

Remark 4. (The diversity order DK) When ρc > 0, the

diversity order of MSFE outage in terms of the number of IoT

devices K is DK = 2Nt − 2L+ 1 according to Definition

2. The increasing of correlation coefficient ρc will achieve

the diversity gain with the diversity order unchanged. When

ρc = 0, the diversity order of MSFE outage in terms of the

number of IoT devices K decreases to DK = Nt − L.

Finally, we discuss the selection diversity for the sub-

optimal selection algorithm proposed in Algorithm 1. Due

to the independence between antenna subsets, the analytical

evaluation of selection is tractable. The asymptotic MSFE

outage of the proposed algorithm can be given as follows.

Proposition 6. (Asymptotic MSFE outage with antenna se-

lection) For the proposed sub-optimal Algorithm 1, as the

transmit power constraint P0 is sufficiently large, we have the

MSFE outage in Proposition 3 asymptotically converges as

log Pout
a→−M (Nt − L+ 1) logP0. (43)

And as the number of IoT devices K is sufficiently large,

we have the MSFE outage in Proposition 5 asymptotically

converges as

log Pout
a→



















−M (Nt − L) logK, ρc = 0

−M (2Nt − 2L+ 1) logK

−M (Nt − L+ 1) log ρc,
ρc > 0

, (44)

where M = ⌊Nr/L⌋ is the number of antenna subsets.

Proof. The Proposition 6 is proved in Appendix F.

Remark 5. (The diversity order of antenna selection) The

diversity order of MSFE outage in terms of transmit power

constraint and that in terms of the number of IoT devices both

increase M = ⌊Nr/L⌋ times for the proposed Algorithm 1 due

to antenna selection diversity.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we provide some simulation results to

illustrate the performance of multiple functions computed

over-the-air. The simulation parameters are set as follows

unless specified otherwise. The number of transmit and receive

antennas Nt = Nr = 2, the number of computed functions

L = 2, the number of IoT devices K = 10, the observation

data of source l for IoT device k dkl ∼ N (0, 1), the threshold

of MSFE outage ξ = 0.1, the target function coefficient matrix

for IoT device k wk = IL, the signal to observe noise ratio

(SONR) σ2
d/σ

2
o = 10dB and the signal to receive noise ratio

(SRNR) σ2
d/σ

2
n = 10dB.
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The MSFE outage versus different SRNR from 0dB to 30dB

with different numbers of transmit antennas is illustrated in

Fig. 3. Firstly, the MSFE outage is a monotone-decreasing

function of SRNR. That is because the computed error caused

by receive noise decreases. Then, the log function of MSFE

outage almost linearly decreases with the increase of SRNR

at the high SRNR regime. And the decreasing rates increases

with the increase of the number of transmit antennas Nt. It

verifies the Proposition 3 which reveals that the diversity order

of MSFE outage in terms of transmit power constraint is Nt−
L+ 1.

The performance of different receive antenna selection

schemes is present in Fig. 4, where the number of receive

antennas Nr is 6. The mean MSFE of 106 Monte Carlo

simulations is shown. The random selection scheme, the

optimal selection scheme based on brute-force search, and

the sub-optimal scheme proposed in Algorithm 1 are all

illustrated with different SRNR from 10dB to 30dB. For
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Figure 5. The MSFE outage versus different numbers of IoT devices with
different numbers of transmit antennas
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Figure 6. The MSFE outage versus different numbers of IoT devices with
different correlation coefficient ρc

random selection, we have no prior knowledge. Any selection

chosen L elements from the set with Nr elements can be

regarded as random selection. In our simulated results, we

just chose the first L antennas from all Nr antennas. It can

be seen that the performance of Algorithm 1 is between the

performance of the optimal selection and the performance of

the random selection. The reason can be explained from the

search space point of view. There is no doubt that the optimal

selection based on brute force search will go over the entire

search space. It can obtain the optimal performance at the

price of the high complexity. The motivation of the proposed

algorithm is to make a tradeoff between the complexity

and the performance, where the search space is limited to

M = ⌊Nr/L⌋ disjoint subsets. Thus, its performance is always

inferior to the optimal one. We have provided the theoretical

performance of the proposed algorithm in Proposition 6, which

can obtain a selection diversity gain of M = ⌊Nr/L⌋.

Thus, its performance is superior to the random one. As the



9

SRNR becomes large, the performance gap between different

schemes decreases. That is because receive antenna selection

only affects the transmission error. As the SRNR increases,

the MSFE caused by transmission error decreases and the

observation error gradually dominates the whole errors.

The MSFE outage versus different numbers of IoT devices

from 2 to 100 is present in Fig. 5 and Fig. 6 with different

numbers of transmit antennas Nt and different correlation

coefficient ρc. Both the exact expression and Weibull approx-

imation are shown. According to these two figures, the MSFE

outage is a monotone-decreasing function of the number of IoT

devices. On one hand, it is due to the increase of the combined

received signal power, which decreases the transmission error

caused by the receive noise. On the other hand, it is due to

the decrease of the observation error when the observe sources

of different IoT devices are correlated with each other. Also,

it can be observed that the Weibull approximation proposed

in Proposition 4 is accurate, especially when the number of

IoT device is in a large regime. In Fig.5, the MSFE outage

almost linearly decreases when the number of IoT devices

K exponential increases. And the decreasing rate increases

with the increase of the number of transmit antennas Nt. It

verifies the Proposition 5 that the diversity order in terms of

the number of IoT devices increases with Nt. In Fig.6, when

ρc > 0, the decreasing rate with the increase of the number of

IoT devices is the same for different correlation coefficient ρc.
And the increase of ρc will bring diversity gain. When ρc = 0,

the diversity order decreases. That verifies the Proposition 5.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel transceiver design for mul-

tiple functions computed over-the-air. The transmitter matrix

is designed to cancel the intra-node interference of multiple

functions and compensated the non-uniform fading between

different IoT devices. The receive antenna selection is adopted

and the corresponding signaling procedure is proposed to avoid

massive CSI gathering problem by utilizing the ”OR” property

of the wireless channel. The performance of MSFE outage is

derived based on the signal and channel distributions. Due

to the complexity of the expression, asymptotic analysis is

provided by series expansion and Weibull distribution approx-

imation. The diversity order are defined and derived in terms

of transmit power constraint and the number of IoT devices,

which are determined by the number of transmit antennas, the

number of functions, and the correlation coefficient between

different sources.

In the future work, we will study the robust design for multi-

ple functions computed over-the-air, where the CSI estimation

error and the synchronization error will be considered. Also,

the network model will be extended to the IoT network with

multiple clusters and experimental platforms will be built.

APPENDIX A

PROOF OF LEMMA 1

Considering τk defined in (11), HkHk
H obeys a complex

Wishart distribution with Nr dimensions and 2Nt degrees of

freedom with Rayleigh fading assumed, i.e.,

HkHk
H ∼ CW

(

1

2
INr

, L, 2Nt

)

(45)

Then according to [35, Proposition 8.9] about the transfor-

mation of Wishart distributed matrix. That is suppose S0 has

a nonsingular Wishart distribution, say W (Σ, p, n), and let A

be an r × p matrix of rank r. We have

(

AS
−1
0 A

H
)−1 ∼ W

(

(

AΣ
−1

A
H
)−1

, r, n− p+ r
)

. (46)

Thus, τk =

[

(wksk)
H
(

HkHk
H
)

−1

(wksk)

]

−1

also obeys

a complex Wishart distribution, i.e.,

τk ∼ CW
(

(

(wksk)
H
2INr

(wksk)
)

−1

, 1, 2 (Nt − L+ 1)

)

.

(47)

The above one-dimensional complex-valued Wishart distribu-

tion is actually a chi-square distribution with 2 (Nt − L+ 1),
i.e., 2µkτk ∼ χ2 (2 (Nt − L+ 1)) .

APPENDIX B

PROOF OF LEMMA 2

We adopt the Welch-Satterthwaite approximation to ap-

proximate the linear combinations of independent chi-square

random variables [36].

That is let M1, · · · ,Mn be independent random variables,

and let a1, · · · , an, b1, · · · , bn and k1, · · · , kn be positive

numbers. If we have that

bjMj

aj
∼ χ2 (bj) (48)

Then the distribution of M = k1M1 + · · · + knMn can be

approximated as

bM

a
∼ χ2 (b) (49)

with

a = k1a1 + · · ·+ knan (50)

and

b =
a2

(k1a1)
2

b1
+ · · ·+ (knan)

2

bn

. (51)

Because skl ∼ N
(

0,
(

σ2
dl + σ2

vl

))

, we have

(skl)
2

σ2
dl + σ2

vl

∼ χ (1) (52)

The distribution of µk =
∑L
l=1(wkl)

2(skl)
2 is ap-

proximated as chi-square distribution according to Welch-

Satterthwaite approximation, i.e.,

bkµk
ak

∼ χ2 (bk) (53)

where
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ak =

L
∑

l=1

wkl
2
(

σ2
dl + σ2

vl

)

(54)

and

bk =

[

L
∑

l=1

wkl
2
(

σ2
dl + σ2

vl

)

]2

L
∑

l=1

[wkl2 (σ2
dl + σ2

vl)]
2

=

(

L
∑

l=1

wkl
2

)2

L
∑

l=1

wkl4
.

(55)

APPENDIX C

PROOF OF PROPOSITION 3

The series expansion of the Gauss hypergeometric function

2F1 (·) in [33, 9.100] is

2F1 (α, β; γ; z) = 1 +
αβ

γ
z +O

(

z2
)

, (56)

As the transmit power constraint P0 is large, ψ/P0 → 0.

The closed-from expression of Fτk(τk) in (38) is approximated

as

Fτk

(

ψ

P0

)

≈ Γ
(

Nt − L+ 1 + bk
2

)

Γ (Nt − L+ 2)Γ
(

bk
2

)

(

2akψ
bk

2akψ
bk

+ P0

)Nt−L+1

(57)

by ignoring the higher order terms. And the MSFE outage in

(29) is approximated as

Pout ≈ KFτk

(

ψ

P0

)

. (58)

Combining (57) and (58), we have that

log Pout ≈− (Nt−L+1) logP0+log
KΓ

(

Nt−L+1 +bk
2

)

Γ (Nt−L+2)Γ
(

bk
2

)

+ (Nt − L+ 1) log
2akψ

bk
(59)

APPENDIX D

PROOF OF PROPOSITION 4

According to the series expansion of 2F1 (·) [33, 9.100] in

(56) and Fτk (τk) in (58), we have that

lim
ε→0+

Fτk (εx)

Fτk (ε)
= lim
ε→0+

(εx)
Nt−L+1

(ε)
Nt−L+1

= xNt−L+1 (60)

for large number of IoT devices.

According to the extreme value theory of ordered statistics

in Lemma 3, the distribution of mink (τk) converge to a

Weibull distribution with α = Nt − L+ 1,

a∗n = Fτk
−1 (0) = 0, (61)

and

b∗n = F−1
τk

(1/K) ≈ K−
1

Nt−L+1C−1 (62)

with C given in (41).

APPENDIX E

PROOF OF PROPOSITION 5

According to the Weibull approximation in Proposition 4,

we get that

Pr (min (τk) ≤ x) ≈ 1− exp
(

−CNt−L+1

Kx
Nt−L+1

)

(63)

Then the corresponding MSFE outage in (29) can be further

approximated as

Pout = Pr

(

min (τk) <
ψ

P0

)

(a)≈ 1− exp

(

−CNt−L+1K
1

P0

Lσ2
n

Kξ [1 + (K − 1) ρc]σ2
d

)

(b)≈ CNt−L+1K

(

1

P0

Lσ2
n

Kξ [1 + (K − 1) ρc]σ2
d

)Nt−L+1

,

(64)

where the procedure (a) is due to (12) and (21), the procedure

(b) is due to the series expansion of exponential function for

ψ → 0. Then we have that

log Pout
a→−(Nt−L) logK−(Nt−L+1) log [1 + (K−1) ρc] .

(65)

Then the proposition is proved.

APPENDIX F

PROOF OF PROPOSITION 6

Because of the independence between antenna subsets, the

MSFE outage with the selected subset Φm can be calculated

according to ordered distribution, i.e.,

Pout = Pr

(

max
Φm

min
k
τkΦm

<
ψ

P0

)

=

[

1−
[

1− Fτk

(

ψ

P0

)]K
]M

.

(66)

Then the asymptotic analysis for large transmit power con-

straint in (58) can be rewritten as

Pout ≈ KM

[

Fτk

(

ψ

P0

)]M

. (67)

And the asymptotic analysis for large number of IoT devices

in (64) can be rewritten as
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Pout ≈ C
M(Nt−L+1)

KM

(

1

P0

Lσ2
n

Kξ [1+(K−1) ρc]σ2
d

)

M(Nt−L+1)

(68)

Then the MSFE outage with large P0 and large K can be

given in (43) and (44), respectively.
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